More stories

  • in

    The case for the reintroduction of cheetahs to India

    Gopalaswamy, A. M. et al. Nat. Ecol. Evol. 6, 1794–1795 (2022).Article 
    PubMed 

    Google Scholar 
    Sandom, C., Donlan, C. J., Svenning, J. C. & Hansen, D. in Key Topics In Conservation Biology 2 (eds MacDonald, D. W. & Willis, K. J.) 430–451 (2013).Ripple, W. J. et al. Science 343, 1241484 (2014).Article 
    PubMed 

    Google Scholar 
    Jhala, Y. V., Ranjitsinh, M. K., Bipin, C. M. & Yadav, S. P. Action Plan For Introduction Of Cheetah In India (2021).Divyabhanusinh & Kazami J. Bombay Nat. Hist. Soc. 116, 22–43 (2019).
    Google Scholar 
    IUCN/SSG. Guidelines For Reintroductions And Other Conservation Translocations IUCN. Ecological Applications 20 (IUCN Species Survival Commission, 2013).Prost, S. et al. Mol. Ecol. 31, 4208–4223 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buk, K. G., van der Merwe, V. C., Marnewick, K. & Funston, P. J. Conservation Of Severely Fragmented Populations: Lessons From The Transformation Of Uncoordinated Reintroductions Of Cheetahs (Acinonyx jubatus) Into A Managed Metapopulation With Self-Sustained Growth. Biodiversity And Conservation 27 (Springer Netherlands, 2018).Scientific Authority of South Africa. Gov. Gaz. Repub. South Africa 677, 1–4 (2021).Walker, E. H., Verschueren, S., Schmidt-Küntzel, A. & Marker, L. Oryx 56, 495–504 (2022).Article 

    Google Scholar 
    Tordiffe, A. S. W. et al. Disease Risk Analysis For Introduction Of Cheetahs (Acinonyx jubatus) To India (2022).Brugière, D., Chardonnet, B. & Scholte, P. Trop. Conserv. Sci. 8, 513–527 (2015).Article 

    Google Scholar 
    Jhala, Y. V. et al. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00312 (2019).Jhala, Y. et al. People Nat. 3, 281–293 (2021).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J. & Kerley, G. I. H. Biol. Conserv. 139, 219–229 (2007).Article 

    Google Scholar 
    Ogutu, J. O., Owen-Smith, N., Piepho, H. P. & Said, M. Y. J. Zool. 285, 99–109 (2011).Article 

    Google Scholar 
    Houser, A. M., Somers, M. J. & Boast, L. K. J. Zool. 278, 108–115 (2009).Article 

    Google Scholar  More

  • in

    Info-gap theory to determine cost-effective eradication of invasive species

    Peterson, A. T. & Vieglais, D. A. Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. Bioscience 51, 363–371 (2001).Article 

    Google Scholar 
    Atkinson, I. A. E. Introduced mammals and models for restoration. Biol. Conserv. 99, 81–96 (2001).Article 

    Google Scholar 
    Parkes, J. P. & Panetta, F. D. Eradication of invasive species: progress and emerging issues in the 21st century. In Invasive Species Management: A Handbook of Principles and Techniques (eds Clout, M. N. & Williams, P. A.) (Oxford University Press, 2009).
    Google Scholar 
    Baker, C. M., Hodgson, J. C., Tartaglia, E. & Clarke, R. H. Modelling tropical fire ant (Solenopsis geminata) dynamics and detection to inform an eradication project. Biol. Invasions 19, 2959–2970 (2017).Article 

    Google Scholar 
    Simberloff, D. How much information on population biology is needed to manage introduced species?. Conserv. Biol. 17, 83–92 (2003).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).Article 

    Google Scholar 
    Sanchirico, J. N., Albers, H. J., Fischer, C. & Coleman, C. Spatial Management of invasive species: Pathways and policy options. Environ. Resour. Econ. 45, 517–535 (2010).Article 

    Google Scholar 
    Caplat, P., Hui, C., Maxwell, B. D. & Peltzer, D. A. Cross-scale management strategies for optimal control of trees invading from source plantations. Biol. Invasions 16, 677–690 (2014).Article 

    Google Scholar 
    Long, Y., Van der Merwe, J., Thomas, M. L., McKirdy, S. & Kompas, T. Biosecurity for valuable environmental island assets: Spatial post-border surveillance for early detection. Ecol. Econ. forthcoming (2022).Kroetz, K. & Sanchirico, J. N. The bioeconomics of spatial-dynamic systems in natural resource management. Annu. Rev. Resour. Econ. 7, 189–207 (2015).Article 

    Google Scholar 
    Liu, Y., Wang, P., Thomas, M. L., Zheng, D. & McKirdy, S. J. Cost-effective surveillance of invasive species using info-gap theory. Sci. Rep. 11, 22828 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Homans, F. & Horie, T. Optimal detection strategies for an established invasive pest. Ecol. Econ. 70, 1129–1138 (2011).Article 

    Google Scholar 
    Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).Article 

    Google Scholar 
    Moffitt, L. J., Stranlund, J. K. & Osteen, C. D. Robust detection protocols for uncertain introductions of invasive species. J. Environ. Manage. 89, 293–299 (2008).Article 
    PubMed 

    Google Scholar 
    Yokomizo, H., Possingham, H. P., Hulme, P. E., Grice, A. C. & Buckley, Y. M. Cost-benefit analysis for intentional plant introductions under uncertainty. Biol. Invasions 14, 839–849 (2011).Article 

    Google Scholar 
    Ben-Haim, Y. Info-gap Decision Theory: Decisions Under Severe Uncertainty 2nd edn. (Academic Press, 2006).
    Google Scholar 
    Knight, F. H. Risk, Uncertainty, and Profit (Houghton Mifflin Company, 1921).
    Google Scholar 
    Regan, H. M. et al. Robust decision-making under severe uncertainty for conservation management. Ecol. Appl. 15, 1471–1477 (2005).Article 

    Google Scholar 
    Ben-Haim, Y. Uncertainty, probability and information-gaps. Reliab. Eng. Syst. Saf. 85, 249–266 (2004).Article 

    Google Scholar 
    Ben-Haim, Y. & Demertzis, M. Decision making in times of Knightian uncertainty: An info-gap perspective. Economics 10, 1 (2016).Article 

    Google Scholar 
    Lever, C. Naturalized Reptiles and Amphibians of the World (Oxford University Press, 2003).
    Google Scholar 
    Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).Article 
    PubMed 

    Google Scholar 
    Torres-Carvajal, O. On the origin of South American populations of the common house gecko (Gekkonidae: Hemidactylus frenatus). NeoBiota 27, 69–79 (2015).Article 

    Google Scholar 
    Hoskin, C. J. The invasion and potential impact of the Asian House Gecko (Hemidactylus frenatus) in Australia. Austral Ecol. 36, 240–251 (2011).Article 

    Google Scholar 
    Barnett, L. K. Understanding Range Expansion of Asian House Geckos (Hemidactylus frenatus) in Natural Environments (James Cook University, 2017).
    Google Scholar 
    Norval, G. & Mao, J.-J. An instance of a house gecko (Hemidactylus frenatus Schlegel, 1836) utilizing an electrical timer for thermoregulation. IRCF Reptil. Amphib. 22, 76–78 (2015).Article 

    Google Scholar 
    Greenslade, P., Burbidge, A. A. & Lynch, A. J. J. Keeping Australias islands free of introduced rodents Barrow Island. Pac. Conserv. Biol. 19, 284–294 (2013).Article 

    Google Scholar 
    Perella, C. D. & Behm, J. E. Understanding the spread and impact of exotic geckos in the greater Caribbean region. Biodivers. Conserv. 29, 1109–1134 (2020).Article 

    Google Scholar 
    Davis, M. A. Invasion biology. In Encyclopedia of Biological Invasions (eds Simberloff, D. & RejmÁNek, M.) 364–369 (University of California Press, 2011).
    Google Scholar 
    García-Díaz, P., Ross, J. V., Vall-llosera, M. & Cassey, P. Low detectability of alien reptiles can lead to biosecurity management failure: A case study from Christmas Island (Australia). NeoBiota. 45, 75–92 (2019).Article 

    Google Scholar 
    Koopman, B. O. Search and Screening. Operations Evaluation Group (OEG) Report. (1946).Grasinger, M., O’Malley, D., Vesselinov, V. & Karra, S. Decision analysis for robust CO2 injection: Application of Bayesian-Information-Gap Decision Theory. Int. J. Greenh. Gas Control 49, 73–80 (2016).Article 
    CAS 

    Google Scholar 
    MathWorks. MATLAB R2018b. (MathWorks, 2018).Commonwealth Government of Australia. Approval—Gorgon Gas Development (EPBC Reference: 2008/4178). (2009).Kalaris, T. et al. The role of surveillance methods and technologies in plant biosecurity. In The Handbook of Plant Biosecurity: Principles and Practices for the Identification, Containment and Control of Organisms that Threaten Agriculture and the Environment Globally (eds Gordh, G. & McKirdy, S.) 309–337 (Springer, 2014).Chapter 

    Google Scholar 
    Sharma, S., Mckirdy, S. & Macbeth, F. The biosecurity continuum and trade: Tools for post-border biosecurity. In The Handbook of Plant Biosecurity: Principles and Practices for the Identification, Containment and Control of Organisms that Threaten Agriculture and the Environment Globally (eds Gordh, G. & McKirdy, S.) 189–206 (Springer, 2014).Chapter 

    Google Scholar 
    Epanchin-Niell, R. S. Economics of invasive species policy and management. Biol. Invasions 19, 3333–3354 (2017).Article 

    Google Scholar 
    Gregg, H. et al. Invasive rodent eradication on islands. Conserv. Biol. 21, 1258–1268 (2007).Article 

    Google Scholar 
    Parkes, J. Feasibility plan to eradicate Common mynas (Acridotheres tristis) from Mangaia Island, Cook Islands. Landcare Research Contract Report LC0506/184. (2006).Barun, A. & Simberloff, D. Carnivores. In Encyclopedia of Biological Invasions (eds Simberloff, D. & RejmÁNek, M.) 95–100 (University of California Press, 2011).
    Google Scholar 
    Pluess, T. et al. When are eradication campaigns successful? A test of common assumptions. Biol. Invasions 14, 1365–1378 (2012).Article 

    Google Scholar 
    Epanchin-Niell, R. S., Haight, R. G., Berec, L., Kean, J. M. & Liebhold, A. M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15, 803–812 (2012).Article 
    PubMed 

    Google Scholar 
    Rout, T. M., Thompson, C. J. & McCarthy, M. A. Robust decisions for declaring eradication of invasive species. J. Appl. Ecol. 46, 782–786 (2009).Article 

    Google Scholar 
    Hauser, C. E. & McCarthy, M. A. Streamlining “search and destroy”: Cost-effective surveillance for invasive species management. Ecol. Lett. 12, 683–692 (2009).Article 
    PubMed 

