More stories

  • in

    Fractal dimension complexity of gravitation fractals in central place theory

    This paper describes the complexity of gravitational fractals in terms of global and local dimensions. They are presented in Table 1.Table 1 Global and local dimensions of gravitational fractals and attraction basins.Full size tableThe fractal in hexagonal CPT space, shown in Fig. 1, has a very rich structure, and therefore its characterization by means of fractal dimensions requires two approaches: (1) a global approach treating the fractal as a complex whole and (2) a local approach which allows us to determine the dimension of its fragments which are particularly interesting from a research perspective (see also Table 1). In the subsequent part of the paper, the results obtained are presented and interpreted according to the division in the table.Global dimension of boundaries of gravity attraction basinsTwo types of fractal dimensions have been thus far used in this analysis, i.e., the box and ruler dimensions. Figure 3 shows the distribution of the values of these dimensions determined for the boundaries of attraction as a function of space friction μ.Figure 3Comparison of the variability of the global ruler and box dimensions. Legend: The edge of all attraction basins is a function of the μ coefficient; 1–edges of all basins, 2–entire basins.Full size imageFigure 3 empirically confirms a fact known from chaos theory that whenever a fractal represents full chaos, the ruler dimension may be greater than 2 (Peitgen et al.33, 192–209), whereas the box dimension never exceeds this extreme value. Clearly, for a certain value of μ (in this case μ = 0.19), the numerical values of both types of dimensions are identical.In the bottom part of Fig. 3, line 1 illustrates the variability of the shapes of the attraction basins of individual cities depending on the value of μ, i.e., space resistance. The initially extremely complex shapes of the boundaries are smoothed to take the form of straight lines in the case of a large value of μ (μ = 0.52).In turn, line 2 illustrates not only the boundaries of the attraction basins, but also their internal structure. Clearly, the initially chaotic impacts of individual cities on the agent (μ = 0.005) are gradually smoothed out, so that in the final stage of the process they fully stabilize. This means that each city has a geometrically identical basin of attraction. Hence, if the agent is in the attraction basin of city 1 (purple color), it will always be attracted only by that city. This rule also applies to the other cities. It is obvious that the random process occurring at μ = 0.09 is then replaced by a strictly deterministic one. When chaos becomes complete order (Banaszak et al.15, the numerical values of both types of dimensions appear to stabilize at the level of 1.Global dimension of the boundary of each separate attraction basinFigure 1 also shows the geometric image of the attraction basins of individual cities. They were almost identical, and therefore also the fractal dimensions of the boundaries of these basins must match. The validity of this proposition is confirmed by Fig. 4. Six lines representing the distribution of the fractal dimension of the boundaries of the six basins coincide with almost full accuracy. Further analysis of Fig. 4 allows us to infer the conclusion that there is almost total chaos at the value db = 1.9021 (μ = 0.005). On the other hand, as space resistance increases to the value of μ = 0.22, there is a rapid decrease in the value of the fractal dimension of the boundary of each basin to the level of 1.2628; when μ = 0.34, then db = 1.2382. In that case, the value of the fractal dimension stabilizes, and at μ = 0.46, db = 1.2444 and finally for μ = 0.52, db reaches the value of 1.0412. The icons presented in Fig. 4 in lines 1 and 2 have slightly different structures than the icons in Fig. 3, due to different values of μ in certain cases.Figure 4The box dimension of the edges of the attraction basins depending on the μ coefficient (separately for each attractor). Legend: 1–boundaries of single attraction basins, 2–entire basins.Full size imageThe global dimension of the attraction basin of each city as an irregular geometric figureThe full symmetry of the basins of attraction of individual cities can be disturbed by the shape of the geometric figure on which the deterministic fractal is modeled. Such a situation occurs in the present case. Due to the fact that the fractal in Fig. 1 is formed on the surface of a square, the final basins of attraction of cities 1, 3, 4 and 6 are obviously larger than those of cities 2 and 5. Of course, these differences do not occur when considering the surface inside the hexagon.In Fig. 5, the line marked in black color represents the average value of the fractal dimension of the basins of attraction of individual cities, the value of which is (overline{{d }_{b}}=1.77). It can be seen that at very high values of the fractal dimension in the range (1.750, 1.775), there are db oscillations around this line. This is precisely the effect of modeling the fractal on the surface of the square, rather than the properties of this fractal. Therefore, (overline{{d }_{b}}=1.77) should be regarded as the global dimension of the basin of attraction (of each city) treated as an irregular figure.Figure 5Box dimension of the attraction basins as a geometric irregular figure in the gravitational fractal. Legend: 1-basins of the first city, 2-basins of the second city, 7-basins of all cities.Full size imageLocal dimensions of the boundary of the selected characteristic fragmentsFigure 6 presents fractal dimensions, with the Box and Ruler as functions of μ, and the boundaries of the attraction basins of individual cities occurring in all fragments A, …, E.Figure 6Distribution of the values of fractal dimensions of the boundaries of the attraction basins identified in selected fragments of a fractal; Legend: (A, D)-fragments marked in Fig. 1.Full size imageIt is evident that the structures of Fig. 6 (Box and Ruler) are almost identical. This means that, as has been stated earlier, when describing complex fractal objects, it does not really matter which type of dimension is used.Of interest here is the variability of the structure of both figures along with the increase in the value of the parameter μ. Fragments A, …, E (see Fig. 1) are characterized by high complexity, i.e. the intertwining attraction basins of the individual attractors (cities). This observation is confirmed by the numerical results of both fractal dimensions whose values are in the range (1.68–1.82). To illustrate the spatial complexity of these fragments, and thus their dimensions, by way of example, two fractal fragments are considered below: fragments A and D (see also Fig. 7).Figure 7Box dimension of the edge of each gravitation basin in A and D. Legend: The icons show the variability of the fragments A and D due to the share of the attraction basins of individual cities (3, 4 and 6).Full size imageFigure 6 offers important conclusions concerning the organization of social and economic life in the geographical area surrounding individual cities (attractors).

    1.

    Out of all the separated fragments, only in fragment A do we find the attraction basins of all the cities intertwined across the entire range of variation μ, i.e. (0.00–0.48). Hence, the graph of fractal dimension (db) (blue line) as a function of μ is continuous, and when the resistance of space is the greatest (μ = 0.48), the fractal dimension d = 1.00. This means that chaos has given way to total order, and fragment A has been symmetrically divided between cities 1 and 6. Hence, there are two colors left, namely red and purple.

    2.

    A similar situation occurs in the case of fragment D (yellow line), where the attraction basins of individual cities intertwine continuously within the range: 0.00 ≤ μ ≤ 0.46. Beyond the value of 0.46, the entire fragment D is filled with purple: the closest city 1 dominates it.

    The research conducted here also confirms the conclusions presented in previous works by Banaszak et al.15,16 concerning the transformation of chaos into spatial order, which means the stabilization of permanent dominance, usually of one attractor (city). Thus, with regard to fragments A and D, in fragment A there is a constant dominance (in half of the area) of cities 1 and 6, from the limit value of μ = 0.24 onward. In the case of fragment D, beginning with the value of μ = 0.36, only city 1 dominates (purple). That is, in the final phase of establishing the order in spatial interactions in the arrangement of areas A and D, the role of the dominant attractor (city) is played by city 1 (purple).Due to the symmetry of Fig. 1, similar effects can be observed in other parts of this fractal, located symmetrically in relation to A, …, E (see Supplementary Material).Figures 1 and 6 confirm the findings, known in the theory of city development, that urban (and other) centers rise in the hierarchy (or their rank decreases), depending on the external and internal factors conditioning their development. In the model used in this study, the parameter μ represents external factors (space resistance). If μ values are low, all cities are attractive from the point of view of spatial interactions and create their own but symmetrical basins of attraction. When the resistance of space increases, one city becomes the dominant center, and its basin of attraction is a uniform compact isotropic surface.However, this is not a simple mechanism, since, as has been demonstrated by simulation experiments described in this paper, within a certain range of μ values, another city (attractor) may dominate the others during chaotic interactions. The dynamic history of urban development confirms this observation, for example, in relation to historical capitals of some countries that have lost their functions as administrative capitals.Local dimension of the boundary of each attraction basin in a selected fragment of a fractalFragments A, …, E (Fig. 1 and the Supplementary Material) consist of mutually intertwined basins of attraction (six cities) whose boundaries with complicated courses have a fractal dimension, e.g. a box dimension.Figure 7(fragment A) shows the distribution of db as a function of μ in this fragment. In the case of total internal chaos, the fractal dimension of the boundaries of the attraction basins of all cities is identical and amounts to 1.9152. A clear differentiation of db is noticeable from μ = 0.1 onward. It should also be noted that orange and blue, red and purple, yellow and green lines mutually coincide. The red–purple line tend towards db = 1 as μ increases. However, orange, blue, yellow and green lines reach a value of db = 0.The fractal dimension db = 1.0 is most closely represented by the blue line (city 2), then the red line (city 6) and the purple line (city 1). Since these lines almost coincide, and the red and purple lines are the last to reach the value db = 1, at μ = 0.48, fragment A is symmetrically covered in red and purple. Therefore, with very high spatial resistance, fragment A is dominated by two cities, namely by 1 and 6.In turn, Fig. 7(fragment D) illustrates the variability of the fractal dimension of boundaries of the attraction basins in this fragment. This dimension depends on the complexity of the mosaic patterns formed in this fragment, with varying μ values. When the values of μ are close to zero, all cities contribute to filling the space of fragment D. When μ = 0.18, city 1 (purple color) falls out of the competition for space, but only up to the value of μ = 0.24, when it starts to compete again with other cities. From the point of view of spatial interactions, in the final phase of this process (μ = 0.44), city 2 (blue) and city 6 (red) dominate to a small extent, because cities 3, 4 and 6, starting from μ = 0.3, do not play any role in fragment D.Figure 7 shows that the value μ = 0.3 is a characteristic point. It is a locus where all the curves representing the attraction basins of individual cities meet. As has already been stated, three of them lose their influence over the space of fragment D.Local dimensions of parts of the attraction basins treated as an irregular geometric figureIn each of the selected fragments A, …, E, some of the boundaries of the attraction basins of individual cities are distributed differently. They create certain holes in the form of irregularly colored mosaic patterns that have a certain fractal dimension. To present its variability, fragments A and D were used again. Figure 8 shows the distribution of db values depending on the value of μ.Figure 8Local dimensions of parts of the attraction basins treated as an irregular geometric figure in (A) and (D). Legend: The icons illustrate the variability of the shape of some of the attraction basins of individual cities in fragment (A) and (D) for cities 3, 4 and 6.Full size imageThe function has several characteristic points. Up to the value of μ = 0.04, attraction basins show a jumble in which no predominant color or shape can be identified. The fractal dimension is then: db = 1.7697. From this value onwards, where μ = 0.042, the interior of fragment A becomes increasingly ordered. With a value of μ = 0.125, the city’s attraction basins 3 and 4 begin to disappear in fragment A. The same happens to the city attraction basins 2 and 5 for the value of μ = 0.24.The final effect of the increase in space resistance (with μ = 0.50) leads to the filling of fragment A with two colors, i.e., purple and red. This means that cities 1 and 6, have won the competition for the space of fragment A. In this case, the fractal dimensions db equal 1.90.Figure 8 presents the variability of the fractal dimension and the effects of the competition for space between cities in fragment D. As is the case in fragment A and all others, i.e. B, C and E (see the Annex with Supplementary Material), the intertwined attraction basins are represented by the area consisting of an endless number of differently colored dots. Hence, up to the value of μ = 0.042, fragment D is dominated by pure spatial chaos that extends over its entire area. It is characterized by the fractal dimension db = 1.7697. This means that with an increase in the value of μ, for the emergence of an irregular shape of a geometric figure, chaos must be accompanied by an increase in the value of the fractal dimension. Its limiting value is number 2. Then, spatial dominance is usually gained by one city and the examined fragment is filled with one color (‘the winner takes it all’).This is precisely the situation in Fig. 8 where city 1 (purple color) has apparently won the competition. Since this color fills area D completely, we find the plausible result db = 2.0. More

