More stories

  • in

    Inter-sexual and inter-generation differences in dispersal of a bivoltine butterfly

    1.Høye, T. T. et al. Phenology of high-arctic butterflies and their floral resources: Species-specific responses to climate change. Curr. Zool. 60, 243–251 (2014).Article 

    Google Scholar 
    2.Bell, J. R. et al. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).ADS 
    Article 

    Google Scholar 
    3.Lewins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).
    Google Scholar 
    4.Zografou, K. et al. Who flies first? Habitat-specific phenological shifts of butterflies and orthopterans in the light of climate change: A case study from the south-east Mediterranean. Ecol. Entomol. 40, 562–574 (2015).Article 

    Google Scholar 
    5.Yamamura, N. & Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 33, 289–298 (1998).Article 

    Google Scholar 
    6.Barton, M. G. & Terblanche, J. S. Predicting performance and survival across topographically heterogeneous landscapes: The global pest insect Helicoverpa armigera (Hubner, 1808) (Lepidoptera: Noctuidae). Aus. Entomol. 53, 249–258 (2014).Article 

    Google Scholar 
    7.Tauber, M. J., Tauber, C. A. & Masaki, S. Seasonal Adaptations Of Insects (Oxford University Press on Demand, 1986).
    Google Scholar 
    8.Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B. 277, 1281–1287 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Lees, A. D. The physiology and biochemistry of diapause. Annu. Rev. Entomol. 1, 1–16 (1956).CAS 
    Article 

    Google Scholar 
    10.Roff, D. A. & Fairbairn, D. J. Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am. Zool. 31, 243–251 (1991).Article 

    Google Scholar 
    11.Van Dyck, H. & Wiklund, C. Seasonal butterfly design: MORPHOLOGICAL plasticity among three developmental pathways relative to sex, flight and thermoregulation. J. Evol. Biol. 15, 216–225 (2002).Article 

    Google Scholar 
    12.Fric, Z. & Konvicka, M. Generations of the polyphenic butterfly Araschnia levana differ in body design. Evol. Ecol. Res. 4, 1017–1032 (2002).
    Google Scholar 
    13.Urquhart, F. A. The Monarch Butterfly (University of Toronto Press, 1960).Book 

    Google Scholar 
    14.Stefanescu, C. The nature of migration in the red admiral butterfly Vanessa atalanta: Evidence from the population ecology in its southern range. Ecol. Entomol. 26, 525–536 (2001).Article 

    Google Scholar 
    15.Stefanescu, C., Askew, R. R., Corbera, J. & Shaw, M. R. Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). Eur. J. Entomol. 109, 85–94 (2012).Article 

    Google Scholar 
    16.Ohsaki, N. Comparative population studies of three Pieris butterflies, P. rapae, P. melete and P. napi, living in the same area. II. Utilization of patchy habitats by adults through migratory and non-migratory movements. Res. Popul. Ecol. 22, 163–183 (1980).Article 

    Google Scholar 
    17.Pollard, E., Greatorex-Davies, J. N. & Thomas, J. A. Drought reduces breeding success of the butterfly Aglais urticae. Ecol. Entomol. 22, 315–318 (1997).Article 

    Google Scholar 
    18.Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).Article 

    Google Scholar 
    19.Kim, S. Y., Torres, R. & Drummond, H. Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology 90, 230–239 (2009).PubMed 
    Article 

    Google Scholar 
    20.Nowicki, P. & Vrabec, V. Evidence for positive density dependent emigration in butterfly metapopulations. Oecologia 167, 657–665 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Plazio, E., Margol, T. & Nowicki, P. Intersexual differences in density-dependent dispersal and their evolutionary drivers. J. Evol. Biol. 33, 1495–1506 (2020).PubMed 
    Article 

    Google Scholar 
    22.Brown, I. & Ehrlich, P. Population biology of the checkerspot butterfly, Euphydryas chalcedona structure of the Jasper Ridge colony. Oecologia 47, 239–251 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    23.Hanski, I., Kuussaari, M. & Nieminen, M. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75, 747–762 (1994).Article 

    Google Scholar 
    24.Petit, S., Moilanen, A., Hanski, I. & Baguette, M. Metapopulation dynamics of the bog fritillary butterfly, movements between habitat patches. Oikos 92, 491–500 (2001).Article 

    Google Scholar 
    25.Enfjäll, K. & Leimar, O. Density-dependent dispersal in the Glanville fritillary, Melitaea cinxia. Oikos 108, 465–472 (2005).Article 

    Google Scholar 
    26.Schtickzelle, N., Mennechez, G. & Baguette, M. Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87, 1057–1065 (2006).PubMed 
    Article 

    Google Scholar 
    27.Habel, J. C., Meyer, M., & Schmitt, T. Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle (Pensoft, 2014).28.Martin, Y., Habel, J. C., Van Dyck, H. & Titeux, N. Losing genetic uniqueness under global change: the Violet Copper (Lycaena helle) in Europe. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 165–184 (Pensoft, 2014).29.Nabielec, J. & Nowicki, P. Drivers of local densities of endangered Lycaena helle butterflies in a fragmented landscape. Popul. Ecol. 57, 649–656 (2015).Article 

    Google Scholar 
    30.Bauerfeind, S. S., Theisen, A. & Fischer, K. Patch occupancy in the endangered butterfly Lycaena helle in fragmented landscape: effects of habitat quality, patch size and isolation. J. Insect. Conserv. 13, 271–277 (2009).Article 

    Google Scholar 
    31.Habel, J. C., Rodder, D., Schmitt, T. & Néves, G. Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob. Change Biol. 17, 194–205 (2011).ADS 
    Article 

    Google Scholar 
    32.Van Helsdingen, P. J., Willemse, L. & Speight, M. C. D. Background Information On Invertebrates Of The Habitats Directive And The Bern Convention. Crustacea, Coleoptera And Lepidoptera. Vol. 2 (Council of Europe Publishing, 1996)33.Van Swaay, C. et al. European Red List Of Butterfies. (Publications Office of the European Union, 2010).34.Fischer, K., Beinlich, B. & Plachter, H. Population structure, mobility and habitat preferences of the violet copper Lycaena helle (Lepidoptera: Lyceanidae) in Western Germany: Implications for conservation. J. Insect. Conserv. 3, 43–52 (1999).Article 

    Google Scholar 
    35.Kudłek, J & Pępkowska, A. Natura 2000 Standard Data Form For SCI Dębnicko-Tyniecki Obszar Łąkowy PLH 120065 (GDOŚ, 2008).36.Begon, M. Investigating Animal Abundance. Capture-recapture For Biologists. (Edward Arnold (Publishers) Ltd., 1979).37.Cerrato, C., Lai, V., Balletto, E. & Bonelli, S. Direct and indirect effects of weather variability in a specialist butterfly. Ecol. Entomol. 41, 263–275 (2016).Article 

    Google Scholar 
    38.Hanski, I., Alho, J. & Moilanen, A. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81, 239–251 (2000).Article 

    Google Scholar 
    39.Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860–873 (1996).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    40.Bubova, T., Kulma, M., Vrabec, V. & Nowicki, P. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20, 1021–1032 (2016).Article 

    Google Scholar 
    41.Hambäck, P. A. & Englund, G. Patch area, population density and the scaling of migration rates: The resource concentration hypothesis revisited. Ecol. Lett. 8, 1057–1065 (2005).Article 

    Google Scholar 
    42.Matter, S. F., Roland, J., Moilanen, A. & Hanski, I. Migration and survival of Parnassius smintheus: detecting effects of habitat for individual butterflies. Ecol. Appl. 14, 1526–1534 (2004).Article 

    Google Scholar 
    43.Dempster, J. P. & Pollard, E. Spatial heterogeneity, stochasticity and the detection of density dependence in animal populations. Oikos 46, 413–416 (1986).Article 

    Google Scholar 
    44.Gros, A., Hovestadt, T. & Poethke, H. J. Evolution of sex-biased dispersal: the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding. Ecol. Model. 219, 226–233 (2008).MATH 
    Article 

    Google Scholar 
    45.Shapiro, A. M. The role of sexual behavior in density related dispersal of pierid butterflies. Am. Nat. 104, 367–372 (1970).Article 

    Google Scholar 
    46.Odendaal, F. J., Turchin, P. & Stermitz, F. R. Influence of host-plant density and male harassment on the distribution of female Euphydryas anicia (Nymphalidae). Oecologia 78, 283–288 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Baguette, M., Convie, I. & Neve, G. Male density affects female spatial behaviour in the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 17, 225–232 (1996).
    Google Scholar 
    48.Baguette, M., Vansteenwegen, C., Convi, I. & Neve, G. Sex-biased density-dependent migration in a metapopulation of the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 19, 17–24 (1998).ADS 
    Article 

    Google Scholar 
    49.Matthysen, E. Multicausality of dispersal: a review. In Dispersal Ecology And Evolution (ed. Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M.) 3–18 (Oxford University Press, 2012).50.Li, X. Y. & Kokko, H. Sex-biased dispersal: a review of the theory. Biol. Rev. 94, 721–736 (2019).PubMed 
    Article 

    Google Scholar 
    51.Dethier, V. & MacArthur, R. A field’s capacity to support a butterfly population. Nature 201, 728–729 (1964).ADS 
    Article 

    Google Scholar 
    52.Baker, R. The dilemma: when and how to go or stay. In The Biology Of Butterflies. Symposium Of The Royal Entomological Society Of London. Number 11 (ed. Vane-Wright, R. I. & Ackery, P. R.) 279–296 (Academic Press, 1984).53.Rausher, M. Egg recognition: Its advantage to a butterfly. Anim. Behav. 27, 1034–1040 (1979).Article 

    Google Scholar 
    54.Ray, C., Gilpin, M. & Smith, A. The effect of conspecific attraction on metapopulation dynamics. Biol. J. Linn. Soc. Lond. 42, 123–134 (1991).Article 

    Google Scholar 
    55.Kuussaari, M., Nieminen, M. & Hanski, I. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J. Anim. Ecol. 65, 791–801 (1996).Article 

    Google Scholar 
    56.Fric, Z. & Konvicka, M. Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lepid. 23, 2–25 (2000).
    Google Scholar 
    57.Gilchrist, G. W. The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. Funct. Ecol. 4, 475–487 (1990).Article 

    Google Scholar 
    58.Klockmann, M., Karajoli, F., Kuczyk, J., Reimer, S. & Fischer, K. Fitness implications of simulated climate change in three species of copper butterflies (Lepidoptera: Lycaenidae). Biol. J. Linn. Soc. Lond. 120, 125–143 (2017).
    Google Scholar 
    59.Piaggio, A. J, Navo, K. W. & Stihler, C. W. Intraspecific comparison of population structure, genetic diversity, and dispersal among three subspecies of Townsend’s big-eared bats, Corynorhinus townsendii townsendii, C. t. pallescens, and the endangered C. t. virginianus. Conserv. Genet. 10, 143–159 (2009).60.Solmsen, N., Johannesen, J. & Schradin, C. Highly asymmetric fine-scale genetic structure between sexes of African striped mice and indication for condition dependent alternative male dispersal tactics. Mol. Ecol. 20, 1624–1634 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Bergman, K. O. & Landin, J. Population structure and movements of a threatened butterfly (Lopinga achine) in a fragmented landscape in Sweden. Biol. Conserv. 108, 361–369 (2002).Article 

    Google Scholar 
    62.Craioveanu, C., Sitar, C. & Rakosy, L. Mobility, behaviour and phenology of the Violet Copper Lycaena helle in North-Western Romania. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 91–105 (Pensoft, 2014).63.Turlure, C., Van Dyck, H., Goffart, P., & Schtickzelle, N. Resource-based habitat use in Lycaena helle: Significance of a functional, ecological niche-oriented approach. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 67–86 (Pensoft, 2014).64.Hanski, I., & Gaggiotti, O. E. Ecology, Genetics and Evolution Of Metapopulations (Elsevier Academic Press, 2004). More

  • in

    Visibility and attractiveness of Fritillaria (Liliaceae) flowers to potential pollinators

    1.Warren, J. & Mackenzie, S. Why are all colour combinations not equally represented as flower-colour polymorphisms?. New Phytol. 151, 237–241 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Armbruster, S., Fenster, C. & Dudash, M. Pollination ‘principles’ revisited: specialization, pollination syndromes, and the evolution of flowers. Scandanavian Assoc. Pollinat. Ecol. 39, 179–200 (2000).
    Google Scholar 
    3.Hargreaves, A. L., Harder, L. D. & Johnson, S. D. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol. Rev. 84, 259–276 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Hansen, D. M., van der Niet, T. & Johnson, S. D. Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proc. R. Soc. B Biol. Sci. 279, 634–639 (2012).Article 

    Google Scholar 
    5.Rosas-Guerrero, V. et al. A quantitative review of pollination syndromes: do floral traits predict effective pollinators?. Ecol. Lett. 17, 388–400 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Narbona, E., Wang, H., Ortiz, P. L., Arista, M. & Imbert, E. Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. Plant Biol. 20, 8–20 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Altshuler, D. L. Flower color, hummingbird pollination, and habitat irradiance in four neotropical forests1. Biotropica 35, 344 (2003).Article 

    Google Scholar 
    8.Riordan, C. E., Ault, J. G., Langreth, S. G. & Keithly, J. S. Cryptosporidium parvum Cpn60 targets a relict organelle. Curr. Genet. 44, 138–147 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Rodríguez-Gironés, M. A. & Santamaría, L. Why are so many bird flowers red?. PLoS Biol. 2, 1515–1519 (2004).Article 
    CAS 

    Google Scholar 
    10.Whibley, A. C. et al. Evolutionary paths underlying flower color variation in Antirrhinum. Science (80-.) 313, 963–966 (2006).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Papiorek, S. et al. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns. Plant Biol. 18, 46–55 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wilson, P., Castellanos, M., Wolfe, A. D. & Thomson, J. D. Shifts between bee and bird pollination in penstemons. Plant-Pollinat. Interact. Spec. Gen. 3, 47–68 (2006).13.Wilson, P., Castellanos, M. C., Hogue, J. N., Thomson, J. D. & Armbruster, W. S. A multivariate search for pollination syndromes among penstemons. Oikos 104, 345–361 (2004).Article 