    Google Scholar 
    Epanchin-Niell, R. S. & Hastings, A. Controlling established invaders: Integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13, 528–541 (2010).Article 
    PubMed 

    Google Scholar 
    Moore, J. L. et al. Protecting islands from pest invasion: Optimal allocation of biosecurity resources between quarantine and surveillance. Biol. Conserv. 143, 1068–1078 (2010).Article 

    Google Scholar 
    Rout, T. M., Moore, J. L., Possingham, H. P. & McCarthy, M. A. Allocating biosecurity resources between preventing, detecting, and eradicating island invasions. Ecol. Econ. 71, 54–62 (2011).Article 

    Google Scholar  More

  • in

    Metagenomic mapping of cyanobacteria and potential cyanotoxin producing taxa in large rivers of the United States

    Hallegraeff, G. M. Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge 1. J. Phycol. 46, 220–235 (2010).Article 
    CAS 

    Google Scholar 
    Itakura, S. & Imai, I. Economic impacts of harmful algal blooms on fisheries and aquaculture in western Japan—An overview of interannual variability and interspecies comparison. PICES Sci. Rep. 47, 17 (2014).
    Google Scholar 
    Haigh, N. & Esenkulova, S. Economic losses to the British Columbia salmon aquaculture industry due to harmful algal blooms, 2009–2012. PICES Sci. Rep. 47, 2 (2014).
    Google Scholar 
    Sharma, N. K. et al. (eds) Cyanobacteria: An Economic Perspective 245–256 (Wiley, 2014).
    Google Scholar 
    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027 (2012).Article 
    CAS 

    Google Scholar 
    Paerl, H. W. & Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37. https://doi.org/10.1111/j.1758-2229.2008.00004.x (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hallegraeff, G. M. et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2, 117. https://doi.org/10.1038/s43247-021-00178-8 (2021).Article 
    ADS 

    Google Scholar 
    Hennon, G. M. M. & Dyhrman, S. T. Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms. Harmful Algae 91, 101587. https://doi.org/10.1016/j.hal.2019.03.005 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kudela, R., Berdalet, E. & Urban, E. Harmful Algal Blooms: A Scientific Summary for Policy Makers (2015).Lezcano, M., Velázquez, D., Quesada, A. & El-Shehawy, R. Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: An interplay between microcystin producers and degraders. Water Res. 125, 52–61. https://doi.org/10.1016/j.watres.2017.08.025 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Scherer, P. I. et al. Temporal dynamics of the microbial community composition with a focus on toxic cyanobacteria and toxin presence during harmful algal blooms in two South German Lakes. Front. Microbiol. 8, 02387. https://doi.org/10.3389/fmicb.2017.02387 (2017).Article 

    Google Scholar 
    Woodhouse, J. N. et al. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J. 10, 1337–1351. https://doi.org/10.1038/ismej.2015.218 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beaver, J. R. et al. Land use patterns, ecoregion, and microcystin relationships in U.S. lakes and reservoirs: A preliminary evaluation. Harmful Algae 36, 57–62. https://doi.org/10.1016/j.hal.2014.03.005 (2014).Article 
    CAS 

    Google Scholar 
    Loftin, K. A. et al. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 56, 77–90. https://doi.org/10.1016/j.hal.2016.04.001 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Casero, M. C., Velázquez, D., Medina-Cobo, M., Quesada, A. & Cirés, S. Unmasking the identity of toxigenic cyanobacteria driving a multi-toxin bloom by high-throughput sequencing of cyanotoxins genes and 16S rRNA metabarcoding. Sci. Total Environ. 665, 367–378. https://doi.org/10.1016/j.scitotenv.2019.02.083 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaffin, J. D., Sigler, V. & Bridgeman, T. B. Connecting the blooms: Tracking and establishing the origin of the record-breaking Lake Erie Microcystis bloom of 2011 using DGGE. Aquat. Microb. Ecol. 73, 29–39 (2014).Article 

    Google Scholar 
    Stanley, E. H. & Jones, J. B. (eds) Stream Ecosystems in a Changing Environment 321–348 (Elsevier, 2016).Book 

    Google Scholar 
    Giblin, S. M. & Gerrish, G. A. Environmental factors controlling phytoplankton dynamics in a large floodplain river with emphasis on cyanobacteria. River Res. Appl. 36, 1137–1150. https://doi.org/10.1002/rra.3658 (2020).Article 

    Google Scholar 
    Graham, J. L., Ziegler, A. C., Loving, B. L. & Loftin, K. A. Fate and Transport of Cyanobacteria and Associated Toxins and Taste-and-Odor Compounds from Upstream Reservoir Releases in the Kansas River, Kansas, September and October 2011 65 (US Geological Survey, 2012).
    Google Scholar 
    Knowlton, M. F. & Jones, J. R. Seston, light, nutrients and chlorophyll in the lower Missouri River, 1994–1998. J. Freshw. Ecol. 15, 283–297. https://doi.org/10.1080/02705060.2000.9663747 (2000).Article 

    Google Scholar 
    Otten, T. G., Crosswell, J. R., Mackey, S. & Dreher, T. W. Application of molecular tools for microbial source tracking and public health risk assessment of a Microcystis bloom traversing 300 km of the Klamath River. Harmful Algae 46, 71–81 (2015).Article 

    Google Scholar 
    Preece, E. P., Hardy, F. J., Moore, B. C. & Bryan, M. A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk. Harmful Algae 61, 31–45. https://doi.org/10.1016/j.hal.2016.11.006 (2017).Article 
    CAS 

    Google Scholar 
    Reinl, K. L., Sterner, R. W., Lafrancois, B. M. & Brovold, S. Fluvial seeding of cyanobacterial blooms in oligotrophic Lake Superior. Harmful Algae 100, 101941. https://doi.org/10.1016/j.hal.2020.101941 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bridgeman, T. B. et al. From River to Lake: Phosphorus partitioning and algal community compositional changes in Western Lake Erie. J. Great Lakes Res. 38, 90–97 (2012).Article 
    CAS 

    Google Scholar 
    Brown, B. L. et al. Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River. Stand Genomic Sci. 10, 65. https://doi.org/10.1186/s40793-015-0062-5 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamner, S. et al. Metagenomic profiling of microbial pathogens in the Little Bighorn River, Montana. Int. J. Environ. Res. Public Health 16, 071097. https://doi.org/10.3390/ijerph16071097 (2019).Article 
    CAS 

    Google Scholar 
    Staley, C. et al. Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J. Appl. Microbiol. 115, 1147–1158. https://doi.org/10.1111/jam.12323 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Winter, C., Hein, T., Kavka, G., Mach, R. L. & Farnleitner, A. H. Longitudinal changes in the bacterial community composition of the Danube River: A whole-river approach. Appl. Environ. Microbiol. 73, 421–431. https://doi.org/10.1128/aem.01849-06 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jackson, C. R., Millar, J. J., Payne, J. T., Ochs, C. A. & Wommack, K. E. Free-living and particle-associated bacterioplankton in large rivers of the Mississippi River basin demonstrate biogeographic patterns. Appl. Environ. Microbiol. 80, 7186–7195. https://doi.org/10.1128/AEM.01844-14 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Payne, J. T., Jackson, C. R., Millar, J. J. & Ochs, C. A. Timescales of variation in diversity and production of bacterioplankton assemblages in the Lower Mississippi River. PLoS ONE 15, e0230945. https://doi.org/10.1371/journal.pone.0230945 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Payne, J. T., Millar, J. J., Jackson, C. R. & Ochs, C. A. Patterns of variation in diversity of the Mississippi river microbiome over 1,300 kilometers. PLoS ONE 12, e0174890. https://doi.org/10.1371/journal.pone.0174890 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Read, D. S. et al. Catchment-scale biogeography of riverine bacterioplankton. ISME J. 9, 516–526. https://doi.org/10.1038/ismej.2014.166 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Reddington, K. et al. Metagenomic analysis of planktonic riverine microbial consortia using nanopore sequencing reveals insight into river microbe taxonomy and function. GigaScience 9, 53. https://doi.org/10.1093/gigascience/giaa053 (2020).Article 
    CAS 

    Google Scholar 
    Staley, C. et al. Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front. Microbiol. 5, 414 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Staley, C. et al. Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci. Total Environ. 505, 435–445. https://doi.org/10.1016/j.scitotenv.2014.10.012 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Van Rossum, T. et al. Year-long metagenomic study of river microbiomes across land use and water quality. Front. Microbiol. 6, 1405 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Kim, K. H. et al. Application of metagenome analysis to characterize the molecular diversity and saxitoxin-producing potentials of a cyanobacterial community: A case study in the North Han River, Korea. Appl. Biol. Chem. 61, 153–161. https://doi.org/10.1007/s13765-017-0342-4 (2018).Article 
    CAS 

    Google Scholar 
    Graham, J. L. et al. Cyanotoxin occurrence in large rivers of the United States. Inland Waters 10, 109–117. https://doi.org/10.1080/20442041.2019.1700749 (2020).Article 
    CAS 

    Google Scholar 
    Zuellig, R. E., Graham, J. L., Stelzer, E. A., Loftin, K. A. & Rosen, B. H. Cyanobacteria, Cyanotoxin Synthetase Gene, and Cyanotoxin Occurrence Among Selected Large River Sites of the Conterminous United States, 2017–18 22 (US Geological Survey, 2021).
    Google Scholar 
    Kramer, B. J. et al. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. PLoS ONE 13, e0196278 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouma-Gregson, K. et al. Impacts of microbial assemblage and environmental conditions on the distribution of anatoxin-a producing cyanobacteria within a river network. ISME J. 13, 1618–1634. https://doi.org/10.1038/s41396-019-0374-3 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tillett, D. et al. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide–polyketide synthetase system. Chem. Biol. 7, 753–764 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dittmann, E., Fewer, D. P. & Neilan, B. A. Cyanobacterial toxins: Biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37, 23–43. https://doi.org/10.1111/j.1574-6976.2012.12000.x (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jungblut, A. D. & Neilan, B. A. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch. Microbiol. 185, 107–114. https://doi.org/10.1007/s00203-005-0073-5 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Meriluoto, J. et al. (eds) Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis 501–525 (Wiley, 2017).Book 

    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643. https://doi.org/10.1038/ismej.2017.119 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Graham, J. L., Dubrovsky, N. M., Loftin, K. A., Rosen, B. H. & Stelzer, E. A. Cyanotoxin, Chlorophyll-a, and Cyanobacterial Toxin Genetic Data for Samples Collected at Twelve Large River Sites Throughout the United States, June Through October 2019 (U.S. Geological Survey, 2022).
    Google Scholar 
    Dodds, W. K. & Smith, V. H. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6, 155–164. https://doi.org/10.5268/IW-6.2.909 (2016).Article 
    CAS 

    Google Scholar 
    Debroas, D. et al. Overview of freshwater microbial eukaryotes diversity: A first analysis of publicly available metabarcoding data. FEMS Microbiol. Ecol. 93, 23. https://doi.org/10.1093/femsec/fix023 (2017).Article 
    CAS 