  • in

    Intra-individual variation of hen movements is associated with later keel bone fractures in a quasi-commercial aviary

    Rufener, C. et al. Keel bone fractures are associated with individual mobility of laying hens in an aviary system. Appl. Anim. Behav. Sci. 217, 48–56 (2019).
    Google Scholar 
    Rentsch, A. K., Rufener, C. B., Spadavecchia, C., Stratmann, A. & Toscano, M. J. Laying hen’s mobility is impaired by keel bone fractures and does not improve with paracetamol treatment. Appl. Anim. Behav. Sci. 216, 19–25 (2019).
    Google Scholar 
    Rodriguez-Aurrekoetxea, A. & Estevez, I. Use of space and its impact on the welfare of laying hens in a commercial free-range system. Poult. Sci. 95, 2503–2513 (2016).CAS 

    Google Scholar 
    Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).
    Google Scholar 
    Campbell, D. L. M., Talk, A. C., Loh, Z. A., Dyall, T. R. & Lee, C. Spatial cognition and range use in free-range laying hens. Animals 8, 26 (2018).
    Google Scholar 
    de Jager, M., Weissing, F. J., Herman, P. M. J., Nolet, B. A. & van de Koppel, J. Lévy walks evolve through interaction between movement and environmental complexity. Science 1979(332), 1551–1553 (2011).
    Google Scholar 
    Krause, J., James, R. & Croft, D. P. Personality in the context of social networks. Philos. Trans. R. Soc. B Biol. Sci. 365, 4099–4106 (2010).CAS 

    Google Scholar 
    Ihwagi, F. W. et al. Poaching lowers elephant path tortuosity: Implications for conservation. J. Wildl. Manag. 83, 1022–1031 (2019).
    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).
    Google Scholar 
    Matthews, S. G., Miller, A. L., Plötz, T. & Kyriazakis, I. Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    Berger-Tal, O. & Saltz, D. Using the movement patterns of reintroduced animals to improve reintroduction success. Curr. Zool. 60, 515–526 (2014).
    Google Scholar 
    Stuber, E. F., Carlson, B. S. & Jesmer, B. R. Spatial personalities: A meta-analysis of consistent individual differences in spatial behavior. Behav. Ecol. https://doi.org/10.1093/BEHECO/ARAB147 (2022).Article 

    Google Scholar 
    Sirovnik, J., Würbel, H. & Toscano, M. J. Feeder space affects access to the feeder, aggression, and feed conversion in laying hens in an aviary system. Appl. Anim. Behav. Sci. 198, 75–82 (2018).
    Google Scholar 
    Sirovnik, J., Voelkl, B., Keeling, L. J., Würbel, H. & Toscano, M. J. Breakdown of the ideal free distribution under conditions of severe and low competition. Behav. Ecol. Sociobiol. 75, 1–11 (2021).
    Google Scholar 
    Becot, L., Bedere, N., Burlot, T., Coton, J. & le Roy, P. Nest acceptance, clutch, and oviposition traits are promising selection criteria to improve egg production in cage-free system. PLoS ONE 16, e0251037 (2021).CAS 

    Google Scholar 
    Thompson, M. J., Evans, J. C., Parsons, S. & Morand-Ferron, J. Urbanization and individual differences in exploration and plasticity. Behav. Ecol. 29, 1415–1425 (2018).
    Google Scholar 
    Stamps, J. & Groothuis, T. G. G. The development of animal personality: Relevance, concepts and perspectives. Biol. Rev. 85, 301–325 (2010).
    Google Scholar 
    Salinas-Melgoza, A., Salinas-Melgoza, V. & Wright, T. F. Behavioral plasticity of a threatened parrot in human-modified landscapes. Biol. Conserv. 159, 303–312 (2013).
    Google Scholar 
    Stamps, J. A., Briffa, M. & Biro, P. A. Unpredictable animals: Individual differences in intraindividual variability (IIV). Anim. Behav. 83, 1325–1334 (2012).
    Google Scholar 
    Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).
    Google Scholar 
    Biro, P. A. & Adriaenssens, B. Predictability as a personality trait: Consistent differences in intraindividual behavioral variation. Am. Nat. 182, 621–629 (2013).
    Google Scholar 
    Henriksen, R. et al. Intra-individual behavioural variability: A trait under genetic control. Int. J. Mol. Sci. 21, 8069 (2020).CAS 

    Google Scholar 
    Rufener, C. et al. Finding hens in a haystack: Consistency of movement patterns within and across individual laying hens maintained in large groups. Sci. Rep. 8, (2018).Campbell, D. L. M., Karcher, D. M. & Siegford, J. M. Location tracking of individual laying hens housed in aviaries with different litter substrates. Appl. Anim. Behav. 184, 74–79 (2016).
    Google Scholar 
    Weeks, C. A. & Nicol, C. J. Behavioural needs, priorities and preferences of laying hens. Worlds Poult. Sci. J. 62, 296–307 (2006).
    Google Scholar 
    Hartcher, K. M. & Jones, B. The welfare of layer hens in cage and cage-free housing systems. Worlds Poult. Sci. J. 73, 767–782 (2017).
    Google Scholar 
    Zeltner, E. & Hirt, H. Effect of artificial structuring on the use of laying hen runs in a free-range system. Br. Poult. Sci. 44, 533–537 (2010).
    Google Scholar 
    Stratmann, A. et al. Modification of aviary design reduces incidence of falls, collisions and keel bone damage in laying hens. Appl. Anim. Behav. Sci. 165, 112–123 (2015).
    Google Scholar 
    Vandekerchove, D., Herdt, P., Laevens, H. & Pasmans, F. Colibacillosis in caged layer hens: Characteristics of the disease and the aetiological agent. Avian Pathol. 33, 117–125 (2004).CAS 

    Google Scholar 
    Montalcini, C. M., Voelkl, B., Gómez, Y., Gantner, M. & Toscano, M. J. Evaluation of an active LF tracking system and data processing methods for livestock precision farming in the poultry sector. Sensors 22, 659 (2022).ADS 

    Google Scholar 
    Revelle, W. Procedures for psychological, psychometric, and personality research. (2021).Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).
    Google Scholar 
    Rufener, C., Baur, S., Stratmann, A. & Toscano, M. J. A reliable method to assess keel bone fractures in laying hens from radiographs using a tagged visual analogue scale. Front. Vet. Sci. 5, 124 (2018).
    Google Scholar 
    Tauson, R., Kjaer, J., Maria, G. A., Cepero, R. & Holm, K.-E. The creation of a common scoring system for the integument and health of laying hens: Applied scoring of integument and health in laying hens. Final report Health from the Laywell project. https://www.laywel.eu/web/pdf/deliverables%2031-33%20health.pdf (2005).Hertel, A. G. et al. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, (2020).Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. 85, 935–956 (2010).
    Google Scholar 
    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J Stat Softw 67, (2015).Cleasby, I. R., Nakagawa, S. & Schielzeth, H. Quantifying the predictability of behaviour: Statistical approaches for the study of between-individual variation in the within-individual variance. Methods Ecol. Evol. 6, 27–37 (2015).
    Google Scholar 
    Bürkner, P.-C. brms: An R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).
    Google Scholar 
    Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).
    Google Scholar 
    Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).ADS 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).
    Google Scholar 
    Occhiuto, F., Vázquez-Diosdado, J. A., Carslake, C. & Kaler, J. Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors. R. Soc. Open Sci. 9, (2022).Moinard, C. et al. Accuracy of laying hens in jumping upwards and downwards between perches in different light environments. Appl. Anim. Behav. Sci. 85, 77–92 (2004).
    Google Scholar 
    Baur, S., Rufener, C., Toscano, M. J. & Geissbühler, U. Radiographic evaluation of keel bone damage in laying hens—Morphologic and temporal observations in a longitudinal study. Front. Vet. Sci. 1, 129 (2020).
    Google Scholar 
    Cordiner, L. S. & Savory, C. J. Use of perches and nestboxes by laying hens in relation to social status, based on examination of consistency of ranking orders and frequency of interaction. Appl. Anim. Behav. Sci. 71, 305–317 (2001).
    Google Scholar 
    Rufener, C. & Makagon, M. M. Keel bone fractures in laying hens: A systematic review of prevalence across age, housing systems, and strains. J. Anim. Sci. 98, S36–S51 (2020).
    Google Scholar 
    Nasr, M. A. F., Nicol, C. J., Wilkins, L. & Murrell, J. C. The effects of two non-steroidal anti-inflammatory drugs on the mobility of laying hens with keel bone fractures. Vet. Anaesth. Analg. 42, 197–204 (2015).CAS 

    Google Scholar 
    Nasr, M., Murrell, J., Wilkins, L. J. & Nicol, C. J. The effect of keel fractures on egg-production parameters, mobility and behaviour in individual laying hens. Anim. Welf. 21, 127–135 (2012).CAS 

    Google Scholar 
    Koolhaas, J. M. & van Reenen, C. G. Animal behavior and well-being symposium: Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals. J. Anim. Sci. 94, 2284–2296 (2016).CAS 

    Google Scholar 
    Coppens, C. M., de Boer, S. F. & Koolhaas, J. M. Coping styles and behavioural flexibility: Towards underlying mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 365, 4021 (2010).
    Google Scholar 
    Koolhaas, J. M., de Boer, S. F., Coppens, C. M. & Buwalda, B. Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Front. Neuroendocrinol. 31, 307–321 (2010).CAS 

    Google Scholar 
    Finkemeier, M.-A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures, and relationship to welfare. Front. Vet. Sci. 5, 131 (2018).
    Google Scholar 
    Martin, J. G. A., Pirotta, E., Petelle, M. B. & Blumstein, D. T. Genetic basis of between-individual and within-individual variance of docility. J. Evol. Biol. 30, 796–805 (2017).CAS 

    Google Scholar 
    Prentice, P. M., Houslay, T. M., Martin, J. G. A. & Wilson, A. J. Genetic variance for behavioural ‘predictability’ of stress response. J. Evol. Biol. 33, 642–652 (2020).
    Google Scholar  More

  • in

    Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria

    Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).Article 
    CAS 

    Google Scholar 
    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).Article 
    CAS 

    Google Scholar 
    Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).Article 
    CAS 

    Google Scholar 
    Mayali, X. Metabolic interactions between bacteria and phytoplankton. Front. Microbiol. 9, 727 (2018).Article 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98 (2015).Article 
    CAS 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453 (2015).Article 
    CAS 

    Google Scholar 
    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628 (2012).Article 
    CAS 

    Google Scholar 
    Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).Article 

    Google Scholar 
    Azam, F. & Ammerman, J. W. in Flows of Energy and Materials in Marine Ecosystems 345–360 (Springer, 1984).Mitchell, J. G., Okubo, A. & Fuhrman, J. A. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985).Article 
    CAS 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).Article 
    CAS 

    Google Scholar 
    Sonnenschein, E. C., Syit, D. A., Grossart, H.-P. & Ullrich, M. S. Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl. Environ. Microbiol. 78, 6900–6907 (2012).Article 
    CAS 

    Google Scholar 
    Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).Article 
    CAS 

    Google Scholar 
    Seymour, J. R., Ahmed, T., Durham, W. M. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).Article 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).Article 
    CAS 

    Google Scholar 
    Flombaum, P., Wang, W.-L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).Article 
    CAS 

    Google Scholar 
    Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 17100 (2017).Article 
    CAS 

    Google Scholar 
    Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I. & Zinser, E. R. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl. Environ. Microbiol. 74, 4530–4534 (2008).Article 
    CAS 

    Google Scholar 
    Sher, D., Thompson, J. W., Kashtan, N., Croal, L. & Chisholm, S. W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5, 1125–1132 (2011).Article 
    CAS 

    Google Scholar 
    Aharonovich, D. & Sher, D. Transcriptional response of Prochlorococcus to co-culture with a marine Alteromonas: differences between strains and the involvement of putative infochemicals. ISME J. 10, 2892–2906 (2016).Article 
    CAS 