    Google Scholar 
    14.Sutherland, S. D. & Vickery, R. K. Jr. On the relative importance of floral color, shape, and nectar rewards in attracting pollinators to Mimulus. Gt. Basin Nat. 53, 107–117 (1993).
    Google Scholar 
    15.Wester, P. & Lunau, K. Plant-Pollinator Communication. Advances in Botanical Research Vol. 82 (Elsevier, 2017).
    Google Scholar 
    16.de Camargo, M. G. G. et al. How flower colour signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis. New Phytol. 222, 1112–1122 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.van der Kooi, C. J., Dyer, A. G., Kevan, P. G. & Lunau, K. Functional significance of the optical properties of flowers for visual signalling. Ann. Bot. https://doi.org/10.1093/aob/mcy119 (2018).Article 
    PubMed Central 

    Google Scholar 
    18.Castellanos, M. C., Wilson, P. & Thomson, J. D. ‘ Anti-bee ’ and ‘ pro-bird ’ changes during the evolution of hummingbird pollination in Penstemon flowers. J. Evol. Biol. 17, 876–885 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.del Carmen Salas-Arcos, L., Lara, C., Castillo-Guevara, C., Cuautle, M. & Ornelas, J. F. “Pro-bird” floral traits discourage bumblebee visits to Penstemon gentianoides (Plantaginaceae), a mixed-pollinated herb. Sci. Nat. 106, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    20.Armbruster, W. S. Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiaceae). Flor. Biol. https://doi.org/10.1007/978-1-4613-1165-2_9 (1996).Article 

    Google Scholar 
    21.Chittka, L. & Schürkens, S. Successful invasion of a floral market. Nature 411, 653 (2001).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    22.Ellis, T. J. & Field, D. L. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae. Ann. Bot. 117, 1133–1140 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Tanaka, Y., Sasaki, N. & Ohmiya, A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733–749 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Lázaro, A., Lundgren, R. & Totland, Ø. Pollen limitation, species’ floral traits and pollinator visitation: different relationships in contrasting communities. Oikos 124, 174–186 (2015).Article 

    Google Scholar 
    25.Jones, K. N. & Reithel, J. S. Pollinator-mediated selection on a flower color polymorphism in experimental populations of Anthirrhinum (Scrophulariaceae). Am. J. Bot. 88, 447–454 (2001).Article 

    Google Scholar 
    26.Teixido, A. L., Barrio, M. & Valladares, F. Size matters: understanding the conflict faced by large flowers in mediterranean environments. Bot. Rev. 82, 204–228 (2016).Article 

    Google Scholar 
    27.Ortiz, P. L., Fernández-Díaz, P., Pareja, D., Escudero, M. & Arista, M. Do visual traits honestly signal floral rewards at community level?. Funct. Ecol. 35, 369–383 (2021).Article 

    Google Scholar 
    28.Fenster, C. B., Cheely, G., Dudash, M. R. & Reynolds, R. J. Nectar reward and advertisement in hummingbird. Am. J. Bot. 93, 1800 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Simpson, B. B., Neff, J. L. & Simpson, B. B. Floral rewards: alternatives to pollen and nectar. Ann. Mo. Bot. Gard. 68, 301–322 (2015).Article 

    Google Scholar 
    30.Canto, A., Herrera, C. M., García, I. M., Pérez, R. & Vaz, M. Intraplant variation in nectar traits in Helleborus foetidus (Ranunculaceae) as related to floral phase, environmental conditions and pollinator exposure. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 668–675 (2011).
    Google Scholar 
    31.Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. https://doi.org/10.1093/aob/mcy132 (2018).Article 
    PubMed Central 

    Google Scholar 
    32.Gómez, J. M. et al. Association between floral traits and rewards in Erysimum mediohispanicum (Brassicaceae). Ann. Bot. 101, 1413–1420 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Worley, A. C. & Barrett, S. C. H. Evolution of floral display in Eichhornia paniculata (Pontederiaceae): genetic correlations between flower size and number. J. Evol. Biol. 14, 469–481 (2001).Article 

    Google Scholar 
    34.Lunau, K. The ecology and evolution of visual pollen signals. Plant Syst. Evol. 222, 89–111 (2000).Article 

    Google Scholar 
    35.Nicholls, E. & Hempel de Ibarra, N. Assessment of pollen rewards by foraging bees. Funct. Ecol. 31, 76–87 (2017).Article 

    Google Scholar 
    36.Tang, L.-L. & Huang, S.-Q. Evidence for reductions in floral attractants with increased selfing rates in two heterandrous species. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.02115.x (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology (Elsevier, 2013).
    Google Scholar 
    38.Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. https://doi.org/10.1111/nph.16793 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Kostyun, J. L., Gibson, M. J. S., King, C. M. & Moyle, L. C. A simple genetic architecture and low constraint allow rapid floral evolution in a diverse and recently radiating plant genus. New Phytol. 223, 1009–1022 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Roguz, K. et al. Diversity of nectar amino acids in the Fritillaria (Liliaceae) genus: ecological and evolutionary implications. Sci. Rep. 9, 1–12 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    41.Roguz, K. et al. Functional diversity of nectary structure and nectar composition in the genus Fritillaria (liliaceae). Front. Plant Sci. 9, 1–21 (2018).Article 
    ADS 

    Google Scholar 
    42.Zych, M. & Stpiczyńska, M. Neither protogynous nor obligatory out-crossed: Pollination biology and breeding system of the European Red List Fritillaria meleagris L. (Liliaceae). Plant Biol. 14, 285–294 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Day, P. D. et al. Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Mol. Phylogenet. Evol. 80, 11–19 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Hayashi, K. Molecular systematics of Lilium and allied genera (Liliaceae): phylogenetic relationships among Lilium and related genera based on the rbcL and matK gene sequence data. Plant Species Biol. 15, 73–93 (2000).Article 

    Google Scholar 
    45.Stpiczyńska, M., Nepi, M. & Zych, M. Nectaries and male-biased nectar production in protandrous flowers of a perennial umbellifer Angelica sylvestris L. (Apiaceae). Plant Syst. Evol. https://doi.org/10.1007/s00606-014-1152-3 (2014).Article 

    Google Scholar 
    46.Hill, L. A taxonomic history of Japanese endemic Fritillaria (Liliaceae). Kew Bull. 66, 227–240 (2018).Article 

    Google Scholar 
    47.Kiani, M. et al. Iran supports a great share of biodiversity and floristic endemism for Fritillaria spp. (Liliaceae): a review. Plant Divers. 39, 245–262 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Shaw, A. J. Phylogeny of the Sphgnpsida based on chloroplast and nuclear DNA sequences. Bryologist 103, 277–306 (2000).CAS 
    Article 

    Google Scholar 
    49.Rønsted, N., Law, S., Thornton, H., Fay, M. F. & Chase, M. W. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol. Phylogenet. Evol. 35, 509–527 (2005).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Tekşen, M. & Aytaç, Z. The revision of the genus Fritillaria L. (Liliaceae) in the Mediterranean region (Turkey). Turk. J. Bot. 35, 447–478 (2011).
    Google Scholar 
    51.Roguz, K., Hill, L., Roguz, A. & Zych, M. Evolution of bird and insect flower traits in Fritillaria L. (Liliaceae). Front. Plant Sci. 12, 656783 (2020).Article 

    Google Scholar 
    52.Zaharof, E. Variation and taxonomy of Fritillaria graeca (Liliaceae) in Greece. Plant Syst. Evol. 154, 41–61 (1986).Article 

    Google Scholar 
    53.Búrquez, A. & Burquez, A. Blue tits, Parus caeruleus, as pollinators of the crown imperial, Fritillaria imperialis, in Britain. Oikos 55, 335 (1989).Article 

    Google Scholar 
    54.Peters, W. S., Pirl, M., Gottsberger, G. & Peters, D. Pollination of the crown imperial Fritillaria imperialis by great tits Parus major. J. Ornithol. 136, 207–212 (1995).Article 

    Google Scholar 
    55.Pendegrass, K. & Robinson, A. A recovery plan for Fritillaria gentneri (Gentner’s fritillary). Agric. U.S.F.a.W. Serv. (2005).56.Zox, H. Ecology of black lily (Fritillaria camschatcensis): a Washington State sensitive species. Douglasia (2008).57.Cronk, Q. & Ojeda, I. Bird-pollinated flowers in an evolutionary and molecular context. J. Exp. Bot. 59, 715–727 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Lunau, K. & Verhoeven, C. Wie Bienen Blumen sehen: Falschfarbenaufnahmen von Blüten. Biol. Unserer Zeit 47, 120–127 (2017).Article 

    Google Scholar 
    59.Kranas, H., Spalik, K. & Banasiak, Ł. MatPhylobi, 0.1 (University of Warsaw, 2018).
    Google Scholar 
    60.Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. Leaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt389 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Evolution 62, 1103–1118 (2018).
    Google Scholar 
    62.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinform. Appl. 30, 1312–1313 (2014).CAS 
    Article 

    Google Scholar 
    63.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. https://doi.org/10.1093/ve/vey016 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Kim, J. S. & Kim, J. H. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae: Liliales). Bot. J. Linn. Soc. 187, 579–593 (2018).Article 

    Google Scholar 
    65.Cockerell, T. D. A. Two new plants from the tertiary rocks of the west. Torrey Bot. Soc. 14, 135–137 (1914).
    Google Scholar 
    66.Ettingshausen, C. B. III. ‘ Report on Phyto-Palaeontologieal Investigations of Fossil Flora of Alum Bay.’ By Dr. (1AD).67.Conran, J. G., Carpenter, R. J. & Jordan, G. J. Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia. Aust. Syst. Bot. 22, 219–228 (2009).Article 

    Google Scholar 
    68.Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss020 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Paradis, E. & Schliep, K. Phylogenetics ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics https://doi.org/10.1093/bioinformatics/bty633 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    71.Garland, T., Dickerman, A. W., Janis, C. M. & Jones, J. A. Phylogenetic Analysis of Covariance by Computer Simulation. vol. 42, 1993. https://academic.oup.com/sysbio/article/42/3/265/1629506 (Accessed 09 March 2021).72.Orme, C. D. L. The caper package: comparative analyses in phylogenetics and evolution in R, 1–36, 2012. See http://caper.r-forge.r-project.org/. (Accessed 09 March 2021).73.TEAM, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    74.Dyer, A. G. et al. Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc. R. Soc. B Biol. Sci. 279, 3606–3615 (2012).Article 

    Google Scholar 
    75.Ollerton, J. Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. J. Ecol. 84, 767–769 (1996).Article 

    Google Scholar 
    76.Wessinger, C. A. & Rausher, M. D. Predictability and irreversibility of genetic changes associated with flower color evolution in Penstemon barbatus. Evolution (N. Y.) 68, 1058–1070 (2014).CAS 

    Google Scholar 
    77.Wittmann, D., Radtke, R., Cure, J. R. & Schifino-Wittmann, M. T. Coevolved reproductive strategies in the oligolectic bee Callonychium petuniae (Apoidea, Andrenidae) and three purple flowered Petunia species (Solanaceae) in southern Brazil. J. Zool. Syst. Evol. Res. 28, 157–165 (1990).Article 

    Google Scholar 
    78.Chittka, L. & Waser, N. M. Why red flowers are not invisible to bees. Isr. J. Plant Sci. 45, 169–183 (1997).Article 

    Google Scholar 
    79.Kołodziejska-Degórska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans (L.) seem. in Poland. Acta Soc. Bot. Pol. 75, 79–85 (2006).Article 

    Google Scholar 
    80.Mayr, G. New specimens of the early oligocene old world hummingbird Eurotrochilus inexpectatus. J. Ornithol. 148, 105–111 (2007).Article 

    Google Scholar 
    81.Mayr, G. Old world fossil record of modern-type hummingbirds. Science (80-.) 304, 861–864 (2004).CAS 
    Article 
    ADS 

    Google Scholar 
    82.Schiestl, F. P. & Johnson, S. D. Pollinator-mediated evolution of floral signals. Trends Ecol. Evol. 28, 307–315 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Daumer, K. Blumenfarben, wie sie die Bienen sehen. Z. Vgl. Physiol. 41, 49–110 (1958).
    Google Scholar 
    84.Kevan, P. G. Floral colours in the high Arctic with reference to insect flower relations and pollination. Can. J. Bot. 50, 2289–2316 (1972).Article 

    Google Scholar 
    85.Chittka, L., Shmida, A., Troje, N. & Menzel, R. Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vis. Res. 34, 1489–1508 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Lunau, K. Stamens and mimic stamens as components of floral colour patterns. Bot. Jahrbücher für Syst. Pflanzengeschichte und Pflanzengeographie 127, 13–41 (2006).Article 

    Google Scholar 
    87.Koski, M. H. & Ashman, T. L. Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct. Ecol. 28, 868–877 (2014).Article 

    Google Scholar 
    88.Menzel, R. & Shmida, A. The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol. Rev. 68, 81–120 (1993).Article 

    Google Scholar 
    89.van der Kooi, C. J. & Stavenga, D. G. Vividly coloured poppy flowers due to dense pigmentation and strong scattering in thin petals. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 205, 363–372 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Kevan, P., Giurfa, M. & Chittka, L. Why are there so many and so few white flowers?. Trends Plant Sci. 1, 280–284 (1996).Article 

    Google Scholar 
    91.Kapustjansky, A., Chittka, L. & Spaethe, J. Bees use three-dimensional information to improve target detection. Naturwissenschaften 97, 229–233 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    92.Chittka, L. & Raine, N. E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 9, 428–435 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Hansen, D. M., Olesen, J. M., Mione, T., Johnson, S. D. & Müller, C. B. Coloured nectar: Distribution, ecology, and evolution of an enigmatic floral trait. Biol. Rev. 82, 83–111 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Raguso, R. A. Start making scents: the challenge of integrating chemistry into pollination ecology. Entomol. Exp. Appl. 128, 196–207 (2008).CAS 
    Article 

    Google Scholar 
    95.Sapir, Y., Shmida, A. & Ne’eman, G. Morning floral heat as a reward to the pollinators of the Oncocyclus irises. Oecologia 147, 53–59 (2006).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    96.Bazzaz, F. A. & Carslon, R. W. Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. New Phytol. 82, 223–232 (1979).Article 

    Google Scholar  More

  • in

    Influence of intrinsic and extrinsic attributes on neonate survival in an invasive large mammal

    1.Sæther, B.-E. Environmental stochasticity and population dynamics of large herbivores: A search for mechanisms. Trends Ecol. Evol. 12, 143–149 (1997).PubMed 
    Article 