    Google Scholar 
    Henson, M. W. et al. Nutrient dynamics and stream order influence microbial community patterns along a 2914 kilometer transect of the Mississippi River. Limnol. Oceanogr. 63, 1837–1855. https://doi.org/10.1002/lno.10811 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ghai, R. et al. Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS ONE 6, e23785. https://doi.org/10.1371/journal.pone.0023785 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liao, J. et al. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use. Sci. Rep. 6, 36357. https://doi.org/10.1038/srep36357 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Monchamp, M.-E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324. https://doi.org/10.1038/s41559-017-0407-0 (2018).Article 
    PubMed 

    Google Scholar 
    Pessi, I. S., Maalouf, P. D. C., LaughinghouseBaurain, H. D. D. & Wilmotte, A. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats. J. Phycol. 52, 356–368. https://doi.org/10.1111/jpy.12399 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tanvir, R. U., Hu, Z., Zhang, Y. & Lu, J. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Environ. Pollut. 290, 118056. https://doi.org/10.1016/j.envpol.2021.118056 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chételat, J., Pick, F. R. & Hamilton, P. B. Potamoplankton size structure and taxonomic composition: Influence of river size and nutrient concentrations. Limnol. Oceanogr. 51, 681–689 (2006).Article 
    ADS 

    Google Scholar 
    Heiskary, S. & Markus, H. Establishing relationships among nutrient concentrations, phytoplankton abundance, and biochemical oxygen demand in Minnesota, USA, rivers. Lake Reserv. Manag. 17, 251–262 (2001).Article 
    CAS 

    Google Scholar 
    Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 10, 126–139 (2003).Article 
    CAS 

    Google Scholar 
    Verspagen, J. M. et al. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS ONE 9, e104325 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zepernick, B. N. et al. Elevated pH conditions associated with Microcystis spp. blooms decrease viability of the cultured diatom Fragilaria crotonensis and natural diatoms in Lake Erie. Front. Microbiol. 12, 598736. https://doi.org/10.3389/fmicb.2021.598736 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urban, L. et al. Freshwater monitoring by nanopore sequencing. Elife 10, 61504. https://doi.org/10.7554/eLife.61504 (2021).Article 

    Google Scholar 
    Lee, C. J. & Henderson, R. J. Tracking Water-Quality in U.S. Streams and Rivers: U.S. Geological Survey National Water Quality Network. https://nrtwq.usgs.gov/nwqn (2020).Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/s13059-019-1891-0 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu, J. B. F., Thielen, P. & Salzberg, S. L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, 104. https://doi.org/10.7717/peerj-cs.104 (2017).Article 

    Google Scholar 
    Bagley, M. et al. High-throughput environmental DNA analysis informs a biological assessment of an urban stream. Ecol. Ind. 104, 378–389. https://doi.org/10.1016/j.ecolind.2019.04.088 (2019).Article 
    CAS 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nübel, U., Garcia-Pichel, F. & Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332. https://doi.org/10.1128/aem.63.8.3327-3332.1997 (1997).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neilan, B. A. et al. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Bacteriol. 47, 693–697. https://doi.org/10.1099/00207713-47-3-693 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Team R Core. R: A Language and Environment for Statistical Computing (2013).McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.5-2 (2018).Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    U.S. Geological Survey. National Water Information System Database. https://doi.org/10.5066/F7P55KJN (2022). More

  • in

    The interplay between spatiotemporal overlap and morphology as determinants of microstructure suggests no ‘perfect fit’ in a bat-flower network

    Study siteThe study was conducted in the Brasília National Park (PNB), Federal District, Brazil (15º39′57″ S; 47º59′38″ W), a 42.355 ha Protected Area with a typical vegetation configuration found in the Cerrado of the central highlands of Brazil, i.e., a mosaic of gallery forest patches along rivers surrounded by a matrix of savannas and grasslands34. The climate in the region falls into the Aw category in the Köppen scale, categorizing a tropical wet savanna, with marked rainy (October to March) and dry (April to September) seasons.We carried out the study in eight fixed sampling sites scattered evenly throughout the PNB and separated by at least two kilometers from one another (Supplementary Fig. S1). The sites consisted of four cerrado sensu stricto sites (bushy savanna containing low stature trees); two gallery forest edges sites (ca. 5 m from forest edges, containing a transitional community), and two gallery forest interior sites. These three types reflect the overall availability of habitat types in the reserve (excluding grasslands) and are the most appropriate foraging areas to sample interactions as bat-visited plants are either bushes, trees, or epiphytes, but rarely herbs35.Bat and interaction samplingsWe sampled bat-plant interactions using pollen loads collected from bat individuals captured in the course of one phenological year, thus configuring an animal-centered sampling. We carried out monthly field campaigns to capture bats from October 2019 to February 2020, from August to September 2020, and from March to July 2021. In each month, we carried out eight sampling nights during periods of low moonlight intensity, each associated with one of the eight sites. Each night, we set 10 mist nets (2.6 × 12 m, polyester, denier 75/2, 36 mm mesh size, Avinet NET-PTX, Japan) at ground level randomly within the site, which were opened at sunset and closed after six hours. We accumulated a total sampling effort of 552 net-hours, 28,704 m2 of net area, or 172,224 m2h sensu Straube and Bianconi36.All captured bats were sampled for pollen, irrespective of family or feeding guild. We used glycerinated and stained gelatin cubes to collect pollen grains from the external body of bats (head, torso, wings, and uropatagium). Samples were stored individually, and care was taken not to cross-contaminate samples. Pollen types were identified by light microscopy, and palynomorphs were identified to the lowest-possible taxonomical level using an extensive personal reference pollen collection from plants from the PNB (details in next section). Palynomorphs were sometimes classified to the genus or family level or grouped in entities representing more than one species. Any palynomorph numbering five or fewer grains in one sample was considered contamination, alongside any anemophilous species irrespective of pollen number.Bats were identified using a specialized key37 and four ecomorphological variables were measured for each individual. (i) Forearm length and (ii) body mass were used to calculate the body condition index (BCI), a proxy of body robustness38, where higher BCI values indicate larger and heavier bats, which are less effective in interacting with flowers in general due to a lack of hovering behavior, the incapability of interacting with delicate flowers that cannot sustain them, a lower maneuverability and higher energetic requirements39. Moreover, we measured (iii) longest skull length (distance from the edge of the occipital region to the anterior edge of the lower lip) and (iv) rostrum length (distance from the anterior edge of the eye to the anterior edge of the lower lip) to calculate the rostrum-skull ratio (RSR), a proxy of morphological specialization to nectar consumption23. Higher RSR values indicate bats with proportionally longer rostra in relation to total skull length. Longer rostra in bats are associated with a weaker bite force and thus less effective in consuming harder food items such as fruits and insects, thus suggesting a higher adaptation to towards nectar40,41. Bats were then tagged with aluminum bands for individualization and released afterward. To evaluate the sampling completeness of the bat community and of the pollen types found on bats, we employed the Chao1 asymptotic species richness estimator and an individual-based sampling effort to estimate and plot rarefaction curves, calculating sampling completeness according to Chacoff et al.42.All methods were carried out in accordance with relevant guidelines and regulations. The permits to capture, handle and collect bats were granted by the Ethical Council for the Usage of Animals (CEUA) of the University of Brasília (permit 23106.119660/2019-07) and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) (permit: SISBIO 70268). Vouchers of each species, when the collection was possible, were deposited in the Mammal Collection of the University of Brasília.Assessment of the plant communityIn each of the eight sampling sites, we delimited a 1000 × 10 m transect, each of which was walked monthly for one phenological year (January and February 2020, August to December 2020, and March to July 2021) to build a floristic inventory of plants of interest and to estimate their monthly abundance of flowering individuals. Plant species of interest were any potential partner for bats, which included species already known to be pollinated by bats, presenting chiropterophilous traits sensu Faegri and Van Der Pijl43, or any plant that could be accessed by and reward bats, whose flowers passes all the three following criteria:(i) Nectar or pollen is presented as the primary reward to visitors. (ii) Corolla diameter of 1 cm or more. This criterion excludes small generalist and insect-pollinated flowers where the visitation by bats is mechanically unlikely. It applies to the corolla diameter in non-tubular flowers or the diameter of the tube opening. Exceptions were small and actinomorphic flowers aggregated in one larger pollination unit (pseudanthia) where the 1 cm threshold was applied to inflorescence diameter. (iii) Reward must be promptly available for bats. This criterion excludes species with selective morphological mechanisms, such as quill-shaped bee-pollinated flowers or flowers with long and narrow calcars.All flowering individuals of interest species found in the transects were registered. A variable number of flowers/inflorescences (n = 5–18) were collected per species for morphometric analysis. For each species, we calculated floral tube length (FTL), corresponding to the distance between the base of the corolla, calyx, or hypanthium (depending on the species) to its opening, and the corolla’s outermost diameter (COD), which corresponds to the diameter of the corolla opening (tubular flowers) or simply the corolla diameter (non-tubular flowers). For pseudanthia-forming species, inflorescence width was measured. Pseudanthia and non-tubular flowers received a dummy FTL value of 0.1 mm to represent low restriction and enable later calculations. Finally, we collected reference pollen samples from all species from anthers of open flowers, which were used to identify pollen types found on bats. For plant species found in pollen loads but not in the PNB, measures were taken from plants found either on the outskirts of the site (Inga spp.) or from dried material in an online database (Ceiba pentandra, in https://specieslink.net/) using the ImageJ software44. Vouchers were deposited in the Herbarium of the Botany Department, University of Brasília.Data analysisNetwork macrostructureWe built a weighted adjacency matrix i x j, where cells corresponded to the number of individuals of bat species i that interacted with plant species or morphotype j. All edges corresponding to legitimate interactions were included. With this matrix, we calculated three structural metrics to describe the network’s macrostructure. First, weighted modularity (Qw), calculated by the DIRTLPAwb + algorithm45. A modular network comprises subgroups of species in which interactions are stronger and more frequent than species out of these subgroups10, which may reveal functional groups in the network9. Qw varies from zero to one, the latter representing a perfectly modular network.Second, complementary specialization through the H2′ metric46. It quantifies how unique, on average, are the interactions made by species in the network, considering interaction weights and correcting for network size. It varies from zero to one, the latter corresponding to a specialized network where interactions perfectly complement each other because species do not share partners.Lastly, nestedness, using the weighted WNODA metric25. Nested networks are characterized by interaction asymmetries, where peripheral species are only a subset of the pool of species with which generalists interact47. The index was normalized to vary from zero to one, with one representing a perfectly nested network. Given that the network has a modular structure, we also tested for a compound topology, i.e., the existence of distinct network patterns within network modules, by calculating intra-module WNODA and between-module WNODA36. Internally nested modules appear in networks in which consumers specialize in groups of dissimilar or clustered resources and suggest the existence of distinct functional groups of consumers25,48. Metric significance (Qw, H2′, and WNODA) was assessed using a Monte Carlo procedure based on a null model. We used the vaznull model3, where random matrices are created by preserving the connectance of the observed matrix but allowing marginal totals to vary. One thousand matrices were generated and metrics were calculated for each of them. Metric significance (p) corresponded to the number of times the null model delivered a value equal to or higher than the observed metric, divided by the number of matrices. The significance threshold was considered p ≤ 0.05.Given a modular structure, we followed the framework of Phillips et al.49 that correlates network concepts (especially modularity) with the distribution of morphological variables of pollinators to unveil patterns of niche divergence in pollination networks. Given the most parsimonious module configuration suggested by the algorithm, we compared modules in terms of the distribution of morphological variables of the bat (RCR and BCI) and plant (FTL and COD) species that composed the module. Differences between modules means were tested with one-way ANOVAs.Drivers of network microstructureThe role of different ecological variables in determining pairwise interaction frequencies was assessed using a probability matrices approach3. This framework considers that an interaction matrix Y is a product of several probability matrices of the same size as Y, with each matrix representing the probability of species interacting based on an ecological mechanism. Thus, adapting it to our objectives, we have Eq. (1):$$mathrm{Y}=mathrm{f}(mathrm{A},mathrm{ M },mathrm{P},mathrm{ S})$$
    (1)
    where Y is the observed interaction matrix, and a function of interaction probability matrices based on species relative abundances (A), representing neutrality as species interact by chance; species morphological specialization (M), phenological overlap (P), and spatial overlap (S). We built models containing each of these matrices in the following ways:Relative abundance (A): matrix cells were the products of the relative abundances of bat and plant species. The relative abundances of bats were determined through capture frequencies (each species’ capture frequency divided by all captures, excluding recaptures) and the relative abundances of plants were determined by the number of flowering individuals recorded in transections (each species’ summed abundance in all transects and all months divided by the pooled abundance of all species in the network). Cell values were normalized to sum one.Morphological specialization (M): cells were the probability of species interacting based on their matching degree of morphological specialization. Morphologically specialized bats (i.e., longer rostra and smaller size) are more likely to interact with morphologically specialized flowers (i.e., longer tubes and narrower corollas), while unspecialized bats are more likely to interact with unspecialized, accessible flowers. For this purpose, we calculated a bat specialization index (BSI) as the ratio between RCR and BCI, where higher BSI values indicate overall lower body robustness and longer snout length. Likewise, the flower specialization index (FSI) was calculated for plants as the ratio between FTL and COD, where higher values indicate smaller, narrower, long-tubed flowers that require specialized morphology and behavior from bats for visitation. BSI and FTL were normalized to range between zero and one and were averaged between individuals of each species of bat or plant. Therefore, interaction probabilities were calculated as in Eq. (2):$${P}_{i,j}=1-|{BSI}_{i}-{FSI}_{j}|$$
    (2)
    where Pi,j is the interaction probability between bat species i and plant species j and |BSIi – FSIj| is the absolute difference between bat and plant specialization indexes. Similar index values (two morphologically specialized or unspecialized species interacting) lead to a low difference in specialization and thus to a high probability of interaction (Pi,j → 1), whereas the interaction between a morphologically specialized and a morphologically unspecialized species leads to a high absolute difference and thus lower probability of interaction (Pi,j → 0). Cell values of the resulting matrix were normalized to sum one.Phenological overlap (P): cells were the probability of species interacting based on temporal synchrony, calculated as the number of months that individuals of bat species i and flowering individuals of plant species j co-occurred in the research site, pooling all capture sites/transections. Cell values were normalized to sum one.Spatial overlap (S): cells were the probability of species interacting based on their co-occurrence over small-scale distances and vegetation types, calculated as the number of individuals from a bat species i captured in sampling sites where the plant species j was registered in the transection, considering all capture months. Cell values were normalized to sum one.Because more than one ecological mechanism may simultaneously drive interactions3,9, we built an additional set of seven models resultant from the element-wise multiplication of individual probability matrices:

    SP: The spatial and temporal distribution of species work simultaneously in driving a resource turnover in the community, driving interactions.

    AS: Abundance drives interactions between bats and plants, but within spatially clustered resources in the landscape caused by a turnover in species distributions.

    AP: Abundance drives interactions between bats and plants, but within temporally clustered resources caused by a seasonal distribution of resources.

    APS: Abundance drives interactions between bats and plants, but within resource clusters that emerge by a simultaneous temporal and spatial aggregation.

    MS: Similar to AS, but morphology drives interactions within spatial clusters.

    MP: Similar to MP, but morphology drives interactions within temporal clusters.

    MPS: Similar to APS, but morphology drives interactions within spatiotemporal clusters.

    Finally, we created a benchmark null model in which all cells in the matrix had the same probability value. All the compound matrices and the null model were also normalized to sum one.To compare the fit of these probability models with the real data, we conducted a maximum likelihood analysis3,9. We calculated the likelihood of each of these models in predicting the observed interaction matrix, assuming a multinomial distribution for the probability of interaction between species12. To compare model fit, we calculated the Akaike Information Criterion (AIC) for each model and their variation in AIC (ΔAIC) in relation to the best-fitting model. The number of species used in the probability matrices was considered the number of model parameters to penalize model complexity. Intending to assess whether nectarivorous bats and non-nectarivorous bats assembly sub-networks with different assembly rules, we created two partial networks from the observed matrix. One contained nectarivores only (subfamilies Glossophaginae and Lonchophyllinae) and their interactions, and the other contained frugivore and insectivore bats and their interactions. We repeated the likelihood procedure for these two partial networks.To conduct the likelihood analysis, we excluded plant species from the network that could not have their interaction probabilities measured, such as species found in pollen samples but not registered in the park or pollen types that could not be identified to the species level. Therefore, the interaction network Y and probability matrices did not include these species (details in Supplementary Table S1).SoftwareAnalyses were performed in R 3.6.050. Network metrics and null models were generated with the bipartite package51, and the sampling completeness analysis was performed with the vegan package52. Gephi 0.9.253 was used to draw the graph. More

  • in

    Two odorant receptors regulate 1-octen-3-ol induced oviposition behavior in the oriental fruit fly