    Google Scholar 
    Jackson, G. A. Simulating chemosensory responses of marine microorganisms. Limnol. Oceanogr. 32, 1253–1266 (1987).Article 
    CAS 

    Google Scholar 
    Gärdes, A., Iversen, M. H., Grossart, H.-P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445 (2011).Article 

    Google Scholar 
    Al-Wahaib, D., Al-Bader, D., Al-Shaikh Abdou, D. K., Eliyas, M. & Radwan, S. S. Consistent occurrence of hydrocarbonoclastic Marinobacter strains in various cultures of picocyanobacteria from the Arabian Gulf: promising associations for biodegradation of marine oil pollution. J. Mol. Microbiol. Biotechnol. 26, 261–268 (2016).CAS 

    Google Scholar 
    Raina, J.-B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).Article 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527 (2020).Article 

    Google Scholar 
    Gärdes, A. et al. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand. Genom. Sci. 3, 97–107 (2010).Article 

    Google Scholar 
    Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).Article 
    CAS 

    Google Scholar 
    Wawrik, B., Callaghan, A. V. & Bronk, D. A. Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the West Florida shelf as measured using stable isotope probing. Appl. Environ. Microbiol. 75, 6662–6670 (2009).Article 
    CAS 

    Google Scholar 
    Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).Article 
    CAS 

    Google Scholar 
    Raina, J.-B. et al. Chemotaxis shapes the microscale organization of the ocean’s microbiome. Nature 605, 132–138 (2022).Article 
    CAS 

    Google Scholar 
    Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).Article 
    CAS 

    Google Scholar 
    Myklestad, S. M. in Marine Chemistry (ed. Wangersky, P. J.) 111–148 (Springer Berlin Heidelberg, 2000).Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020).Article 
    CAS 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).Article 
    CAS 

    Google Scholar 
    Buitenhuis, E. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 

    Google Scholar 
    Raina, J.-B. et al. Symbiosis in the microbial world: from ecology to genome evolution. Biol. Open 7, bio032524 (2018).Article 

    Google Scholar 
    Giardina, M. et al. Quantifying inorganic nitrogen assimilation by Synechococcus using bulk and single-cell mass spectrometry: a comparative study. Front. Microbiol. 9, 2847 (2018).Article 

    Google Scholar 
    Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).Article 

    Google Scholar 
    Guillard, R. R. L. in Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Walter, L. S. & Matoira, H. C.) 29–60 (Springer US, 1975).Kaeppel, E. C., Gärdes, A., Seebah, S., Grossart, H.-P. & Ullrich, M. S. Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int. J. Syst. Evolut. Microbiol. 62, 124–128 (2012).Article 
    CAS 

    Google Scholar 
    Sonnenschein, E. C. et al. Development of a genetic system for Marinobacter adhaerens HP15 involved in marine aggregate formation by interacting with diatom cells. J. Microbiol. Methods 87, 176–183 (2011).Article 
    CAS 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).Article 
    CAS 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
    CAS 

    Google Scholar 
    Hillion, F., Kilburn, M., Hoppe, P., Messenger, S. & Weber, P. K. The effect of QSA on S, C, O and Si isotopic ratio measurements. Geochim. Cosmochim. Acta 72, A377 (2008).
    Google Scholar 
    Popa, R. et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1, 354–360 (2007).Article 
    CAS 

    Google Scholar 
    Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).Article 
    CAS 

    Google Scholar 
    Clerc, E. E., Raina, J.-B., Lambert, B. S., Seymour, J. & Stocker, R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. JoVE https://doi.org/10.3791/61062 (2020).Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).
    Google Scholar 
    Xie, L., Lu, C. & Wu, X.-L. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus. Biophys. J. 108, 766–774 (2015).Article 
    CAS 

    Google Scholar 
    Son, K., Guasto, J. S. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9, 494–498 (2013).Article 
    CAS 

    Google Scholar 
    Lee, C. & Bada, J. L. Amino acids in equatorial Pacific Ocean water. Earth Planet. Sci. Lett. 26, 61–68 (1975).Article 
    CAS 

    Google Scholar 
    Yamashita, Y. & Tanoue, E. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar. Chem. 82, 145–160 (2003).Article 
    CAS 

    Google Scholar 
    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).Article 
    CAS 

    Google Scholar 
    Mullin, M. M., Sloan, P. R. & Eppley, R. W. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11, 307–311 (1966).Article 

    Google Scholar  More

  • in

    Agricultural spider decline: long-term trends under constant management conditions

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, 137. https://doi.org/10.1126/science.aad2622 (2016).Article 
    CAS 

    Google Scholar 
    Thomas, J. A. & Morris, M. G. Patterns, mechanisms and rates of extinction among invertebrates in the United Kingdom. Phil. Trans. R. Soc. Lond. B 344, 47–54 (1994).Article 
    ADS 

    Google Scholar 
    Thomas, J. A. et al. Comparative losses of british butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881. https://doi.org/10.1126/science.1095046 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, 21. https://doi.org/10.1371/journal.pone.0185809 (2017).Article 
    CAS 

    Google Scholar 
    Barmentlo, S. H. et al. Experimental evidence for neonicotinoid driven decline in aquatic emerging insects. Proc. Natl. Acad. Sci. USA 118, 8. https://doi.org/10.1073/pnas.2105692118j1of8 (2021).Article 

    Google Scholar 
    Ehlers, B. K., Bataillon, T. & Damgaard, C. F. Ongoing decline in insect-pollinated plants across Danish grasslands. Biol. Lett. 17, 20210493. https://doi.org/10.1098/rsbl.2021.0493 (2021).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article 

    Google Scholar 
    Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 6. https://doi.org/10.1016/j.biocon.2019.108327 (2020).Article 

    Google Scholar 
    Jactel, H. et al. Insect decline: immediate action is needed. C. R. Biol. 343, 267–293. https://doi.org/10.5802/crbiol.37 (2020).Article 

    Google Scholar 
    Owens, A. C. S. et al. Light pollution is a driver of insect declines. Biol. Conserv. 241, 9. https://doi.org/10.1016/j.biocon.2019.108259 (2020).Article 

    Google Scholar 
    Sanchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    Michalko, R., Pekar, S. & Entling, M. H. An updated perspective on spiders as generalist predators in biological control. Oecologia https://doi.org/10.1007/s00442-018-4313-1 (2018).Article 

    Google Scholar 
    Nyffeler, M., Sterling, W. & Dean, D. How spiders make a living. Environ. Entomol. 23, 1357–1367 (1994).Article 

    Google Scholar 
    Branco, V. V. & Cardoso, P. An expert-based assessment of global threats and conservation measures for spiders. Glob. Ecol. Conserv. 24, 15. https://doi.org/10.1016/j.gecco.2020.e01290 (2020).Article 

    Google Scholar 
    Gobbi, M., Fontaneto, D. & De Bernardi, F. Influence of climate changes on animal communities in space and time: The case of spider assemblages along an alpine glacier foreland. Glob. Change Biol. 12, 1985–1992. https://doi.org/10.1111/j.1365-2486.2006.01236.x (2006).Article 
    ADS 

    Google Scholar 
    Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography 41, 233–243. https://doi.org/10.1111/ecog.02902 (2018).Article 

    Google Scholar 
    Potapov, A. M. et al. Functional losses in ground spider communities due to habitat structure degradation under tropical land-use change. Ecology 101, e02957. https://doi.org/10.1002/ecy.2957 (2020).Article 

    Google Scholar 
    Kormann, U. et al. Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers. Distrib. 21, 1204–1217. https://doi.org/10.1111/ddi.12324 (2015).Article 

    Google Scholar 
    Hogg, B. N. & Daane, K. M. Ecosystem services in the face of invasion: the persistence of native and nonnative spiders in an agricultural landscape. Ecol. Appl. 21, 565–576. https://doi.org/10.1890/10-0496.1 (2011).Article 

    Google Scholar 
    Galle, R., Happe, A. K., Baillod, A. B., Tscharntke, T. & Batary, P. Landscape configuration, organic management, and within-field position drive functional diversity of spiders and carabids. J. Appl. Ecol. 56, 63–72. https://doi.org/10.1111/1365-2664.13257 (2019).Article 

    Google Scholar 
    Pekár, S. Spiders (Araneae) in the pesticide world: An ecotoxicological review. Pest. Manage. Sci. 68, 1438–1446. https://doi.org/10.1002/ps.3397 (2012).Article 
    CAS 

    Google Scholar 
    Bommarco, R., Miranda, F., Bylund, H. & Bjorkman, C. Insecticides suppress natural enemies and increase pest damage in cabbage. J. Econ. Entomol. 104, 782–791. https://doi.org/10.1603/ec10444 (2011).Article 
    CAS 

    Google Scholar 
    Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nature Ecol. Evol. 4, 384–392. https://doi.org/10.1038/s41559-020-1111-z (2020).Article 

    Google Scholar 
    Rix, M. G. et al. Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. Austral Entomol. 56, 14–22. https://doi.org/10.1111/aen.12258 (2017).Article 

    Google Scholar 
    Nyffeler, M. & Bonte, D. Where have all the spiders gone? Observations of a dramatic population density decline in the once very abundant garden spider, Araneus diadematus (Araneae: Araneidae), in the Swiss Midland. Insects 11, 12. https://doi.org/10.3390/insects11040248 (2020).Article 

    Google Scholar 
    Bowden, J. J., Hansen, O. L. P., Olsen, K., Schmidt, N. M. & Høye, T. T. Drivers of inter-annual variation and long-term change in High-Arctic spider species abundances. Polar Biol. 41, 1635–1649. https://doi.org/10.1007/s00300-018-2351-0 (2018).Article 

    Google Scholar 
    Samu, F., Németh, J. & Kiss, B. Assessment of the efficiency of a hand-held suction device for sampling spiders: Improved density estimation or oversampling?. Ann. Appl. Biol. 130, 371–378. https://doi.org/10.1111/j.1744-7348.1997.tb06840.x (1997).Article 

    Google Scholar 
    Nentwig, W. et al. Spiders of Europe. Version 07.2022. https://www.araneae.nmbe.ch (2022).Heimer, S. & Nentwig, W. Spinnen Mitteleuropas (Paul Parey, 1991).
    Google Scholar 
    Samu, F. & Szinetár, C. On the nature of agrobiont spiders. J. Arachnol. 30, 389–402. https://doi.org/10.1636/0161-8202(2002)030[0389:Otnoas]2.0.Co;2 (2002).Article 

    Google Scholar 
    Buchar, J. & Růžička, V. Catalogue of Spiders of the Czech Republic (Peres, 2002).
    Google Scholar 
    Samu, F. A general data model for databases in experimental animal ecology. Acta Zool. Acad. Sci. Hung. 45, 273–290 (1999).
    Google Scholar 
    Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology. R package version 1.0–12. (2014).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Vegan. Community Ecology Package. R package Version 2.5–6. The Comprehensive R Archive Network (2019).ter Braak, C. J. F. & Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.1x. (Microcomputer Power, 2018).McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: Controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156. https://doi.org/10.1371/journal.pone.0169156 (2017).Article 
    CAS 

    Google Scholar 
    Toju, H. & Baba, Y. G. DNA metabarcoding of spiders, insects, and springtails for exploring potential linkage between above- and below-ground food webs. Zool. Lett. 4, 12. https://doi.org/10.1186/s40851-018-0088-9 (2018).Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. USA 115, E10397–E10406. https://doi.org/10.1073/pnas.1722477115 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Harwood, J. D., Sunderland, K. D. & Symondson, W. O. C. Monoclonal antibodies reveal the potential of the tetragnathid spider Pachygnatha degeeri (Araneae: Tetragnathidae) as an aphid predator. Bull. Entomol. Res. 95, 161–167. https://doi.org/10.1079/BER2004346 (2005).Article 
    CAS 

