More stories

  • in

    A non-destructive sugar-feeding assay for parasite detection and estimating the extrinsic incubation period of Plasmodium falciparum in individual mosquito vectors

    Comparing estimates of parasite’s EIP between the classic dissection approach and the non-destructive individual “spit” assayDestructive approach: mosquito dissection and microscopic observationA total of 121 mosquito females exposed to parasite isolate A and 114 to isolate B were dissected from 8 to 16 dpbm (between 8 and 20 females/day, median = 14) to assess microscopically the presence and number of oocysts in the midguts and of sporozoites in salivary glands. Salivary gland infections were also confirmed through qPCR. The infection rate was high with 117/121 (96.7%) and 114/114 (100%) of females exposed respectively to isolate A and B harboring parasite oocysts in their midguts (supplementary S44, Fig. S4a). The gametocytemia of isolate B (1208 gam/µl) was higher than that of isolate A (168 gam/µl), resulting in strong difference in the number of developing oocysts between the two isolates (B: 191.65 ± 21, A: 13.86 ± 2, supplementary S4, Fig. S4b, LRT X21 = 24.46, P  More

  • in

    Joined-up action for biodiversity

    This is a challenge. Hunger, poverty and the continued decline in biodiversity are linked societal challenges. On our current trajectory, biodiversity, and the services it provides, will continue to decline, jeopardizing the achievement of the Sustainable Development Goals, due to the increasing impacts of land- and sea-use change, overexploitation of resources, climate change, pollution and invasive species — all pressures driven by unsustainable patterns of production and consumption. The projected decline in biodiversity will affect all people, but especially indigenous and local communities, and the world’s poor and vulnerable, as they rely on biodiversity for their livelihoods. However, it is not too late to change path. We need a portfolio of actions to address all drivers of biodiversity decline, at all levels, using context-specific approaches; urgent transformations are needed in the production of goods and services, especially food, provision of fresh water, energy and products from forestry. This requires a significant shift away from business-as-usual and a focus on synergies. There is no single pathway ahead but many alternative approaches reflecting local conditions and priorities — flexibility is crucial to tailor measures to national realities and circumstances. More