    Google Scholar 
    2.Gaillard, J.-M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: Variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Coulson, T. et al. Estimating individual contributions to population growth: Evolutionary fitness in ecological time. Proc. R. Soc. B 273, 547–555 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Pelletier, F., Clutton-Brock, T., Pemberton, J., Tuljapurkar, S. & Coulson, T. The evolutionary demography of ecological change: Linking trait variation and population growth. Science 315, 1571–1574 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Pettorelli, N., Coulson, T., Durant, S. M. & Gaillard, J.-M. Predation, individual variability and vertebrate population dynamics. Oecologia 167, 305 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    6.Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. & Albon, S. D. Climate and population density induce long-term cohort variation in a northern ungulate. J. Anim. Ecol. 70, 721–729 (2001).Article 

    Google Scholar 
    7.Owen-Smith, N., Mason, D. R. & Ogutu, J. O. Correlates of survival rates for 10 African ungulate populations: Density, rainfall and predation. J. Anim. Ecol. 74, 774–788 (2005).Article 

    Google Scholar 
    8.Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).Article 

    Google Scholar 
    9.Griffin, K. A. et al. Neonatal mortality of elk driven by climate, predator phenology and predator community composition. J. Anim. Ecol. 80, 1246–1257 (2011).PubMed 
    Article 

    Google Scholar 
    10.Kilgo, J. C., Vukovich, M., Scott Ray, H., Shaw, C. E. & Ruth, C. Coyote removal, understory cover, and survival of white-tailed deer neonates. J. Wildl. Manag. 78, 1261–1271 (2014).Article 

    Google Scholar 
    11.Coltman, D. W., Bowen, W. D. & Wright, J. M. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc. R. Soc. B 265, 803–809 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Kolbe, J. & Janzen, F. The influence of propagule size and maternal nest-site selection on survival and behaviour of neonate turtles. Funct. Ecol. 15, 772–781 (2001).Article 

    Google Scholar 
    13.Kissner, K. J. & Weatherhead, P. J. Phenotypic effects on survival of neonatal northern watersnakes Nerodia sipedon. J. Anim. Ecol. 74, 259–265 (2005).Article 

    Google Scholar 
    14.Carstensen, M., Delgiudice, G. D., Sampson, B. A. & Kuehn, D. W. Survival, birth characteristics, and cause-specific mortality of white-tailed deer neonates. J. Wildl. Manag. 73, 175–183 (2009).Article 

    Google Scholar 
    15.Guttery, M. R. et al. Effects of landscape-scale environmental variation on greater sage-grouse chick survival. PLoS One 8, e65582 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Duquette, J. F., Belant, J. L., Svoboda, N. J., Beyer, D. E. Jr. & Lederle, P. E. Effects of maternal nutrition, resource use and multi-predator risk on neonatal white-tailed deer survival. PLoS One 9, 1–10 (2014).Article 

    Google Scholar 
    17.Pimentel, D. In Managing Vertebrate Invasive Species: Proceedings of an International Symposium. (eds. Pitt, W.C. et al.) 2–8 (USDA/APHIS/WS, 2007).18.Pitt, W. C., Beasley, J. & Witmer, G. W. Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States. 7–31 (CRC Press, 2018).19.Strickland, B. K., Smith, M. D., Smith, A. L. Wild pig damage to resources. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 143–174 (CRC Press, 2020).20.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. In 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Vol. 12 (Invasive Species Specialist Group, Species Survival Commission, World Conservation Union (IUCN), 2000).21.Keiter, D. A., Mayer, J. J. & Beasley, J. C. What is in a “common” name? A call for consistent terminology for nonnative Sus scrofa. Wild. Soc. Bull. 40, 384–387 (2016).Article 

    Google Scholar 
    22.Smyser, T. J. et al. Mixed ancestry from wild and domestic lineages contributes to the rapid expansion of invasive feral swine. Mol. Ecol. 29, 1103–1119 (2020).PubMed 
    Article 

    Google Scholar 
    23.Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. BioSci. 64, 291–299 (2014).Article 

    Google Scholar 
    24.Mohr, D., Cohnstaedt, L. W. & Topp, W. Wild boar and red deer affect soil nutrients and soil biota in steep oak stands of the Eifel. Soil Biol. Biochem. 37, 693–700 (2005).CAS 
    Article 

    Google Scholar 
    25.Barrios-García, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    26.Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & Vercauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).Article 

    Google Scholar 
    27.Ditchkoff, S. S. & Bodenchuk, M. J. Management of wild pigs. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 175–198 (CRC Press, 2020).28.Bieber, C. & Ruf, T. Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 42, 1203–1213 (2005).Article 

    Google Scholar 
    29.Hanson, L. B. et al. Effect of experimental manipulation on survival and recruitment of feral pigs. Wildl. Res. 36, 185–191 (2009).Article 

    Google Scholar 
    30.Keiter, D. A. et al. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density. Sci. Rep. 7, 1–12 (2017).CAS 
    Article 

    Google Scholar 
    31.Keiter, D. A., Kilgo, J. C., Vukovich, M. A., Cunningham, F. L. & Beasley, J. C. Development of known-fate survival monitoring techniques for juvenile wild pigs (Sus scrofa). Wildl. Res. 44, 165–173 (2017).Article 

    Google Scholar 
    32.Snow, N. P., Miller, R. S., Beasely, J. C. & Pepin, K. M. Wild pig population dynamics. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 57–82 (CRC Press, 2020).33.Alonso-Spilsbury, M., Ramirez-Necoechea, R., Gonzalez-Lozano, M., Mota-Rojas, D. & Trujillo-Ortega, M. Piglet survival in early lactation: A review. J. Anim. Vet. Adv. 1, 76–86 (2007).
    Google Scholar 
    34.Baubet, E., Servanty, S. & Brandt, S. Tagging piglets at the farrowing nest in the wild: Some preliminary guidelines. Acta Sylvatica Lig. Hung. 5, 159–166 (2009).
    Google Scholar 
    35.Kerr, J. & Cameron, N. Reproductive performance of pigs selected for components of efficient lean growth. Anim. Sci. 60, 281–290 (1995).Article 

    Google Scholar 
    36.Van der Lende, T., KnoI, E. & Leenhouwers, J. Prenatal development asa predisposing factor for perinatal lossesin pigs. Reproduction 58, 247–261 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    37.Mount, L. The heat loss from new-born pigs to the floor. Res. Vet. Sci. 8, 175–186 (1967).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Herpin, P., Damon, M. & Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 78, 25–45 (2002).Article 

    Google Scholar 
    39.Gaillard, J.-M., Pontier, D., Brandt, S., Jullien, J.-M. & Allaine, D. Sex differentiation in postnatal growth rate: A test in a wild boar population. Oecologia 90, 167–171 (1992).ADS 
    Article 

    Google Scholar 
    40.Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Parental investment and sex differences in juvenile mortality in birds and mammals. Nature 313, 131–133 (1985).ADS 
    Article 

    Google Scholar 
    42.Theil, P. K., Nielsen, M. O., Sørensen, M. T. & Lauridsen, C. Lactation, milk and suckling. In Nutritional Physiology of Pigs: with emphasis on Danish production conditions (eds. Knudsen et al.) 1–49 (University of Copenhagen, 2012).43.Theil, P. K., Lauridsen, C. & Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 8, 1021–1030 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Mayer, J. & Brisbin Jr, I. L. Wild pigs of the Savannah River Site. Report No. SRNL-RP-2011-00295, 114 (Savannah River National Laboratory, 2012).45.Withey, J. C., Bloxton, T. D. & Marzluff, J. M. Effects of tagging and location error in wildlife telemetry studies. In Radio Tracking and Animal Populations. 43–75 (Academic Press, 2001).46.Webster, S. C. & Beasley, J. C. Influence of lure choice and survey duration on scent stations for carnivore surveys. Wildl. Soc. Bull. 43, 661–668 (2019).Article 

    Google Scholar 
    47.Matschke, G. H. Aging European wild hogs by dentition. J. Wildl. Manag. 31, 109–113 (1967).Article 

    Google Scholar 
    48.Mayer, J. J., Martin, F. D. & Brisbin, I. L. Characteristics of wild pig farrowing nests and beds in the upper Coastal Plain of South Carolina. Appl. Anim. Behav. Sci. 78, 1–17 (2002).Article 

    Google Scholar 
    49.Kilgo, J. C., Ray, H. S., Vukovich, M., Goode, M. J. & Ruth, C. Predation by coyotes on white-tailed deer neonates in South Carolina. J. Wildl. Manag. 76, 1420–1430 (2012).Article 

    Google Scholar 
    50.Mayer, J. J. & Brisbin, I. J., Jr. Wild Pigs: Biology, Damage, Control Techniques and Management. Report No. SRNL-RP-2009-00869, 77–104 (Savannah River National Laboratory, 2009).51.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    52.R: A language and environment for statistical computing. v. 3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020).53.Weinbeck, S. W., Viner, B. J., Rivera-Giboyeaux A. M. Meteorological Monitoring Program at the Savannah River Site. Report No. SRNL-TR-2020-00197 (Savannah River National Laboratory, 2020).54.Plummer, M. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. 1–10 (Vienna, Austria).55.Denwood, M. J. runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71, 1–25 (2016).Article 

    Google Scholar 
    56.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    57.Pollock, K. H., Winterstein, S. R., Bunck, C. M. & Curtis, P. D. Survival analysis in telemetry studies: The staggered entry design. J. Wildl. Manag. 53, 7–15 (1989).Article 

    Google Scholar 
    58.Harrell, F. Regression Modeling Strategies (ed. Harrell, F.) 60–64 (Springer, 2001).59.McCoy, D. E. et al. A comparative study of litter size and sex composition in a large dataset of callitrichine monkeys. Am. J. Primatol. 81, e23038. https://doi.org/10.1002/ajp.23038 (2019).60.Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).61.Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference, 2nd edn. 75–117 (Springer, 2002).62.Taylor, R. B., Hellgren, E. C., Gabor, T. M. & Ilse, L. M. Reproduction of feral pigs in southern Texas. J. Mammal. 79, 1325–1331 (1998).Article 

    Google Scholar 
    63.Mittwoch, U. Blastocysts prepare for the race to be male. Hum. Reprod. 8, 1550–1555 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Stanton, H. & Carroll, J. Potential mechanisms responsible for prenatal and perinatal mortality or low viability of swine. J. Anim. Sci. 38, 1037–1044 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Hartsock, T. G. & Graves, H. Neonatal behavior and nutrition-related mortality in domestic swine. J. Anim. Sci. 42, 235–241 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Spicer, E. et al. Causes of preweaning mortality on a large intensive piggery. Aus. Vet. J. 63, 71–75 (1986).CAS 
    Article 

    Google Scholar 
    67.Hendrix, W. F., Kelley, K. W., Gaskins, C. T. & Hinrichs, D. J. Porcine neonatal survival and serum gamma globulins. J. Anim. Sci. 47, 1281–1286 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.De Roth, L. & Downie, H. Evaluation of viability of neonatal swine. Can. Vet. J. 17, 275–279 (1976).PubMed 
    PubMed Central 

    Google Scholar 
    69.Williams, G. The question of adaptive sex ratio in outcrossed vertebrates. Proc. R. Soc. Lond. B 205, 567–580 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Servanty, S., Gaillard, J.-M., Allainé, D., Brandt, S. & Baubet, E. Litter size and fetal sex ratio adjustment in a highly polytocous species: The wild boar. Behav. Ecol. 18, 427–432 (2007).Article 

    Google Scholar 
    71.Fernández-Llario, P., Carranza, J. & Mateos-Quesada, P. Sex allocation in a polygynous mammal with large litters: The wild boar. Anim. Behav. 58, 1079–1084 (1999).PubMed 
    Article 

    Google Scholar 
    72.Focardi, S., Gaillard, J.-M., Ronchi, F. & Rossi, S. Survival of wild boars in a variable environment: unexpected life-history variation in an unusual ungulate. J. Mammal. 89, 1113–1123 (2008).Article 

    Google Scholar 
    73.Gamelon, M. et al. Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence?. Evolution 68, 3636–3643 (2014).PubMed 
    Article 

    Google Scholar 
    74.Saïd, S., Tolon, V., Brandt, S. & Baubet, E. Sex effect on habitat selection in response to hunting disturbance: The study of wild boar. Eur. J. Wildl. Res. 58, 107–115 (2012).Article 

    Google Scholar 
    75.Caro, T. The adaptive significance of coloration in mammals. BioSci. 55, 125–136 (2005).Article 

    Google Scholar 
    76.Tewes, M. E., Mock, J. M. & Young, J. H. Bobcat predation on quail, birds, and mesomammals. In Proc. Nat. Quail Symp. 65–70. (2002).77.Jones, M. P., Pierce, K. E. Jr. & Ward, D. Avian vision: a review of form and function with special consideration to birds of prey. J. Ex. Pet Med. 16, 69–87 (2007).Article 

    Google Scholar 
    78.Walsberg, G. E. Coat color and solar heat gain in animals. BioSci. 33, 88–91 (1983).Article 

    Google Scholar 
    79.Lack, D. The Natural Regulation of Animal Numbers. (ed. Lack, D.) 343 (Oxford University Press, 1954).80.Stearns, S. C. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Gamelon, M. et al. The relationship between phenotypic variation among offspring and mother body mass in wild boar: Evidence of coin-flipping?. J. Anim. Ecol. 82, 937–945 (2013).PubMed 
    Article 

    Google Scholar 
    82.Mitchell, G. & Stevens, C. Primiparous and multiparous monkey mothers in a mildly stressful social situation: First three months. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 1, 280–286 (1968).Article 

    Google Scholar 
    83.Okai, D., Aherne, F. & Hardin, R. Effects of sow nutrition in late gestation on the body composition and survival of the neonatal pig. Can. J. Anim. Sci. 57, 439–448 (1977).CAS 
    Article 

    Google Scholar  More

  • in

    Thermally tolerant intertidal triplefin fish (Tripterygiidae) sustain ATP dynamics better than subtidal species under acute heat stress

    1.Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integr. Comp. Biol. 42(4), 780–789 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).
    Google Scholar 
    3.Helmuth, B. et al. Living on the Edge of Two Changing Worlds: Forecasting the Responses of Rocky Intertidal Ecosystems to Climate Change Vol. 37 (ECU Publications, 2006).
    Google Scholar 
    4.Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9(2), 228–241 (2006).ADS 
    MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Woodward, A. Climate change: Disruption, risk and opportunity. Glob. Transit. 1, 44–49 (2019).Article 