    Google Scholar 
    Samu, F., Beleznai, O. & Tholt, G. A potential spider natural enemy against virus vector leafhoppers in agricultural mosaic landscapes: Corroborating ecological and behavioral evidence. Biol. Control. 67, 390–396. https://doi.org/10.1016/j.biocontrol.2013.08.016 (2013).Article 

    Google Scholar 
    Biteniekyté, M. & Relys, V. Epigeic spider communities of a peat bog and adjacent habitats. Rev. Iber. Aracnol. 15, 81–87 (2008).
    Google Scholar 
    Michalko, R., Kosulic, O., Hula, V. & Surovcova, K. Niche differentiation of two sibling wolf spider species, Pardosa lugubris and Pardosa alacris, along a canopy openness gradient. J. Arachnol. 44, 46–51 (2016).Article 

    Google Scholar 
    Nyffeler, M. & Birkhofer, K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Naturwissenschaften 104, 30. https://doi.org/10.1007/s00114-017-1440-1 (2017).Article 
    CAS 

    Google Scholar 
    Sohlström, E. H. et al. Future climate and land-use intensification modify arthropod community structure. Agric. Ecosyst. Environ. 327, 107830. https://doi.org/10.1016/j.agee.2021.107830 (2022).Article 
    CAS 

    Google Scholar 
    Sallé, A. et al. Climate change alters temperate forest canopies and indirectly reshapes arthropod communities. Front. For. Glob. Change 4, 710854 (2021).Article 

    Google Scholar 
    Høye, T. T. et al. Nonlinear trends in abundance and diversity and complex responses to climate change in Arctic arthropods. Proc. Natl. Acas. Sci. USA 118, e2002557117 (2021).Article 

    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity: Ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).Article 

    Google Scholar 
    Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline?. Trends Ecol. Evol. 26, 474–481. https://doi.org/10.1016/j.tree.2011.05.009 (2011).Article 

    Google Scholar 
    Swinbank, A. The European Union’s Common Agricultural Policy (CAP) The New Palgrave Dictionary of Economics 1–9 (Palgrave Macmillan, 2016).
    Google Scholar 
    Wissinger, S. Cyclic colonization in predictably ephemeral habitats: A template for biological control in annual crop systems. Biol. Control 10, 4–15 (1997).Article 

    Google Scholar 
    Samu, F., Szita, É. & Botos, E. Short- and longer-term colonization of alfalfa by spiders: A case study into the succession of perennial fields. In European Arachnology 2008 (eds Nentwig, W. et al.) 153–163 (Natural History Museum, 2010).
    Google Scholar 
    Samu, F., Horváth, A., Neidert, D., Botos, E. & Szita, É. Metacommunities of spiders in grassland habitat fragments of an agricultural landscape. Basic Appl. Ecol. 31, 92–103. https://doi.org/10.1016/j.baae.2018.07.009 (2018).Article 

    Google Scholar  More

  • in

    Quantifying the feeding behavior and trophic impact of a widespread oceanic ctenophore

    This study provides quantitative data for Ocyropsis spp. feeding mechanisms and in situ data for gut contents during both day and night to begin assessing their trophic role in oceanic waters. Previous studies qualitatively described the feeding pattern of Ocyropsis spp.15 whereby this animal uses a unique capture mechanism among lobate ctenophores: direct transfer from lobe to mouth and encounters involving the mouth actively grabbing copepod prey24. These previous observations are confirmed as Ocyropsis spp. is able to deploy its dexterous, prehensile mouth to effectively capture prey within the lobes (Figs. 2, 3) and quantitative assessments of predation are also provided. It should be noted that while Ocyropsis spp. are known to occasionally consume a wide variety of prey types and sizes15, this study focuses only on copepod prey because our field data showed recognizable prey in Ocyropsis spp. guts was almost exclusively copepods.For example, mean speed of the mouth is less than 6 mm s−1 during predation events on copepods. Thus, while it may look rapid to the human eye, this is far below the escape swimming speeds exhibited by many copepods which are capable of moving at speeds of up to 500 mm s−125,26. Our observations show that the mechanism of capture is thus not reliant on grabbing copepods from the water between the ctenophore lobes with the mouth, but rather aided by copepod contact with the ctenophore lobes. Copepods between the lobes swam only with a speed of 7.94 mm s−1 (S.D. 7.25), to which the average mouth speed (5.83 mm s−1 (S.D. 1.68)) is comparable (Table 1). This suggests that Ocyropsis is able to reduce copepod swimming activity either by trapping them against the lobes (lobes respond to contact by prey) and/or the use of some form of adhesion or chemical that acts to reduce copepod activity. This unusual form of predation using a prehensile mouth allows Ocyropsis to be highly effective predators without the use of prey capturing tentillae seen in other lobate species.The presence of multiple prey has the potential to disrupt a raptorial type feeder such as Ocyropsis spp. more so than other lobates, since they lack tentillae, which would allow them to capture multiple prey simultaneously. Instead Ocyropsis spp. transfer one prey at a time directly from lobe to mouth15,27. So how is this ctenophore able to maintain such a high overall capture rate? The answer appears to be that Ocyropsis will modulate the number of attempts with the prehensile mouth depending on the number of prey present. For example, we did not observe any captures on the first attempt with the mouth with multiple prey, but the animals made up to 8 attempts at capturing the nearest copepod. This is in contrast to single copepod encounters in which ctenophores captured copepods on the first attempt 61% of the time and rarely made over 2 attempts, never exceeding 3 attempts (Figs. 3a, 5a, Table 1). This demonstrates Ocyropsis spp. can adjust its behavior to maintain high overall capture success when presented with multiple simultaneous prey. It is also interesting to note that the resulting increase in handling time due to making more attempts during multiple prey encounters is still lower than the handling time for most other lobates dealing with single prey27,28. It is not clear how often Ocyropsis spp. need to deal with multiple copepods simultaneously in nature, as oceanic waters contain characteristically low ctenophore prey densities compared to coastal zones9,29, however prey can be highly patchy and it appears that the unique prey capture mechanism of Ocyropsis spp. is still able to operate effectively in high density patches by increasing the number of attempts before aborting the attack which could serve as a means to maintain similar ingestion rates to single prey encounters.Typically, the feeding sequence of a ctenophore involves capture of prey in sticky colloblast cells and retraction of tentillae and/or ciliary transport of prey to the mouth15,27,30. These feeding mechanisms result in a range of handling times ranging from 2.5 s for Bolinopsis. infundibulum28 to nearly 22 min for Pleurobrachia bachei27. Capture rates can also be quite high, with overall capture success rates up to 74% for Mnemiopsis leidyi2,3. We found Ocyropsis has a relatively fast mean handling time of 6.3 s when a single copepod was present between the lobes, but handling time increased by approximately 2.5-fold if multiple prey were present. Overall capture success rates were comparable to the highly effective coastal ctenophore, M. leidyi, with a 71% success rate with single prey present and 81% capture rates if multiple prey were present between the lobes. Thus, Ocyropsis spp. are able to capture prey with high efficiency despite the differences in feeding mechanics compared to coastal lobate ctenophores. Additionally, since encounter rates of planktivores are directly related to the time spent searching for prey and time spent handling prey27, the relatively short handling time of Ocyropsis spp. and their direct feeding mechanism may allow them to sample more water and encounter a larger proportion of the available prey population than other species.Diel patterns of prey consumptionMany planktivorous species exhibit higher gut fullness at night31,32, due to higher prey availability in surface waters as a result of a diel vertical migration33,34. In situ gut content images showed that Ocyropsis spp. had a significantly higher gut fullness at night (12.4%) compared to during the day (4.2%) (Fig. 7). Ocyropsis spp. also had higher numbers of prey per individual gut at night, although overall biomass was not significantly different between night and day (Fig. 7). This can be explained by differences in prey characteristics; prey observed in the gut during the day were significantly larger (Table 2). This may be due to an ability to feed more selectively during the day since overall prey densities are lower. It should also be considered that turbulence in surface waters is, on average, much lower at night compared to daytime35 and that even small amounts of turbulence can negatively impact ctenophore feeding36,37. Therefore, smaller prey may have a higher likelihood of evading detection of Ocyropsis during the day compared to night, especially since these animals are most frequently observed in the upper 15 m of oceanic waters.Kremer, et al.38 estimates that O. crystallina requires 252 prey items to sustain itself. On average, Ocyropsis spp. in this study consume over 500 prey d−1. This exceeds their metabolic demands and suggests the observed population, on the western edge of the Gulf Stream, are likely to be actively growing and reproducing. The time required to digest prey items averaged 44 min for Ocyropsis which is faster than many, but not all, gelatinous zooplankton39,40,41. Digestion times of other gelatinous taxa span a range of times from 15 min to over 7 h at 20 °C40 and are impacted by size and number of prey per gut as well as temperature39,42,43. Digestion observations were performed at an ambient temperature of 25 °C and thus, these numbers represent a conservative estimate because the temperature of the water from which the animals were collected was 26.7–27.4 °C. Ocyropsis spp. would likely experience an increase in digestion rate with increased temperature.Digestion time was not impacted by the number of prey in the gut or by ctenophore body length. This differs from trends seen in other gelatinous taxa, such as A. aurita, M. leidyi, and B. infundibulum, where increasing body size resulted in faster digestion time39,40 and where increasing number of prey in the gut leads to longer digestion times39,40,41. In this study however, ctenophores were offered only a few copepods to ingest, thus it is likely they were not fed enough prey to satiate and slow the digestion process. Also worth considering is that the metabolic rate of O. crystallina does not appear to be affected by body size38. Though metabolic rates were not measured, this aligns with our finding that body size had no significant effect on digestion time. Analysis of in situ gut contents showed a significant positive logarithmic relationship between ctenophore length and total prey biomass per gut (Fig. 8). Individuals smaller than 20 mm in this study typically had fewer than the average number of copepods per gut (19), and larger individuals were the main driver of this relationship. This suggests that small Ocyropsis ( More

  • in

    Global patterns of water storage in the rooting zones of vegetation

    Teuling, A. J., Seneviratne, S. I., Williams, C. & Troch, P. A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 33, L23403 (2006).Gao, H. et al. Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophys. Res. Lett. 41, 7916–7923 (2014).Article 

    Google Scholar 
    Milly, P. C. D. Climate, soil water storage, and the average annual water balance. Water Resour. Res. 30, 2143–2156 (1994).Article 

    Google Scholar 
    Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).Article 

    Google Scholar 
    Thompson, S. E. et al. Comparative hydrology across AmeriFlux sites: the variable roles of climate, vegetation, and groundwater. Water Resour. Res. 47, W00J07 (2011).Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).Article 

    Google Scholar 
    Hain, C. R., Crow, W. T., Anderson, M. C. & Tugrul Yilmaz, M. Diagnosing neglected soil moisture source–sink processes via a thermal infrared-based two-source energy balance model. J. Hydrometeorol. 16, 1070–1086 (2015).Article 

    Google Scholar 
    Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).Article 

    Google Scholar 
    Dawson, T. E., Jesse Hahm, W. & Crutchfield-Peters, K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. N. Phytol. 226, 666–671 (2020).Article 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article 

    Google Scholar 
    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).Article 

    Google Scholar 
    Schlemmer, L., Schär, C., Lüthi, D. & Strebel, L. A groundwater and runoff formulation for weather and climate models. J. Adv. Model. Earth Syst. 10, 1809–1832 (2018).Article 

    Google Scholar 
    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).Article 

    Google Scholar 
    Koirala, S. et al. Global distribution of groundwater–vegetation spatial covariation. Geophys. Res. Lett. 44, 4134–4142 (2017).Article 

    Google Scholar 
    Esteban, E. J. L., Castilho, C. V., Melgaço, K. L. & Costa, F. R. C. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. N. Phytol. 229, 1995–2006 (2021).Article 

    Google Scholar 
    Liu, Y., Konings, A. G., Kennedy, D. & Gentine, P. Global coordination in plant physiological and rooting strategies in response to water stress. Glob. Biogeochem. Cycles 35, e2020GB006758 (2021).Article 