  • in

    Stochastic models support rapid peopling of Late Pleistocene Sahul

    Cellular-automaton frameworkWe constructed the cellular-automaton model in the open-access R statistical computing environment (cran.rproject.org). We provide all code, data and instructions to repeat the analysis65, which can be run on any desktop computer. Our spatial model is based on a 0.5° × 0.5° raster grid of Sahul from 0.5 to 43.0° S latitude, and 110.5 to 153.5° E longitude (86 rows and 87 columns). The land area of Sahul changes with fluctuating sea levels, so we estimated exposed land in 1000-year time slices to follow our available hindcasts of carrying capacity (see ‘Carrying capacity’ below) based on a digital elevation model and estimated sea-level change over the period of interest (from 85 to 40 ka; see Scenarios). We used the ETOPO1 global relief model of Earth’s surface66 to estimate the exposed landmass of Sahul through time. To reconstruct the landmass changes of Sahul every 1000 years, we applied sea-level variability outputs67 to the ETOPO1 model. We also included fluctuations in Lake Carpentaria that could potentially act as a natural barrier for human movement over time. We modified the contour of the lake based on modelled sea-level changes68 applied to the digital elevation model.From an initially peopled cell (see Scenarios), the new population can grow following a Ricker population-dynamics model, and emigrate to adjacent cells following stochastically resampled rules of dispersal; likewise, each cell can receive immigrants from adjacent cells following similar dispersal rules (see ‘Emigration and immigration’, and ‘Long-distance dispersal’).Population-dynamics modelEach cell within the grid acts as a particular sub-population unit within the overall dynamics of Sahul, and the summary information provided at the end of a simulation is an overall expression of all cells. The change in human abundance (N) within each cell is governed by the following phenomenological (Ricker) equation of population dynamics:$$N_{i,j,t + 1} = N_{i,j,t}e^{r_mleft( {1 – frac{{N_{i,j,t}}}{{K_{i,j,t}}}} right)} – left( {E_{i,j,t} – I_{i,j,t}} right)$$
    (1)
    where i is the cell row number in the 0.5° × 0.5° latitude lattice, j is the cell column number, t is the time interval in units of human generations (1 g = 27.9 years)2, Ni,j,t + 1 is the number of individuals in cell i, j at the next time interval (t + 1), Ni, j, t is the number of individuals in cell i, j at time interval t, rm is the maximum rate of population increase when resources are not limiting, Ki, j, t is the cell-specific carrying capacity (see ‘Carrying capacity’ below), and the Ei, j, t and Ii, j, t parameters represent the number of individuals emigrating from and immigrating into the focal cell i, j per time interval t, respectively (see ‘Emigration and immigration’). As an estimate of rm, we set the age-structured Leslie matrix for Aboriginal hunter–gatherers2 to have a survival probability (subdiagonal matrix entries) all equal to 1 (complete survival in every age class), and then took the loge of that matrix’s dominant eigenvalue to the power of g multiplied by 2 as the generationally scaled rm estimate required for Eq. (1). Finally, we imposed a beta-resampled additional mortality parameter MMVP = 0.2 for cells with a population size  1, immigration into cell i, j occurred following the same movement rules as for emigration.Long-distance dispersalWe used the allometric relationship of natal dispersal for omnivorous and herbivorous mammals40 to predict a dispersal probability for humans. Assuming a mean adult mass of M = 50 kg, maximum natal dispersal distance Dm is estimated as aMb, where a = 3.31 ± 1.17 and b = 0.65 ± 0.05 for omnivores and herbivores combined40. This produced an estimated maximum dispersal distance Dm ranging from 22.4 to 69.3 km. As a maximum dispersal range, this compares well to the average mobility of African hunter–gatherers of 1400–3900 km2/generation39 (equivalent to a radius of 21.1–35.2 km assuming a perfect circle), and the 0.4–1.1 km yr−1 (11.2–30.7 km/generation) estimates for Palaeolithic human expansions in northern Europe41. Also, Gould38 reported journeys by Aboriginal Australians of 400 to 560 km as ‘not unusual’ and perhaps the greatest mobility ever recorded, moving as many as nine times in three months, and covering an area of ~2600 km2 (radius = 28.8 km).Next, we used the estimated probability of dispersal (Pr(dmax)) of d exceeding multiples (1 to 10) of one cell width (0.5 × 111.12 = 55.6 km) as (Pr left( {d_{{mathrm{max}}}} right) = e^{ – d/aM^b}) (Supplementary Fig. 7). However, there is evidence globally that the territory size of hunter–gatherer groups is strongly related to local productivity, with a greater need to expand foraging areas as productivity declines19,80. Using territory size and rainfall data from Hiscock80, we assumed the same relative change in rainfall applied to net primary productivity, but shifted the power–law relationship upwards to match the slope of the upper limit of maximum dispersal distance (Supplementary Fig. 7b). Thus, for every tenfold decrease in relative net primary production, maximum dispersal distance increases by 12.7 times (Supplementary Fig. 7b). Once a long-distance dispersal event occurred, we Poisson-resampled the maximum dispersal distance to provide a δx and a δy to move from the focal cell in cell units (including a random direction: east–west for δx, and north–south for δy). The size of the long-distance-dispersing population followed the same rules as for neighbouring-cell emigration.Distance-to-water limitationWhile territory size, and hence, maximum dispersal distances increase with increasing aridity according to the relationships described above, there is evidence that human dispersal is ultimately limited by water availability15. This is likely to be even more relevant in Australia, the driest inhabited continent on Earth—indeed, estimated routes of gene flow among Aboriginal Australians suggest that the arid interior acted as a barrier to migration11. We therefore invoked an additional limitation on dispersal by calculating a probability of realizing a long-distance dispersal event (Pl) according to the following equation previously designed to limit modelled species migrations81:$$P_l = 1 – left( {frac{{D_l}}{{D_{H_2O}}}} right)^{Omega}$$
    (5)
    where Dl = the realized maximum dispersal distance generated from the algorithm described above, (D_{H_2O}) = the distance to water in units of map cells derived from the Australian Water Observations from Space dataset15, and Ω = the hydrological resistance parameter set arbitrarily to a value of 3 to invoke landscape-scale resistance to movement only in the driest areas of Sahul per generational time step.RuggednessWe hypothesized that high landscape ruggedness (elevational gradient) might at least partially impede the progress of human expansion across the landscape42, so we tested this using data available in an ethnographic and environmental dataset compiled by Binford42. Available in the binford library82 in R, the dataset includes >200 variables measuring aspects of hunter–gatherer subsistence, mobility and social organization for 339 ethnographically documented groups. Given the evidence that mobility is a function of productivity36,80, we constructed a simple linear model of annual movement varying with annual rainfall and the difference between maximum and minimum elevation within a 25- (40.2 km) mile radius of the group’s centroid (equivalent to an elevational gradient; i.e., ruggedness). Taking the cube root of annual movement and the difference in maximum and minimum elevation to comply with the assumption of Gaussian error distributions, the expected relationship between movement and rainfall prevailed, and there was a weak effect of elevational difference—a maximum of 1% reduction in annual movement (Supplementary Fig. 8). Expressed on the linear scale and standardizing annual movement and elevational difference to the range of 0–1 (assuming a constant median annual rainfall value), an exponential decay function of the form:$$M_{{mathrm{red}}} = a + broot {3} of {{G_{{mathrm{rel}}}}}$$
    (6)
    where Mred = the proportion of expected total annual movement, a = 1.001116, b = −0.0104453 and Grel = the standardized ruggedness from 0 to 1, described the reduction in annual movement rates up to a maximum of 1% (Supplementary Fig. 8). For all instances of emigration, immigration and long-distance dispersal, we assigned this function to the total number of people migrating for each cell based on its standardized ruggedness. We computed the topographic ruggedness index83 as the difference in elevation between a given cell and its eight neighbouring central cells, based on our digital elevation model. For a given cell, we then squared each of the eight elevation difference values (to render them positive), and calculated the square root of the averages of the squares. We updated the spatial resolution of our results to 0.5° × 0.5° to match the other environmental layers.Catastrophic mortality eventsPalaeo-demographic investigations of past human populations suggest that long-term population growth rates were just slightly higher than zero as a result of episodes of catastrophic mortality arising from pandemics, natural disasters and violent conflicts occurring every few generations84. This also agrees well with estimates of the probability of mass mortality events scaling to generation time for vertebrates (Pr(catastrophe) = 0.14 per generation)43. We thus sampled binomially at Pr = 0.14 for whether a catastrophe occurred in each focal cell, and then beta-sampled the severity of the event centred on Mcat = 0.5 (SD = 0.5/10) to emulate a stochastic catastrophe event of 50% mortality, on average, for that cell43.However, we reasoned that a random allocation of catastrophes among cells across the entirety of Sahul was not realistic, for the reason that mortality events arising from natural disasters, warfare or disease outbreaks would likely be spatially aggregated. We therefore imposed a Thomas cluster process using the rThomas function from the spatstat R library85, setting the intensity of the Poisson process of cluster centres κ to a linear relationship between the number of cells occupied per iteration and a vector ranging from 0.3 to 1.2, the standard deviation of random displacement along each coordinate axis of the grid of a given cell away from the cluster centre σscale = 0.015, and the mean number of cells per cluster μ = 0.6 × the mean dimension of the occupied grid per iteration. This combination of parameters led to a reasonable degree of spatial clustering while maintaining a random spread of cells around a catastrophe focal point, as well as maintaining the overall proportion of cells across the landscape experiencing a catastrophic mortality event ~0.14 per generational iteration.ScenariosWe ran 120 scenarios (8 entry times, ×5 entry sequences, ×3 relationships between carrying capacity and net primary production) where we modified three main components of the stochastic simulations: (i) the timing of first entry to Australia (from 85 to 50 ka, in 5000-year increments), (ii) the place of entry (northern, southern, simultaneous northern and southern, northern followed by southern 2000 years later, or southern followed by northern 2000 years later) and (iii) the form of the relationship between hindcasted net primary productivity and human carrying capacity (linear, rotated parabolic or reciprocal quadratic yield density). We repeated each scenario 100 times to generate a per-cell confidence interval of time of first arrival. Here, we deemed a cell to have been populated for the first time once it received ≥100 individuals (Nfirst), which is considered the minimum viable effective population size to avoid inbreeding depression70.Comparison layersTo test the resultant outputs against real archaeological data, we compiled a conservative list of ages older than 30 ka obtained from across Sahul (see ‘Compiling reference archaeological dates’ in the Supplementary Information and Supplementary Data 1). However, the spatial coverage of these ages is highly uneven (Fig. 1a), so we applied a maximum-likelihood method to correct for the Signor–Lipps effect first developed by Solow86 and adapted for spatial inference of both first-arrival and extinction patterns87. While described in more detailed elsewhere87, we briefly summarize the approach here.To correct for the inherent spatial bias of dates in a landscape, let x1,…xn be the spatial locations of n dated specimens in an area W and a1,…an their respective ages. The estimated average age M(x) of a putative date at a given location x is based on a standard kriging procedure88 derived from the spatial covariance between the age of two dated specimens as a function of their respective pairwise distance, so that:$$hat Mleft( x right) = mathop {sum}limits_{i le n} {w_ileft( x right)a_i}$$
    (7)
    where (w_1left( x right), ldots w_nleft( x right)) follows (mathop {sum}nolimits_{i le n} {w_ileft( x right) = 1}) and minimizes$$mathop {sum}limits_{i le n} {w_ileft( x right)gamma left( {x_i – x_j} right) + mu = gamma (x – x_j)}$$
    (8)
    for j ≤ n, with μ being a Lagrange multiplier so that (mu = mathop {sum}nolimits_{i le n} {gamma (x_i – x)}) and γ is the variogram:$$gamma left( u right) = frac{1}{2}Eleft( {aleft( z right) – aleft( {z + u} right)} right)^2 = sigma ^2 – cleft( u right)$$
    (9)
    where a(z) is the age a of a specimen found at a given location z (with z ∈ W), σ2 is the variance of a(z) and c(u) is the covariance between a(z) and a(z + u), with any two locations in W separated by distance u.We then modified Solow’s method89 to correct for taphonomic bias, which assumes initially that the distribution of ages through time is uniform between a given age A0 when individuals are assumed to be present, and the date of arrival A. For n ages of a given time series at a given location, the estimated terminal age (hat A) is therefore:$$hat A = A_0 + frac{{n + 1}}{n}{max} _{i}left( {a_i – A_o} right)$$
    (10)
    To integrate this method into a spatial context, we estimated a preliminary age Ap across space assuming (hat Mleft( x right)) follows a stationary random field:$$hat A_pleft( x right) = 2hat Mleft( x right) – A_0$$
    (11)
    But this generates a spatial bias (hat A_pleft( x right) – A(x)), in every (hat A_pleft( x right)), so we applied a simulation-based, spatial-bias-correction procedure90 to estimate the bias generated by Eq. (11) at each x across W. The first step assumes that (hat A_pleft( x right)) is the ‘true’ date of the terminal event in x. Based on these (hat A_pleft( x right)), we generated k age samples (a^{(k)} = (a_1^{left( k right)}, ldots ,a_n^{(k)})) at the same locations x1, … xn following the same spatial pattern and characteristics as the dated record and sampled independently from a uniform distribution on ([A_{0,}hat A_pleft( {x_i} right)]). We then inferred (hat A^{(k)}(x)), the timing of the terminal event for the k new simulated time series and calculated an estimated total bias (hat Bleft( x right)) across all k ages:$$hat Bleft( x right) = frac{1}{k}mathop {sum}limits_k {hat A^{left( k right)}left( x right) – hat A_pleft( x right)}$$
    (12)
    The final estimate of the timing of the terminal event of interest (hat Aleft( x right)) is the distribution of the preliminary dates (hat A_pleft( x right)) for every location x corrected by (hat Bleft( x right)), such that:$$hat Aleft( x right) = hat A_pleft( x right) – hat Bleft( x right)$$
    (13)
    Because archaeological age estimates ai are always associated with an inherent dating uncertainty σi, we assumed that age uncertainties are Gaussian and independent91 so that the probability density of the estimated age of the terminal event A(x) follows:$$int_{{it{epsilon }}_1,…,{it{epsilon }}_n} {A_{left{ {a_1 + {it{epsilon }}_1, ldots ;a_n + {it{epsilon }}_n} right}}(x)prod _ig_ileft( {{it{epsilon }}_i} right)d{it{epsilon }}_1 ldots d{it{epsilon }}_n}$$
    (14)
    where gi = the density of the Gaussian random variable with mean 0 and variance (sigma _i^2), and (A_{left{ {a_1 + {it{epsilon }}_1,, .., a_n + {it{epsilon }}_n} right}}(x)) = the final estimate at a given location x for a time series of age (a_1 + {it{epsilon }}_1,, .., a_n + {it{epsilon }}_n) located at x1,..xn, respectively. We applied the same Cook and Stefanski bias-correction procedure so that the k ages are independently sampled from a uniform distribution on ([A_{0,}hat A_pleft( {x_i} right)]) at the same locations x1, … xn following the same spatial pattern and characteristics as the dated record. This gives (a^{(k)} = (a_1 + {it{epsilon }}_1^{(k)},, .., a_n + {it{epsilon }}_n^{(k)})) with ({it{epsilon }}_i^{(k)}) independently sampled as a function of the probability density described in Eq. (14) to account for the dating uncertainty associated with each age. We then use the terminal ages (hat A^{(k)}(x) = A_{left{ {a_1^{left( k right)},,..,, a_n^{left( k right)}} right}}left( x right)) to estimate the bias in Eq. (12) and apply this to provide a corrected timing of (hat Aleft( x right)) for every x following Eq. (13).Global sensitivity analysisWe designed a global sensitivity analysis to provide robust sensitivity measures of the probability of the time to saturation of the entire Sahul continent to variation in the underlying parameters of our stochastic model54,92; this analysis does not repeat the scenario-testing parameters (i.e., time of entry, point(s) of entry, K–Pp relationship). For this global sensitivity analysis, we used the initial scenario parameters of a 50-ka entry at the southern route, the rotated parabolic relationship between K and Pp, and assuming a founding population size stochastically sampled between 1300 and 1500 people for the entry point2.Here, we ran the cellular-automaton spatial model 1000 times, randomly sampling 12 of its parameters uniformly for each iteration based on a Latin hypercube-sampling protocol54. We set the 12 parameters to be sampled with ±50% variation on the median value used in the model (except for Ncat and max N/K with a maximum upper bound of 0.99, and for maximum Dcell—see below); these 12 parameters were: (i) the maximum generational rate of population increase rm used to parameterize the phenomenological population-dynamics model per cell (range: 0.10–0.31), (ii) the minimum maximal dispersal distances Dm estimated from the allometric prediction (11–34 km), (iii) the cell-based maximum dispersal distance modifier (max Dcell), ranging from 1× to 5× the value set in the original model (10 cells), (iv) the cell-based minimum viable population size NMVP (50–150 individuals) below which we set (v) an additional mortality parameter MMVP (0.1–0.3), (vi) the hydrological resistance parameter Ω invoking landscape-scale resistance to movement only in the driest areas of Sahul per generational time step (1.5–4.5), (vii) the beta-resampled mean mortality of a cell during a catastrophe event Mcat (0.38–0.99), (viii) the beta-resampled proportion of people moving between cells when a migration event occurs Pmig (0.17–0.50), the beta-resampled (ix) minimum and (x) maximum ratios of N/K per cell invoking an emigration event (0.15–0.45 and 0.35–0.99, respectively), (xi) a resistance modifier R that modified the relationship between landscape ruggedness and maximum dispersal probability (0.5–1.5) and (xii) the population threshold Nfirst above which we determined a cell to be occupied for the calculation of the date of first arrival in a cell (50–150 individuals).We chose to summarise the output of each of these 1000 parameter-sampled runs of the spatial model as the time taken to achieve continental saturation (i.e., the number of years taken from initial entry to occupy every cell in Sahul). In a separate analysis, we then tested the influence of the per-model run parameter values (predictors) on the time to continental saturation (response) using a boosted-regression tree93 emulator with the function gbm.step in the dismo R library94. Here, we set the error distribution family as Gaussian, the bag fraction to 0.75, the learning rate to 0.008, the tolerance to 0.0001, the maximum number of trees to 10,000 and the tree complexity to 2 (first-order interactions only). To assess the relative contribution of each of the 12 randomly sampled parameters to the time to spatial saturation, we calculated the boosted-regression tree metrics of relative influence54.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide

    1.Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds) Tropical Montane Cloud Forests: Science for Conservation and Management (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO97805117783842.Mulligan, M. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 14–38 (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO9780511778384.0043.Doumenge, C., Gilmour, D., Pérez, M. R. & Blockhus, J. in Tropical Montane Cloud Forests (eds Hamilton, L. S. et al.) 24–37 (Springer-Verlag, 1995).4.Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    5.Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Process. 25, 465–498 (2011).Article 

    Google Scholar 
    6.Gentry, A. H. Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63, 19–28 (1992).Article 

    Google Scholar 
    7.Foster, P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci. Rev. 55, 73–106 (2001).Article 

    Google Scholar 
    8.Hamilton, L. S., Juvik, J. O. & Scatena, F. N. in Tropical Montane Cloud Forests (eds Hamilton, L. S. et al.) 1–18 (Springer-Verlag, 1995).9.Ponce-Reyes, R. et al. Vulnerability of cloud forest reserves in Mexico to climate change. Nat. Clim. Change 2, 448–452 (2012).Article 

    Google Scholar 
    10.Swenson, J. J. et al. Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol. 12, 1 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Gould, W. A., González, G. & Rivera, G. C. Structure and composition of vegetation along an elevational gradient in Puerto Rico. J. Veg. Sci. 17, 653–664 (2006).Article 

    Google Scholar 
    12.Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 124, 1–12 (2014).Article 

    Google Scholar 
    14.Jarvis, A. & Mulligan, M. The climate of cloud forests. Hydrol. Process. 25, 327–343 (2011).Article 

    Google Scholar 
    15.Scatena, F. N., Bruijnzeel, L. A., Bubb, P. & Das, S. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 3–13 (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO9780511778384.00316.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article 

    Google Scholar 
    18.Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kreft, H., Jetz, W., Mutke, J. & Barthlott, W. Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33, 408–419 (2010).Article 

    Google Scholar 
    21.Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Venter, Z. S., Cramer, M. D. & Hawkins, H.-J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Lawton, R. O., Nair, U. S., Pielke, R. A. & Welch, R. M. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294, 584–587 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Guo, W.-Y. et al. Half of the world’s tree biodiversity is unprotected and is increasingly threatened by human activities. Preprint at bioRxiv https://doi.org/10.1101/2020/04.21.052464 (2020).26.Helmer, E. H. et al. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS ONE 14, e0213155 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    29.Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).30.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Beusekom, A. E. V., González, G. & Scholl, M. A. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change. Atmos. Chem. Phys. 17, 7245–7259 (2017).Article 
    CAS 

    Google Scholar 
    32.Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gross, J. E., Goetz, S. J. & Cihlar, J. Application of remote sensing to parks and protected area monitoring: introduction to the special issue. Remote Sens. Environ. 113, 1343–1345 (2009).Article 

    Google Scholar 
    34.Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).CAS 
    PubMed 

    Google Scholar 
    35.Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. BioScience 65, 637–638 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Wetzel, F. T., Beissmann, H., Penn, D. J. & Jetz, W. Vulnerability of terrestrial island vertebrates to projected sea-level rise. Glob. Change Biol. 19, 2058–2070 (2013).Article 

    Google Scholar 
    37.Keil, P., Storch, D. & Jetz, W. On the decline of biodiversity due to area loss. Nat. Commun. 6, 8837 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Rybicki, J. & Hanski, I. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 16, 27–38 (2013).PubMed 
    Article 

    Google Scholar 
    39.Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).42.Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Schulze, K., Malek, Ž. & Verburg, P. H. Towards better mapping of forest management patterns: a global allocation approach. For. Ecol. Manage. 432, 776–785 (2019).Article 

    Google Scholar 
    44.Curtis, C. A., Pasquarella, V. J. & Bradley, B. A. Landscape characteristics of non-native pine plantations and invasions in southern Chile. Austral Ecol. 44, 1213–1224 (2019).Article 

    Google Scholar 
    45.Aldrich, M., Billington, C., Edwards, M. & Laidlaw, R. A Global Directory of Tropical Montane Cloud Forests (WCMC, 1997).46.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad https://doi.org/10.5061/dryad.kd1d4 (2017).48.Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Open-File Report No. 2011-1073 (USGS, 2011).49.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).Article 

    Google Scholar 
    50.Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).Article 

    Google Scholar 
    51.Karmalkar, A. V., Bradley, R. S. & Diaz, H. F. Climate Change scenario for Costa Rican montane forests. Geophys. Res. Lett. 35, L11702 (2008).Article 

    Google Scholar 
    52.Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 30, 751–777 (2006).Article 

    Google Scholar 
    55.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    56.Fithian, W. & Hastie, T. Finite-sample equivalence in statistical models for presence-only data. Ann. Appl. Stat. 7, 1917–1939 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. Ser. A 135, 370–384 (1972).Article 

    Google Scholar 
    58.Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman & Hall/CRC Monographs on Statistics and Applied Probability, 1990).59.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338 (2012) .Article 

    Google Scholar 
    60.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    61.Aide, T. M. et al. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45, 262–271 (2013).Article 

    Google Scholar 
    62.Aide, T. M., Ruiz-Jaen, M. C. & Grau, H. R. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 101–109 (Cambridge Univ. Press, 2011).63.Schwartz, N. B., Aide, T. M., Graesser, J., Grau, H. R. & Uriarte, M. Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Front. For. Glob. Change 3, 85 (2020).Article 

    Google Scholar 
    64.Bubb, P. et al. Cloud Forest Agenda (UNEP-WCMC, 2004); https://www.unep-wcmc.org/cloud-forest-agenda65.Bockor, I. Analyse von Baumartenzusammensetzung und Bestandes-struckturen eines andinen Wolkenwaldes in Westvenezuela als Grundlagezur Wald-typengliederung. PhD thesis, Univ. Göttingen (1979).66.The State of the World’s Forests 2020: Forests, Biodiversity and People (FAO & UNEP, 2020); https://doi.org/10.4060/ca8642en67.Ribas, L. G., dos, S., Pressey, R. L., Loyola, R. & Bini, L. M. A global comparative analysis of impact evaluation methods in estimating the effectiveness of protected areas. Biol. Conserv. 246, 108595 (2020).Article 

    Google Scholar 
    68.Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Khandker, S., B. Koolwal, G. & Samad, H. Handbook on Impact Evaluation: Quantitative Methods and Practices (World Bank, 2009).70.Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).Article 

    Google Scholar 
    71.Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Laurance, W. F. et al. Predictors of deforestation in the Brazilian Amazon. J. Biogeogr. 29, 737–748 (2002).Article 

    Google Scholar 
    73.Etter, A., McAlpine, C., Wilson, K., Phinn, S. & Possingham, H. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 114, 369–386 (2006).Article 

    Google Scholar 
    74.Geist, H. J. & Lambin, E. F. What drives tropical deforestation? LUCC Report Series No. 4 (LUCC, 2001).75.Nelson, A. et al. A suite of global accessibility indicators. Sci. Data 6, 266 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73 (2011).Article 

    Google Scholar 
    78.The IUCN Red List of Threatened Species version 2016.1 (IUCN, 2016); http://www.iucnredlist.org79.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Storch, D., Keil, P. & Jetz, W. Universal species–area and endemics–area relationships at continental scales. Nature 488, 78–81 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Landscape change patterns at three stages of the construction and operation of the TGP

    1.ICOLD (International Commission On Large Dams). World Register of Dams. Preprint at https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp (2020).2.Lehner, B. et al. High resolution mapping of the world’s reservoirs and dams for sustainable river flow management. Front. Ecol. Environ. 9(9), 494–502. https://doi.org/10.1890/100125 (2013).Article 

    Google Scholar 
    3.Moussa, A., Soliman, M.& Aziz, M. Environmental evaluation for High Aswan Dam since its construction until present. In: Sixth International Water Technology Conference, IWTC, Alexandria, Egypt (2001).4.Strand, H., et al. Sourcebook on remote sensing and biodiversity indicators. NASA-NGO Biodiversity Working Group and UNEP-WCMC (2007).5.Grumbine, R. E. & Pandit, M. K. Threats from India’s Himalaya dams. Science 339(6115), 36–37. https://doi.org/10.1126/science.1227211 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    6.Chen, C., Ma, M., Wu, S., Jia, J. & Wang, Y. Complex effects of landscape, habitat and reservoir operation on riparian vegetation across multiple scales in a human-dominated landscape. Ecol. Indic. 94, 482–490. https://doi.org/10.1016/j.ecolind.2018.04.040 (2018).Article 

    Google Scholar 
    7.Milliman, J. D. & Meade, R. H. World-wide delivery of river sediment to the oceans. J. Geol. 91, 1–21 (1983).ADS 
    Article 

    Google Scholar 
    8.Tonkin, J. D. et al. Flow regime alternation degrades ecological networks in riparian ecosystems. Nat. Ecol. Evol. 2, 86–93. https://doi.org/10.1038/s41559-017-0379-0 (2018).Article 
    PubMed 

    Google Scholar 
    9.Nillson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408 (2005).ADS 
    Article 

    Google Scholar 
    10.Mitsch, W. et al. Optimizing ecosystem services in China. Science 322(5901), 528 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Stone, R. Three Gorges Dam: into the unknown. Science 333, 817 (2008).ADS 
    Article 

    Google Scholar 
    12.Fu, B. J. et al. Three Gorges Project: efforts and challenges for the environment. Prog. Phys. Geogr. 34(6), 741–754. https://doi.org/10.1177/0309133310370286 (2010).Article 

    Google Scholar 
    13.Xu, X. B. et al. Unravelling the effects of large-scale ecological programs on ecological rehabilitation of China’s Three Gorges Dam. J. Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120446 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Yaeger, M. A., Massey, J. H., Reba, M. L. & Adviento-Borbe, M. A. A. Trends in the construction of on-farm irrigation reservoirs in response to aquifer decline in eastern Arkansas: implications for conjunctive water resource management. Agric. Water Manage. 208, 373–383. https://doi.org/10.1016/j.agwat.2018.06.040 (2018).Article 