    Google Scholar 
    6.Hoffmann, K. H. 6—Metabolic and enzyme adaptation to temperature and pressure. In The Mollusca (ed. Hochachka, P. W.) 219–255 (Academic Press, 1983).
    Google Scholar 
    7.Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(5808), 95 (2007).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: Bridging ecology and physiology. J. Exp. Biol. 220(15), 2685–2696 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88(4), 137–146 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Verberk, W. C. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 192, 64–78 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: Blurring ecology and physiology. J. Exp. Biol. 221(1), jeb169615 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ern, R. et al. Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans. Sci. Rep. 5, 10743 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mitchell, P. et al. Regulation of Metabolic Processes in Mitochondria (Elsevier, 1966).
    Google Scholar 
    14.Hüttemann, M. et al. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J. Bioenerg. Biomembr. 40(5), 445 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Iftikar, F. I. & Hickey, A. J. Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in Notolabrus celidotus. PLoS One 8(5), e64120 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Schulte, P. M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218(Pt 12), 1856–1866 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Power, A. et al. Uncoupling of oxidative phosphorylation and ATP synthase reversal within the hyperthermic heart. Physiol. Rep. 2(9), e12138 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Lemieux, H., Blier, P. U. & Gnaiger, E. Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: Electron flow through the Q-junction in permeabilized fibers. Sci. Rep. 7(1), 2840 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Christen, F. et al. Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. Free Radic. Biol. Med. 116, 11–18 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kiyatkin, E. A. Brain hyperthermia as physiological and pathological phenomena. Brain Res. Brain Res. Rev. 50(1), 27–56 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kiyatkin, E. A. Brain temperature homeostasis: Physiological fluctuations and pathological shifts. Front. Biosci. (Landmark Ed) 15, 73–92 (2010).CAS 
    Article 

    Google Scholar 
    22.Wang, H. et al. Brain temperature and its fundamental properties: A review for clinical neuroscientists. Front. Neurosci.-switz 8, 307–307 (2014).
    Google Scholar 
    23.Pellerin, L. & Magistretti, P. J. How to balance the brain energy budget while spending glucose differently. J. Physiol. 546(Pt 2), 325–325 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Zhao, Y. & Boulant, J. A. Temperature effects on neuronal membrane potentials and inward currents in rat hypothalamic tissue slices. J. Physiol. 564(Pt 1), 245–257 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Obel, L. F. et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front. Neuroenergetics 4, 3 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.White, M. G. et al. Mitochondrial dysfunction induced by heat stress in cultured rat CNS neurons. J. Neurophysiol. 108(8), 2203–2214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Walter, E. J. & Carraretto, M. The neurological and cognitive consequences of hyperthermia. Crit. Care (London, England) 20(1), 199–199 (2016).Article 

    Google Scholar 
    28.Vornanen, M. & Paajanen, V. Seasonal changes in glycogen content and Na+-K+-ATPase activity in the brain of crucian carp. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291(5), R1482–R1489 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Hochachka, P. W. et al. Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. U. S. A. 93(18), 9493–9498 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Chung, D. J., Bryant, H. J. & Schulte, P. M. Thermal acclimation and subspecies-specific effects on heart and brain mitochondrial performance in a eurythermal teleost (Fundulus heteroclitus). J. Exp. Biol. 220(8), 1459–1471 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    31.Brahim, A., Mustapha, N. & Marshall, D. J. Non-reversible and reversible heat tolerance plasticity in tropical intertidal animals: Responding to habitat temperature heterogeneity. Front. Physiol. 9, 1909–1909 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scr. 26(4), 331–348 (1997).Article 

    Google Scholar 
    33.Hilton, Z., Clements, K. D. & Hickey, A. J. Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes. J. Comp. Physiol. B 180(7), 979–990 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.McArley, T. J., Hickey, A. J. R. & Herbert, N. A. Hyperoxia increases maximum oxygen consumption and aerobic scope of intertidal fish facing acutely high temperatures. J. Exp. Biol. 221(22), 189993 (2018).Article 

    Google Scholar 
    35.Gout, E. et al. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. U. S. A. 111(43), E4560–E4567 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pham, T. et al. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am. J. Physiol. Cell Physiol. 307(6), C499-507 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Masson, S. W. C. et al. Mitochondrial glycerol 3-phosphate facilitates bumblebee pre-flight thermogenesis. Sci. Rep. 7(1), 13107 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Chinopoulos, C. et al. A novel kinetic assay of mitochondrial ATP-ADP exchange rate mediated by the ANT. Biophys. J. 96(6), 2490–2504 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Devaux, J. B. L. et al. Acidosis maintains the function of brain mitochondria in hypoxia-tolerant triplefin fish: A strategy to survive acute hypoxic exposure? Front. Physiol. 9, 1941 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Goo, S. et al. Multiscale measurement of cardiac energetics. Clin. Exp. Pharmacol. Physiol. 40(9), 671–681 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Lagerspetz, K. Y. Temperature effects on different organization levels in animals. Symp. Soc. Exp. Biol. 41, 429–449 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Rosenthal, J. J. & Bezanilla, F. A comparison of propagated action potentials from tropical and temperate squid axons: Different durations and conduction velocities correlate with ionic conductance levels. J. Exp. Biol. 205(Pt 12), 1819–1830 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Robertson, R. M. Thermal stress and neural function: Adaptive mechanisms in insect model systems. J. Therm. Biol. 29(7), 351–358 (2004).CAS 
    Article 

    Google Scholar 
    44.Miller, N. A. & Stillman, J. H. Neural thermal performance in porcelain crabs, Genus Petrolisthes. Physiol. Biochem. Zool. 85(1), 29–39 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gladwell, R. T., Bowler, K. & Duncan, C. J. Heat death in the crayfish Austropotamobius pallipes—Ion movements and their effects on excitable tissues during heat death. J. Therm. Biol. 1(2), 79–94 (1976).CAS 
    Article 

    Google Scholar 
    46.Chen, I. & Lui, F. Neuroanatomy, Neuron Action Potential (StatPearls Publishing, 2019).
    Google Scholar 
    47.Milligan, L. P. & McBride, B. W. Energy costs of ion pumping by animal tissues. J. Nutr. 115(10), 1374–1382 (1985).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Buzatu, S. The temperature-induced changes in membrane potential. Riv. Biol. 102(2), 199–217 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Krans, J. L., Rivlin, P. K. & Hoy, R. R. Demonstrating the temperature sensitivity of synaptic transmission in a Drosophila mutant. J. Undergrad. Neurosci. Educ. 4(1), A27–A33 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    50.Khan, J. R. et al. Thermal plasticity of skeletal muscle mitochondrial activity and whole animal respiration in a common intertidal triplefin fish, Forsterygion lapillum (Family: Tripterygiidae). J. Comp. Physiol. B 184(8), 991–1001 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McArley, T. et al. Intertidal triplefin fishes have a lower critical oxygen tension (Pcrit), higher maximal aerobic capacity, and higher tissue glycogen stores than their subtidal counterparts. J. Comp. Physiol. B. 189, 399–411 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Pfleger, J., He, M. & Abdellatif, M. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis. 6(7), e1835–e1835 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Brand, M. D. The efficiency and plasticity of mitochondrial energy transduction. Biochem. Soc. Trans. 33(Pt 5), 897–904 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Brown, J. H. et al. Toward a metabolic theory of ecology. Ecology 85(7), 1771–1789 (2004).ADS 
    Article 

    Google Scholar 
    55.Salin, K. et al. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. Biol. Sci. 2015(282), 20151028–20151028 (1812).
    Google Scholar 
    56.Findly, R. C., Gillies, R. J. & Shulman, R. G. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena. Science 219(4589), 1223 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sharma, H. S. Neurobiology of Hyperthermia (Elsevier, 2011).
    Google Scholar 
    58.Salin, K. et al. Simultaneous measurement of mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Physiol. Rep. 4(20), e13007 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Hinkle, P. C. P/O ratios of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta BBA Bioenerg. 1706(1), 1–11 (2005).CAS 

    Google Scholar  More

  • in

    Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor

    1.Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cam, E. & Aubry, L. Early development, recruitment and life history trajectory in long-lived birds. J. Ornithol. 152, 187–201 (2011).Article 

    Google Scholar 
    3.Cam, E., Monnat, J. Y. & Hines, J. E. Long-term fitness consequences of early conditions in the kittiwake. J. Anim. Ecol. 72, 411–424 (2003).Article 

    Google Scholar 
    4.Tilgar, V., Mänd, R., Kilgas, P. & Mägi, M. Long-term consequences of early ontogeny in free-living Great Tits Parus major. J. Ornithol. 151, 61–68 (2010).Article 

    Google Scholar 
    5.Stamps, J. A. The silver spoon effect and habitat selection by natal dispersers. Ecol. Lett. 9, 1179–1185 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Briga, M., Koetsier, E., Boonekamp, J. J., Jimeno, B. & Verhulst, S. Food availability affects adult survival trajectories depending on early developmental conditions. Proc. R. Soc. B Biol. Sci. 284, 20162287 (2017).Article 

    Google Scholar 
    7.Cooper, E. B. & Kruuk, L. E. Ageing with a silver-spoon: A meta-analysis of the effect of developmental environment on senescence. Evol. Lett. 2, 460–471 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Song, Z. et al. Silver spoon effects of hatching order in an asynchronous hatching bird. Behav. Ecol. Sociobiol. 30, 509–517 (2019).Article 

    Google Scholar 
    9.Descamps, S., Boutin, S., Berteaux, D., McAdam, A. G. & Gaillard, J. M. Cohort effects in red squirrels: The influence of density, food abundance and temperature on future survival and reproductive success. J. Anim. Ecol. 77, 305–314 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Van De Pol, M., Bruinzeel, L. W., Heg, D., Van Der Jeugd, H. P. & Verhulst, S. A silver spoon for a golden future: Long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus). J. Anim. Ecol. 75, 616–626 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Murgatroyd, M. et al. Sex-specific patterns of reproductive senescence in a long-lived reintroduced raptor. J. Anim. Ecol. 87, 1587–1599 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Dmitriew, C. & Rowe, L. Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis). J. Evol. Biol. 20, 1298–1310 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hopwood, P. E., Moore, A. J. & Royle, N. J. Effects of resource variation during early life and adult social environment on contest outcomes in burying beetles: A context-dependent silver spoon strategy?. Proc. R. Soc. B Biol. Sci. 281, 20133102 (2014).Article 

    Google Scholar 
    14.Royle, N. J., Lindström, J. & Metcalfe, N. B. A poor start in life negatively affects dominance status in adulthood independent of body size in green swordtails Xiphophorus helleri. Proc. R. Soc. B Biol. Sci. 272, 1917–1922 (2005).Article 

    Google Scholar 
    15.Mugabo, M., Marquis, O., Perret, S. & Le Galliard, J. F. Immediate and delayed life history effects caused by food deprivation early in life in a short-lived lizard. J. Evol. Biol. 23, 1886–1898 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Vitikainen, E. I., Thompson, F. J., Marshall, H. H. & Cant, M. A. Live long and prosper: Durable benefits of early-life care in banded mongooses. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180114 (2019).Article 

    Google Scholar 
    17.Sumasgutner, P., Tate, G. J., Koeslag, A. & Amar, A. Family morph matters: Factors determining survival and recruitment in a long-lived polymorphic raptor. J. Anim. Ecol. 85, 1043–1055 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Emaresi, G. et al. Melanin-specific life-history strategies. Am. Nat. 183, 269–280 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Grunst, M. L. et al. Actuarial senescence in a dimorphic bird: Different rates of ageing in morphs with discrete reproductive strategies. Proc. R. Soc. B Biol. Sci. 285, 20182053 (2018).Article 

    Google Scholar 
    20.Nebel, C., Sumasgutner, P., McPherson, S. C., Tate, G. J. & Amar, A. Contrasting parental color-morphs increase regularity of prey deliveries in an African raptor. Behav. Ecol. 31, 1142–1149 (2020).Article 

    Google Scholar 
    21.Morosinotto, C. et al. Fledging mass is color morph specific and affects local recruitment in a wild bird. Am. Nat. 196, 609–619 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Chakarov, N., Boerner, M. & Krüger, O. Fitness in common buzzards at the cross-point of opposite melanin–parasite interactions. Funct. Ecol. 22, 1062–1069 (2008).Article 

    Google Scholar 
    23.Roulin, A. Proximate basis of the covariation between a melanin-based female ornament and offspring quality. Oecologia 140, 668–675 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Rödel, H. G., Von Holst, D. & Kraus, C. Family legacies: short-and long-term fitness consequences of early-life conditions in female European rabbits. J. Anim. Ecol. 78, 789–797 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    26.Cockburn, A. Prevalence of different modes of parental care in birds. Proc. R. Soc. B Biol. Sci. 273, 1375–1383 (2006).Article 

    Google Scholar 
    27.Norris, K. & Evans, M. R. Ecological immunology: Life history trade-offs and immune defense in birds. Behav. Ecol. Sociobiol. 11, 19–26 (2000).Article 

    Google Scholar 
    28.van der Most, P. J., de Jong, B., Parmentier, H. K. & Verhulst, S. Trade-off between growth and immune function: A meta-analysis of selection experiments. Funct. Ecol. 25, 74–80 (2011).Article 

    Google Scholar 
    29.Aastrup, C. & Hegemann, A. Jackdaw nestlings rapidly increase innate immune function during the nestling phase but no evidence for a trade-off with growth. Dev. Comparat. Immunol. 2, 103967 (2020).
    Google Scholar 
    30.Ratikainen, I. I. & Kokko, H. Differential allocation and compensation: Who deserves the silver spoon?. Behav. Ecol. Sociobiol. 21, 195–200 (2010).Article 

    Google Scholar 
    31.Limbourg, T., Mateman, A. C. & Lessells, C. M. Opposite differential allocation by males and females of the same species. Biol. Let. 9, 20120835 (2013).Article 

    Google Scholar 
    32.Järvistö, P. E., Calhim, S., Schuett, W., Velmala, W. & Laaksonen, T. Foster, but not genetic, father plumage coloration has a temperature-dependent effect on offspring quality. Behav. Ecol. Sociobiol. 69, 335–346 (2015).Article 