    Insect rearingWT B. dorsalis were collected from Haikou, Hainan province, China, in 2008. They were maintained at the Key Laboratory of Entomology and Pest Control Engineering in Chongqing at 27 ± 1 °C, 70 ± 5% relative humidity, with a 14-h photoperiod. Adult flies were reared on an artificial diet containing honey, sugar, yeast powder, and vitamin C. Newly hatched larvae were transferred to an artificial diet containing corn and wheat germ flour, yeast powder, agar, sugar, sorbic acid, linoleic acid, and filter paper.Behavioral assaysDouble trap lure assays were set up to compare the olfactory preferences of gravid and virgin females in a 20 × 20 × 20 cm transparent cage with evenly distributed holes (diameter = 1.5 mm) on the side walls. The traps were refitted from inverted 50-mL centrifuge tubes and were placed along the diagonal of the cage. The top of each trap was pierced with a 1-mL pipette tip, which was shortened to ensure flies could access the trap from the pipette. For the olfactory preference assay with mango, one trap was loaded with 60 mg mango flesh and the other trap with 20 μL MO in the cap of a 200-μL PCR tube. For the olfactory preference assay with 1-octen-3-ol (≥98%, sigma, USA), one trap was loaded with 20 μL 10% (v/v) 1-octen-3-ol diluted in MO, and the other with 20 μL MO. A cotton ball soaked in water was placed at the center of the cage to provide water for the flies. Groups of 30 female flies were introduced into the cage for each experiment, and each experiment was repeated to provide eight biological replicates. All experiments commenced at 10 am to ensure circadian consistency. The number of flies in each trap was counted every 2 h for 24 h. We compared the preferences of 3-day-old immature females, 15-day-old virgin females, and 15-day-old mated females. The olfactory preference index was calculated using the following formula41: (number of flies in mango/odorant trap – number of flies in control trap)/total number of flies.Oviposition behavior was monitored in a 10 × 10 × 10 cm transparent cage with evenly distributed holes on the side walls as above. A 9-cm Petri dish filled with 1% agar was served as an oviposition substrate, and the mango flesh, 10% (v/v) 1-octen-3-ol or MO were added at opposite edges of the dish. We tested the preference of flies for different substrates: (1) ~60 mg of mango flesh on one edge and 20 μL of MO on the other; (2) 20 μL of 1-octen-3-ol on one edge and 20 μL of MO on the other; (3) ~60 mg mango flesh on one edge and 20 μL of 1-octen-3-ol on the other; and (4) ~60 mg mango flesh plus 20 μL 1-octen-3-ol on one side and ~60 mg of mango flesh plus 20 μL MO on the other. The agar disc was covered in a pierced plastic wrap to mimic fruit skin, encouraging flies extend their ovipositor into the plastic wrap to lay eggs. The agar disc was placed at the center of the cage, and we introduced eight 15-day-old gravid females. Two Sony FDR-AX40 cameras recorded the behavior of the flies for 24 h, one fixed above the cage to record the tracks and the other placed in front of the cage to record the oviposition behavior. Based on the results from double traps luring assays, a 3 h duration (6–9 h) of the videos was selected to analyze the tracks and spent time of all flies in observed area (the surface of Petri dish). The videos were analyzed using EthoVision XT v16 (Noldus Information Technology) to determine the total time of all flies spent on each side in seconds and the total distance of movement in centimeters, and the tracks were visualized in the form of heat maps17. The number of eggs laid by the eight flies in each experiment was counted under a CNOPTEC stereomicroscope, and each experimental group comprised 7–16 replicates.Annotation of B. dorsalis OR genesD. melanogaster amino acid sequences downloaded from the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) were used as BLASTP queries against the B. dorsalis amino acid database with an identity cut-off of 30%. The candidate OR genes were compared with deep transcriptome data from B. dorsalis antennae42, maxillary palps and proboscis, and other tissues.Cloning of candidate B. dorsalis OR genesHigh-fidelity PrimerSTAR Max DNA polymerase (TaKaRa, Dalian, China) was used to amplify the full open reading frame of BdorOR genes by nested PCR using primers (Supplementary Table 2) designed according to B. dorsalis genome data. Each 25-μL reaction comprised 12.5 μL 2 × PrimerSTAR Max Premix (TaKaRa), 10.5 μL ultrapure water, 1 μL of each primer (10 μM), and 1 μL of the cDNA template. An initial denaturation step at 98 °C for 2 min was followed by 35 cycles of 10 s at 98 °C, 15 s at 55 °C and 90 s at 72 °C, and a final extension step of 10 min at 72 °C. Purified PCR products were transferred to the vector pGEM-T Easy (Promega, Madison, WI) for sequencing (BGI, Beijing, China).Transcriptional profilingTotal RNA was extracted from (i) male and female antennae, maxillary palps, head cuticle (without antenna, maxillary palps, and proboscis), proboscis, legs, wings and ovipositors, and (ii) from the heads of 15-day-old virgin and mated females using TRIzol reagent (Invitrogen, Carlsbad, CA). Genomic DNA was eliminated with RNase-free DNase I (Promega) and first-strand cDNA was synthesized from 1 µg total RNA using the PrimeScript RT reagent kit (TaKaRa). Standard curves were used to evaluate primer efficiency (Supplementary Table 3) with fivefold serial dilutions of cDNA. Quantitative real-time PCR (qRT-PCR) was carried out using a CFX Connect Real-Time System (Bio-Rad, Hercules, CA) in a total reaction volume of 10 µL containing 5 μL SYBR Supermix (Novoprotein, Shanghai, China), 3.9 μL nuclease-free water, 0.5 μL cDNA (~200 ng/μL) and 0.3 μL of the forward and reverse primers (10 μM). We used α-tubulin (GenBank: GU269902) and ribosomal protein S3 (GenBank: XM_011212815) as internal reference genes. Four biological replicates were prepared for each experiment. Relative expression levels were determined using the 2−∆∆Ct method43, and data were analyzed using SPSS v20.0 (IBM).Two-electrode voltage clamp electrophysiological recordingsVerified PCR products representing candidate B. dorsalis OR genes and BdorOrco were transferred to vector pT7Ts for expression in oocytes. The plasmids were linearized for the synthesis of cRNAs using the mMESSAGE mMACHINE T7 Kit (Invitrogen, Lithuania). The purified cRNA was diluted to 2 µg/µL and ~60 ng cRNA was injected into X. laevis oocytes. The oocytes were pre-treated with 1.5 mg/mL collagenase I (GIBCO, Carlsbad, CA) in washing buffer (96 mM NaCl, 5 mM MgCl2, 2 mM KCl, 5 mM HEPES, pH 7.6) for 30–40 min at room temperature before injection. After incubation for 2 days at 18 °C in Ringer’s solution (96 mM NaCl, 5 mM MgCl2, 2 mM KCl, 5 mM HEPES, 0.8 mM CaCl2), the oocytes were exposed to different concentrations of 1-octen-3-ol diluted in Ringer’s solution from a 1 M stock in DMSO. Odorant-induced whole-cell inward currents were recorded from injected oocytes using a two-electrode voltage clamp and an OC-725C amplifier (Warner Instruments, Hamden, CT) at a holding potential of –80 mV. The signal was processed using a low-pass filter at 50 Hz and digitized at 1 kHz. Oocytes injected with nuclease-free water served as a negative control. Data were acquired using a Digidata 1550 A device (Warner Instruments, Hamden, CT) and analyzed using pCLAMP10.5 software (Axon Instruments Inc., Union City, CA).Calcium imaging assayVerified PCR products representing candidate B. dorsalis OR genes and BdorOrco were transferred to vector pcDNA3.1(+) along with an mCherry tag that confers red fluorescence to confirm transfection. High-quality plasmid DNA was prepared using the Qiagen plasmid MIDIprep kit (QIAgen, Düsseldorf, Germany). The B. dorsalis OR and BdorOrco plasmids were co-transfected into HEK 293 cell using TransIT-LT1 transfection reagent (Mirus Bio LLC, Japan) in 96-well plates. The fluorescent dye Fluo-4 AM (Invitrogen) was prepared as a 1 mM stock in DMSO and diluted to 2.5 μM in Hanks’ balanced salt solution (HBSS, Invitrogen, Lithuania) to serve as a calcium indicator. The cell culture medium was removed 24–30 h after transfection and cells were rinsed three times with HBSS before adding Fluo 4-AM and incubating the cells for 1 h in the dark. After three rinses in HBSS, 99 μL of fresh HBSS was added to each well before testing in the dark with 1 μL of diluted 1-octen-3-ol. Fluorescent images were acquired on a laser scanning confocal microscope (Zeiss, Germany). Fluo 4-AM was excited at 488 nm and mCherry at 555 nm. The relative change in fluorescence (ΔF/F0) was used to represent the change in Ca2+, where F0 is the baseline fluorescence and ΔF is the difference between the peak fluorescence induced by 1-octen-3-ol stimulation and the baseline. The healthy and successfully transfected cells (red when excited at 555 nm) were used for analysis. The final concentration of 10−4 M was initially used to screen corresponding ORs, and then to determine the response of screened ORs to stimulation with different concentrations of 1-octen-3-ol. Each concentration of 1-octen-3-ol was tested in triplicate. Concentration–response curves were prepared using GraphPad Prism v8.0 (GraphPad Software).Genome editingThe exon sequences of BdorOR7a-6 and BdorOR13a were predicted using the high-quality B. dorsalis genome assembly. Each gRNA sequence was 20 nucleotides in length plus NGG as the protospacer adjacent motif (PAM). The potential for off-target mutations was evaluated by using CasOT to screen the B. dorsalis genome sequence. Each gRNA was synthesized using the GeneArt Precision gRNA Synthesis Kit (Invitrogen) and purified using the GeneArt gRNA Clean-up Kit (Invitrogen). Embryos were microinjected as previously described20. Purified gRNA and Cas9 protein from the GeneArt Platinum Cas9 Nuclease Kit (Invitrogen) were mixed and diluted to final concentrations of 600 and 500 ng/µL, respectively. Fresh eggs (laid within 20 min) were collected and exposed to 1% sodium hypochlorite for 90 s to soften the chorion. The eggs were fixed on glass slides and injected with the mix of gRNA and Cas9 protein at the posterior pole using an IM-300 device (Narishige, Tokyo, Japan) and needles prepared using a Model P-97 micropipette puller (Sutter Instrument Co, Novato, CA). Eggs were injected with nuclease-free water as a negative control. Injection was completed within 2 h. The injected embryos were cultured in a 27 °C incubator and mortality was recorded during subsequent development.G0 mutants were screened as previously described20. G0 adult survivors were individually backcrossed to WT flies (single pair) to collect G1 offspring. Genomic DNA was extracted from G0 individuals after oviposition using the DNeasy Blood & Tissue Kit (Qiagen). The region surrounding each gRNA target was amplified by PCR using the extracted DNA as a template, the specific primers listed in Supplementary Table 2, and 2 × Taq PCR MasterMix (Biomed, Beijing, China). PCR products were analyzed by capillary electrophoresis using the QIAxcel DNA High Resolution Kit (Qiagen). PCR products differing from the WT alleles were purified and transferred to the vector pGEM-T Easy for sequencing. To confirm the mutation was inherited, genomic DNA was also extracted from one mesothoracic leg of G1 flies using InstaGene Matrix (Bio-Rad, Hercules, CA) and was analyzed as above. To avoid potential off-target mutations, heterozygous G1 mutants were backcrossed to WT flies more than 10 generations before self-crossing to generate homozygous mutant flies.Electroantennogram (EAG) recordingThe antennal responses of 15-day-old B. dorsalis adults to 1-octen-3-ol were determined by EAG recording (Syntech, the Netherlands) as previously reported20. Briefly, antennae were fixed to two electrodes using Spectra 360 electrode gel (Parker, Fairfield, NJ, USA). The signal response was amplified using an IDAC4 device and collected using EAG-2000 software (Syntech). Before each experiment, 1-octen-3-ol and other three volatiles (ethyl tiglate, ethyl acetate, ethyl butyrate) were diluted to 10%, 1% and 0.1% (v/v) with MO to serve as the electrophysiological stimulus, and MO was used as a negative control. A constant air flow (100 mL/min) was produced using a controller (Syntech) to stimulate the antenna. We then placed 10 µL of each dilution or MO onto a piece of filter paper (5 × 1 cm), and the negative control (MO) was applied before and after the diluted odorants to calibrate the response signal. The EAG responses at each concentration were recorded for 15–20 antennae, and each concentration was recorded twice. Each test lasted 1 s, and the interval between tests was 30 s. EAG response data from WT and mutant flies for the diluted odorants were analyzed using Student’s t test with SPSS v20.0.Molecular docking and site-directed mutagenesisThe three dimensional-structures of BdorOR7a-6 and BdorOR13a were modeled using AlphaFold 2.044. The quality and rationality of each protein structure was evaluated online using a PROCHECK Ramachandran plot in SAVES 6.0 (https://saves.mbi.ucla.edu/). AutoDock Vina 1.1.2 was used for docking analysis, and the receptor protein structure and ligand molecular structure were pre-treated using AutoDock 4.2.6. The docking parameters were set according to the protein structure and active sites, and the optimal docking model was selected based on affinity (kcal/mol). Docking models were imported into Pymol and Discovery Studio 2016 Client for analysis and image processing. Based on the molecular docking data, three residues (Asn86 in OR7a-6, Asp320, and Lys323 in OR13a) were replaced with alanine by site-directed mutagenesis45 using the primers listed in Supplementary Table 2. Calcium imaging assays and molecular docking of mutated proteins were then carried out as described above.Statistics reproducibilityAll of the olfactory preference assays, oviposition bioassays, expression profiles analysis, EAG recording assays were analyzed using Student’s t-test (*p  More

  • in

    Fungi feed bacteria for biodegradation

    The pesticide hexachlorocyclohexane (HCH) is a toxic and persistent contaminant in the environment. Some bacteria and fungi can degrade HCH and its isomers under laboratory conditions. However, in heterogeneous environments, where many different factors are at play, the biodegradation capacity is challenged by the availability of nutrients to support degraders’ growth. As opposed to bacteria, fungi are more adapted to heterogeneous habitats, and in some cases mycelial fungi can facilitate the transport of organic substrates throughout the mycosphere, increasing their availability to promote bacterial contaminant biodegradation. However, how this occurs is not entirely understood. In this study, Khan et al. demonstrate that mycelial nutrients transferred from nutrient-rich to nutrient-deprived habitats promote co-metabolic degradation of HCH by bacteria. The authors incubated a non-HCH-degrading fungus (Fusarium equiseti K3) and a co-metabolically HCH-degrading bacterium (Sphingobium sp. S8) in a structured model ecosystem. Results from 13C isotope labelling and metaproteomics showed that fungal 13C was incorporated into bacterial proteins responsible for HCH degradation, thus illustrating the importance of synergistic fungal–bacterial interactions for contaminant biodegradation in nutrient-poor environments. More

  • in

    Impending anthropogenic threats and protected area prioritization for jaguars in the Brazilian Amazon

    Estes, J. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).Article 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the World’s Largest Carnivores. Science 343, 151–162 (2014).Article 
    CAS 

    Google Scholar 
    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).Article 
    CAS 

    Google Scholar 
    De La Torre, J. A., González-Maya, J. F., Zarza, H., Ceballos, G. & Medellín, R. A. The jaguar’s spots are darker than they appear: assessing the global conservation status of the jaguar (Panthera onca). Oryx 52, 300–315 (2018).Article 

    Google Scholar 
    Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).Article 

    Google Scholar 
    Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).Article 

    Google Scholar 
    Sanderson, E. W. et al. Planning to save a species: the jaguar as a model. Conserv. Biol. 16, 58–72 (2002).Article 

    Google Scholar 
    Rabinowitz, A. & Zeller, K. A. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol. Conserv. 143, 939–945 (2010).Article 