    Google Scholar 
    15.Bai, J. et al. Soil organic carbon contents of two natural inland saline-alkalined wetlands in northeastern China. J. Soil. Water Conserv. 62(6), 447–452 (2007).
    Google Scholar 
    16.Chen, L. G., Qian, X. & Shi, Y. Critical area identification of potential soil loss in a typical watershed of the Three Gorges Reservoir Region. Water Resour. Manag. 25(13), 3445–3463. https://doi.org/10.1007/s11269-011-9864-4 (2011).Article 

    Google Scholar 
    17.Xiao, Q., Xiao, Y. & Tan, H. Changes to soil conservation in the Three Gorges Reservoir Area between 1982 to 2015. Environ. Monit. Assess. 192, 44. https://doi.org/10.1007/s10661-019-7983-1 (2020).Article 

    Google Scholar 
    18.Zhao, Q. H. et al. Landscape change and hydrologic alteration associated with dam construction. Int. J. Appl. Earth Obs. 16(1), 17–26. https://doi.org/10.1016/j.jag.2011.11.009 (2012).CAS 
    Article 

    Google Scholar 
    19.Zhao, C. L. et al. Ecological security patterns assessment of Liao river basin. Sustainability 10, 2401. https://doi.org/10.3390/su10072401 (2018).Article 

    Google Scholar 
    20.Yang, L. M. & Zhu, Z. L. The status quo and expectation of global and local land cover and land use RS research. J. Nat. Resour. 14(4), 340–344 (1999).
    Google Scholar 
    21.Meyfroidt, P., Lambin, E. F., Erb, K. H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Env. Sust. 5(5), 438–444. https://doi.org/10.1016/j.cosust.2013.04.003 (2013).Article 

    Google Scholar 
    22.Forman, R. T. T. Some general principles of landscape and regional ecology. Landscape Ecol. 10(3), 133–142. https://doi.org/10.1007/BF00133027 (1995).Article 

    Google Scholar 
    23.Xiao, D. N., Chen, W. B. & Guo, F. L. On the basic concepts and contents of ecological security. Chin. J. Appl. Ecol. 13(3), 354–383. https://doi.org/10.13287/j.1001-9332.2002.0084 (2002).Article 

    Google Scholar 
    24.Gustafson, E. J., Roberts, L. J. & Leefers, L. A. Linking linear programming and spatial simulation models to predict landscape effects of forest management alternatives. J. Environ. Manage. 81(4), 339–350. https://doi.org/10.1016/j.jenvman.2005.11.009 (2006).Article 
    PubMed 

    Google Scholar 
    25.Restrepo, A. M. C. et al. Land cover change during a period of extensive landscape restoration in Ningxia Hui Autonomous Region China. Sci Total Environ. 598, 669–679. https://doi.org/10.1016/j.scitotenv.2017.04.124 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Gong, W. F. et al. Effect of terrain on landscape patterns and ecological effects by a gradient-based RS and GIS analysis. J. For. Res. 28(5), 1061–1072. https://doi.org/10.1007/s11676-017-0385-8 (2017).Article 

    Google Scholar 
    27.Birhane, E. et al. Land use land cover changes along topographic gradients in Hugumburda national forest priority area, Northern Ethiopia. Remote Sens. Appl. Soc. Environ. 13, 61–68. https://doi.org/10.1016/j.rsase.2018.10.017 (2019).Article 

    Google Scholar 
    28.Tian, P. et al. Research on land use changes and ecological risk assessment in Yangjiang River Basin in Zhejiang Province China. Sustainability 11(10), 2817. https://doi.org/10.3390/su11102817 (2019).Article 

    Google Scholar 
    29.Xiong, M., Xu, Q. X. & Yuan, J. Analysis of multi-factors affecting sediment load in the Three Gorges Reservoir. Quatern Int. 208, 76–84. https://doi.org/10.1016/j.quaint.2009.01.010 (2009).Article 

    Google Scholar 
    30.Feng, L. & Xu, J. Y. Farmers’willingness to participate in the next-stage Grain-for-Green project in the Three Gorges Reservoir Area China. Environ. Manage. 56, 505–518. https://doi.org/10.1007/s00267-015-0505-1 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    31.Cao, S. et al. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manage. 183, 843–849. https://doi.org/10.1016/j.jenvman.2016.07.096 (2016).Article 
    PubMed 

    Google Scholar 
    32.Galicia, L., Zarco-Arista, A. E. & Mendoza-Robles, K. I. Land use/cover, landforms and fragmentation patterns in a tropical dry forest in the southern Pacific region of Mexico. Singapore J. Trop. Geo. 29(2), 137–154. https://doi.org/10.1111/j.1467-9493.2008.00326.x (2008).Article 

    Google Scholar 
    33.Zhong, S. Q. et al. Mechanized and optimized configuration pattern of crop-mulberry systems for controlling agricultural non-point source pollution on sloping farmland in the Three Gorges Reservoir Area, China. Int. J. Env. Res. Pub. He. 17, 3599. https://doi.org/10.3390/ijerph17103599 (2020).CAS 
    Article 

    Google Scholar 
    34.Qi, S. W., Yue, Z. Q., Liu, C. L. & Zhou, Y. D. Significance of outward dipping strata in argillaceous limestones in the area of the Three Gorges reservoir China. Bull. Eng. Geol. Environ. 68, 195–200. https://doi.org/10.1007/s10064-009-0206-1 (2009).CAS 
    Article 

    Google Scholar 
    35.Zhang, Q. et al. The spatial granularity effect, changing landscape patterns, and suitable landscape metrics in the Three Gorges Reservoir Area, 1995–2015. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2020.106259 (2020).Article 

    Google Scholar 
    36.Yang, H. C., Wang, G. Q., Wang, L. J. & Zheng, B. H. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir. Environ. Sci. Pollut. Res. Int. 23(12), 11448–11460. https://doi.org/10.1007/s11356-015-5922-4 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Shen, Z. Y. et al. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agric. Water Manage. 96, 1435–1442. https://doi.org/10.1016/j.agwat.2009.04.017 (2009).Article 

    Google Scholar 
    38.Zhang, J. X., Liu, Z. J. & Sun, X. X. Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: land use/land cover, vegetation cover changes estimated using multi-source satellite data. Int. J. Appl. Earth Obs. 11, 403–412. https://doi.org/10.1016/j.jag.2009.07.004 (2009).CAS 
    Article 

    Google Scholar 
    39.Huang, C. B. et al. Land use/cover change in the Three Gorges Reservoir area, China: reconciling the land use conflicts between development and protection. CATENA 175, 388–399. https://doi.org/10.1016/j.catena.2019.01.002 (2019).Article 

    Google Scholar 
    40.Wang, W. & Pu, Y. Analysis of landscape patterns and the trend of forest resources in the Three Gorges Reservoir area. J. Geosci. Environ. Protect. 6, 181–192. https://doi.org/10.4236/gep.2018.65015 (2018).Article 

    Google Scholar 
    41.Li, Z., Wang, R., Zhou, Z. & Luo, X. Three Gorges Project’s impact on the water resource and environment of Yangtze River. J. Appl. Sci. 13(17), 3394–3399. https://doi.org/10.3923/jas.2013.3394.3399 (2013).Article 

    Google Scholar 
    42.Liang, X. Y. et al. Exploring cultivated land evolution in mountainous areas of Southwest China, an empirical study of development since the 1980s. Land Degrad. Dev. 32, 546–558. https://doi.org/10.1002/ldr.3735 (2021).Article 

    Google Scholar 
    43.Kelly, M., Tuxen, K. A. & Stalberg, D. Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across spatial scale and time. Ecol. Indic. 11(2), 263–273. https://doi.org/10.1016/j.ecolind.2010.05.003 (2011).Article 

    Google Scholar 
    44.Guo, S. Q. et al. Spatiotemporal variation and landscape pattern of soil erosion in Qinling Mountains. Chin. J. Ecol. 38(7), 2167–2176. https://doi.org/10.13292/j.1000-4890.201907.016 (2019).Article 

    Google Scholar 
    45.Peng, W. J. & Shu, Y. G. Analysis of landscape ecological security and cultivated land evolution in the Karst mountain area. Acta Ecol. Sinc. 38(3), 852–865. https://doi.org/10.5846/stxb201612062513 (2018).Article 

    Google Scholar 
    46.Saura, S. Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices. Landscape Ecol. 19(2), 197–209. https://doi.org/10.1023/B:LAND.0000021724.60785.65 (2004).Article 

    Google Scholar 
    47.Kerenyi, A. & Szabo, G. Human impact on topography and landscape pattern in the Upper Tisza region NE-Hungary. Geogr. Fis. Din. Quat. 30(2), 193–196. https://doi.org/10.1144/GSL.SP.2007.270.01.17 (2007).Article 

    Google Scholar 
    48.Zhang, Y. X. et al. Changes in cultivated land patterns and driving forces in the Three Gorges Reservoir area, China, from 1992 to 2015. J. Mt. Sci. 17(1), 203–215. https://doi.org/10.1007/s11629-019-5375-1 (2020).Article 

    Google Scholar 
    49.Teng, M. J. et al. Impacts of forest restoration on soil erosion in the Three Gorges Reservoir area China. Sci. Total Environ. 697, 134164. https://doi.org/10.1016/j.scitotenv.2019.134164 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.He, L. H., King, L. & Tong, J. On the land use in the Three Gorges Reservoir area. J. Geogr. Sci. 13(4), 416–422. https://doi.org/10.1007/BF02837879 (2003).Article 

    Google Scholar 
    51.Gao, J. M. et al. Bioavailability of organic phosphorus in the water level fluctuation zone soil and the effects of ultraviolet irradiation on it in the Three Gorges Reservoir China. Sci. Total Environ. 738, 139912. https://doi.org/10.1016/j.scitotenv.2020.139912 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Xie, Y. H. et al. The impact of Three Gorges Dam on the downstream eco-hydrological environment and vegetation distribution of East Dongting Lake. Ecohydrology 8(4), 738–746. https://doi.org/10.1002/eco.1543 (2015).Article 