    Google Scholar 
    33.Pryke, S. R. & Griffith, S. C. Socially mediated trade-offs between aggression and parental effort in competing color morphs. Am. Nat. 174, 455–464 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Amar, A., Koeslag, A. & Curtis, O. Plumage polymorphism in a newly colonized black sparrowhawk population: Classification, temporal stability and inheritance patterns. J. Zool. 289, 60–67 (2013).Article 

    Google Scholar 
    35.Tate, G., Sumasgutner, P., Koeslag, A. & Amar, A. Pair complementarity influences reproductive output in the polymorphic black sparrowhawk Accipiter melanoleucus. J. Avian Biol. 48, 387–398 (2017).Article 

    Google Scholar 
    36.Tinbergen, J. M. & Boerlijst, M. C. Nestling weight and survival in individual great tits (Parus major). J. Anim. Ecol. 59, 1113–1127 (1990).Article 

    Google Scholar 
    37.Cleasby, I. R., Nakagawa, S., Gillespie, D. O. S. & Burke, T. The influence of sex and body size on nestling survival and recruitment in the house sparrow. Biol. J. Lin. Soc. 101, 680–688 (2010).Article 

    Google Scholar 
    38.Christe, P., Møller, A. P. & de Lope, F. Immunocompetence and nestling survival in the house martin: The tasty chick hypothesis. Oikos 83, 175–179 (1998).CAS 
    Article 

    Google Scholar 
    39.Ringsby, T. H., Sæther, B.-E. & Solberg, E. J. Factors affecting juvenile survival in house sparrow Passer domesticus. J. Avian Biol. 29, 241–247 (1998).Article 

    Google Scholar 
    40.Losdat, S. et al. Nestling erythrocyte resistance to oxidative stress predicts fledging success but not local recruitment in a wild bird. Biol. Lett. 9, 20120888 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Vermeulen, A., Müller, W. & Eens, M. J. Vitally important–does early innate immunity predict recruitment and adult innate immunity?. Ecol. Evol. 6, 1799–1808 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Vennum, C. R. et al. Early life conditions and immune defense in nestling Swainson’s Hawks. Physiol. Biochem. Zool. 92, 419–429 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Bowers, E. K. et al. Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology 95, 3027–3034 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Calder, P. C. & Sonnenfeld, G. in Nutrition, Immunity, and Infection 1–18 (CRC Press, 2017).Book 

    Google Scholar 
    45.Wilcoxen, T. E., Boughton, R. K. & Schoech, S. J. Selection on innate immunity and body condition in Florida scrub-jays throughout an epidemic. Biol. Let. 6, 552–554 (2010).Article 

    Google Scholar 
    46.Hegemann, A., Marra, P. P. & Tieleman, B. I. Causes and consequences of partial migration in a passerine bird. Am. Nat. 186, 531–546 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Hegemann, A., Matson, K. D., Flinks, H. & Tieleman, B. I. Offspring pay sooner, parents pay later: Experimental manipulation of body mass reveals trade-offs between immune function, reproduction and survival. Front. Zool. 10, 77 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Apanius, V. Ontogeny of Immune Function (Oxford University Press, 1998).
    Google Scholar 
    49.Klasing, K. C. & Leshchinksy, T. V. Functions, Costs, and Benefits of the Immune System During Development and Growth Ostrich, 69, 2817–2835 (1999).50.Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Costantini, D. & Moller, A. P. Does immune response cause oxidative stress in birds? A meta-analysis. Comparat. Biochem. Physiol. Part A 153, 339–344 (2009).Article 
    CAS 

    Google Scholar 
    52.Hanssen, S. A., Hasselquist, D., Folstad, I. & Erikstad, K. E. Costs of immunity: Immune responsiveness reduces survival in a vertebrate. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 925–930 (2004).Article 

    Google Scholar 
    53.Hanssen, S. A. Costs of an immune challenge and terminal investment in a long-lived bird. Ecology 87, 2440–2446 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Matson, K. D., Ricklefs, R. E. & Klasing, K. C. A hemolysis–hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev. Comp. Immunol. 29, 275–286 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Müller-Eberhard, H. J. Molecular organization and function of the complement system. Annu. Rev. Biochem. 57, 321–347 (1988).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Dobryszycka, W. Biological functions of haptoglobin-new pieces to an old puzzle. Eur. J. Clin. Chem. Clin. Biochem. 35, 647–654 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Matson, K. D., Horrocks, N. P. C., Versteegh, M. A. & Tieleman, B. I. Baseline haptoglobin concentrations are repeatable and predictive of certain aspects of a subsequent experimentally-induced inflammatory response. Comparat. Biochem. Physiol. Part A Mol. Integr. Physiol. 162, 7–15 (2012).CAS 
    Article 

    Google Scholar 
    58.Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: A review. Comp. Med. 59, 517–526 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Hegemann, A., Matson, K. D., Both, C. & Tieleman, B. I. Immune function in a free-living bird varies over the annual cycle, but seasonal patterns differ between years. Oecologia 170, 605–618 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Alexander, C. & Rietschel, E. T. Invited review: Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7, 167–202 (2016).
    Google Scholar 
    61.Hegemann, A., Matson, K. D., Versteegh, M. A., Villegas, A. & Tieleman, B. I. Immune response to an endotoxin challenge involves multiple immune parameters and is consistent among the annual-cycle stages of a free-living temperate zone bird. J. Exp. Biol. 216, 2573–2580 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Vermeulen, A., Eens, M., Zaid, E. & Müller, W. Baseline innate immunity does not affect the response to an immune challenge in female great tits (Parus major). Behav. Ecol. Sociobiol. 70, 585–592 (2016).Article 

    Google Scholar 
    63.Vinterstare, J., Hegemann, A., Nilsson, P. A., Hulthén, K. & Brönmark, C. Defence versus defence: Are crucian carp trading off immune function against predator-induced morphology?. J. Anim. Ecol. 88, 1510–1521 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Lei, B., Amar, A., Koeslag, A., Gous, T. A. & Tate, G. J. Differential haemoparasite intensity between black sparrowhawk (Accipiter melanoleucus) morphs suggests an adaptive function for polymorphism. PLoS ONE 8, e81607 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Suri, J., Sumasgutner, P., Hellard, É., Koeslag, A. & Amar, A. Stability in prey abundance may buffer Black Sparrowhawks Accipiter melanoleucus from health impacts of urbanization. Ibis 159, 38–54 (2017).Article 

    Google Scholar 
    66.Råberg, L., Grahn, M., Hasselquist, D. & Svensson, E. On the adaptive significance of stress-induced immunosuppression. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 1637–1641 (1998).Article 

    Google Scholar 
    67.Sadd, B. M. & Siva-Jothy, M. T. Self-harm caused by an insect’s innate immunity. Proc. R. Soc. Lond. Ser. B Biol. Sci. 273, 2571–2574 (2006).
    Google Scholar 
    68.Gyan, B. et al. Elevated levels of nitric oxide and low levels of haptoglobin are associated with severe malarial anaemia in African children. Acta Trop. 83, 133–140 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Alonso-Alvarez, C. & Tella, J. L. Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response. Can. J. Zool. 79, 101–105 (2001).Article 

    Google Scholar 
    70.Merino, S. et al. Phytohaemagglutinin injection assay and physiological stress in nestling house martins. Anim. Behav. 58, 219–222 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Ochsenbein, A. F. & Zinkernagel, R. M. Natural antibodies and complement link innate and acquired immunity. Immunol. Today 21, 624–630 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Boes, M. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol. 37, 1141–1149 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Grönwall, C., Vas, J. & Silverman, G. J. Protective roles of natural IgM antibodies. Front. Immunol. 3, 66 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. Trans. R. Soc. B Biol. Sci. 363, 321–339 (2008).Article 

    Google Scholar 
    75.Klasing, K. C. The costs of immunity. Acta Zool. Sin. 50, 961–969 (2004).CAS 

    Google Scholar 
    76.Van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: Their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).Article 

    Google Scholar 
    77.Glazier, D. S. Trade-offs between reproductive and somatic (storage) investments in animals: A comparative test of the Van Noordwijk and De Jong model. Evol. Ecol. 13, 539–555 (1999).Article 

    Google Scholar 
    78.Newton, I., McGrady, M. J. & Oli, M. K. A review of survival estimates for raptors and owls. Ibis 158, 227–248 (2016).Article 

    Google Scholar 
    79.Kennedy, P. L. & Ward, J. M. Effects of experimental food supplementation on movements of juvenile northern goshawks (Accipiter gentilis atricapillus). Oecologia 134, 284–291 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Terraube, J., Vasko, V. & Korpimäki, E. Mechanisms and reproductive consequences of breeding dispersal in a specialist predator under temporally varying food conditions. Oikos 124, 762–771 (2015).Article 

    Google Scholar 
    81.Delgado, M. D. M., Penteriani, V. & Nams, V. O. How fledglings explore surroundings from fledging to dispersal. A case study with Eagle Owls Bubo bubo. Ardea 97, 7–15 (2009).Article 

    Google Scholar 
    82.Rosenfield, R. N. et al. Body mass of female Cooper’s Hawks is unrelated to longevity and breeding dispersal: Implications for the study of breeding dispersal. J. Raptor Res. 50, 305–312 (2016).Article 

    Google Scholar 
    83.Klein, S. L. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol. 26, 247–264 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Zuk, M. Reproductive strategies and disease susceptibility: An evolutionary viewpoint. Parasitol. Today 6, 231–233 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Zuk, M. & McKean, K. A. Sex differences in parasite infections: patterns and processes. Int. J. Parasitol. 26, 1009–1024 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Alexander, J. & Stimson, W. H. Sex hormones and the course of parasitic infection. Parasitol. Today 4, 189–193 (1988).Article 

    Google Scholar 
    88.Roulin, A. et al. Which chick is tasty to parasites? The importance of host immunology vs. parasite life history. J. Anim. Ecol. 72, 75–81 (2003).Article 

    Google Scholar 
    89.Hockey, P. A. R., Dean, W. R. J., Ryan, P. G., Maree, S. & Brickman, B. M. Roberts’ Birds of Southern Africa 7th edn. (John Voelcker Bird Book Fund, 2005).
    Google Scholar 
    90.Christie, D. A. & Ferguson-Lees, J. Raptors of the World (Christopher Helm Publishers, 2010).
    Google Scholar 
    91.Martin, R. O. et al. Phenological shifts assist colonisation of a novel environment in a range-expanding raptor. Oikos 123, 1457–1468 (2014).Article 

    Google Scholar 
    92.Rose, S., Sumasgutner, P., Koeslag, A. & Amar, A. Does seasonal decline in breeding performance differ for an African raptor across an urbanization gradient?. Front. Ecol. Evol. 5, 47 (2017).Article 

    Google Scholar 
    93.Horrocks, N. P. et al. Immune indexes of larks from desert and temperate regions show weak associations with life history but stronger links to environmental variation in microbial abundance. Physiol. Biochem. Zool. 85, 504–515 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Horrocks, N. P. et al. Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life. Oecologia 177, 281–290 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Sergio, F., Blas, J., Forero, M. G., Donázar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. Sociobiol. 18, 811–821 (2007).Article 

    Google Scholar 
    96.Rose, S., Thomson, R. L., Oschadleus, H.-D. & Lee, A. T. Summarising biometrics from the SAFRING database for southern African birds. Ostrich 2, 1–5 (2019).
    Google Scholar 
    97.Paijmans, D. M., Rose, S., Oschadleus, H.-D. & Thomson, R. L. SAFRING ringing report for 2017. Biodivers. Observ. 10, 1–11 (2019).
    Google Scholar 
    98.Katzenberger, J., Tate, G., Koeslag, A. & Amar, A. Black Sparrowhawk brooding behaviour in relation to chick age and weather variation in the recently colonised Cape Peninsula, South Africa. J. Ornithol. 156, 903–913 (2015).Article 

    Google Scholar 
    99.Buehler, D. M. et al. Constitutive immune function responds more slowly to handling stress than corticosterone in a shorebird. Physiol. Biochem. Zool. 81, 673–681 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Zylberberg, M. Common measures of immune function vary with time of day and sampling protocol in five passerine species. J Exp Biol 218, 757–766 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    101.van de Crommenacker, J. et al. Effects of immune supplementation and immune challenge on oxidative status and physiology in a model bird: Implications for ecologists. J. Exp. Biol. 213, 3527–3535 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    102.French, S. S. & Neuman-Lee, L. A. Improved ex vivo method for microbiocidal activity across vertebrate species. Biol. Open 1, 482–487 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Eikenaar, C. & Hegemann, A. Migratory common blackbirds have lower innate immune function during autumn migration than resident conspecifics. Biol. Let. 12, 20160078 (2016).Article 
    CAS 

    Google Scholar 
    104.Hegemann, A., Pardal, S. & Matson, K. D. Indices of immune function used by ecologists are mostly unaffected by repeated freeze-thaw cycles and methodological deviations. Front. Zool. 14, 43 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    105.R Core Team. R: A language and environment for statistical computing. Vienna, Austria (R Foundation for Statistical Computing, 2019).106.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 2 (2017).Article 

    Google Scholar 
    107.McCurdy, D. G., Shutler, D., Mullie, A. & Forbes, M. R. Sex-biased parasitism of avian hosts: relations to blood parasite taxon and mating system. Oikos 82, 303–312 (1998).CAS 
    Article 

    Google Scholar 
    108.Parejo, D., Silva, N. & Avilés, J. M. Within-brood size differences affect innate and acquired immunity in roller Coracias garrulus nestlings. J. Avian Biol. 38, 717–725 (2007).Article 

    Google Scholar 
    109.Kanikowska, D., Hyun, K. J., Tokura, H., Azama, T. & Nishimura, S. Circadian rhythm of acute phase proteins under the influence of bright/dim light during the daytime. Chronobiol. Int. 22, 137–143 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Laake, J. L. RMark: an R interface for analysis of capture-recapture data with MARK. AFSC Processed Rep 2013-01, Seattle, WA (Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 2013).111.White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).Article 

    Google Scholar 
    112.Burnham, K. P. Design and Analysis Methods for Fish Survival Experiments Based on Release-Recapture (American Fisheries Society, 1987).
    Google Scholar 
    113.Coquet, R., Lebreton, J.-D., Gimenez, O. & Reboulet, A.-M. U-CARE: Utilities for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography 32, 1071–1074 (2009).Article 

    Google Scholar 
    114.Sauer, J. R. & Byron, K. W. Generalized procedures for testing hypotheses about survival or recovery raes. J. Wildl. Manag. 53, 137–142 (1989).Article 