    Google Scholar 
    Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).Article 

    Google Scholar 
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).Article 

    Google Scholar 
    Weaver, J. E. & Darland, R. W. Soil–root relationships of certain native grasses in various soil types. Ecol. Monogr. 19, 303–338 (1949).Article 

    Google Scholar 
    Chitra-Tarak, R. et al. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. N. Phytol. 231, 1798–1813 (2021).Article 

    Google Scholar 
    Schenk, H. J. & Jackson, R. B. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126, 129–140 (2005).Article 

    Google Scholar 
    Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).Article 

    Google Scholar 
    Kleidon, A. & Heimann, M. A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle. Glob. Change Biol. 4, 275–286 (1998).Article 

    Google Scholar 
    Schymanski, S. J., Sivapalan, M., Roderick, M. L., Hutley, L. B. & Beringer, J. An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resour. Res. 45, W01412 (2009).Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).Article 

    Google Scholar 
    Anderson, M. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 60, 195–216 (1997).Article 

    Google Scholar 
    Hain, C. R. & Anderson, M. C. Estimating morning change in land surface temperature from MODIS day/night observations: applications for surface energy balance modeling. Geophys. Res. Lett. 44, 9723–9733 (2017).Article 

    Google Scholar 
    Tumber-Dávila, S. J., Schenk, H. J., Du, E. & Jackson, R. B. Plant sizes and shapes above- and belowground and their interactions with climate. New Phytol. https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.18031 (2022).Harmonized World Soil Database Version 1.0 (FAO, 2008).Wieder, W. Regridded Harmonized World Soil Database Version 1.2 (ORNL DAAC, 2014); https://doi.org/10.3334/ORNLDAAC/1247Balland, V., Pollacco, J. A. P. & Arp, P. A. Modeling soil hydraulic properties for a wide range of soil conditions. Ecol. Model. 219, 300–316 (2008).Article 

    Google Scholar 
    Agee, E. et al. Root lateral interactions drive water uptake patterns under water limitation. Adv. Water Resour. 151, 103896 (2021).Article 

    Google Scholar 
    Krakauer, N. Y., Li, H. & Fan, Y. Groundwater flow across spatial scales: importance for climate modeling. Environ. Res. Lett. 9, 034003 (2014).Article 

    Google Scholar 
    Stoy, P. C. et al. Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16, 3747–3775 (2019).Article 

    Google Scholar 
    Jackson, R. B., Moore, L. A., Hoffmann, W. A., Pockman, W. T. & Linder, C. R. Ecosystem rooting depth determined with caves and DNA. Proc. Natl Acad. Sci. USA 96, 11387–11392 (1999).Article 

    Google Scholar 
    Pelletier, J. D. et al. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. J. Adv. Model. Earth Syst. 8, 41–65 (2016).Article 

    Google Scholar 
    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).Article 

    Google Scholar 
    Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).Article 

    Google Scholar 
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536 (2007).Article 

    Google Scholar 
    Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the international space station. Water Resour. Res. 56, e2019WR026058 (2020).Article 

    Google Scholar 
    Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).Article 

    Google Scholar 
    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    Orth, R., Koster, R. D. & Seneviratne, S. I. Inferring soil moisture memory from streamflow observations using a simple water balance model. J. Hydrometeorol. 14, 1773–1790 (2013).Article 

    Google Scholar 
    Stocker, B. cwd v.1.0: R package for cumulative water deficit calculation. Zenodo https://doi.org/10.5281/zenodo.5359053 (2021).Zhang, Y. et al. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sens. Environ. 187, 145–155 (2016).Article 

    Google Scholar 
    Duveiller, G. et al. A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth Syst. Sci. Data 12, 1101–1116 (2020).Article 

    Google Scholar 
    Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–2823 (2013).Article 

    Google Scholar 
    Köhler, P., Guanter, L. & Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 8, 2589–2608 (2015).Article 

    Google Scholar 
    Jiang, B. et al. Validation of the surface daytime net radiation product from version 4.0 GLASS product suite. IEEE Geosci. Remote Sens. Lett. 16, 509–513 (2019).Article 

    Google Scholar 
    Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003).Article 

    Google Scholar 
    Gilleland, E. & Katz, R. W. extRemes 2.0: an extreme value analysis package in R. J. Stat. Softw. 72, 1–39 (2016).Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S. & Gedney, N. High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 19, 91–104 (2015).Article 

    Google Scholar 
    Etopo1, Global 1 Arc-Minute Ocean Depth and Land Elevation from the US National Geophysical Data Center (NGDC) (National Geophysical Data Center, NESDIS, NOAA and US Department of Commerce, 2011); https://doi.org/10.5065/D69Z92Z5Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24, 43–69 (1979).Article 

    Google Scholar 
    Hansen, M. C., Townshend, J. R. G., DeFries, R. S. & Carroll, M. Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int. J. Remote Sens. 26, 4359–4380 (2005).Article 

    Google Scholar 
    Stocker, B. D. Global rooting zone water storage capacity and rooting depth estimates. Zenodo https://doi.org/10.5281/zenodo.5515246 (2021).Stocker, B. stineb/mct: v3.0: re-submission to Nature Geoscience. Zenodo https://doi.org/10.5281/zenodo.6239187 (2022). More

  • in

    Trait biases in microbial reference genomes

    Overmann, J., Abt, B. & Sikorski, J. Present and future of culturing bacteria. Annual Review of Microbiology 71, 711–730 (2017).CAS 

    Google Scholar 
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research 44, D733 (2016).
    Google Scholar 
    Bobay, L. M. & Ochman, H. Biological species are universal across life’s domains. Genome Biology and Evolution 9, 491–501 (2017).
    Google Scholar 
    Magnabosco, C., Moore, K., Wolfe, J. & Fournier, G. Dating phototrophic microbial lineages with reticulate gene histories. Geobiology 16, 179–189 (2018).CAS 

    Google Scholar 
    Louca, S. et al. Function and functional redundancy in microbial systems. Nature Ecology & Evolution 2, 936–943 (2018).ADS 

    Google Scholar 
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nature Communications 9, 5114 (2018).ADS 

    Google Scholar 
    Zhu, Q. et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains bacteria and archaea. Nature Communications 10, 5477 (2019).ADS 
    CAS 

    Google Scholar 
    Royalty, T.M. & Steen, A.D. Quantitatively partitioning microbial genomic traits among taxonomic ranks across the microbial tree of life. mSphere 4 (2019).Murray, C. S., Gao, Y. & Wu, M. Re-evaluating the evidence for a universal genetic boundary among microbial species. Nature Communications 12, 4059 (2021).ADS 
    CAS 

    Google Scholar 
    Powell, S. et al. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Research 42, D231–D239 (2014).CAS 

    Google Scholar 
    Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Research 43, D593–D598 (2014).
    Google Scholar 
    Douglas, G. M. et al. Picrust2 for prediction of metagenome functions. Nature Biotechnology 38, 685–688 (2020).CAS 

    Google Scholar 
    Wemheuer, F. et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 1–12 (2020).
    Google Scholar 
    Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).ADS 
    CAS 

    Google Scholar 
    Wu, D. et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462, 1056–1060 (2009).ADS 
    CAS 

    Google Scholar 
    Louca, S. & Pennell, M. W. A general and efficient algorithm for the likelihood of diversification and discrete-trait evolutionary models. Systematic Biology 69, 545–556 (2020).
    Google Scholar 
    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).ADS 
    CAS 

    Google Scholar 
    Sharon, I. & Banfield, J. F. Genomes from metagenomics. Science 342, 1057–1058 (2013).ADS 
    CAS 

    Google Scholar 
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology 2, 1533–1542 (2017).CAS 

    Google Scholar 
    Chen, L. X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Research 30, 315–333 (2020).CAS 

    Google Scholar 
    Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences 102, 2567–2572 (2005).ADS 
    CAS 

    Google Scholar 
    Kim, M., Oh, H. S., Park, S. C. & Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Journal of Systematic and Evolutionary Microbiology 64, 346–351 (2014).CAS 

    Google Scholar 
    Shapiro, B.J. What microbial population genomics has taught us about speciation. In Polz, M.F. & Rajora, O.P. (eds.) Population Genomics: Microorganisms, 31–47 (Springer International Publishing, Cham, Switzerland, 2019).Olm, M. R. et al. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems 5, e00731–19 (2020).CAS 

    Google Scholar 
    Lagkouvardos, I., Overmann, J. & Clavel, T. Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes 8, 493–503 (2017).
    Google Scholar 
    Zhang, Z., Wang, J., Wang, J., Wang, J. & Li, Y. Estimate of the sequenced proportion of the global prokaryotic genome. Microbiome 8, 1–9 (2020).
    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2019).
    Google Scholar 
    Mira, A., Ochman, H. & Moran, N. A. Deletional bias and the evolution of bacterial genomes. Trends in Genetics 17, 589–596 (2001).CAS 

    Google Scholar 
    Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio 3, e00036–12 (2012).
    Google Scholar 
    Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME Journal 8, 1553–1565 (2014).
    Google Scholar 
    Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).ADS 
    CAS 

    Google Scholar 
    Gary, P.R. Adjusting for nonresponse in surveys. In Smart, J.C. (ed.) Higher Education: Handbook of Theory and Research, chap. 8, 411–449 (Springer, Dordrecht, Netherlands, 2007).Maguire, F. et al. Metagenome-assembled genome binning methods with short reads disproportionately fail for plasmids and genomic islands. Microbial Genomics 6, mgen000436 (2020).
    Google Scholar 
    Huerta-Cepas, J. et al. eggnog 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research 47, D309–D314 (2019).CAS 

    Google Scholar 
    Abdel-Hamid, A.M., Solbiati, J.O., Cann, I.K.O., Sariaslani, S. & Gadd, G.M. Insights into lignin degradation and its potential industrial applications, vol. 82, chap. 1, 1–28 (Academic Press, 2013).El-Bondkly, A.M. Sequence analysis of industrially important genes from trichoderma. In Biotechnology and biology of Trichoderma, chap. 28, 377–392 (Elsevier, 2014).Dawood, A. & Ma, K. Applications of microbial β-mannanases. Frontiers in Bioengineering and Biotechnology 8 (2020).Khelaifia, S., Raoult, D. & Drancourt, M. A versatile medium for cultivating methanogenic archaea. PLOS ONE 8, e61563 (2013).ADS 
    CAS 

    Google Scholar 
    Khelaifia, S. et al. Aerobic culture of methanogenic archaea without an external source of hydrogen. European Journal of Clinical Microbiology & Infectious Diseases 35, 985–991 (2016).CAS 

    Google Scholar 
    Michał, B. et al. Phymet2: a database and toolkit for phylogenetic and metabolic analyses of methanogens. Environmental Microbiology Reports 10, 378–382 (2018).
    Google Scholar 
    Albright, S. & Louca, S. Trait biases in microbial reference genomes, figshare., https://doi.org/10.6084/m9.figshare.c.6055004.v1 (2022).Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).CAS 

    Google Scholar 
    Murray, A. E. et al. Roadmap for naming uncultivated archaea and bacteria. Nature Microbiology 5, 987–994 (2020).CAS 

    Google Scholar 
    Palleroni, N. J. Prokaryotic diversity and the importance of culturing. Antonie van Leeuwenhoek 72, 3–19 (1997).CAS 

    Google Scholar 
    Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31, 814–821 (2013).CAS 

    Google Scholar 
    Tran, P. Q. et al. Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. The ISME Journal 15, 1971–1986 (2021).CAS 

    Google Scholar 
    Kroeger, M. E. et al. New biological insights into how deforestation in amazonia affects soil microbial communities using metagenomics and metagenome-assembled genomes. Frontiers in Microbiology 9, 1635 (2018).
    Google Scholar 
    Nathani, N. M. et al. 309 metagenome assembled microbial genomes from deep sediment samples in the Gulfs of Kathiawar Peninsula. Scientific Data 8, 194 (2021).
    Google Scholar 
    Irazoqui, J. M., Eberhardt, M. F., Adjad, M. M., Amadio, A. F. & Collado, M. C. Identification of key microorganisms in facultative stabilization ponds from dairy industries, using metagenomics. PeerJ 10, e12772 (2022).
    Google Scholar 
    Hwang, Y. et al. Leave no stone unturned: individually adapted xerotolerant Thaumarchaeota sheltered below the boulders of the Atacama Desert hyperarid core. Microbiome 9, 234 (2021).CAS 