    Google Scholar 
    Woodroffe, R. Predators and people: using human densities to interpret declines of large carnivores. Anim. Conserv. 3, 165–173 (2000).Article 

    Google Scholar 
    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).Article 

    Google Scholar 
    Ferreira, A. S., Peres, C. A., Bogoni, J. A. & Cassano, C. G. Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal Rev. https://doi.org/10.1111/mam12137 (2018).Thompson, J. J. et al. Range-wide factors shaping space use and movements by the Neotropic’s flagship predator: the jaguar. Curr. Biol. https://doi.org/10.1016/jcub202106029 (2021).Sunquist, M. & Sunquist, F. Wild Cats of the World. University of Chicago Press (2002).Leader-Williams, N. & Dublin, H. T. in Priorities for The Conservation Of Mammalian Diversity: Has The Panda Had Its Day? (eds. Entwistle, A., Dunstone, N.) 53−81 (Cambridge University Press, 2000).Thornton, D. et al. Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca). Ecol. Appl. 26, 1112–1124 (2015).Article 

    Google Scholar 
    Olsoy, P. J. et al. Quantifying the effects of deforestation and fragmentation on a range-wide conservation plan for jaguars. Biol. Conserv. 203, 8–16 (2016).Article 

    Google Scholar 
    Morato, R. G., Beisiegel, B. M., Ramalho, E. E. & Boulhosa, R. L. P. Avaliação do risco de extinção da Onça-pintada Panthera onca (Linnaeus, 1758) no Brasil. Biodivers. Brasil. 3, 122–132 (2013).
    Google Scholar 
    Hunter, L. Carnivores of the World. Princeton Univ Press (2011).Morato, R. G. et al. Space use and movement of a neotropical top predator: The Endangered Jaguar. PLoS ONE 11, e0168176 (2016).Article 

    Google Scholar 
    Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology 103, e03543 (2022).Article 

    Google Scholar 
    Chapman, B. et al. in Animal Movement Across Scales 1st edn. (eds. Hansson, L-A, Akesson, S.) 11–30 (Oxford University Press, 2014).Quigley, H. et al. Panthera onca. (errata version published in 2018). The IUCN Red List of Threatened Species 2017:e.T15953A123791436. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T15953A50658693.en (2017).Paviolo, A. et al. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6, 37147 (2016).Article 
    CAS 

    Google Scholar 
    Tobler, M. W., Carillo-Perscastegui, S. E., Hartley, A. Z. & Powell, G. V. N. High jaguar densities and large population sizes in the core habitat of the southwestern Amazon. Biol. Conserv. 159, 375–381 (2013).Article 

    Google Scholar 
    Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution: application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).Article 

    Google Scholar 
    Eva, H. D. et al. A proposal for defining the geographical boundaries of Amazonia; synthesis of the results from an expert consultation workshop organized by the European Commission in collaboration with the Amazon Cooperation Treaty Organization-JRC Ispra (No 21808-EN). https://core.ac.uk/download/pdf/38630683.pdf (2005).Nepstad, D. C., Stickler, C. M., Soares-Filho, B., Merry, F. & Nin, E. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B 363, 1737–1746 (2008).Article 

    Google Scholar 
    Marques, A. A. B., Schneider, M. & Peres, C. A. Human population and socioeconomic modulators of conservation performance in 788 Amazonian and Atlantic Forest reserves. PeerJ 4, pe2206 (2016).Article 

    Google Scholar 
    Jaguar 2030 Roadmap. Regional plan to save America’s largest cat and its ecosystems. https://www.internationaljaguarday.org/jaguar-conservation-roadmap (2018).Sanderson, E. W. et al. A systematic review of potential habitat suitability for the jaguar Panthera onca in central Arizona and New Mexico, USA. Oryx 2021, 1–12 (2021).
    Google Scholar 
    Simberloff, D. Flagships, umbrellas, and keystones: is single-species management passe’ in the landscape era. Biol. Conserv. 83, 247–57 (1998).Article 

    Google Scholar 
    Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native Cerrado and exotic pasture grasses. Philos. Trans. R. Soc. B 368, 20120427 (2013).Article 

    Google Scholar 
    Brazil’s National Institute for Space Research (INPE). Banco de dados de Queimadas INPE—Programa Queimadas. http://queimadasdgiinpebr/queimadas/bdqueimadas (2020b).Silva-Jr, C. H. L. et al. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 5, 144–145 (2020).Article 

    Google Scholar 
    Walker, R. et al. Protecting the Amazon with protected areas. Proc. Natl Acad. Sci. USA 106, 10582–10586 (2009).Article 
    CAS 

    Google Scholar 
    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).Article 
    CAS 

    Google Scholar 
    Begotti, R. A. & Peres, C. A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy 96, 104694 (2020).Article 

    Google Scholar 
    Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl Acad. Sci. USA 117, 3015–3025 (2020).Article 
    CAS 

    Google Scholar 
    Moilanen, A., Arponen, A., Stokland, J. N. & Cabeza, M. Assessing replacement cost of conservation areas: How does habitat loss influence priorities? Biol. Conserv. 142, 575–585 (2009).Article 

    Google Scholar 
    Almeida-Rocha, J. A. & Peres, C. A. Nominally protected buffer zones around tropical protected areas are as highly degraded as the wider unprotected countryside. Biol. Conserv. 256, 109068 (2021).Article 

    Google Scholar 
    Terborgh, J. The role of felid predators in Neotropical Forests. Vida Silv. Neotrop. 2, 3–5 (1990).
    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    CAS 

    Google Scholar 
    Brando, P. M. et al. The gathering firestorm in southern Amazonia. Sci. Adv. 6, 1632 (2020).Convention on the Conservation of Migratory Species of Wild Animals (CMS). Proposal for the Inclusion of the Jaguar in Appendices I and II of the Convention. https://www.cms.int/en/document/proposal-inclusion-jaguar-appendices-i-and-ii-convention (2022).Ceddia, M. G., Bardsley, N. O., Gomez-y-Paloma, S. & Sedlacek, S. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl Acad. Sci. USA 111, 7242–7247 (2014).Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20, 1251–1261 (2006).Article 

    Google Scholar 
    Brancalion, P. H. S. et al. Análise crítica da Lei de Proteção da Vegetação Nativa (2012), que substituiu o antigo Código Florestal: atualizações e ações em curso. Natureza Conservação 14, 1–16 (2016).Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).Article 

    Google Scholar 
    Bogoni, J. A., Peres, C. A. & Ferraz, K. M. P. M. B. Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics. Sci. Rep. 10, 14750 (2020).Article 
    CAS 

    Google Scholar 
    Ferrante, L. & Fearnside, P. M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).Article 

    Google Scholar 
    Aragão, L. E. O. C. & Shimabukuro, Y. E. The incidence of fire in Amazonian forests with implications for REDD. Science 328, 1275–1278 (2010).Article 

    Google Scholar 
    Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. B 363, 1787 (2008).Article 

    Google Scholar 
    Michalski, F., Boulhosa, R. L. P., Faria, A. & Peres, C. A. Human–wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. Anim. Conserv. https://doi.org/10.1111/j1469-1795200600025x (2006).Article 

    Google Scholar 
    Jorge, M. L. S. P., Galetti, M., Ribeiro, M. C. & Ferraz, K. M. P. M. B. Mammal defaunation as surrogate of trophic cascades in a biodiversity hotspot. Biol. Conserv. 163, 49–57 (2013).Article 

    Google Scholar 
    Menezes, J. F. S., Tortato, F. R., Roque, F. O., Oliveira-Santos, L. G. & Morato, R. G. Deforestation, fires, and lack of governance are displacing thousands of jaguars in Brazilian Amazon. Conserv. Sci. Pract. 3, e477 (2021).Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240 (2018).Article 

    Google Scholar 
    Romero-Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2018).Romero-Muñoz, A., Morato, R. G., Tortato, F. & Kuemmerle, T. Beyond fangs: beef and soybean trade drive jaguar extinction. Front. Ecol. Environ. 18, 67–68 (2020).Article 

    Google Scholar 
    Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl Acad. Sci. USA 117, 7095–7102 (2020).Article 
    CAS 

    Google Scholar 
    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).Article 

    Google Scholar 
    Carter, N., Killion, A., Easter, T., Brandt, J. & Ford, A. Road development in Asia: assessing the range-wide risks to tigers. Sci. Adv. 6, eaaz9619 (2020).Article 

    Google Scholar 
    Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS ONE 14, e0215152 (2019).Article 
    CAS 

    Google Scholar 
    Joshi, A. R. et al. Tracking changes and preventing loss in critical tiger habitat. Sci. Adv. 2, e1501675 (2016).Article 

    Google Scholar 
    Peres, C. A. & Terborgh, J. Amazonian nature reserves: an analysis of the defensibility status of existing conservation units and design criteria for the future. Conserv. Biol. 9, 34–46 (1995).Article 

    Google Scholar 
    Sistema Nacional de Unidades de Conservação (SNUC). Lei 9985 de 18 de julho de 2000; Ministério do Meio Ambiente. (2000).Stocks, A. Too much for too few: problems of indigenous land rights in Latin America Annual. Rev. Anthropol. 34, 85–104 (2005).Article 

    Google Scholar 
    Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS ONE 3, e3700 (2008).Article 

    Google Scholar 
    Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).Article 
    CAS 

    Google Scholar 
    Miranda, E. B. P. et al. Tropical deforestation induces thresholds of reproductive viability and habitat suitability in Earth’s largest eagles. Sci. Rep. 11, 1–17 (2021).Article 

    Google Scholar 
    Bowman, K. W. et al. Environmental degradation of indigenous protected areas of the Amazon as a slow onset event. Curr. Opin. Environ. Sustain. 50, 260–271 (2021).Article 

    Google Scholar 
    Wilson, K. A., Carwardine, J. & Possingham, H. P. Setting conservation priorities. Ann. N. Y. Acad. Sci. 1162, 237–264 (2009).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).Article 
    CAS 

    Google Scholar 
    Sales, L. P., Galetti, M. & Pires, M. M. Climate and land‐use change will lead to a faunal “savannization” on tropical rainforests. Glob. Change Biol. 26, 7036–7044 (2020).Article 

    Google Scholar 
    da Silva, J. M. C., Dias, T. C. A. C., da Cunha, A. C. & Cunha, H. F. A. Funding deficits of protected areas in Brazil. Land Use Policy 100, 104926 (2021).Article 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).Article 
    CAS 

    Google Scholar 
    Kauano, E. E., Silva, J. M. C. & Michalski, F. Illegal use of natural resources in federal protected areas of the Brazilian Amazon. PeerJ 5, e3902 (2017).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2011).Article 