    Google Scholar 
    115.Nebel, C., Amar, A., Hegemann, A., Isaksson, C. & Sumasgutner, P. Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor: Data, Zivahub, https://doi.org/10.25375/uct.12780803 (2021). More

  • in

    Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster

    1.Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. B. 267, 739–745 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Andersen, J. L. et al. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29, 55–65 (2015).Article 

    Google Scholar 
    3.Kimura, M. T. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140, 442–449 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Gaston, K. J. & Chown, S. L. Elevation and climatic tolerance: A test using dung beetles. Oikos 86, 584–590 (1999).Article 

    Google Scholar 
    5.MacMillan, H. A. Dissecting cause from consequence: a systematic approach to thermal limits. J. Exp. Biol. 222, jeb191593 (2019).6.Overgaard, J. & MacMillan, H. A. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 79, 187–208 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Armstrong, G. A. B., Rodríguez, E. C. & Meldrum Robertson, R. Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma. J. Insect Physiol. 58, 1511–1516 (2012).8.Rodgers, C. I., Armstrong, G. A. B. & Robertson, R. M. Coma in response to environmental stress in the locust: a model for cortical spreading depression. J. Insect Physiol. 56, 980–990 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Andersen, M. K. & Overgaard, J. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 233, 10–16 (2019).10.Koštál, V., Vambera, J. & Bastl, J. On the nature of pre-freeze mortality in insects: Water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J. Exp. Biol. 207, 1509–1521 (2004).PubMed 
    Article 

    Google Scholar 
    11.Zachariassen, K. E., Kristiansen, E. & Pedersen, S. A. Inorganic ions in cold-hardiness. Cryobiology 48, 126–133 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.MacMillan, H. A. & Sinclair, B. J. The role of the gut in insect chilling injury: Cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J. Exp. Biol. 214, 726–734 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.MacMillan, H. A., Williams, C. M., Staples, J. F. & Sinclair, B. J. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. PNAS 109, 20750–20755 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    14.MacMillan, H. A., Findsen, A., Pedersen, T. H. & Overgaard, J. Cold-induced depolarization of insect muscle: Differing roles of extracellular K+ during acute and chronic chilling. J. Exp. Biol. 217, 2930–2938 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    15.Bayley, J. S., Sørensen, J. G., Moos, M., Koštál, V. & Overgaard, J. Cold-acclimation increases depolarization resistance and tolerance in muscle fibers from a chill-susceptible insect, Locusta migratoria. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R439–R447 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bayley, J. S. et al. Cold exposure causes cell death by depolarization-mediated Ca2+ overload in a chill-susceptible insect. PNAS 115, E9737–E9744 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Carrington, J., Andersen, M. K., Brzezinski, K. & MacMillan, H. A. Hyperkalemia, not apoptosis, accurately predicts chilling injury in individual locusts. Proc. R. Soc. B. (in press).18.Koštál, V., Yanagimoto, M. & Bastl, J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 143, 171–179 (2006).19.MacMillan, H. A., Baatrup, E. & Overgaard, J. Concurrent effects of cold and hyperkalaemia cause insect chilling injury. Proc. R. Soc. B. 282 (2015).20.Garcia, M. J., Littler, A. S., Sriram, A. & Teets, N. M. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution 74, 1437–1450 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Gerken, A. R., Mackay, T. F. C. & Morgan, T. J. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection. J. Therm. Biol. 59, 77–85 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Colinet, H. & Hoffmann, A. A. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct. Ecol. 26, 84–93 (2012).Article 

    Google Scholar 
    23.MacMillan, H. A., Andersen, J. L., Loeschcke, V. & Overgaard, J. Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R823–R831 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Ransberry, V. E., MacMillan, H. A. & Sinclair, B. J. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster. Physiol. Biochem. Zool. 84, 553–559 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B. 278, 1823–1830 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).Article 

    Google Scholar 
    27.Hoffmann, A. A., Shirriffs, J. & Scott, M. Relative importance of plastic vs genetic factors in adaptive differentiation: Geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct. Ecol. 19, 222–227 (2005).Article 

    Google Scholar 
    28.Overgaard, J., Hoffmann, A. A. & Kristensen, T. N. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol. 36, 409–416 (2011).Article 

    Google Scholar 
    29.Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: Phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004).Article 

    Google Scholar 
    30.Gibert, P. & Huey, R. B. Chill-coma temperature in Drosophila: Effects of developmental temperature, latitude, and phylogeny. Physiol. Biochem. Zool. 74, 429–434 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Hori, Y. & Kimura, M. T. Relationship between cold stupor and cold tolerance in Drosophila (Diptera: Drosophilidae). Environ. Entomol. 27, 1297–1302 (1998).Article 

    Google Scholar 
    32.Teets, N. M. & Hahn, D. A. Genetic variation in the shape of cold-survival curves in a single fly population suggests potential for selection from climate variability. J. Evol. Biol. 31, 543–555 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Kellermann, V. et al. Phylogenetic constraints in key functional traits behind species’ climate niches: Patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377–3389 (2012).PubMed 
    Article 

    Google Scholar 
    34.Pool, J. E., Braun, D. T. & Lack, J. B. Parallel evolution of cold tolerance within Drosophila melanogaster. Mol. Biol. Evol. 34, 349–360 (2017).CAS 
    PubMed 

    Google Scholar 
    35.Mansourian, S. et al. Wild African Drosophila melanogaster are seasonal specialists on marula fruit. Curr. Biol. 28, 3960-3968.e3 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pool, J. E. et al. Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and non-African admixture. PLoS Genetics 8, e1003080 (2012).37.Baudry, E., Viginier, B. & Veuille, M. Non-African populations of Drosophila melanogaster have a unique origin. Mol. Biol. Evol. 21, 1482–1491 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.MacMillan, H. A., Andersen, J. L., Davies, S. A. & Overgaard, J. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci. Rep. 5, 18607 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Chen, C.-P. & Walker, V. K. Cold-shock and chilling tolerance in Drosophila. J. Insect Physiol. 40, 661–669 (1994).Article 

    Google Scholar 
    40.Hoffmann, A. A. & Watson, M. Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am. Nat. 142, S93–S113 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Ørsted, M., Hoffmann, A. A., Rohde, P. D., Sørensen, P. & Kristensen, T. N. Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity 122, 315–325 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gerken, A. R., Eller, O. C., Hahn, D. A. & Morgan, T. J. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. PNAS 112, 4399–4404 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Nyamukondiwa, C., Terblanche, J. S., Marshall, K. E. & Sinclair, B. J. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evol. Biol. 24, 1927–1938 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance?. Trends Ecol. Evol. 35, 874–885 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gilchrist, G. W., Huey, R. B. & Partridge, L. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Physiol. Zool. 70, 403–414 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Maclean, H. J., Kristensen, T. N., Sørensen, J. G. & Overgaard, J. Laboratory maintenance does not alter ecological and physiological patterns among species: A Drosophila case study. J. Evol. Biol. 31, 530–542 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, jeb169342 (2018).48.Nilson, T. L., Sinclair, B. J. & Roberts, S. P. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J. Insect Physiol. 52, 1027–1033 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Hazell, S. P. & Bale, J. S. Low temperature thresholds: are chill coma and CTmin synonymous?. J. Insect Physiol. 57, 1085–1089 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Bertram, G. C. L. The low temperature limit of activity of arctic insects. J. Anim. Ecol. 4, 35–42 (1935).Article 

    Google Scholar 
    51.Sinclair, B. J., Coello Alvarado, L. E. & Ferguson, L. V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 53, 180–197 (2015).52.MacMillan, H. A. et al. Anti-diuretic activity of a CAPA neuropeptide can compromise Drosophila chill tolerance. J. Exp. Biol. 221, jeb185884 (2018).53.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). More

  • in

    Microscale tracking of coral-vibrio interactions

    1.Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Rosenberg, E., Kellogg, C. A. & Rohwer, F. L. Coral microbiology. Oceanography 20, 146 (2007).Article 

    Google Scholar 
    3.Rohwer, F. & Youle, M. Coral Reefs in the Microbial Seas (Plaid Press, 2010).4.Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 16042 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Roth, E., Jeon, K. & Stacey, G. Homology in endosymbiotic systems: the term ‘symbiosome’. (1988).6.Zvuloni, A. et al. Spatio-temporal transmission patterns of black-band disease in a coral community. PLoS ONE 4, e4993 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Peters, E. C. in Coral Reefs in the Anthropocene 147–178 (Springer Press, 2015).8.Kushmaro, A., Rosenberg, E., Fine, M., Ben Haim, Y. & Loya, Y. Effect of temperature on bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar. Ecol. Prog. Ser. 171, 131–137 (1998).Article 

    Google Scholar 
    9.Ben-Haim, Y. et al. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int. J. Syst. Evol. Microbiol. 53, 309–315 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E. & Yossi, L. The role of microorganisms in coral bleaching. ISME J. 3, 139–146 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Kramarsky-Winter, E., Downs, C., Downs, A. & Loya, Y. Cellular responses in the coral Stylophora pistillata exposed to eutrophication from fish mariculture. Evol. Ecol. Res. 11, 381–401 (2009).
    Google Scholar 
    12.Santos, E. et al. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J. 5, 1471–1483 (2011).Article 

    Google Scholar 
    13.Ben Haim, Y. & Rosenberg, E. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar. Biol. 141, 47–55 (2002).14.Vidal-Dupiol, J. et al. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC Physiol. 9, 14 (2009).15.Zvuloni, A., Artzy-Randrup, Y., Katriel, G., Loya, Y. & Stone, L. Modeling the impact of white-plague coral disease in climate change scenarios. PLoS Comput. Biol. 11, e1004151 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Wright, R. M. et al. Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Sci. Rep. 7, 2609-017-02685-1 (2017).
    Google Scholar 
    17.Garren, M., Son, K., Tout, J., Seymour, J. R. & Stocker, R. Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J. 10, 1363–1372 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Sussman, M. et al. Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS ONE 4, e4511 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Rosenberg, E. & Kushmaro, A. in Coral Reefs: An Ecosystem in Transition 451–464 (Springer, 2011).20.Bourne, D. et al. Microbial disease and the coral holobiont. Trends Microbiol. 17, 554–562 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7, e1002183 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Weis, V., Davy, S., Hoegh-Guldberg, O., Rodriguez-Lanetty, M. & Pringle, J. Cell biology in model systems as the key to understanding corals. Trends Ecol. Evol. 23, 369–376 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Work, T. & Meteyer, C. To understand coral disease, look at coral cells. EcoHealth 11, 610–618 (2014).24.Shapiro, O. H., Kramarsky-Winter, E., Gavish, A. R., Stocker, R. & Vardi, A. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat. Commun. 7, 10860 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72, 802–810 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Sammarco, P. W. Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals. Mar. Ecol. Prog. Ser. Oldendorf 10, 57–65 (1982).Article 

    Google Scholar 
    27.Work, T. M. & Aeby, G. S. Pathology of tissue loss (white syndrome) in Acropora sp. corals from the Central Pacific. J. Invertebr. Pathol. 107, 127–131 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Work, T. M. & Aeby, G. S. Systematically describing gross lesions in corals. Dis. Aquat. Org. 70, 155–160 (2006).Article 

    Google Scholar 
    29.Ainsworth, T., Fine, M., Roff, G. & Hoegh-Guldberg, O. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica. ISME J. 2, 67–73 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Ainsworth, T. D., Fine, M., Blackall, L. L. & Hoegh-Guldberg, O. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl. Environ. Microbiol. 72, 3016–3020 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Boyett, H. V., Bourne, D. G. & Willis, B. L. Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Mar. Biol. 151, 1711–1720 (2007).Article 

    Google Scholar 
    32.Gignoux-Wolfsohn, S., Marks, C. J. & Vollmer, S. V. White band disease transmission in the threatened coral, Acropora cervicornis. Sci. Rep. 2, 804 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Kaczmarsky, L. T. Coral disease dynamics in the central Philippines. Dis. Aquat. Org. 69, 9–21 (2006).Article 

    Google Scholar 
    34.Horridge, G. A. The co-ordination of the protective retraction of coral polyps. Philos. Trans. R. Soc. Lond. B Biol. Sci. 240, 495–528 (1957).Article 

    Google Scholar 
    35.Katz, S. M., Pollock, F. J., Bourne, D. G. & Willis, B. L. Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals. Coral Reefs 33, 705–716 (2014).Article 

    Google Scholar 
    36.Shapiro, O. H. et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl Acad. Sci. USA 111, 13391–13396 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Gladfelter, E. Circulation of fluids in the gastrovascular system of the reef coral Acropora cervicornis. Biol. Bull. 165, 619–625 (1983).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Patterson, M. R. A chemical engineering view of cnidarian symbioses. Am. Zool. 32, 566–582 (1992).Article 

    Google Scholar 
    39.Lewis, J. & Price, W. Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool. 176, 527–544 (1975).Article 

    Google Scholar 
    40.Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296, 291–309 (2005).CAS 
    Article 

    Google Scholar 
    41.Zetsche, E., Baussant, T., Meysman, F. J. & van Oevelen, D. Direct visualization of mucus production by the cold-water coral Lophelia pertusa with digital holographic microscopy. PLoS ONE 11, e0146766 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Lam, E., Kato, N. & Lawton, M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848–853 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Chuang, P. S. & Mitarai, S. Signaling pathways in the coral polyp bailout response. Coral Reefs 39, 532–534 (2020).Article 

    Google Scholar 
    44.Kvitt, H. et al. Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis. Proc. Natl Acad. Sci. USA 112, 2082–2086 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Garren, M. et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 8, 999–1007 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Garren, M. & Azam, F. Corals shed bacteria as a potential mechanism of resilience to organic matter enrichment. ISME J. 6, 1159–1165 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Banin, E., Israely, T., Fine, M., Loya, Y. & Rosenberg, E. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol. Lett. 199, 33–37 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Meron, D. et al. Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 75, 5704–5707 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Certner, R. H., Dwyer, A. M., Patterson, M. R. & Vollmer, S. V. Zooplankton as a potential vector for white band disease transmission in the endangered coral, Acropora cervicornis. PeerJ 5, e3502 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Ushijima, B. et al. Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl. Environ. Microbiol. 80, 2102–2109 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Butler, S. M. & Camilli, A. Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat. Rev. Microbiol. 3, 611 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Stocker, R. The 100 µm length scale in the microbial ocean. Aquat. Microb. Ecol. 76, 189–194 (2015).Article 