    Google Scholar 
    53.Cai, H. Y. et al. Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aab9e0 (2018).Article 

    Google Scholar 
    54.Tang, Q. et al. Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir China. Sci. Total Environ. 548, 410–420. https://doi.org/10.1016/j.scitotenv.2015.12.158 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Shen, Z. Y. et al. Assessment of nitrogen and phosphorus loads and casual factors from different land use and soil types in the Three Gorges Reservoir Area. Sci. Total Environ. 454–455, 383–392. https://doi.org/10.1016/j.scitotenv.2013.03.036 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Zhu, K. W. et al. Vegetation of the water-level fluctuation zone in the Three Gorges Reservoir at the initial impoundment stage. Glob. Ecol. Conserv. 21, e00866. https://doi.org/10.1016/j.gecco.2019.e00866 (2020).Article 

    Google Scholar 
    57.Chen, C. D. et al. Restoration design for Three Gorges Reservoir shorelands, combining Chinese traditional agro-ecological knowledge with landscape ecological analysis. Ecol. Eng. 71, 584–597. https://doi.org/10.1016/j.ecoleng.2014.07.008 (2014).Article 

    Google Scholar 
    58.Bao, Y., Gao, P. & He, X. The water-level fluctuation zone of Three Gorges Reservoir-a unique geomorphological unit. Earth Rev. 150, 14–24. https://doi.org/10.1016/j.earscirev.2015.07.005 (2015).Article 

    Google Scholar 
    59.Li, Y. et al. Homogeneous selection dominates the microbial community assembly in the sediment of the Three Gorges Reservoir. Sci. Total. Environ. 690, 50–60. https://doi.org/10.1016/j.scitotenv.2019.07.014 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Wang, L. J. et al. Role of reservoir construction in regional land use change in Pengxi River basin upstream of the Three Gorges Reservoir in China. Environ. Earth Sci. 75, 1048. https://doi.org/10.1007/s12665-016-5758-3 (2016).Article 

    Google Scholar 
    61.Zhong, H. P. et al. Analysis of stage response of land use in Three Gorges Reservoir area: taking Hubei section of the reservoir area as an example. J. Central Normal Univ. Nat. Sci. 53(4), 582–593. https://doi.org/10.19603/j.cnki.1000-1190.2019.04.019 (2019).Article 

    Google Scholar 
    62.Brady, N.C. & Weil, R.R. The nature and properties of Soils14th. Prentice Hall, 2007:212–213.63.Gerrard, J. Fundamentals of Soil: Berlin Germany: Routledge, 2000:110–115.64.Otukei, J. R. & Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 12S, S27–S31. https://doi.org/10.1016/j.jag.2009.11.002 (2010).Article 

    Google Scholar 
    65.Li, R. K., Li, Y. B., Wen, W. & Zhou, Y. L. Comparative study on spatial difference of elevation and slope in soil erosion evolution in typical watershed. J. Soil Water Conserv. 31(5), 99–107. https://doi.org/10.13870/j.cnki.stbcxb.2017.05.016 (2017).Article 

    Google Scholar 
    66.Li, S. F. et al. An estimation of the extent of cropland abandonment in mountainous regions of China. Land Degrad Dev. 29(5), 1327–1342. https://doi.org/10.1002/ldr.2924 (2018).Article 

    Google Scholar 
    67.Sang, X. et al. Intensity and stationarity analysis of land use change based on CART algorithm. Sci. Rep-UK 9, 12279. https://doi.org/10.1038/s41598-019-48586-3 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Strehmel, A., Schmalz, B. & Fohrer, N. Evaluation of land use, land management and soil conservation strategies to reduce non-point source pollution loads in the Three Gorges Region China. Environ Manage 58, 906–921. https://doi.org/10.1007/s00267-016-0758-3 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    69.Liang, X. Y. et al. Traditional agroecosystem transition in mountainous area of Three Gorges Reservoir Area. J Geogr Sci. 30(2), 281–296. https://doi.org/10.1007/s11442-020-1728-5 (2020).Article 

    Google Scholar 
    70.Kalerstaghi, A. & Jeloudar, Z. J. Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arab. J. Geosci. 4(3–4), 401–411. https://doi.org/10.1007/s12517-009-0078-5 (2011).Article 

    Google Scholar 
    71.Ministry of Ecology and Environment of the People’s Republic of China (MEE). Gazette of eco-environmental monitoring of three gorges project. Yangzi River, China 1997–2017 (in Chinese) (2018). http://jcs.mep.gov.cn/hjzl/sxgb/2011sxgb/201206/P020120608565218279423.pdf. Accessed 3 March 2019.72.Xu, X. B. et al. Unravelling the effects of large-scale ecological programs on ecological rehabilitation of China’s Three Gorges Dam. J. Clean. Prod. 256, 120446. https://doi.org/10.1016/j.jclepro.2020.120446 (2020).CAS 
    Article 

    Google Scholar 
    73.Staged Assessment Group of Chinese Academy of Engineering (SAGCAE). Staged Assessment Report of the Three Gorges Project (Comprehensive Volume) (in Chinese). Chinese Water Power Press, Beijing, China (2010).74.Li, R. K. et al. Study on the temporal and spatial variation of soil erosion intensity in typical watersheds of the Three Gorges Reservoir Area from 1988 to 2015: a case based on the Daning and Meixi River Watershed. Acta Ecological Sinica. 38(17), 6243–7257. https://doi.org/10.5846/stxb201706071040 (2018).Article 

    Google Scholar 
    75.Birhanu, L., Hailu, B. T., Bekele, T. & Demissew, S. Land use/land cover change along elevation and slope gradient in highlands of Ethiopia. Remote Sensing Appl. Soc. Environ. 16, 100260 (2019).Article 

    Google Scholar 
    76.Huang, X.Y., Ma, J.S. & Tang, Q. Introduction to geographic information systems. Beijing: Higher Education Press. 165–171 (2001).77.Xiao, J. Y. et al. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landscape Urban Plan. 75, 69–80. https://doi.org/10.1016/j.landurbplan.2004.12.005 (2006).Article 

    Google Scholar 
    78.Ye, Q. H. et al. Geospatial-temporal analysis of land-use changes in the Yellow River Delta during the last 40 years. Sci China Ser D. 47, 1008–1024. https://doi.org/10.1360/03yd0151 (2004).Article 

    Google Scholar 
    79.Liu, J. Y. The Land use in Xizang Autonomous Region (Science Press, 1992).
    Google Scholar 
    80.Li, X. Z. et al. The adequacy of different landscape metrics for various landscape patterns. Pattern Recogn. 38, 2626–2638. https://doi.org/10.1016/j.patcog.2005.05.009 (2005).Article 

    Google Scholar 
    81.Buyantuyev, A., Wu, J. G. & Gries, C. Multiscale analysis of the urbanization pattern of the Phoenix metropolitan landscape of USA: Time, space and thematic resolution. Landscape Urban Plan. 94(3), 206–217. https://doi.org/10.1016/j.landurbplan.2009.10.005 (2010).Article 

    Google Scholar 
    82.McGarigal, K., Cushman, S.A. & Ene, E. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Preprint at http://www.umass.edu/landeco/research/fragstats/fragstats.html (2012).83.Liu, X. L., Yang, Z. P., Di, F. & Chen, X. G. Evaluation on tourism ecological security in nature heritage sites—case of Kanas nature reserve of Xinjiang China. Chin Geogra Sci. 19(3), 265–273. https://doi.org/10.1007/s11769-009-026s5-z (2009).CAS 
    Article 

    Google Scholar 
    84.Zhang, R. S. et al. Landscape ecological security response to land use change in the tidal flat reclamation zone China. Environ Monit Assess. https://doi.org/10.1007/s10661-015-4999-z (2016).Article 
    PubMed 

    Google Scholar  More

  • in

    Disturbance suppresses the aboveground carbon sink in North American boreal forests

    1.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    Article 

    Google Scholar 
    2.Lindroth, A., Grelle, A. & Morén, A.-S. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Glob. Change Biol. 4, 443–450 (1998).Article 

    Google Scholar 
    3.Kasischke, E. S., Christensen, N. Jr & Stocks, B. J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437–451 (1995).Article 

    Google Scholar 
    4.Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).CAS 
    Article 

    Google Scholar 
    5.Welp, L. R. et al. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmos. Chem. Phys. 16, 9047–9066 (2016).CAS 
    Article 

    Google Scholar 
    6.Myneni, R. B., Keeling, C., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).CAS 
    Article 

    Google Scholar 
    7.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).CAS 
    Article 

    Google Scholar 
    8.Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).CAS 
    Article 

    Google Scholar 
    9.Giguère-Croteau, C. et al. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl Acad. Sci. USA 116, 2749–2754 (2019).Article 
    CAS 

    Google Scholar 
    10.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    Article 

    Google Scholar 
    11.Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).
    Google Scholar 
    12.White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C. & Hobart, G. W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 194, 303–321 (2017).Article 

    Google Scholar 
    13.Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).CAS 
    Article 

    Google Scholar 
    14.Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).CAS 
    Article 

    Google Scholar 
    15.Wang, J. A. et al. Extensive land cover change across Arctic–boreal northwestern North America from disturbance and climate forcing. Glob. Change Biol. 26, 807–822 (2020).Article 

    Google Scholar 
    16.Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).Article 

    Google Scholar 
    17.Wang, J. A. & Friedl, M. A. The role of land cover change in Arctic–boreal greening and browning trends. Environ. Res. Lett. 14, 125007 (2019).Article 

    Google Scholar 
    18.Beck, P. S. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).Article 

    Google Scholar 
    19.de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manage. 294, 35–44 (2013).Article 

    Google Scholar 
    20.Bond-Lamberty, B., Peckham, S. D., Ahl, D. E. & Gower, S. T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89–92 (2007).CAS 
    Article 

    Google Scholar 
    21.Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).Article 

    Google Scholar 
    22.Goulden, M. L. et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Change Biol. 17, 855–871 (2011).Article 

    Google Scholar 
    23.Pugh, T. A. M., Arneth, A., Kautz, M., Poulter, B. & Smith, B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 12, 730–735 (2019).CAS 
    Article 