    Google Scholar 
    Tully, B., Wheat, C. G., Glazer, B. T. & Huber, J. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME Journal 12, 1–16 (2018).CAS 

    Google Scholar 
    Vanwonterghem, I., Jensen, P. D., Rabaey, K. & Tyson, G. W. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion. Environmental Microbiology 18, 3144–3158 (2016).CAS 

    Google Scholar 
    Glasl, B. et al. Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. The ISME Journal 14, 1435–1450 (2020).
    Google Scholar 
    Robbins, S. J. et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nature Microbiology 4, 2090–2100 (2019).
    Google Scholar 
    Engelberts, J. P. et al. Characterization of a sponge microbiome using an integrative genome-centric approach. The ISME Journal 14, 1100–1110 (2020).CAS 

    Google Scholar 
    Bowerman, K. L. et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nature Communications 11, 5886 (2020).ADS 
    CAS 

    Google Scholar 
    Chen, Y. J. et al. Hydrodynamic disturbance controls microbial community assembly and biogeochemical processes in coastal sediments. The ISME Journal 16, 750–763 (2022).CAS 

    Google Scholar 
    Hugerth, L. W. et al. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biology 16, 279 (2015).
    Google Scholar 
    Alneberg, J. et al. Ecosystem-wide metagenomic binning enables prediction of ecological niches from genomes. Communications Biology 3, 119 (2020).
    Google Scholar 
    Di Cesare, A. et al. Genomic comparison and spatial distribution of different Synechococcus phylotypes in the Black Sea. Frontiers in Microbiology 11, 1979 (2020).
    Google Scholar 
    van Vliet, D. M. et al. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environmental Microbiology 23, 2834–2857 (2021).
    Google Scholar 
    Dalcin Martins, P. et al. Enrichment of novel Verrucomicrobia, Bacteroidetes, and Krumholzibacteria in an oxygen-limited methane- and iron-fed bioreactor inoculated with Bothnian Sea sediments. MicrobiologyOpen 10, e1175 (2021).CAS 

    Google Scholar 
    Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nature Biotechnology 37, 953–961 (2019).CAS 

    Google Scholar 
    Segura-Wang, M., Grabner, N., Koestelbauer, A., Klose, V. & Ghanbari, M. Genome-resolved metagenomics of the chicken gut microbiome. Frontiers in Microbiology 12, 726923 (2021).
    Google Scholar 
    Ruuskanen, M. O. et al. Microbial genomes retrieved from High Arctic lake sediments encode for adaptation to cold and oligotrophic environments. Limnology and Oceanography 65, S233–S247 (2020).CAS 

    Google Scholar 
    Haas, S., Desai, D. K., LaRoche, J., Pawlowicz, R. & Wallace, D. W. R. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environmental Microbiology 21, 3927–3952 (2019).CAS 

    Google Scholar 
    Spasov, E. et al. High functional diversity among Nitrospira populations that dominate rotating biological contactor microbial communities in a municipal wastewater treatment plant. The ISME Journal 14, 1857–1872 (2020).CAS 

    Google Scholar 
    Vigneron, A. et al. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem. Microbiome 9, 46 (2021).CAS 

    Google Scholar 
    Galambos, D., Anderson, R. E., Reveillaud, J. & Huber, J. A. Genome-resolved metagenomics and metatranscriptomics reveal niche differentiation in functionally redundant microbial communities at deep-sea hydrothermal vents. Environmental Microbiology 21, 4395–4410 (2019).CAS 

    Google Scholar 
    Stewart, R. D. et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nature Communications 9, 870 (2018).ADS 

    Google Scholar 
    Xing, P. et al. Stratification of microbiomes during the holomictic period of Lake Fuxian, an alpine monomictic lake. Limnology and Oceanography 65, S134–S148 (2020).
    Google Scholar 
    Zhang, S., Hu, Z. & Wang, H. Metagenomic analysis exhibited the co-metabolism of polycyclic aromatic hydrocarbons by bacterial community from estuarine sediment. Environment International 129, 308–319 (2019).CAS 

    Google Scholar 
    Lin, Y., Wang, L., Xu, K., Li, K. & Ren, H. Revealing taxon-specific heavy metal-resistance mechanisms in denitrifying phosphorus removal sludge using genome-centric metaproteomics. Microbiome 9, 67 (2021).CAS 

    Google Scholar 
    Liu, L. et al. High-quality bacterial genomes of a partial-nitritation/anammox system by an iterative hybrid assembly method. Microbiome 8, 155 (2020).CAS 

    Google Scholar 
    Kantor, R. S. et al. Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unravelled with genome-resolved metagenomics. Environmental Microbiology 17, 4929–4941 (2015).CAS 

    Google Scholar 
    Zhou, Z. et al. Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes. The ISME Journal 14, 3136–3148 (2020).CAS 

    Google Scholar 
    Reysenbach, A. L. et al. Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proceedings of the National Academy of Sciences 117, 32627–32638 (2020).ADS 
    CAS 

    Google Scholar 
    Hou, J. et al. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Microbiome 8, 102 (2020).CAS 

    Google Scholar 
    Campanaro, S. et al. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnology for Biofuels 9, 26 (2016).
    Google Scholar 
    Singleton, C. M. et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nature Communications 12, 2009 (2021).CAS 

    Google Scholar 
    Diamond, S. et al. Mediterranean grassland soil C–N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nature Microbiology 4, 1356–1367 (2019).CAS 

    Google Scholar 
    Rasigraf, O. et al. Microbial community composition and functional potential in Bothnian Sea sediments is linked to Fe and S dynamics and the quality of organic matter. Limnology and Oceanography 65, S113–S133 (2020).CAS 

    Google Scholar 
    Rissanen, A. J. et al. Vertical stratification patterns of methanotrophs and their genetic controllers in water columns of oxygen-stratified boreal lakes. FEMS Microbiology Ecology 97, fiaa252 (2021).CAS 

    Google Scholar 
    Campanaro, S. et al. New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. Biotechnology for Biofuels 13, 25 (2020).CAS 

    Google Scholar 
    Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nature Biotechnology 39, 105–114 (2021).CAS 

    Google Scholar 
    Zhou, Z. et al. Genome- and community-level interaction insights into carbon utilization and element cycling functions of hydrothermarchaeota in hydrothermal sediment. mSystems 5 (2020).Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635.e11 (2019).CAS 

    Google Scholar 
    Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).ADS 
    CAS 

    Google Scholar 
    Greenlon, A. et al. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proceedings of the National Academy of Sciences 116, 15200–15209 (2019).ADS 
    CAS 

    Google Scholar 
    Hervé, V. et al. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ 8, e8614 (2020).
    Google Scholar 
    von Appen, W.J. The expedition PS114 of the research vessel POLARSTERN to the Fram Strait in 2018. Tech. Rep., Alfred Wegener Institute for Polar and Marine Research (2018).Dombrowski, N., Seitz, K. W., Teske, A. P. & Baker, B. J. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5, 106 (2017).
    Google Scholar 
    Yu, J. et al. Dna-stable isotope probing shotgun metagenomics reveals the resilience of active microbial communities to biochar amendment in oxisol soil. Frontiers in Microbiology 11, 587972 (2020).
    Google Scholar 
    Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nature Biotechnology 37, 186–192 (2019).CAS 

    Google Scholar 
    Gharechahi, J. et al. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. The ISME Journal 15, 1108–1120 (2021).CAS 

    Google Scholar 
    Meier, D. V., Imminger, S., Gillor, O. & Woebken, D. Distribution of mixotrophy and desiccation survival mechanisms across microbial genomes in an arid biological soil crust community. mSystems 6, e00786–20 (2021).CAS 

    Google Scholar 
    Haro-Moreno, J. M. et al. Dysbiosis in marine aquaculture revealed through microbiome analysis: reverse ecology for environmental sustainability. FEMS Microbiology Ecology 96, fiaa218 (2020).CAS 

    Google Scholar 
    Haro-Moreno, J. M. et al. Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. Microbiome 6, 128 (2018).
    Google Scholar 
    Dong, X. et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nature Communications 10, 1816 (2019).ADS 

    Google Scholar 
    Poghosyan, L. et al. Metagenomic profiling of ammonia- and methane-oxidizing microorganisms in two sequential rapid sand filters. Water Research 185, 116288 (2020).CAS 

    Google Scholar 
    Paula, D. M., Jeroen, F., Hugh, M. & Meng, M. L. & J., W.M. Wetland sediments host diverse microbial taxa capable of cycling alcohols. Applied and Environmental Microbiology 85, 00189–19 (2019).
    Google Scholar 
    Aromokeye, D. A. et al. Crystalline iron oxides stimulate methanogenic benzoate degradation in marine sediment-derived enrichment cultures. The ISME Journal 15, 965–980 (2021).CAS 

    Google Scholar 
    Borchert, E. et al. Deciphering a marine bone-degrading microbiome reveals a complex community effort. mSystems 6, e01218–20 (2021).CAS 

    Google Scholar 
    Osvatic, J. T. et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proceedings of the National Academy of Sciences 118, e2104378118 (2021).CAS 

    Google Scholar 
    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proceedings of the National Academy of Sciences 116, 11824–11832 (2019).ADS 
    CAS 

    Google Scholar 
    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).ADS 
    CAS 

    Google Scholar 
    Alqahtani, M. F. et al. Enrichment of Marinobacter sp. and halophilic homoacetogens at the biocathode of microbial electrosynthesis system inoculated with Red Sea brine pool. Frontiers in Microbiology 10, 2563 (2019).
    Google Scholar 
    Haroon, M. F., Thompson, L. R., Parks, D. H., Hugenholtz, P. & Stingl, U. A catalogue of 136 microbial draft genomes from Red Sea metagenomes. Scientific Data 3, 160050 (2016).CAS 

    Google Scholar 
    Vavourakis, C. D. et al. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome 6, 1–18 (2018).
    Google Scholar 
    Cabello-Yeves, P. J. et al. Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnology and Oceanography 65, 1471–1488 (2020).ADS 
    CAS 

    Google Scholar 
    Vavourakis, C. D. et al. Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a siberian soda lake. BMC Biology 17, 69 (2019).
    Google Scholar 
    Waterworth, S. C., Isemonger, E. W., Rees, E. R., Dorrington, R. A. & Kwan, J. C. Conserved bacterial genomes from two geographically isolated peritidal stromatolite formations shed light on potential functional guilds. Environmental Microbiology Reports 13, 126–137 (2021).CAS 

    Google Scholar 
    Huddy, R. J. et al. Thiocyanate and organic carbon inputs drive convergent selection for specific autotrophic Afipia and Thiobacillus strains within complex microbiomes. Frontiers in Microbiology 12, 643368 (2021).
    Google Scholar 
    Emerson, J. B. et al. Diverse sediment microbiota shape methane emission temperature sensitivity in Arctic lakes. Nature Communications 12, 5815 (2021).ADS 
    CAS 

    Google Scholar 
    Chiri, E. et al. Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds. Proceedings of the National Academy of Sciences 118, e2102625118 (2021).CAS 

    Google Scholar 
    Gong, G., Zhou, S., Luo, R., Gesang, Z. & Suolang, S. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community. BMC Microbiology 20, 302 (2020).
    Google Scholar 
    Zhou, S. et al. Characterization of metagenome-assembled genomes and carbohydrate-degrading genes in the gut microbiota of Tibetan pig. Frontiers in Microbiology 11, 595066 (2020).
    Google Scholar 
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Scientific Data 5, 170203 (2018).CAS 

    Google Scholar 
    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. Scientific Data 7, 312 (2020).CAS 