    Google Scholar 
    53.Csaszar, N. B. M., Seneca, F. O. & van Oppen, M. J. H. Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar. Ecol. Prog. Ser. 392, 93–102 (2009).CAS 
    Article 

    Google Scholar 
    54.Agostini, S. et al. Biological and chemical characteristics of the coral gastric cavity. Coral Reefs 31, 147–156 (2012).Article 

    Google Scholar 
    55.Houlbrèque, F., Rodolfo‐Metalpa, R. & Ferrier‐Pagès, C. Heterotrophic nutrition of tropical, temperate and deep‐sea corals. Dis. Coral 150–163 (2015).56.Sorokin, Y. I. Trophical role of bacteria in the ecosystem of the coral reef. Nature 242, 415–417 (1973).Article 

    Google Scholar  More

  • in

    The Finnish Biodiversity Information Facility as a best-practice model for biodiversity data infrastructures

    The contexts of FinBIF’s emergence and developmentBuild-up of impetus and consensusA gradually strengthening drive from different sectors of society led to the eventual realisation of FinBIF as a comprehensively integrated BDDI. The earliest push came from a working group convened by the Ministry of Education and commissioned to analyse and plan the future of natural history museums (NHMs) in Finland. It identified as a goal to establish a national central NHM, one task of which would be to “act as an information centre maintaining an Automated Data Processing (ADP) based national register of collections”26. A subsequent working group commissioned to plan the central NHM concluded that one of the most urgent of the new nation-wide functions was “to create an ADP-based central registry to serve all Finnish natural history museums”27.While the central NHM was established in 1988, the proposed inclusive, national database did not materialise, but separate actors (institutions, projects, research groups) developed a variety of information systems independently. When Finland joined GBIF in 2001, an increased enthusiasm on BD informatics emerged, but significant national funding for GBIF-related activities was not mobilised. However, the demand for national progress grew rapidly with the international development of BD informatics. A project on developing the efficiency of nature conservation made recommendations on IT development, and on collating and opening data through a national solution28. The National Red List29 included recommendations on developing databases for species observations. An action plan on developing species conservation recommended a separate project for overall development of biodiversity data management, which was already close to what FinBIF later came to be30.In 2012, the Finnish Museum of natural History ‘Luomus’ successfully lobbied for a national, cross-sectoral meeting to discuss the way forward in building a national BDDI. This kick-off meeting was convened by the Ministry of the Environment on 7 September 2012. All major organisations that use, hold and/or produce biodiversity data, or fund such activities, were represented (Table 3). Subsequently, the urgency of establishing the national BDDI was re-emphasised in Finland’s Biodiversity Strategy and Action Plan31.Table 3 The organisations represented at the meeting where the establishment of a national BDDI was agreed upon on 7 September 2012.Full size tableCross-sectoral co-creation, collaboration and fundingThe host institution of FinBIF is the Finnish Museum of Natural History’Luomus’, which has led its development and the acquisition of funding, and coordinated the national and international cooperation. However, a wide national collaborative network has been an integral part of FinBIF from the start (Fig. 2), and many organisations from all sectors of society have participated in the development of FinBIF’s services and in data mobilisation. Luomus has convened seven advisory and co-creation groups in which c. 140 specialists have shared their expertise on a voluntary basis to advise policy and service development (Table 4). The wide collaborative network and the all-inclusive business model of FinBIF has helped in attracting funding for its development from many different sources with different funding criteria, such as national and EU-level research infrastructure funding, national funds for developing governance and administration, EU-funding for nature conservation actions, funds for Nordic collaboration in e-infrastructure development, private foundation grants to research and citizen science, and collaborative projects with private companies.Table 4 The expert advisory groups convened by FinBIF for co-creation of content, services, and policies. CMS = collection management system; OMS = observations management system; API = application programming interface; GIS = geographical information system; INSPIRE = infrastructure for spatial information in Europe.Full size tableIT ArchitectureFinBIF’s architecture has four key goals:

    (1)

    To harvest occurrence data from Finland and surrounding areas and share them as one interoperable data mass

    (2)

    To provide a customisable system for recording species observations

    (3)

    To provide a collection management system, and digitisation technologies and workflows for Finnish natural history collections

    (4)

    To compile, maintain, and share master data, including a taxonomic backbone of Finnish species.