    Google Scholar 
    24.Zimov, S. et al. Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2. Science 284, 1973–1976 (1999).CAS 
    Article 

    Google Scholar 
    25.Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).Article 

    Google Scholar 
    26.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).CAS 
    Article 

    Google Scholar 
    27.Matasci, G. et al. Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots. Remote Sens. Environ. 216, 697–714 (2018).Article 

    Google Scholar 
    28.Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).CAS 
    Article 

    Google Scholar 
    29.Wulder, M. A., Hermosilla, T., White, J. C. & Coops, N. C. Biomass status and dynamics over Canada’s forests: disentangling disturbed area from associated aboveground biomass consequences. Environ. Res. Lett. 15, 094093 (2020).CAS 
    Article 

    Google Scholar 
    30.Margolis, H. A. et al. Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Can. J. For. Res. 45, 838–855 (2015).Article 

    Google Scholar 
    31.Neigh, C. S. et al. Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR. Remote Sens. Environ. 137, 274–287 (2013).Article 

    Google Scholar 
    32.Fisher, J. B. et al. Missing pieces to modeling the Arctic–boreal puzzle. Environ. Res. Lett. 13, 020202 (2018).Article 

    Google Scholar 
    33.Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS 
    Article 

    Google Scholar 
    34.Kurz, W. A. et al. Carbon in Canada’s boreal forest—a synthesis. Environ. Rev. 21, 260–292 (2013).CAS 
    Article 

    Google Scholar 
    35.Price, D., Peng, C., Apps, M. & Halliwell, D. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. J. Biogeogr. 26, 1237–1248 (1999).Article 

    Google Scholar 
    36.Stocks, B. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 107, FFR-5 (2002).
    Google Scholar 
    37.Kasischke, E. S., Williams, D. & Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 11, 131–144 (2002).Article 

    Google Scholar 
    38.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    39.Fredeen, A. L., Waughtal, J. D. & Pypker, T. G. When do replanted sub-boreal clearcuts become net sinks for CO2? For. Ecol. Manage. 239, 210–216 (2007).Article 

    Google Scholar 
    40.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 201407302 (2014).
    Google Scholar 
    41.Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).Article 
    CAS 

    Google Scholar 
    42.Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    43.Gedalof, Z. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century: limited CO2 fertilization of forests. Glob. Biogeochem. Cycles 24, GB3027 (2010).Article 
    CAS 

    Google Scholar 
    44.Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).CAS 
    Article 

    Google Scholar 
    45.Duncanson, L. et al. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sens. Environ. 242, 111779 (2020).Article 

    Google Scholar 
    46.Helbig, M., Pappas, C. & Sonnentag, O. Permafrost thaw and wildfire: equally important drivers of boreal tree cover changes in the Taiga Plains, Canada. Geophys. Res. Lett. 43, 1598–1606 (2016).Article 

    Google Scholar 
    47.Carpino, O. A., Berg, A. A., Quinton, W. L. & Adams, J. R. Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada. Environ. Res. Lett. 13, 084018 (2018).Article 

    Google Scholar 
    48.Margolis, H., Sun, G., Montesano, P. M. & Nelson, R. F. NACP LiDAR-Based Biomass Estimates, Boreal Forest Biome, North America, 2005–2006 (ORNL DAAC, 2015); https://doi.org/10.3334/ORNLDAAC/127349.Spawn, S. A. & Gibbs, H. K. Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010 (ORNL DAAC, 2020); https://doi.org/10.3334/ORNLDAAC/176350.Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-ground Biomass for the Year 2017 Version 1 (Centre for Environmental Data Analysis, 2019); https://doi.org/10.5285/bedc59f37c9545c981a839eb552e408451.Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249–1266 (2014).Article 

    Google Scholar 
    52.Wulder, M. A. et al. Monitoring Canada’s forests. Part 1: completion of the EOSD land cover project. Can. J. Remote Sens. 34, 549–562 (2008).Article 

    Google Scholar 
    53.Jin, S., Yang, L., Zhu, Z. & Homer, C. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sens. Environ. 195, 44–55 (2017).Article 

    Google Scholar 
    54.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    55.Roy, D. P., Boschetti, L., Justice, C. & Ju, J. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112, 3690–3707 (2008).Article 

    Google Scholar 
    56.Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).Article 

    Google Scholar 
    57.R Core Team R: A Language and Environment for Statistical Computing Version 3.6.0 (R Foundation for Statistical Computing, 2019).58.Greenwell, B., Boehmke, B., Cunningham, J. & GMB Developers. gbm: Generalized Boosted Regression Models Version 2.1.5. R package (2019).59.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    60.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 37, 4302–4315 (2017).Article 

    Google Scholar 
    61.Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O. & Friedl, M. A. ABoVE: Annual Land Cover in the ABoVE Core Domain from Landsat, 1984–2014 (ORNL DAAC, 2019); https://doi.org/10.3334/ORNLDAAC/169162.Canadian National Fire Database—Agency Fire Data (Canadian Forest Service, 2002); https://cwfis.cfs.nrcan.gc.ca/ha/nfdb63.Alaskan Large Fire Database (Alaska Interagency Coordination Center, 2002); https://fire.ak.blm.gov/predsvcs/maps.php64.Thornton, M. M. et al. Daymet: Monthly Climate Summaries on a 1-km Grid for North America Version 3 (ORNL DAAC, 2018); https://doi.org/10.3334/ornldaac/134565.Lumley, T. leaps: Regression Subset Selection Version 3.0. R package (2017).66.Mallows, C. L. Some comments on Cp. Technometrics 42, 87–94 (2000).
    Google Scholar 
    67.Li, Z., Kurz, W. A., Apps, M. J. & Beukema, S. J. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Can. J. For. Res. 33, 126–136 (2003).Article 

    Google Scholar 
    68.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). More

  • in

    Spatial variation and mechanisms of leaf water content in grassland plants at the biome scale: evidence from three comparative transects

    1.Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M. & Zak, M. R. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2010).Article 

    Google Scholar 
    2.He, N. et al. Ecosystem traits linking functional traits to macroecology. Trends Ecol Evol 34, 200–210. https://doi.org/10.1016/j.tree.2018.11.004 (2019).Article 
    PubMed 

    Google Scholar 
    3.Reich, P. B. & Lusk, W. C. H. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol. Appl. 17, 1982–1988 (2007).PubMed 
    Article 

    Google Scholar 
    4.Shi, P., Preisler, H. K., Quinn, B. K., Zhao, J. & Hlscher, D. Precipitation is the most crucial factor determining the distribution of moso bamboo in Mainland China. Global Ecol. Conserv. 22, e00924 (2020).Article 

    Google Scholar 
    5.Bassirirad, G. H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Boyer, J. S. Water transport. Annu. Rev. Plant Physiol. 36, 473–516 (1985).Article 

    Google Scholar 
    7.Kromer, S. Respiration during photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 45–70 (1995).Article 

    Google Scholar 
    8.Carl, V. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant Biol. 66, 599–622 (2015).Article 
    CAS 

    Google Scholar 
    9.Heinen, R. B., Qing, Y. & François, C. Role of aquaporins in leaf physiology. J. Exp. Bot. 60, 2971–2985 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Chapin, F. S., Matson, P. A. & Mooney, H. A. Principles of Terrestrial Ecosystem Ecology (Springer, 2011).Book 

    Google Scholar 
    11.Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Zhang, J. et al. C:N: P stoichiometry in China’s forests: from organs to ecosystems. Funct. Ecol. 32, 50–60 (2017).Article 

    Google Scholar 
    13.Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1221–1226 (1977).Article 

    Google Scholar 
    14.Bassirirad, H. & Caldwell, M. M. Root growth, osmotic adjustment and NO3-uptake during and after a period of drought in Artemisia tridentata. Aust. J. Plant Physiol. 19, 493–500 (1992).CAS 

    Google Scholar 
    15.Bassirirad, H. & Caldwell, M. M. Temporal changes in root growth and 15N uptake and water relations of two tussock grass species recovering from water stress. Physiol. Plant. 86, 525–531 (1992).Article 

    Google Scholar 
    16.Bassirirad, H. et al. Short-term patterns in water and nitrogen acquisition by two desert shrubs following a simulated summer rain. Plant Ecol. 145, 27–36 (1999).Article 

    Google Scholar 
    17.Gebauer, R. L. E. & Ehleringer, J. R. Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology 81, 1415 (2000).Article 

    Google Scholar 
    18.Liu, M., Niklas, K. J., Niinemets, L., Hlscher, D. & Shi, P. Comparison of the scaling relationships of leaf biomass versus surface area between spring and summer for two deciduous tree species. Forests 11, 1010 (2020).Article 

    Google Scholar 
    19.Shi, P., Li, Y., Hui, C., Ratkowsky, D. A. & Niinemets, L. Does the law of diminishing returns in leaf scaling apply to vines? Evidence from 12 species of climbing plants. Glob. Ecol. Conserv. 21, e00830 (2019).Article 

    Google Scholar 
    20.Yu, X., Hui, C., Sandhu, H. S., Lin, Z. & Shi, P. Scaling relationships between leaf shape and area of 12 Rosaceae species. Symmetry 11, 1255 (2019).Article 

    Google Scholar 
    21.Liu, C. et al. Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Funct. Ecol. 32, 20–28 (2017).Article 

    Google Scholar 
    22.Am, H. & Fi, W. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).Article 
    CAS 

    Google Scholar 
    23.Huang, W., Ratkowsky, D. A., Hui, C., Wang, P. & Shi, P. Leaf fresh weight versus dry weight: which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants?. Forests 10, 256 (2019).Article 

    Google Scholar 
    24.Huang, W., Reddy, G. V., Li, Y., Larsen, J. B. & Shi, P. Increase in absolute leaf water content tends to keep pace with that of leaf dry mass—evidence from bamboo plants. Symmetry 12, 1345 (2020).Article 

    Google Scholar 
    25.Yang, Y. et al. Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol. 221, 155–168 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Huang, W., Fonti, P., Rbild, A., Larsen, J. B. & Hansen, J. K. Variability Among Sites and Climate Models Contribute to Uncertain Spruce Growth Projections in Denmark. Forests 12, 36 (2021).Article 