    Google Scholar 
    Peng, X. et al. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nature Microbiology 6, 499–511 (2021).CAS 

    Google Scholar 
    Dudek, N. K. et al. Novel microbial diversity and functional potential in the marine mammal oral microbiome. Current Biology 27, 3752–3762.e6 (2017).CAS 

    Google Scholar 
    Pinto, A. J. et al. Metagenomic evidence for the presence of comammox nitrospira-like bacteria in a drinking water system. mSphere 1, e00054–15 (2015).
    Google Scholar 
    Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).ADS 
    CAS 

    Google Scholar 
    Nobu, M. K. et al. Catabolism and interactions of uncultured organisms shaped by eco-thermodynamics in methanogenic bioprocesses. Microbiome 8, 111 (2020).CAS 

    Google Scholar 
    Butterfield, C. N. et al. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ 4, e2687 (2016).
    Google Scholar 
    Castelle, C. J. et al. Protein family content uncovers lineage relationships and bacterial pathway maintenance mechanisms in DPANN Archaea. Frontiers in Microbiology 12, 660052 (2021).
    Google Scholar 
    Alteio, L. V. et al. Complementary metagenomic approaches improve reconstruction of microbial diversity in a forest soil. mSystems 5, e00768–19 (2020).
    Google Scholar 
    Shaiber, A. et al. Functional and genetic markers of niche partitioning among enigmatic members of the human oral microbiome. Genome Biology 21, 292 (2020).
    Google Scholar 
    Jungbluth, S. P., Amend, J. P. & Rappé, M. S. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids. Scientific Data 4, 170037 (2017).CAS 

    Google Scholar 
    Sheik, C. S. et al. Dolichospermum blooms in Lake Superior: DNA-based approach provides insight to the past, present and future of blooms. Journal of Great Lakes Research 48, 1191–1205 (2022).CAS 

    Google Scholar 
    Barnum, T. P. et al. Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. The ISME Journal 12, 1568–1581 (2018).CAS 

    Google Scholar 
    Julian, D. et al. Coastal ocean metagenomes and curated metagenome-assembled genomes from Marsh Landing, Sapelo Island (Georgia, USA). Microbiology Resource Announcements 8, e00934–19 (2019).
    Google Scholar 
    Breister, A. M. et al. Soil microbiomes mediate degradation of vinyl ester-based polymer composites. Communications Materials 1, 101 (2020).ADS 

    Google Scholar 
    Fu, H., Uchimiya, M., Gore, J. & Moran, M. A. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proceedings of the National Academy of Sciences 117, 3656–3662 (2020).ADS 
    CAS 

    Google Scholar 
    Nobu, M. K. et al. Thermodynamically diverse syntrophic aromatic compound catabolism. Environmental Microbiology 19, 4576–4586 (2017).CAS 

    Google Scholar 
    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).CAS 

    Google Scholar 
    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nature Biotechnology 39, 499–509 (2021).CAS 

    Google Scholar 
    Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. The ISME Journal 15, 2366–2378 (2021).CAS 

    Google Scholar 
    Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nature Microbiology 6, 246–256 (2021).CAS 

    Google Scholar 
    Seyler, L. M., Trembath-Reichert, E., Tully, B. J. & Huber, J. A. Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community. The ISME Journal 15, 1192–1206 (2021).CAS 

    Google Scholar 
    Herold, M. et al. Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance. Nature Communications 11, 5281 (2020).ADS 
    CAS 

    Google Scholar 
    Dong, X. et al. Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep. Nature Communications 11, 5825 (2020).ADS 
    CAS 

    Google Scholar 
    Thompson, L. R. et al. Metagenomic covariation along densely sampled environmental gradients in the Red Sea. The ISME Journal 11, 138–151 (2017).CAS 

    Google Scholar 
    Dominik, S., Daniela, Z., Anja, P., Katharina, R. & Rolf, D. Metagenome-assembled genome sequences from different wastewater treatment stages in Germany. Microbiology Resource Announcements 10, e00504–21 (2021).
    Google Scholar 
    Langwig, M. V. et al. Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. The ISME Journal 16, 307–320 (2022).CAS 

    Google Scholar 
    Rezaei Somee, M. et al. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Scientific Reports 11, 11316 (2021).ADS 
    CAS 

    Google Scholar 
    Gilroy, R. et al. Metagenomic investigation of the equine faecal microbiome reveals extensive taxonomic diversity. PeerJ 10, e13084 (2022).
    Google Scholar 
    Bhattarai, B., Bhattacharjee, A. S., Coutinho, F. H. & Goel, R. K. Viruses and their interactions with bacteria and archaea of hypersaline Great Salt Lake. Frontiers in Microbiology 12, 701414 (2021).
    Google Scholar 
    Liu, L. et al. Microbial diversity and adaptive strategies in the Mars-like Qaidam Basin, North Tibetan Plateau, China. Environmental Microbiology Reports (2022).Lin, H. et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. The ISME Journal 15, 1810–1825 (2021).CAS 

    Google Scholar 
    Martnez-Pérez, C. et al. Lifting the lid: nitrifying archaea sustain diverse microbial communities below the Ross Ice Shelf. SSRN (2020).Zhang, L. et al. Metagenomic insights into the effect of thermal hydrolysis pre-treatment on microbial community of an anaerobic digestion system. Science of The Total Environment 791, 148096 (2021).ADS 
    CAS 

    Google Scholar 
    Starr, E. P. et al. Stable-isotope-informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in rhizosphere soil. mSphere 6, e00085–21 (2021).CAS 

    Google Scholar 
    Matthew, C. et al. Archaeal and bacterial metagenome-assembled genome sequences derived from pig feces. Microbiology Resource Announcements 11, 01142–21 (2022).
    Google Scholar 
    Wang, Y., Zhao, R., Liu, L., Li, B. & Zhang, T. Selective enrichment of comammox from activated sludge using antibiotics. Water Research 197, 117087 (2021).CAS 

    Google Scholar 
    Gilroy, R. et al. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 9, e10941 (2021).
    Google Scholar 
    Chen, Y. H. et al. Salvaging high-quality genomes of microbial species from a meromictic lake using a hybrid sequencing approach. Communications Biology 4, 996 (2021).CAS 

    Google Scholar 
    Beach, N. K., Myers, K. S., Donohue, T. J. & Noguera, D. R. Metagenomes from 25 low-abundance microbes in a partial nitritation anammox microbiome. Microbiology Resource Announcements 11, 00212–22 (2022).CAS 

    Google Scholar 
    Solanki, V. et al. Glycoside hydrolase from the GH76 family indicates that marine Salegentibacter sp. Hel_I_6 consumes alpha-mannan from fungi. The ISME Journal 16, 1818–1830 (2022).CAS 

    Google Scholar 
    Hiraoka, S. et al. Diverse DNA modification in marine prokaryotic and viral communities. Nucleic Acids Research 50, 1531–1550 (2022).CAS 

    Google Scholar 
    Haryono, M.A.S. et al. Recovery of high quality metagenome-assembled genomes from full-scale activated sludge microbial communities in a tropical climate using longitudinal metagenome sampling. Frontiers in Microbiology 13 (2022).Rodrguez-Ramos, J.A. et al. Microbial genome-resolved metaproteomic analyses frame intertwined carbon and nitrogen cycles in river hyporheic sediments. Research Square (2021).Kim, M., Cho, H. & Lee, W. Y. Distinct gut microbiotas between southern elephant seals and Weddell seals of Antarctica. Journal of Microbiology 58, 1018–1026 (2020).CAS 

    Google Scholar 
    Voorhies, A. A. et al. Cyanobacterial life at low O2: community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat. Geobiology 10, 250–267 (2012).CAS 

    Google Scholar 
    McDaniel, E. A. et al. Tbasco: trait-based comparative ‘omics identifies ecosystem-level and niche-differentiating adaptations of an engineered microbiome. ISME Communications 2, 111 (2022).
    Google Scholar 
    Wang, W. et al. Contrasting bacterial and archaeal distributions reflecting different geochemical processes in a sediment core from the Pearl River Estuary. AMB Express 10, 16 (2020).
    Google Scholar 
    Mandakovic, D. et al. Genome-scale metabolic models of Microbacterium species isolated from a high altitude desert environment. Scientific Reports 10, 5560 (2020).ADS 
    CAS 

    Google Scholar 
    Wang, Y. et al. Seasonal prevalence of ammonia-oxidizing archaea in a full-scale municipal wastewater treatment plant treating saline wastewater revealed by a 6-year time-series analysis. Environmental Science & Technology 55, 2662–2673 (2021).ADS 
    CAS 

    Google Scholar 
    Bulzu, P. A. et al. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nature Microbiology 4, 1129–1137 (2019).CAS 

    Google Scholar 
    Karen, J. et al. Hydrogen-oxidizing bacteria are abundant in desert soils and strongly stimulated by hydration. mSystems 5, e01131–20 (2020).
    Google Scholar 
    Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proceedings of the National Academy of Sciences 117, 9508–9518 (2020).ADS 
    CAS 

    Google Scholar 
    Podowski, J. C., Paver, S. F., Newton, R. J. & Coleman, M. L. Genome streamlining, proteorhodopsin, and organic nitrogen metabolism in freshwater nitrifiers. mBio 13, e02379–21 (2022).
    Google Scholar 
    Coutinho, F. H. et al. New viral biogeochemical roles revealed through metagenomic analysis of Lake Baikal. Microbiome 8, 163 (2020).CAS 

    Google Scholar 
    Philippi, M. et al. Purple sulfur bacteria fix N2 via molybdenum-nitrogenase in a low molybdenum Proterozoic ocean analogue. Nature Communications 12, 4774 (2021).ADS 
    CAS 

    Google Scholar 
    Katie, S. et al. Eight metagenome-assembled genomes provide evidence for microbial adaptation in 20,000- to 1,000,000-year-old Siberian permafrost. Applied and Environmental Microbiology 87, e00972–21 (2021).
    Google Scholar 
    Mert, K. et al. Unexpected abundance and diversity of phototrophs in mats from morphologically variable microbialites in Great Salt Lake, Utah. Applied and Environmental Microbiology 86, e00165–20 (2020).
    Google Scholar 
    Patin, N. V. et al. Gulf of Mexico blue hole harbors high levels of novel microbial lineages. The ISME Journal 15, 2206–2232 (2021).CAS 

    Google Scholar 
    Wang, J., Tang, X., Mo, Z. & Mao, Y. Metagenome-assembled genomes from Pyropia haitanensis microbiome provide insights into the potential metabolic functions to the seaweed. Frontiers in Microbiology 13, 857901 (2022).
    Google Scholar 
    Burgsdorf, I. et al. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. The ISME Journal 16, 1163–1175 (2022).CAS 

    Google Scholar 
    Suarez, C. et al. Disturbance-based management of ecosystem services and disservices in partial nitritation-anammox biofilms. npj Biofilms and Microbiomes 8, 47 (2022).CAS 

    Google Scholar 
    Kumar, D. et al. Textile industry wastewaters from Jetpur, Gujarat, India, are dominated by Shewanellaceae, Bacteroidaceae, and Pseudomonadaceae harboring genes encoding catalytic enzymes for textile dye degradation. Frontiers in Environmental Science 9, 720707 (2021).ADS 

    Google Scholar 
    Seitz, V. A. et al. Variation in root exudate composition influences soil microbiome membership and function. Applied and Environmental Microbiology 88, e00226–22 (2022).
    Google Scholar 
    Lindner, B. G. et al. Toward shotgun metagenomic approaches for microbial source tracking sewage spills based on laboratory mesocosms. Water Research 210, 117993 (2022).CAS 

    Google Scholar 
    Yancey, C. E. et al. Metagenomic and metatranscriptomic insights into population diversity of microcystis blooms: Spatial and temporal dynamics of mcy genotypes, including a partial operon that can be abundant and expressed. Applied and Environmental Microbiology 88, e02464–21 (2022).
    Google Scholar 
    Liu, L. et al. Charting the complexity of the activated sludge microbiome through a hybrid sequencing strategy. Microbiome 9, 205 (2021).CAS 