    These goals are accomplished by using Service-Oriented Architecture (SOA)32 and by providing over twenty individual background services that interact with each other, mostly using RESTful HTTP APIs (for explanation of REST, see33). These include: (1) A triplestore RDF database34,35 and an API for master data (taxonomy, schema vocabularies, people, collection metadata, image metadata, data download metadata) and collection specimen data; (2) a JavaScript Object Notation (JSON36) storage database and an API of primary occurrence data; (3) a Data Warehouse database, and an extract-transform-load (ETL) process and an API built on top of an HP Vertica database; (4) an Elasticsearch search engine (see https://www.elastic.co/what-is/elasticsearch) and an API for performance-critical access of primary occurrence data and taxonomy data; (5) multimedia services (images, audio storage and conversions); and (6) map services.FinBIF is provided as a service to fulfil the needs of the Finnish biodiversity data community and to share Finnish data to all interested parties. The architecture and complete software of FinBIF cannot be easily adopted by other countries or institutions. However, FinBIF maintains several software libraries that are specifically designed to be reusable by anyone; such as the specimen label generator library, and the powerful form generation tools of the Notebook OMS. Data and services can be used by third party applications via FinBIF’s public API (https://api.laji.fi).Occurrence data architectureFinBIF maintains systems for both primary and secondary occurrence data storage (Fig. 4). A primary data storage is a database or other type of storage where the data are maintained and used for the original purposes and use cases. A secondary data storage holds a copy of the primary data for distribution, analysis, and other derived purposes.Fig. 4Services, processes and data flows of FinBIF (a). The relations of services and processes to data life cycle phases as depicted in Fig. 1. Dashed lines denote planned services (b). Occurrence data flow from FinBIF’s and external actors’ primary sources through FinBIF’s data warehouse to FinBIF’s portal. CMS = Collection Management System, OMS = Observations Management System, DW = data warehouse, ETL = Extract-Transform-Load, API = Application Programming Interface, GIS = Geographical Information System, IAS = Invasive Alien Species, AI = Artificial Intelligence.Full size imageFinBIF has two IT systems for storing and maintaining primary occurrence data: the Kotka CMS for specimen data and the Notebook OMS for observational data (see below for descriptions). FinBIF also co-operates with iNaturalist and maintains iNaturalist Finland.FinBIF’s Data Warehouse harvests occurrence data from primary data sources and stores them as secondary data. The data warehouse transforms primary occurrence data into a single interoperable data mass through various ETL processes. Currently, live updates are received from 34 different data sources using eight different ETL processes. Many more datasets have been loaded using a one-time process. For primary data sources that are not databases or IT systems (for example Excel, MapInfo files), a tool is provided for harmonizing the data into FinBIF format and uploading them to the data warehouse as secondary data. The primary data remain under the ownership and management of the source, where all changes and updates are made. However, FinBIF maintains an annotation system, which stores added information about the occurrence entries (as primary data), for example identifications and quality markings by taxon experts. These annotations are stamped on top of the original data in the data warehouse to provide an enriched version of the data.Each dataset must have metadata that describe, e.g., the name, type and owner of the dataset. In the Data Warehouse, primary occurrence data, annotations, dataset metadata, the taxonomic backbone, and information on locations and people are linked to provide an enriched query service. FinBIF is a visible platform to make data FAIR16, thus increasing the prestige of the shared dataset, but the data sharer also gains through receiving quality feedback about the occurrences from the many taxon experts and volunteers that annotate the data in FinBIF. Based on the annotations, the data can be improved in the primary data source. To make data more interoperable, FinBIF encourages primary data source owners to harmonise their data with FinBIF-maintained master data, by using the same taxonomy and schema vocabularies.The Data Warehouse has two sides: public and private. The public side contains open-access data, some of which have been coarsened because of the sensitivity of the species in question or because of a research embargo, as specified in FinBIF’s data policy (https://laji.fi/en/about/2982; https://laji.fi/en/about/875). In addition, individual observers may hide, e.g., the exact location of their occurrence or their name. The restricted-access side of the Data Warehouse contains uncoarsened data. Some data sources provide a limited version to the public side and a full version to the restricted side. Government officials can access the restricted-use, uncoarsened data via a separate authorities’ portal. Researchers and other users can do so by issuing a data request (see below). Maintaining two versions of the data has required developing unique designs. They do not reveal information about sensitive species, which might endanger their preservation, but still allow joining annotations made on the restricted side so these can be shown also on the public side. Occurrences that need to be coarsened are detached from their original concept and uploaded with a random delay to the public side to make it difficult to discover the exact location from accompanying occurrences. Apart from this delay, the private and public sides are automatically fully synchronised.API and GIS services have been built on top of the Data Warehouse to allow open-access use of the data, both for the public and the restricted side. Most of the occurrence data from Finland go to GBIF via FinBIF. This data transfer is still being developed, and all datasets are not yet automatically copied to GBIF.Master data management architectureA triplestore is used in FinBIF for all small datasets, including taxon data. More specifically, the data are stored according to the RDF35 specification. An RDF Schema defines the allowed properties for each class. FinBIF’s triplestore34 implementation is an Oracle relational database with two tables (resource and statement), which provides the ability to do Structured Query Language (SQL) queries and updates. Doing small, atomic updates is easy, as only a small subset of the triplets can be updated instead of the entire data entity. Maintaining a complete record of history comes without much effort, as it can be done on an individual triplet level.As an example, the FinBIF taxon data model – including adjacent classes such as publication, person, image, and threat assessments – consists of 260 properties. If the data model were stored in a normalized relational database, there would be an estimated 56 tables, which could be difficult to maintain. Thus, in FinBIF, non-relational database solutions are preferred.IdentifiersFinBIF uses a persistent HTTP-URI identifier for all types of real-life and digital objects (specimens, occurrences, taxa, metadata, persons, organisations, information systems, etc.), as recommended by the World Wide Web Consortium37. The identifier takes the user to an ID redirect service, which redirects the user to a page that shows information about the object in human-readable format. For example, specimen identifiers redirect to information about the specimen and taxon identifiers to a page describing the taxon.The redirect service can also provide machine-readable data about the object, if the user (client software) requests that using Accept headers. Supported formats vary based on data types, e.g., for specimens, the system can offer data in RDF + XML38 and JSON-LD (see https://json-ld.org/) formats using CETAF compliant vocabulary (CETAF Specimen Preview Profile CSPP39). This is also compatible with MIDS (Minimum Information about a Digital Specimen40).If partner organisations do not provide HTTP-URI identifiers for their occurrences, FinBIF will use the persistent internal IDs of the data source to generate globally unique URI identifiers. DOI identifiers for data downloads and dataset metadata will be created in the near future.IT solutions in key services and processesFinBIF runs numerous processes to provide a rich set of services (Fig. 4). The IT solutions applied in building key services and in enabling central processes are described below. The order of the descriptions follows the data life cycle phases identified in Fig. 1.Kotka CMSKotka is one of the two primary data management systems of FinBIF. It is designed to fit the needs of different types of collections and can be further adapted when new needs arise.Kotka differs in many ways from traditional CMS solutions. It applies simple and pragmatic approaches. This has helped it grow into a nationally used system despite limited development resources – on average less than one full-time equivalent developer. The aim is to improve collection management efficiency by providing practical tools. Kotka emphasises the quantity of digitised specimens over completeness of the data. It harmonises practices by bringing all types of collections under one system; the types currently covered include zoological, botanical, mycological and palaeontological museum collections, tissue and DNA samples, and botanic garden and microbial living collections.Kotka stores data mostly in a denormalised free text format using a triplestore and a simple hierarchical data model. This allows greater flexibility of use and faster development compared to a normalized relational database. New data fields and structures can be added easily as needs arise. Kotka does some data validation, but quality control is seen as a continuous process and is mostly done after the data have been recorded into the system. The data model is loosely based on the Access to Biological Collection Data (ABCD) standard41, but has been adapted for practical needs.Kotka is a web application. Data can be entered, edited, searched, and exported through a browser-based user interface (UI). However, most users prefer to enter new data in customizable MS-Excel templates, which support the hierarchical data model, and upload these to Kotka. Batch updates can also be done using Excel. Kotka stores all revisions of the data to avoid any data loss due to technical or human error.Kotka supports designing and printing specimen labels9, annotations by external users, and handling accessions, loan transactions, and the Nagoya protocol10.Notebook OMSNotebook is the other primary data management system of FinBIF. It is a web solution for recording opportunistic as well as sampling-event-based species observations. It is being used for systematic monitoring schemes, various citizen science projects, and platforms for species enthusiasts.Notebook’s main software component is LajiForm, which is the engine that renders a given JSON Schema into a web form. LajiForm is a separate, reusable module that is fully independent from other FinBIF systems. Notebook as a whole includes other features embedded in FinBIF, such as adding complex geographical shapes to observation documents, importing data from spreadsheets, and form templates.All Notebook forms use FinBIF’s ontological schema in the JSON36 Schema format. Rendering user-friendly web forms based on a single schema is difficult, because the web form should be asking meaningful questions, instead of just rendering the schema fields according to the form description. Questions should be presented in an interactive manner. For instance, after drawing a geographical location on a map for a potential flying squirrel nesting tree, one would ask “did you see droppings at the nest?”, and answering “yes” would update the document to include a flying squirrel taxon identification with fields “breeding” and “record basis” filled in but not rendered to the form. A simpler form engine without a user interface (UI) customisation layer would just render the fields “taxon”, “breeding” and “record basis”, and the user would have no understanding why there are so many fields to fill in and how they relate to their work or study.Some Notebook forms are complex, e.g., for experienced biology enthusiasts who need a form that is advanced, customisable, and compact. Some forms are simple, e.g., for elementary school children. To tackle this, LajiForm uses a separate schema for the UI that allows everything from simple customisation, such as defining widgets for fields, changing field order or customising field labels, to more complex customisation like transforming the schema object structure, defining conditions when certain fields are shown, or if updating a field should have an effect on other fields. All the functionality is split into a loosely coupled collection of components, which can be either used as standalone components or composed together in order to achieve more advanced customisation. The programming philosophy has drawn inspiration from functional programming, which has been helpful in writing isolated, composable functionality.LajiForm is written with the JavaScript framework ‘React’. LajiForm is built on top of react-jsonschema-form (RJSF), which is an open source JSON schema web form library founded by Mozilla (see https://react-jsonschema-form.readthedocs.io/en/latest/). RJSF handles only simple customization, but it is very flexible in design and allows building extensions with features that are more powerful. Some features and design proposals were submitted to Mozilla – FinBIF is the largest outsider code contributor to RJSF, with a dozen pull requests merged.iNaturalistFiiNaturalist (https://www.inaturalist.org/) is an international observation and citizen science application and platform. The iNaturalist Network is a collection of websites that are localized to national use in c. 10 different countries. FinBIF supports the Finnish network site iNaturalist Finland through translations, instructions, communication, moderation, and user support.Finnish iNaturalist data are automatically synchronized weekly to FinBIF’s data warehouse, where they are available for local use. iNaturalist observations are linked to the observer’s own account in the FinBIF portal, if they have linked their iNaturalist and FinBIF accounts. Both features are important in encouraging observers to use iNaturalist, and to allow it to work seamlessly with other FinBIF services.Taxon EditorFinBIF has developed its own taxon database, ‘Taxon Editor’. It allows taxon specialists to maintain their own, expert-validated view of Finnish species. The aggregation of these is used as a backbone taxonomy for all FinBIF services, and the national checklist of Finnish taxa is extracted from it (see https://laji.fi/en/theme/checklist). Each taxon is given a globally unique persistent HTTP-URI identifier, which refers to the taxon concept, not to the name. The identifier does not change if the taxon concept remains unchanged. Compatibility with checklists from other countries is sought by linking taxon concepts as Linked Data.The taxon specialists (currently c. 60) maintain the taxon data using a web application. All changes made go live every night. The nightly update interval allows the specialists a grace period to make their changes. To maintain the integrity of critical data, such as lists of protected species, limitations to what the specialists can do have been imposed. Changes to critical data are carried out by an administrator.Taxon Editor has special features for linking observations to the taxonomy. These include hidden species aggregates and tools to override how a certain name used in observations is linked to the taxonomy. Misapplied names, however, remain an unresolved problem. Most observations are still recorded using plain names, but it is possible for the observer to pick a taxon concept instead, which is the most precise way. When data are published through the FinBIF portal from other information systems, the data providers can link their observations to FinBIF’s taxon concepts by providing the concept’s identifier. The ability to use taxon concepts as a basis of observations means the concepts have to be maintained over time, a task that may become arduous in the future. For further description of the functionalities of Taxon Editor, see7.Taxon Editor is also used in Red List assessments21. The threat assessment is carried out using the criteria of the International Union for Conservation of Nature (IUCN). FinBIF offers a documentation tool and an archive for the assessment, which is based on the national checklist of Finnish taxa. Information about previous assessments is available in the tool, and the assessor can copy and confirm, e.g., area of occupancy, extent of occurrence, generation length and habitat preferences of a species from the previous assessment. The service offers the possibility to add notes to most of the fields separately and commenting on the assessments by other authorised users. In line with the IUCN instructions, the tool automatically chooses the criteria leading to the highest possible threat category of criteria filled out for the species, although the assessor confirms the final evaluation. In several fields, the tool automatically checks the validity of values entered, e.g., criteria, threat category, length of observation period, causes of threat, and current threat factors. The tool includes necessary fields for backcasting the categories of previous assessments to count the Red List Index42. There is also a possibility to do regional threat assessments. Data are stored to the triplestore34, which archives the history of all changes.Media serviceThe FinBIF media service currently supports receiving, transforming, storing and serving images and audio. For images, the original media is stored, and the service generates a smaller JPEG version to be used in the web. The service also generates different sized thumbnails. Only a handpicked set of Exchangeable image file format (Exif43) metadata is kept, so that the metadata would not leak location information about sensitive species occurrences. For audio, wav and mp3 formats are supported. The original file is processed (cleaned) to prevent any malicious content. Mp3, wav and a spectrogram are generated and stored. Support for the International Image Interoperability Framework (IIIF; https://iiif.io/about/) standard is under planning.Data upload serviceMany occurrence datasets are not yet maintained in modern IT systems or databases, which could use an API to transfer data. FinBIF is able to receive data from Excel and GIS systems as secondary data to its data warehouse. First, metadata are generated about the dataset, and selected users are given access to upload data to that dataset. Then the owner of the data must transform the data to a row/column-based table, i.e., MS-Excel or tab-separated value (TSV) file. Each row has one occurrence and must have an ID that is unique to that dataset. The dataset owner then proceeds to upload the row/column-based file using a Web UI, in which the owner maps the fields and values of their data to FinBIF schema fields and values. Updates are done by re-uploading the entire dataset or only a part of it. Deletions are handled by a specific column that annotates that occurrence as deleted.Taxonomy backendThe taxonomy backend transfers the data created in Taxon Editor to an Elasticsearch search engine on a nightly basis. FinBIF’s API is built on top of the data in Elasticsearch. GBIF’s taxonomic backbone is currently being integrated into FinBIF’s taxonomy for taxa with occurrences but no taxonomy in FinBIF. This allows FinBIF users to browse a taxonomy that is a combination of the FinBIF and GBIF taxonomies. The taxonomy backend could harvest descriptions and images from other sources, but currently these functionalities are disabled because of data quality problems.Collection metadata backendCollection and dataset metadata are maintained primarily using the Kotka CMS, but metadata are also harvested from partner organisations’ metadatabases. The metadata of a collection contain the taxonomic, geographic and temporal coverage of the dataset, as well as information about its quality using a three-level grading: (1) Professional; (2) Expert hobbyist / expert curated; (3) Citizen science / mostly non-curated. Occurrence data can be filtered in the FinBIF data warehouse based on these levels. Each occurrence also has its occurrence-specific quality grading, which is different from the dataset grading. The collection metadata define, e.g., the people who handle data requests, which are done in FinBIF’s restricted data request service.Taxonid.orgFinland and Sweden are piloting, with a subset of taxonomic groups, to connect national checklists using Linked Open Data standards44 and agreed vocabularies. By using HTTP-URI as globally unique, persistent identifiers for taxon concepts45, the service provides both human-readable (Hypertext Markup Language, HTML) and machine-readable (Extensible Markup Language, XML) responses for client requests via a central checklist (http://taxonid.org/). Future steps include linking the national lists with the global reference checklist developed by Catalogue of Life (https://www.catalogueoflife.org/). Currently the service includes only taxonomic information, but the eventual goal is to share information also on genetics, images, and traits, as well as on conservation status and observations, in a standardised way. The work was part of the DeepDive project which was funded by the Nordic e-Infrastructure Collaboration (https://neic.no/deepdive/). The vision is to establish a regional infrastructure network consisting of Nordic and Baltic data centres and information systems, and to provide seamlessly operating regional data services, tools, and virtual laboratories.Application programming interface (API)A fundamental goal of FinBIF is to provide all data in machine-readable formats, so that the data and services can be used by third party applications. This can be accomplished using FinBIF’s public API (https://api.laji.fi). It provides access to all data available in FinBIF. The FinBIF portal is built using solely the public API, which should ensure the API is robust, of high performance, reliable and easy to use.GIS servicesFinBIF aims to share occurrence data in GIS formats (WFS, WMS; see https://www.ogc.org/standards/). These services are currently under construction.Restricted data request serviceThe restricted-use data that FinBIF harbours play a crucial role in, e.g., land-use decisions and conservation. To make these data findable, and conditionally accessible, through the public portal, a Restricted-use Data Request Service (RDRS) has been employed. It allows any user with a valid justification to request access to restricted-use datasets. After selecting the required compilation of data, the user submits a standardised form with the required information. The often multiple data owners receive a notification and a request to log in to the data owners’ section of the portal to scrutinise the request. The owners may discuss the request privately among themselves to facilitate decisions. In case of discrepancy by separate owners, the user who submitted the request may still download the released part of the data.Occurrence annotationFinBIF maintains an annotation system, which allows adding information to all occurrence records in the data warehouse. Any registered user can add comments and mark occurrences as needing verification. Trusted users can be given an expert annotator status, which allows them to have more effect on how the occurrences are shown. Experts can change the identification (taxon) that is displayed by default, grade occurrences based on their quality (verified, unreliable, erroneous), and override other annotations. However, annotations never change the original occurrence, which is always kept available. Data owners can be notified about annotations regarding their data, so that they can check and correct possible errors in the primary data source.R-libraryFinBIF provides an R programming language interface to the FinBIF API. The FinBIF R package makes the publicly available data in FinBIF accessible from within R. Biodiversity information is available on taxonomy and taxon occurrence. Occurrence data can be filtered by taxon, time, location and other variables. The data accessed are conveniently preformatted for subsequent analyses. Documentation and download can be found at https://luomus.github.io/finbif/.Map servicesFinBIF has built a JavaScript map service on top of a popular Leaflet library. It provides import and export in various formats, support for the Finnish national coordinate systems and a legacy coordinate grid layout, which is still widely used as a basis of monitoring schemes, though no longer officially supported by Finland’s geographical authorities. The tool provides a rich collection of national and international map layers that are useful in reporting and evaluating occurrence data. The tool also allows calculating lengths and areas as well as drawing complex geographical shapes (e.g. survey polygons and polylines with buffer areas).AI-based species identificationFinBIF cooperates with projects that utilise machine learning in species identification and data classification. They involve creating (semi-)automated identification pipelines for Finnish fungus species from images, and bat and bird species from audio recordings. FinBIF has provided images of fungi, is building a crowd-sourcing platform on which bird experts can produce training material, and aims to implement the Animal Sound Identifier software46 for building on-line identification services.User authenticationFinBIF provides an authentication and authorisation service that can be used also by third party applications and websites. Separate authentication flows exist for websites and native applications. Users can create one FinBIF account per e-mail address and associate multiple authentication methods and other user identities to their account. For example, users can login with Google or Facebook credentials and associate their iNaturalist, Finnish Wildlife Agency and Finnish Bird Ringing user identities to their FinBIF account. This enables users to see the occurrence data they have entered into various systems as their own occurrences in the FinBIF portal.Servers, service continuity, backup and disaster recoveryFinBIF uses services provided by CSC, the Finnish IT centre for science (https://www.csc.fi) and the University of Helsinki IT department. Both provide FinBIF several OpenStack (https://www.openstack.org/) based virtual servers and an OpenShift (https://www.openshift.com/) cloud platform. FinBIF is not committed to any certain Service Level Agreement (SLA), but its availability is above 95%. All primary data gathered by FinBIF are professionally backed up by the University of Helsinki. CSC IDA (https://www.fairdata.fi/en/ida/) is used to archive larger datasets, such as specimen images. The CSC digital preservation service (https://www.fairdata.fi/en/fairdata-pas/) will be used for long-term archiving.Development methodologiesAgile developmentThe FinBIF in-house ICT team uses a three-level development process. The first level provides capacity to do long-term planning. Epic level requests (entirely new parts of the infrastructure, inclusion of new data sources, new monitoring schemes) are compiled, prioritised and to some degree scheduled using a Trello board. The aim is to open this board for all stakeholders and the public, so that interested parties can track progress and focus of development. This board is maintained in biweekly sessions.The second level is used to direct current focus. A combination of Kanban (see https://www.atlassian.com/agile/kanban) and Scrum47 methodologies is used. Every two weeks the status of ongoing epics is checked, and the epics for the next two weeks are decided. Unlike in Scrum, there is no attempt to estimate or set goals for the sprints. Rather, a Kanban-like free-flowing system is used, where things take as long as they take.The third level is the implementation process for individual epics. Like in Scrum, each epic has a named product owner (PO). The PO communicates with the stakeholders and defines user stories. The development team turns the user stories into smaller tasks, which are maintained in a Pivotal tracker backlog (www.pivotaltracker.com).It is hoped that, in the future, developers from partner organisations could be attracted to participate in the development process.Data acquisition for this paperComparative data for other BDDIsThe data shown in Table 1 and supporting the drawing of Fig. 1 were acquired by searching for information on the public internet portals of the infrastructures between July 2019 and March 2020. The data were then sent to the representatives of the infrastructures for checking and possible corrections. Altogether 27 infrastructures (eight global and 19 national or institutional) were contacted, and answers were received from 23 (six global and 16 national or institutional) infrastructures. The following information was gathered.
    What is:

    The taxonomic coverage of your infra?

    Current number of records?

    Number of species you have information on?

    Does your infrastructure share the following types of data and information:

    Natural history collection data?

    Opportunistic observation data?

    Observation data collected in systematic monitoring schemes?

    Verbal descriptions of species?

    Standardized taxonomic core data?

    DNA-barcodes (or links to BOLD database)?

    Does your infrastructure provide the following kinds of user services:

    Possibility to enter event-based data, meaning several species observations linked together?

    A Collection Management System?

    IUCN red-listing tools?

    Red-list classifications or administrative statuses of species?

    e-lab services? What kind of?

    Is the infrastructure designed to enable:

    Data generation, such as digitization of natural history specimens?

    Collation / aggregation of data?

    Entering observations by citizen science users?

    Annotation of records/identifications?

    FinBIF’s user dataTotal numbers of users and use sessions were acquired from Google Analytics (https://analytics.google.com) for the website laji.fi in its entirety. To determine which traffic belongs to which user, Google Analytics sends a unique identifier associated with each user with each hit. This is accomplished via a Client ID, a unique, randomly generated string that gets stored in the browser’s cookies, so subsequent visits to the same site can be associated with the same user. Using cookies allows identifying unique users across browsing sessions, but it cannot identify unique users across different browsers or devices. Hence, the user numbers presented here are slight overestimates of true numbers of different people using the service. The use sessions are total number of sessions within the given range of dates. A session is the period during which a user is actively engaged with the website. All usage is associated with a session.The number of registered users comes from FinBIF’s own registry. Until the end of 2019, users had to register at the service to be able to download data from laji.fi to their own device. Subsequently, the requirement has been relaxed so that registration is required only to obtain a citable persistent unique HTTP-URI identifier for a downloaded data batch, but non-citeable so-called light downloads can be done without registration. Registration is also required to be able to record data to FinBIF’s primary data management systems and to annotate records at https://laji.fi/.Numbers of data downloads and downloaded data points are logged by FinBIF itself. As of the beginning of 2020, the numbers reported in Fig. 3b include light downloads. More