    Google Scholar 
    27.Aspinwall, M. J. et al. Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Glob. Change Biol. 25, 1665–1684 (2019).ADS 
    Article 

    Google Scholar 
    28.Shao, J. et al. Plant evolutionary history mainly explains the variance in biomass responses to climate warming at a global scale. New Phytol. 222, 1338–1351 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.He, J., Reddy, G. V., Liu, M. & Shi, P. A general formula for calculating surface area of the similarly shaped leaves: evidence from six Magnoliaceae species. Glob. Ecol. Conserv. 23, e01129 (2020).Article 

    Google Scholar 
    30.Guo, X., Reddy, G. V., He, J., Li, J. & Shi, P. Mean-variance relationships of leaf bilateral asymmetry for 35 species of plants and their implications. Glob. Ecol. Conserv. 23, e01152 (2020).Article 

    Google Scholar 
    31.Shi, P.-J., Li, Y.-R., Niinemets, Ü., Olson, E. & Schrader, J. Influence of leaf shape on the scaling of leaf surface area and length in bamboo plants. Trees 35, 1–7 (2020).
    Google Scholar 
    32.Shi, P. et al. Leaf area–length allometry and its implications in leaf shape evolution. Trees 33, 1073–1085 (2019).Article 

    Google Scholar 
    33.Yu, X., Shi, P., Schrader, J. & Niklas, K. J. Nondestructive estimation of leaf area for 15 species of vines with different leaf shapes. Am. J. Bot. 107, 1481–1490. https://doi.org/10.1002/ajb2.1560 (2020).Article 
    PubMed 

    Google Scholar 
    34.Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).Article 

    Google Scholar 
    35.Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).PubMed 
    Article 

    Google Scholar 
    36.Gonzalez-Orozco, C. E. et al. Phylogenetic approaches reveal biodiversity threats under climate change. Nat. Clim. Change 6, 1110–1114 (2016).ADS 
    Article 

    Google Scholar 
    37.Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).ADS 
    Article 

    Google Scholar 
    38.Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).Article 

    Google Scholar 
    39.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann. Bot. 99, 1003–1015 (2007).PubMed 
    Article 

    Google Scholar 
    40.Reich, P. B. The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    41.Kong, D. et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863–872 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Koch, G. W., Scholes, R. J., Steffen, W. L., Vitousek, P. M. & Walker, B. H. The IGBP terrestrial transects: science plan. Global Change Report (1995).43.Liu, Z., Shao, M. A. & Wang, Y. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region China. Agric. Ecosyst. Environ. 142, 184–194 (2011).Article 

    Google Scholar 
    44.Bai, Y. et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89, 2140–2153 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chen, H. et al. The impacts of climate change and human activities on biogeochemical cycles on the Q inghai-T ibetan P lateau. Glob. Change Biol. 19, 2940–2955 (2013).ADS 
    Article 

    Google Scholar 
    46.Dee, L. E. et al. When do ecosystem services depend on rare species?. Trends Ecol. Evol. 34, 746–758 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Cornelissen, J. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    48.Lamont, B. B., Downes, S. & Fox, J. E. Importance–value curves and diversity indices applied to a species-rich heathland in Western Australia. Nature 265, 438–441 (1977).ADS 
    Article 

    Google Scholar 
    49.Zhang, T., Guo, R., Gao, S., Guo, J. & Sun, W. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem. PLoS ONE 10, e0123160 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).Article 

    Google Scholar 
    51.Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Genetic association with boldness and maternal performance in a free-ranging population of grey seals (Halichoerus grypus)

    Baker JR (1984) Mortality and morbidity in grey seal pups (Halichoerus grypus). Studies on its causes, effects of environment, the nature and sources of infectious agents and the immunological status of pups. J Zool 203:23–48Article 

    Google Scholar 
    Bakermans-Kranenburg MJ, van IJzendoorn MH (2008) Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc Cogn Affect Neur 3:128–134Article 

    Google Scholar 
    Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48Article 

    Google Scholar 
    Battersby S, Ogilvie AD, Smith CA, Blackwood DH, Muir WJ, Quinn JP et al. (1996) Structure of a variable number tandem repeat of the serotonin transporter gene and association with affective disorder. Psychiat Genet 6:177–181CAS 
    Article 

    Google Scholar 
    Bengston SE, Dahan RA, Donaldson Z, Phelps SM, van Oers K, Sih A et al. (2018) Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour. Nat Ecol Evol 2:944–955PubMed 
    Article 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300
    Google Scholar 
    Boake CRB, Arnold SJ, Breden F, Meffert LM, Ritchie MG, Taylor BJ et al. (2002) Genetic tools for studying adaptation and the evolution of behavior. Am Nat 160:S143–S159PubMed 
    Article 

    Google Scholar 
    Boness DJ, Anderson SS, Cox CR (1982) Function of female aggression during the pupping and mating season of grey seals, Halichoerus grypus (Fabricius). Can J Zool 60:2270–2278Article 

    Google Scholar 
    Bowen WD, den Heyer CE, McMillan JI, Iverson SJ (2015) Offspring size at weaning affects survival to recruitment and reproductive performance of primiparous grey seals. Ecol Evol 5:1412–1424PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowen WD, Iverson SJ, McMillan JI, Boness DJ (2006) Reproductive performance in grey seals: age-related improvement and senescence in a capital breeder. J Anim Ecol 75:1340–1351CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowen WD, McMillan JI, Blanchard W (2007) Reduced population growth of grey seals at Sable Island: evidence from pup production and age of primiparity. Mar Mam Sci 23:48–64Article 

    Google Scholar 
    Bowen WD, McMillan J, Mohn R (2003) Sustained exponential population growth of grey seals at Sable Island, Nova Scotia. ICES J Mar Sci 60:1265–1274Article 

    Google Scholar 
    Bowen WD, Stobo WT, Smith SJ (1992) Mass changes of grey seal Halichoerus grypus pups on Sable Island: differential maternal investment reconsidered. J Zool 227:607–622Article 

    Google Scholar 
    Bubac CM, Coltman DW, Bowen WD, Lidgard DC, Lang SLC, den Heyer CE (2018) Repeatability and reproductive consequences of boldness in female gray seals. Behav Ecol Sociobiol 72:100–112Article 

    Google Scholar 
    Bubac CM, Miller JM, Coltman DW (2020) The genetic basis of animal behavioural diversity in natural populations. Mol Ecol https://doi.org/10.1111/mec.15461Cammen KM, Andrews KR, Carroll EL, Foote AD, Humble E, Khudyakov JI et al. (2016) Genomic methods take the plunge: recent advances in high-throughput sequencing of marine mammals. J Hered 107:481–495CAS 
    PubMed 
    Article 

    Google Scholar 
    Cammen KM, Schultz TF, Bowen WD, Hammill MO, Puryear WB, Runstadler J et al. (2018b) Genomic signatures of population bottleneck and recovery in Northwest Atlantic pinnipeds. Ecol Evol 8:6599–6614PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cammen KM, Vincze S, Heller AS, McLeod BA, Wood SA, Bowen WD et al. (2018a) Genetic diversity from pre-bottleneck to recovery in two sympatric pinniped species in the Northwest Atlantic. Con Gen 19:555–569CAS 
    Article 

    Google Scholar 
    Carere C, Maestripieri D (2013) Animal personalities: Behavior, physiology, and evolution. The University of Chicago Press, ChicagoBook 

    Google Scholar 
    Chakraborty S, Chakraborty D, Mukherjee O, Jain S, Ramakrishnan U, Sinha A (2010) Genetic polymorphism in the serotonin transporter promoter region and ecological success in macaques. Behav Genet 40:672–679PubMed 
    Article 

    Google Scholar 
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale, NJ
    Google Scholar 
    Dochtermann NA, Schwab T, Anderson Berdal M, Dalos J, Royauté R (2019) The heritability of behavior: a meta-analysis. J Hered 110:403–410PubMed 
    Article 

    Google Scholar 
    Dohm MR (2002) Repeatability estimates do not always set an upper limit to heritability. Funct Ecol 16:273–280Article 

    Google Scholar 
    Edwards HA, Hajduk GK, Durieux G, Burke T, Dugdale HL (2015) No association between personality and candidate gene polymorphisms in a wild bird population. PLoS ONE 10:e0138439. https://doi.org/10.1371/journal.pone.0138439CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emiliano ABF, Cruz T, Pannoni V, Fudge JL (2007) The interface of oxytocin-labeled cells and serotonin transporter-containing fibers in the primate hypothalamus: a substrate for SSRIs therapeutic effects? Neuropsychopharmacol 32:977–988CAS 
    Article 

    Google Scholar 
    Fairbanks LA, Way BM, Breidenthal, Bailey JN, Jorgensen MJ (2012) Maternal and offspring dopamine D4 receptor genotypes interact to influence juveniles impulsivity in vervet monkeys Psychol Sci 23:1099–1104. https://doi.org/10.1177/0956797612444905Article 
    PubMed 

    Google Scholar 
    Fidler A (2011) Personality-associated genetic variation in birds and its possible significance for avian evolution, conservation, and welfare. In: Inoue-Murayama M, Kawamura S, Weiss A (eds) From Genes to Animal Behavior. Primatology Monographs. Springer, Tokyo, p 275–294
    Google Scholar 
    Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LEM, Robinson GE, Sokolowski MB (2005) Candidate genes for behavioural ecology. Trends in Ecology & Evolution 20:96–104Article 

    Google Scholar 
    Fulton TL, Strobeck C (2010) Multiple fossil calibrations, nuclear loci and mitochondrial genomes provide new insight into biogeography and divergence timing for true seals (Phocidae, Pinnipedia). J Biogeogr 37:814–829Article 

    Google Scholar 
    Garvin MR, Saitoh K, Gharrett AJ (2010) Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour 10:915–934. https://doi.org/10.1111/j.1755-0998.02891.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Göring HHH, Terwilliger JD, Blangero J (2001) Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 69:1357–2001PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gosling SD (2001) From mice to men: what can we learn about personality from animal research? Psychol Bull 127:45–86CAS 
    PubMed 
    Article 

    Google Scholar 
    Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22Article 