    Google Scholar 
    Speth, D. R. et al. Microbial communities of Auka hydrothermal sediments shed light on vent biogeography and the evolutionary history of thermophily. The ISME Journal 16, 1750–1764 (2022).CAS 

    Google Scholar 
    Blyton, M. D. J., Soo, R. M., Hugenholtz, P. & Moore, B. D. Maternal inheritance of the koala gut microbiome and its compositional and functional maturation during juvenile development. Environmental Microbiology 24, 475–493 (2022).CAS 

    Google Scholar 
    Nuccio, E. E. et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. The ISME Journal 14, 999–1014 (2020).CAS 

    Google Scholar 
    Jaffe, A. L. et al. Long-term incubation of lake water enables genomic sampling of consortia involving planctomycetes and candidate phyla radiation bacteria. mSystems 7, e00223–22 (2022).
    Google Scholar 
    Cabral, L. et al. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nature Communications 13, 629 (2022).ADS 
    CAS 

    Google Scholar 
    Blyton, M. D. J., Soo, R. M., Hugenholtz, P. & Moore, B. D. Characterization of the juvenile koala gut microbiome across wild populations. Environmental Microbiology 24, 4209–4219 (2022).CAS 

    Google Scholar 
    Xu, B. et al. A holistic genome dataset of bacteria, archaea and viruses of the Pearl River estuary. Scientific Data 9, 49 (2022).MathSciNet 
    CAS 

    Google Scholar 
    Royo-Llonch, M. et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nature Microbiology 6, 1561–1574 (2021).CAS 

    Google Scholar 
    Sun, J., Prabhu, A., Aroney, S. T. N. & Rinke, C. Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobas morio) microbiome in styrofoam feeding trials. Microbial Genomics 8, 000842 (2022).CAS 

    Google Scholar 
    Kim, M. et al. Higher pathogen load in children from Mozambique vs. USA revealed by comparative fecal microbiome profiling. ISME Communications 2, 74 (2022).ADS 

    Google Scholar 
    Kelly, J. B., Carlson, D. E., Low, J. S. & Thacker, R. W. Novel trends of genome evolution in highly complex tropical sponge microbiomes. Microbiome 10, 164 (2022).CAS 

    Google Scholar 
    Bray, M. S. et al. Phylogenetic and structural diversity of aromatically dense pili from environmental metagenomes. Environmental Microbiology Reports 12, 49–57 (2020).CAS 

    Google Scholar 
    Cabello-Yeves, P. J. et al. α-cyanobacteria possessing form IA RuBisCO globally dominate aquatic habitats. The ISME Journal 16, 2421–2432 (2022).CAS 

    Google Scholar 
    Berben, T. et al. The Polar Fox Lagoon in Siberia harbours a community of Bathyarchaeota possessing the potential for peptide fermentation and acetogenesis. Antonie van Leeuwenhoek 115, 1229–1244 (2022).CAS 

    Google Scholar 
    Tamburini, F. B. et al. Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa. Nature Communications 13, 926 (2022).ADS 
    CAS 

    Google Scholar 
    Kantor, R. S., Miller, S. E. & Nelson, K. L. The water microbiome through a pilot scale advanced treatment facility for direct potable reuse. Frontiers in Microbiology 10, 993 (2019).
    Google Scholar 
    Muratore, D. et al. Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nature Ecology & Evolution 6, 218–229 (2022).
    Google Scholar 
    Zhou, Y. L., Mara, P., Cui, G. J., Edgcomb, V. P. & Wang, Y. Microbiomes in the challenger deep slope and bottom-axis sediments. Nature Communications 13, 1515 (2022).ADS 
    CAS 

    Google Scholar 
    Zhang, H. et al. Metagenome sequencing and 768 microbial genomes from cold seep in South China Sea. Scientific Data 9, 480 (2022).CAS 

    Google Scholar 
    Zhuang, J. L., Zhou, Y. Y., Liu, Y. D. & Li, W. Flocs are the main source of nitrous oxide in a high-rate anammox granular sludge reactor: insights from metagenomics and fed-batch experiments. Water Research 186, e116321 (2020).
    Google Scholar 
    Shiffman, M. E. et al. Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for eucalyptus digestion. PeerJ 5, 4075 (2017).
    Google Scholar 
    Murphy, S. M. C., Bautista, M. A., Cramm, M. A. & Hubert, C. R. J. Diesel and crude oil biodegradation by cold-adapted microbial communities in the Labrador Sea. Applied and Environmental Microbiology 87, e00800–21 (2021).ADS 
    CAS 

    Google Scholar 
    Suarez, C. et al. Metagenomic evidence of a novel family of anammox bacteria in a subsea environment. Environmental Microbiology 24, 2348–2360 (2022).CAS 

    Google Scholar 
    Dharamshi, J.E. et al. Genomic diversity and biosynthetic capabilities of sponge-associated chlamydiae. The ISME Journal (2022).Florian, P. O., Hugo, R. & Mathieu, A. Recovery of metagenome-assembled genomes from a human fecal sample with pacific biosciences high-fidelity sequencing. Microbiology Resource Announcements 11, e00250–22 (2022).
    Google Scholar 
    Bloom, S. M. et al. Cysteine dependence of Lactobacillus iners is a potential therapeutic target for vaginal microbiota modulation. Nature Microbiology 7, 434–450 (2022).CAS 

    Google Scholar 
    Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proceedings of the National Academy of Sciences 114, 11446–11451 (2017).ADS 
    CAS 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research 25, 1043–1055 (2015).CAS 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature biotechnology 35, 725 (2017).CAS 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).CAS 

    Google Scholar 
    Louca, S. The rates of global bacterial and archaeal dispersal. ISME Journal 16, 159–167 (2021).ADS 

    Google Scholar 
    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using minhash. Genome Biology 17, 132 (2016).
    Google Scholar 
    Müllner, D. fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python. Journal of Statistical Software 53, 1–18 (2013).
    Google Scholar 
    Kinene, T., Wainaina, J., Maina, S., Boykin, L.M. & Kliman, R.M. Methods for rooting trees, vol. 3, 489–493 (Academic Press, Oxford, 2016).Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2018).CAS 

    Google Scholar 
    Rees, J. A. & Cranston, K. Automated assembly of a reference taxonomy for phylogenetic data synthesis. Biodiversity Data Journal 5, e12581 (2017).
    Google Scholar 
    Heck, K. et al. Evaluating methods for purifying cyanobacterial cultures by qPCR and high-throughput Illumina sequencing. Journal of Microbiological Methods 129, 55–60 (2016).CAS 

    Google Scholar 
    Cornet, L. et al. Consensus assessment of the contamination level of publicly available cyanobacterial genomes. PLOS ONE 13, e0200323 (2018).
    Google Scholar 
    Alneberg, J. et al. Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes. Microbiome 6, 173 (2018).
    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Computational Biology 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12, 59–60 (2014).
    Google Scholar 
    Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Integrated biochar solutions can achieve carbon-neutral staple crop production

    Martin-Roberts, E. et al. Carbon capture and storage at the end of a lost decade. One Earth 4, 1569–1584 (2021).Article 
    ADS 

    Google Scholar 
    Liu, Z. et al. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155 (2022).Article 
    ADS 

    Google Scholar 
    Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2, 100180 (2021).CAS 

    Google Scholar 
    Third National Communication of Climate Change in the People’s Republic of China (Ministry of Ecology and Environment of the People’s Republic of China, 2018).Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, B. et al. Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nat. Food 2, 570–577 (2021).Article 

    Google Scholar 
    Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crops Res. 234, 47–54 (2019).Article 

    Google Scholar 
    Shang, Z. et al. Can cropland management practices lower net greenhouse emissions without compromising yield? Glob. Change Biol. 27, 4657–4670 (2021).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Change Biol. 23, 1917–1925 (2016).Article 
    ADS 

    Google Scholar 
    Ju, X. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, B. et al. Four pathways towards carbon neutrality by controlling net greenhouse gas emissions in Chinese cropland. Resour. Conserv. Recycl. 186, 106576 (2022).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Change Biol. 12, 5919–5932 (2018).Article 

    Google Scholar 
    Zhao, Y. et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change guidelines. Glob. Biogeochemical Cycles 23, GB2002 (2009).Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    ADS 

    Google Scholar 
    Chen, Z. et al. Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials. Environ. Pollut. 284, 117176 (2021).Article 
    CAS 

    Google Scholar 
    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Xia, L., Wang, S. & Yan, X. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agric. Ecosyst. Environ. 197, 118–127 (2014).Article 

    Google Scholar 
    Xia, L., Ti, C., Li, B., Xia, Y. & Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 556, 116–125 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, Y. et al. Restoring abandoned farmland to mitigate climate change on a full Earth. One Earth 3, 176–186 (2020).Article 
    ADS 

    Google Scholar 
    Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883–892 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).Article 
    ADS 

    Google Scholar 
    Jeffery, S., Verheijen, F. G., Kammann, C. & Abalos, D. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol. Biochem. 101, 251–258 (2016).Article 
    CAS 

    Google Scholar 
    Schmidt, H. P. et al. Biochar in agriculture – a systematic review of 26 global meta-analyses. GCB Bioenergy 13, 1708–1730 (2021).Article 
    CAS 

    Google Scholar 
    Cayuela, M. L. et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci. Rep. 3, 1732 (2013).Article 

    Google Scholar 
    He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9, 743–755 (2017).Article 
    CAS 

    Google Scholar 
    Liu, Q. et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Glob. Change Biol. 25, 2077–2093 (2019).Article 
    ADS 

    Google Scholar 
    He, X. et al. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 143, 746–756 (2018).Article 
    CAS 

    Google Scholar 
    Yang, Q. et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).Ritchie, H., Roser, M. & Rosado, P. CO2 and Greenhouse Gas Emissions (Our World in Data, 2020); https://ourworldindata.org/co2-and-other-greenhouse-gas-emissionsLiu, Y. et al. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: a meta-analysis. Sci. Total Environ. 830, 154792 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article 

    Google Scholar 
    Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, Y., Reilly, E. C., Jungers, J. M., Chen, J. & Smith, T. M. Climate benefits of increasing plant diversity in perennial bioenergy crops. One Earth 1, 434–445 (2019).Article 
    ADS 

    Google Scholar 
    Weller, S. et al. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycling Agroecosyst. 101, 37–53 (2015).Article 
    CAS 

    Google Scholar 
    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lee, X. J., Ong, H. C., Gan, Y. Y., Chen, W. H. & Mahlia, T. M. I. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers. Manag. 210, 112707 (2020).Article 
    CAS 

    Google Scholar 
    Nevzorova, T. & Kutcherov, V. Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review. Energy Strategy Rev. 26, 100414 (2019).Article 

    Google Scholar 
    Xia, S. et al. Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste. Bioresource Technol. 270, 189–197 (2018).Article 
    CAS 

    Google Scholar 
    Liu, Z., Niu, W., Chu, H., Zhou, T. & Niu, Z. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 13, 3429–3446 (2018).Article 
    CAS 

    Google Scholar 
    Hengeveld, E. J., Bekkering, J., van Gemert, W. J. T. & Broekhuis, A. A. Biogas infrastructures from farm to regional scale, prospects of biogas transport grids. Biomass Bioenergy 86, 43–52 (2016).Article 

    Google Scholar 
    Ansari, S. H. et al. Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power. Environ. Pollut. 266, 115103 (2020).Article 
    CAS 

    Google Scholar 
    Yang, S. I., Wu, M. S. & Hsu, T. C. Spray combustion characteristics of kerosene/bio-oil part I: experimental study. Energy 119, 26–36 (2017).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth 4, 1752–1763 (2022).Article 
    ADS 

    Google Scholar 
    Gu, B. et al. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ. Sci. Technol. 46, 9420–9427 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Xia, L. et al. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer. Biogeosciences 13, 4569–4579 (2016).Article 
    ADS 
    CAS 

    Google Scholar  More