    Google Scholar 
    Instituto Brasileiro de Geografia e Estatística (IBGE). Censo demográfico Rio de Janeiro. http://www.ibge.gov.br (2020).Instituto Brasileiro de Geografia e Estatística (IBGE). Censo demográfico Rio de Janeiro. http://www.ibge.gov.br (2010).Instituto Brasileiro de Geografia e Estatística (IBGE). BC250—Base Cartográfica Contínua do Brasil—1:250,000—2017 Diretoria de Geociências—DGC / Coordenação de Cartografia—CCAR. http://www.metadadosgeoibgegovbr/geonetwork_ibge/srv/por/metadatashow?uuid=5a47e9ea-e2cd-423b-8646-53f67ff4ed2d (2017).MapBiomas. Projeto MapBiomas Coleção 5 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. https://mapbiomas.org/colecoes-mapbiomas-1 (2019).Brazil’s National Institute for Space Research (INPE). Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite. http://www.obtinpebr/OBT/assuntos/programas/amazonia/prodes (2020a).ESRI. ArcGIS Desktop: Release 10 Redlands. (Environmental Systems Research Institute, 2019).Ministério do Meio Ambiente (MMA). Cadastro Nacional de Unidades de Conservação (CNUC). https://antigo.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs/dados-georreferenciados.html (2019).Fundação Nacional dos Povos Indígenas (FUNAI). Modalidades de Terra Indígenas. http://www.funaigovbr/indexphp/indios-no-brasil/terras-indigenas (2019).Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).Article 

    Google Scholar 
    de Oliveira, T. G. et al. Red list assessment of the jaguar in Brazilian Amazonia. CatNews 7, 8–13 (2012).
    Google Scholar 
    Ramalho, F. B. L. Jaguar (Panthera Onca) Population Dynamics, Feeding Ecology, Human Induced Mortality, and Conservation in the Várzea Floodplain Forests of Amazonia. PhD Thesis. (University of São Paulo, 2012).Duarte, H. O. B., Boron, V., Carvalho, W. D. & Toledo, J. J. Amazon islands as predator refugia: jaguar density and temporal activity in Maracá-Jipioca. J. Mammal. 103, 440–446 (2022).Article 

    Google Scholar 
    Zar, J. H. Biostatistical Analysis 4th edn., (Pretince-Hall, 1999).Medellín, R. A. et al. El jaguar en el nuevo milenio. Fondo de Cultura Económica (Universidad Nacional Autónoma de México, Wildlife Conservation Society, 2002).Quigley, H. et al. Observations and preliminary testing of Jaguar depredation reduction techniques in and between core Jaguar populations. Parks 21, 63–72 (2015).Article 

    Google Scholar 
    Bogoni, J. A., Ferraz, K. M. P. M. B. & Peres, C. A. Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biol. Conserv. 272, 109635 (2022).Article 

    Google Scholar 
    Valsecchi, J., Monteiro, M. C., Alvarenga, G. C., Lemos, L. P. & Ramalho, E. E. Community-based monitoring of wild felid hunting in Central Amazonia. Animal Conser. https://zslpublications.onlinelibrary.wiley.com/doi/pdf/10.1111/acv.12811 (2022).WWF. WWF Jaguar Strategy 2020–2030. https://wwflac.awsassets.panda.org/downloads/estrategia_jaguar_2020_2030_wwf.pdf (2020).Chape, S., Harrison, J., Spalding, M. D. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 443–455 (2005).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).Souza-Jr, C. M. et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 12, 2735 (2020).Article 

    Google Scholar  More

  • in

    The degree of urbanisation reduces wild bee and butterfly diversity and alters the patterns of flower-visitation in urban dry grasslands

    Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971. https://doi.org/10.1016/j.cub.2019.06.069 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).Article 
    PubMed 

    Google Scholar 
    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 (2017).Article 

    Google Scholar 
    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).Article 
    PubMed 

    Google Scholar 
    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).Article 

    Google Scholar 
    Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Pollinator declines. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362. https://doi.org/10.1126/science.1257259 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanization is driving pollinator diversity and pollination—A systematic review. Biol. Conserv. 241, 108321. https://doi.org/10.1016/j.biocon.2019.108321 (2020).Article 

    Google Scholar 
    Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. R. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 31, 26–37. https://doi.org/10.1111/1365-2435.12809 (2017).Article 

    Google Scholar 
    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429. https://doi.org/10.1111/geb.13107 (2020).Article 

    Google Scholar 
    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126. https://doi.org/10.1111/geb.12404 (2016).Article 

    Google Scholar 
    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Evol. 17, 225–231. https://doi.org/10.1002/fee.2032 (2019).Article 

    Google Scholar 
    Lynch, L. et al. Changes in land use and land cover along an urban-rural gradient influence floral resource availability. Curr. Landsc. Ecol. Rep. 6, 46–70. https://doi.org/10.1007/s40823-021-00064-1 (2021).Article 

    Google Scholar 
    Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29. https://doi.org/10.1111/cobi.12840 (2017).Article 
    PubMed 

    Google Scholar 
    Buchholz, S. & Egerer, M. H. Functional ecology of wild bees in cities: Towards a better understanding of trait-urbanization relationships. Biodivers. Conserv. 29, 2779–2801. https://doi.org/10.1007/s10531-020-02003-8 (2020).Article 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576. https://doi.org/10.1038/s41467-020-14496-6 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khalifa, S. A. M. et al. Overview of bee pollination and its economic value for crop production. Insects https://doi.org/10.3390/insects12080688 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doyle, T. et al. Pollination by hoverflies in the Anthropocene. Proc. Biol. Sci. 287, 20200508. https://doi.org/10.1098/rspb.2020.0508 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. USA. 113, 146–151. https://doi.org/10.1073/pnas.1517092112 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Persson, A. S., Ekroos, J., Olsson, P. & Smith, H. G. Wild bees and hoverflies respond differently to urbanisation, human population density and urban form. Landsc. Urban Plan. 204, 103901. https://doi.org/10.1016/j.landurbplan.2020.103901 (2020).Article 

    Google Scholar 
    Gathof, A. K., Grossmann, A. J., Herrmann, J. & Buchholz, S. Who can pass the urban filter? A multi-taxon approach to disentangle pollinator trait-environmental relationships. Oecologia 199, 165–179. https://doi.org/10.1007/s00442-022-05174-z (2022).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. Biol. Sci. 282, 20142849. https://doi.org/10.1098/rspb.2014.2849 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramírez-Restrepo, L. & MacGregor-Fors, I. Butterflies in the city: A review of urban diurnal Lepidoptera. Urban Ecosyst. 20, 171–182. https://doi.org/10.1007/s11252-016-0579-4 (2017).Article 

    Google Scholar 
    Kuussaari, M. et al. Butterfly species’ responses to urbanization: Differing effects of human population density and built-up area. Urban Ecosyst. 24, 515–527. https://doi.org/10.1007/s11252-020-01055-6 (2020).Article 

    Google Scholar 
    Theodorou, P. The effects of urbanisation on ecological interactions. Curr. Opin. Insect. Sci. 52, 100922. https://doi.org/10.1016/j.cois.2022.100922 (2022).Article 
    PubMed 

    Google Scholar 
    Martins, K. T., Gonzalez, A. & Lechowicz, M. J. Patterns of pollinator turnover and increasing diversity associated with urban habitats. Urban Ecosyst. 20, 1359–1371. https://doi.org/10.1007/s11252-017-0688-8 (2017).Article 

    Google Scholar 
    Theodorou, P. et al. The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct. Ecol. 31, 838–847. https://doi.org/10.1111/1365-2435.12803 (2017).Article 

    Google Scholar 
    Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along a gradient of urbanisation. PLoS ONE 8, e63421. https://doi.org/10.1371/journal.pone.0063421 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Udy, K. L., Reininghaus, H., Scherber, C. & Tscharntke, T. Plant–pollinator interactions along an urbanization gradient from cities and villages to farmland landscapes. Ecosphere https://doi.org/10.1002/ecs2.3020 (2020).Article 

    Google Scholar 
    Jędrzejewska-Szmek, K. & Zych, M. Flower-visitor and pollen transport networks in a large city: Structure and properties. Arthropod. Plant Interact. 7, 503–516. https://doi.org/10.1007/s11829-013-9274-z (2013).Article 

    Google Scholar 
    von der Lippe, M., Buchholz, S., Hiller, A., Seitz, B. & Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 12, 2565. https://doi.org/10.3390/su12062565 (2020).Article 

    Google Scholar 
    Dylewski, Ł, Maćkowiak, Ł & Banaszak-Cibicka, W. Are all urban green spaces a favourable habitat for pollinator communities? Bees, butterflies and hoverflies in different urban green areas. Ecol. Entomol. 44, 678–689. https://doi.org/10.1111/een.12744 (2019).Article 

    Google Scholar 
    Grossmann, A. J., Herrmann, J., Buchholz, S. & Gathof, A. K. Dry grassland within the urban matrix acts as favourable habitat for different pollinators including endangered species. Insect Conserv. Divers. https://doi.org/10.1111/icad.12607 (2022).Article 

    Google Scholar 
    Settele, J., Steiner, R., Feldmann, R. & Hermann, G. Schmetterlinge. Die Tagfalter Deutschlands: 720 Farbfotos. 3rd ed. (2015).Amiet, F. Hymenoptera Apidae, 1. Teil. Allgemeiner Teil, Gattungsschlüssel – Die Gattungen Apis, Bombus und Psithyrus (Centre Suisse de Cartographie de la Faune, 1996).
    Google Scholar 
    Amiet, F., Müller, A. & Neumeyer, R. Apidae 2. Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha (Fauna Helvetica, 1999).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 3. Halictus, Lasioglossum (Centre Suisse de Cartographie de la Faune, 2001).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 4. Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis (Centre Suisse de Cartographie de la Faune, 2004).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 5. Ammobates, Ammobatoides, Anthophora, Biastes, Ceratina, Dasypoda, Epeoloides, Epeolus, Eucera, Macropis, Melecta, Melitta, Nomada, Pasites, Tetralonia, Thyreus, Xylocopa (Centre Suisse de Cartographie de la Faune, 2007).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 6. Andrena, Melliturga, Panurginus, Panurgus (Centre Suisse de Cartographie de la Faune, 2010).
    Google Scholar 
    Gokcezade, J. F., Gereben-Krenn, B.-A., Neumayer, J. & Krenn, H. W. Feldbestimmungsschlüssel für die Hummeln Österreichs, Deutschlands und der Schweiz (Hymenoptera, Apidae). Linzer biologische Beiträge 47, 5–42 (2015).
    Google Scholar 
    Bartsch, H. Tvåvingar: Blomflugor. Diptera: Syrphidae: Syrphinae: denna volym omfattar samtliga nordiska arter (ArtDatabanken Sveriges lantbruksuniversitet, 2009).
    Google Scholar 
    Bartsch, H. Tvåvingar: Blomflugor. Diptera: Syrphidae: Eristalinae & Microdontinae: denna volym omfattar samtliga nordiska arter (ArtDatabanken Sveriges lantbruksuniversitet, 2009).
    Google Scholar 
    Bot, S. & van de Meutter, F. Veldgids zweefvliegen (KNNV Uitgeverij, 2019).
    Google Scholar 
    Jäger, E. J. Rothmaler-Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband 20th edn. (Springer Spektrum, 2011).
    Google Scholar 
    Senate Department for Urban Development and Housing. Berlin Environmental Atlas. 06.01 Actual Use of Built-up Areas/06.02 Inventory of Green and Open Spaces 2010 (2011).Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Bioscience 54, 227. https://doi.org/10.1641/0006-3568(2004)054[0227:DTSSOS]2.0.CO;2 (2004).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Berlin Environmental Atlas. 05.08 Biotope Types (2014).Hanski, I. A practical model of metapopulation dynamics. J. Anim. Ecol. 63, 151. https://doi.org/10.2307/5591 (1994).Article 

    Google Scholar 
    Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87, 209. https://doi.org/10.2307/3546736 (1999).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Berlin Environmental Atlas. 06.10 Building and Vegetation Heights (2014).Saura, S. & Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 24, 135–139. https://doi.org/10.1016/j.envsoft.2008.05.005 (2009).Article 

    Google Scholar 
    Saure, C. Rote Liste und Gesamtartenliste der Bienen und Wespen (Hymenoptera part.) von Berlin mit Angaben zu den Ameisen. In Rote Listen der gefährdeten Pflanzen und Tiere von Berlin.Speight, M. C. D. Species Accounts of European Syrphidae (Diptera) (Syrph the Net Publications, 2014).
    Google Scholar 
    Middleton-Welling, J. et al. A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea. Sci. Data 7, 351. https://doi.org/10.1038/s41597-020-00697-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24. https://doi.org/10.2174/1874213000902010007 (2009).Article 

    Google Scholar 
    Kaiser-Bunbury, C. N. & Blüthgen, N. Integrating network ecology with applied conservation: A synthesis and guide to implementation. AoB Plants https://doi.org/10.1093/aobpla/plv076 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos 117, 1227–1239. https://doi.org/10.1111/J.0030-1299.2008.16644.X (2008).Article 

    Google Scholar 
    Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98. https://doi.org/10.1111/2041-210X.12139 (2014).Article 

    Google Scholar 
    Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9. https://doi.org/10.1186/1472-6785-6-9 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patefield, W. M. Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. J. Appl. Stat. 30, 91. https://doi.org/10.2307/2346669 (1981).Article 
    MATH 

    Google Scholar 
    Stein, K. et al. Plant–pollinator networks in Savannas of Burkina Faso, West Africa. Diversity 13, 1. https://doi.org/10.3390/d13010001 (2021).Article 
    ADS 

    Google Scholar 
    Escobedo-Kenefic, N. et al. Disentangling the effects of local resources, landscape heterogeneity and climatic seasonality on bee diversity and plant–pollinator networks in tropical highlands. Oecologia 194, 333–344. https://doi.org/10.1007/s00442-020-04715-8 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    Renaud, E., Baudry, E. & Bessa-Gomes, C. Influence of taxonomic resolution on mutualistic network properties. Ecol. Evol. 10, 3248–3259. https://doi.org/10.1002/ece3.6060 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ropars, L., Dajoz, I., Fontaine, C., Muratet, A. & Geslin, B. Wild pollinator activity negatively related to honey bee colony densities in urban context. PLoS ONE 14, e0222316. https://doi.org/10.1371/journal.pone.0222316 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egerer, M. & Kowarik, I. Confronting the modern gordian knot of urban beekeeping. Trends Ecol. Evol. 35, 956–959. https://doi.org/10.1016/j.tree.2020.07.012 (2020).Article 
    PubMed 

    Google Scholar 
    Zuur, A. F., Ieono, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Bartón, K. MuMIn. multi-model inference, R package version 1.42.1 (2018).Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wood, T. J., Kaplan, I. & Szendrei, Z. Wild bee pollen diets reveal patterns of seasonal foraging resources for honey bees. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00210 (2018).Article 

    Google Scholar 
    Proske, A., Lokatis, S. & Rolff, J. Impact of mowing frequency on arthropod abundance and diversity in urban habitats: A meta-analysis. Urban For Urban Green 76, 127714. https://doi.org/10.1016/j.ufug.2022.127714 (2022).Article 

    Google Scholar 
    Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6, e23459. https://doi.org/10.1371/journal.pone.0023459 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geslin, B. et al. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecol. Evol. 6, 6599–6615. https://doi.org/10.1002/ece3.2374 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Birdshire, K. R., Carper, A. L. & Briles, C. E. Bee community response to local and landscape factors along an urban-rural gradient. Urban Ecosyst. 23, 689–702. https://doi.org/10.1007/s11252-020-00956-w (2020).Article 

    Google Scholar 
    Goddard, M. A., Benton, T. G. & Dougill, A. J. Beyond the garden fence: Landscape ecology of cities. Trends Ecol. Evol. 25, 202–203. https://doi.org/10.1016/j.tree.2009.12.007 (2010).Article 

    Google Scholar 
    Theodorou, P. et al. Bumble bee colony health and performance vary widely across the urban ecosystem. J. Anim. Ecol. 91, 2135–2148. https://doi.org/10.1111/1365-2656.13797 (2022).Article 
    PubMed 

    Google Scholar 
    Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities?. Ecology 84, 2628–2642. https://doi.org/10.1890/02-0136 (2003).Article 

    Google Scholar 
    Ebeling, A., Klein, A.-M., Schumacher, J., Weisser, W. W. & Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos 117, 1808–1815. https://doi.org/10.1111/j.1600-0706.2008.16819.x (2008).Article 

    Google Scholar 
    Theodorou, P. et al. Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity. Sci. Rep. 10, 21756. https://doi.org/10.1038/s41598-020-78736-x (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85. https://doi.org/10.1111/j.0307-6946.2005.00662.x (2005).Article 

    Google Scholar 
    Fründ, J., Linsenmair, K. E. & Blüthgen, N. Pollinator diversity and specialization in relation to flower diversity. Oikos 119, 1581–1590. https://doi.org/10.1111/j.1600-0706.2010.18450.x (2010).Article 

    Google Scholar 
    Fornoff, F. et al. Functional flower traits and their diversity drive pollinator visitation. Oikos 126, 1020–1030. https://doi.org/10.1111/oik.03869 (2017).Article 
    CAS 

    Google Scholar 
    Hofmann, M. M. & Renner, S. S. One-year-old flower strips already support a quarter of a city’s bee species. J. Hymenopt. Res. 75, 87–95. https://doi.org/10.3897/jhr.75.47507 (2020).Article 

    Google Scholar 
    Verboven, H. A., Uyttenbroeck, R., Brys, R. & Hermy, M. Different responses of bees and hoverflies to land use in an urban–rural gradient show the importance of the nature of the rural land use. Landsc. Urban Plan. 126, 31–41. https://doi.org/10.1016/j.landurbplan.2014.02.017 (2014).Article 

    Google Scholar 
    Luder, K., Knop, E. & Menz, M. H. M. Contrasting responses in community structure and phenology of migratory and non-migratory pollinators to urbanization. Divers. Distrib. 24, 919–927. https://doi.org/10.1111/ddi.12735 (2018).Article 

    Google Scholar 
    Merckx, T. & van Dyck, H. Urbanization-driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects. Glob. Ecol. Biogeogr. 28, 1440–1455. https://doi.org/10.1111/geb.12969 (2019).Article 

    Google Scholar 
    Tzortzakaki, O., Kati, V., Panitsa, M., Tzanatos, E. & Giokas, S. Butterfly diversity along the urbanization gradient in a densely-built Mediterranean city: Land cover is more decisive than resources in structuring communities. Landsc. Urban Plan. 183, 79–87. https://doi.org/10.1016/j.landurbplan.2018.11.007 (2019).Article 

    Google Scholar 
    Krauss, J., Steffan-Dewenter, I. & Tscharntke, T. How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies?. J. Biogeogr. 30, 889–900. https://doi.org/10.1046/j.1365-2699.2003.00878.x (2003).Article 

    Google Scholar 
    Cozzi, G., Müller, C. B. & Krauss, J. How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution on fragmented wetlands?. Landsc. Ecol. 23, 269–283. https://doi.org/10.1007/s10980-007-9178-3 (2008).Article 

    Google Scholar 
    He, M. et al. Effects of landscape and local factors on the diversity of flower-visitor groups under an urbanization gradient, a case study in Wuhan, China. Diversity 14, 208. https://doi.org/10.3390/d14030208 (2022).Article 

    Google Scholar 
    Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I. & Fischer, L. K. Wild bees in urban grasslands: Urbanisation, functional diversity and species traits. Landsc. Urban Plan. 196, 103731. https://doi.org/10.1016/j.landurbplan.2019.103731 (2020).Article 

    Google Scholar 
    Chapman, R. E. & Bourke, A. F. G. The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4, 650–662. https://doi.org/10.1046/j.1461-0248.2001.00253.x (2001).Article 

    Google Scholar 
    Gaertner, M. et al. Non-native species in urban environments: Patterns, processes, impacts and challenges. Biol. Invasions 19, 3461–3469. https://doi.org/10.1007/s10530-017-1598-7 (2017).Article 

    Google Scholar 
    Kowarik, I. On the role of alien species in urban flora and vegetation. In Urban Ecology. An International Perspective on the Interaction Between Humans and Nature (ed. Marzluff, J. M.) 321–338 (2008).Lorenz, S. & Stark, K. Saving the honeybees in Berlin? A case study of the urban beekeeping boom. Environ. Sociol. 1, 116–126. https://doi.org/10.1080/23251042.2015.1008383 (2015).Article 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 104, 19891–19896. https://doi.org/10.1073/pnas.0706375104 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856. https://doi.org/10.1126/science.1188321 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dormann, C. F., Fründ, J. & Schaefer, H. M. Identifying causes of patterns in ecological networks: Opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48, 559–584. https://doi.org/10.1146/annurev-ecolsys-110316-022928 (2017).Article 

    Google Scholar 
    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279. https://doi.org/10.1016/j.biocon.2009.12.004 (2010).Article 

    Google Scholar 
    Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031. https://doi.org/10.1038/ncomms12031 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host-parasitoid networks. Nat. Ecol. Evol 2, 1408–1417. https://doi.org/10.1038/s41559-018-0631-2 (2018).Article 
    PubMed 

    Google Scholar 
    Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227. https://doi.org/10.1038/nature21071 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bommarco, R. et al. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. Biol. Sci. 277, 2075–2082. https://doi.org/10.1098/rspb.2009.2221 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807. https://doi.org/10.1111/j.0030-1299.2008.16987.x (2008).Article 

    Google Scholar 
    Dupont, Y. L., Padrón, B., Olesen, J. M. & Petanidou, T. Spatio-temporal variation in the structure of pollination networks. Oikos 118, 1261–1269. https://doi.org/10.1111/j.1600-0706.2009.17594.x (2009).Article 

    Google Scholar 
    Santamaría, S. et al. Landscape effects on pollination networks in Mediterranean gypsum islands. Plant Biol. 20(Suppl 1), 184–194. https://doi.org/10.1111/plb.12602 (2018).Article 
    PubMed 

    Google Scholar  More