    Google Scholar 
    Hall AJ, McConnell BJ, Barker RJ (2001) Factors affecting first-year survival in grey seals and their implications for life-history strategy. J Anim Ecol 70:138–149
    Google Scholar 
    Hammill MO, den Heyer CE, Bowen WD, Lang SLC (2017) Grey seal population trends in Canadian waters, 1960–2016 and harvest advice. DFO Can Sci Advis Sec Res Doc 2017/052. v + 30pHelyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT et al. (2011) Applications of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136. https://doi.org/10.1111/j.1755-0998.2010.02943.xArticle 
    PubMed 

    Google Scholar 
    Holtmann B, Grosser S, Lagisz M, Johnson SL, Santos ESA, Lara CE et al. (2016) Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Mol Ecol 25:706–722CAS 
    PubMed 
    Article 

    Google Scholar 
    Howell S, Westergaard G, Hoos B, Chavanne TJ, Shoaf SE, Snoy PJ et al. (2007) Serotonergic influences on life-history outcomes in free-ranging male rhesus macaques. Am J Primatol 69:851–865CAS 
    PubMed 
    Article 

    Google Scholar 
    Iverson SJ, Bowen WD, Boness DJ, Oftedal OT (1993) The effect of maternal size and milk output on pup growth in grey seals (Halichoerus grypus). Physiol Zool 66:61–88Article 

    Google Scholar 
    Jacobs LN, Staiger EA, Albright JD, Brooks SA (2016) The MC1R and ASIP coat color loci may impact behavior in the horse. J Hered 107:214–219CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jaeger BC, Edwards LJ, Das K, Sen PK (2016) An R2 statistic for fixed effects in the generalized linear mixed model. J Appl Stat 44:1086–1106Article 

    Google Scholar 
    Jorgensen H, Riis M, Knigge U, Kjaer A, Warberg J (2003) Serotonin receptors involved in vasopressin and oxytocin secretion. J Neuroendocrinol 15:242–249CAS 
    PubMed 
    Article 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kendrick KM (2000) Oxytocin, motherhood and bonding. Exp Physiol 85:111–124Article 

    Google Scholar 
    Kim SJ, Kim YS, Lee HS, Kim SY, Kim C-H (2006) An interaction between the serotonin transporter promoter region and dopamine transporter polymorphisms contributes to harm avoidance and reward dependence traits in normal healthy subjects. J Neural Transm 113:877–886CAS 
    PubMed 
    Article 

    Google Scholar 
    Kluger A, Siegfried Z, Ebstein R (2002) A meta-analysis of the association between DRD4 polymorphism and novelty seeking. Mol Psychiatry 7:712–717CAS 
    PubMed 
    Article 

    Google Scholar 
    Korsten P, Mueller JC, Hermannstädter C, van Overveld T, Patrick SC, Quinn JL et al. (2010) Association between DRD4 gene polymorphism and personality variation in great tits: a test across four populations. Mol Ecol 19:832–843CAS 
    PubMed 
    Article 

    Google Scholar 
    Laine VN, van Oers K (2017) The quantitative and molecular genetics of individual differences in animal personality. In: Vonk J, Weiss A, Kuczaj SA(eds) Personality in Nonhuman Animals. Springer, Cham, p 55–72
    Google Scholar 
    Laird NM, Lange C (2011) The fundamentals of modern statistical genetics. Springer, New York, NYBook 

    Google Scholar 
    Lang SLC, Iverson SJ, Bowen WD (2009) Repeatability in lactation performance and the consequences for maternal reproductive success in gray seals. Ecology 90:2513–2523CAS 
    PubMed 
    Article 

    Google Scholar 
    Lesch K-P, Bengel D, Heils A, Sabol SZ, Greenberg BD (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531CAS 
    PubMed 
    Article 

    Google Scholar 
    Lidgard DC, Bowen WD, Boness DJ (2012) Longitudinal changes and consistency in male physical and behavioural traits have implications for mating success in the grey seal (Halichoerus grypus). Can J Zool 90:849–860Article 

    Google Scholar 
    Lim MM, Young LJ (2006) Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm Behav 50:506–517CAS 
    PubMed 
    Article 

    Google Scholar 
    MacKenzie A, Quinn J (1999) A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. PNAS 96:15251–15255CAS 
    PubMed 
    Article 

    Google Scholar 
    Mansfield AW, Beck B (1977) The grey seal in eastern Canada. Tech Rep. Fish Mar Serv Can 706:1–81
    Google Scholar 
    Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number alleles a small Popul that was Form a recent bottleneck Genet 111:675–689CAS 

    Google Scholar 
    McCann TS (1982) Aggressive and maternal activities of female southern elephant seals (Mirounga leonina). Anim Behav 30:268–276Article 

    Google Scholar 
    McDougall PT, Réale D, Sol D, Reader SM (2006) Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Anim Conserv 9:39–48Article 

    Google Scholar 
    Mellish JAE, Iverson SJ, Bowen WD (1999) Variation in milk production and lactation performance in grey seals and consequences for pup growth and weaning characteristics. Physiol Biochem Zool 72:677–690CAS 
    PubMed 
    Article 

    Google Scholar 
    Mitsuyasu H, Hirata N, Sakai Y, Shibata H, Takeda Y (2001) Association analysis of polymorphisms in the upstream region of the human dopamine D4 receptor gene (DRD4) with schizophrenia and personality traits. J Hum Genet 46:26–31CAS 
    PubMed 
    Article 

    Google Scholar 
    Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists. Oecologia 132:492–500PubMed 
    Article 

    Google Scholar 
    Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197PubMed 
    Article 

    Google Scholar 
    Mueller JC, Partecke J, Hatchwell BJ, Gaston KJ, Evans KL (2013) Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Mol Ecol 22:3629–3637CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142Article 

    Google Scholar 
    Nei M, Li WH (1976) The transient distribution of allele frequencies under mutation pressure. Genet Res 28:205–214CAS 
    PubMed 
    Article 

    Google Scholar 
    Noren SR, Boness DJ, Iverson SJ, McMillan J, Bowen WD (2008) Body condition at weaning affects the duration of the postweaning fast in grey seal pups (Halichoerus grypus). Physiol Biochem Zool 81:269–277PubMed 
    Article 

    Google Scholar 
    Oak JN, Oldenhof J, Van Tol HH (2000) The dopamine D4 receptor: one decade of research. Eur J Pharm 405:303–327CAS 
    Article 

    Google Scholar 
    Pati N, Schowinsky V, Kokanovic O, Magnuson V, Ghosh S (2004) A comparison between SNaPshot, pyrosequencing, and biplex invader SNP genotyping methods: accuracy, cost, and throughput. J Biochem Biophys Methods 60:1–12CAS 
    PubMed 
    Article 

    Google Scholar 
    Prasad P, Ogawa S, Parhar IS (2015) Role of serotonin in fish reproduction. Front Neurosci 9:1–9. https://doi.org/10.3389/fnins.2015.00195Article 

    Google Scholar 
    R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ URLRaymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Article 

    Google Scholar 
    Réale D, Gallant BY, Leblanc M, Festa-Bianchet M (2000) Consistency in bighorn ewes and correlates with behaviour and life history. Anim Behav 60:589–597PubMed 
    Article 

    Google Scholar 
    Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318PubMed 
    Article 

    Google Scholar 
    Riyahi S, Björklund M, Mateos-Gonzalez F, Senar JC (2017) Personality and urbanization: behavioural traits and DRD4 SNP830 polymorphisms in Great Tits in Barcelona city. J Ethol 35:101–108Article 

    Google Scholar 
    Riyahi S, Sánchez-Delgado M, Calafell F, Monk D, Senar JC (2015) Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics 10:516–525PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson KJ, Twiss SD, Hazon N, Pomeroy PP (2015) Maternal oxytocin is linked to close mother-infant proximity in grey seals (Halichoerus grypus). PLoS One 10:e0144577. https://doi.org/10.1371/journal.pone.0144577CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson KJ, Twiss SD, Hazon N, Simon M, Pomeroy PP (2017) Positive social behaviours are induced and retained after oxytocin manipulations mimicking endogenous concentrations in a wild mammal. Proc R Soc B-Biol Sci https://doi.org/10.1098/rspb.2017.0554Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 
    Article 

    Google Scholar 
    Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE et al. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302CAS 
    PubMed 
    Article 

    Google Scholar 
    Sala M, Braida D, Donzelli A, Martucci R, Busnelli M, Bulgheroni E et al. (2013) Mice heterozygous for the oxytocin receptor gene (Oxtr+/−) show impaired social behaviour but not increased aggression or cognitive inflexibility: evidence of a selective haploinsufficiency gene effect. J Neuroendocrinol 25:107–118CAS 
    PubMed 
    Article 

    Google Scholar 
    Savitz JB, Ramesar RS (2004) Genetic variants implicated in personality: a review of the more promising candidates. Am J Med Genet B 131B:20–32Article 

    Google Scholar 
    Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioural syndromes: an integrative overview. Q Rev Biol 79:241–277PubMed 
    Article 

    Google Scholar 
    Singmann H, Bolker B, Westfall J, Aust F, Ben-Shachar MS (2019) afex: Analysis of Factorial Experiments. R package version 0.25-1. https://CRAN.R-project.org/package=afexSinn DL, Gosling SD, Moltschaniwskyj NA (2008) Development of shy/bold behaviour in squid: context-specific phenotypes associated with developmental plasticity. Anim Behav 75:433–442Article 

    Google Scholar 
    Sloan Wilson D, Clark AB, Coleman K, Dearstyne T (1994) Shyness and boldness in humans and other animals. TREE 9:442–446CAS 
    PubMed 

    Google Scholar 
    Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Timm K, van Oers K, Tilgar V (2018) SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. J Exp Biol 221:jeb171595. https://doi.org/10.1242/jeb.171595Article 
    PubMed 

    Google Scholar 
    Twiss SD, Cairns C, Culloch RM, Richards SA, Pomeroy PP (2012) Variation in female grey seal (Halichoerus grypus) reproductive performance correlates to proactive-reactive behavioural types. PLoS ONE 7:e49598. https://doi.org/10.1371/journal.pone.0049598CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Twiss SD, Shuert CR, Brannan N, Bishop AM, Pomeroy PP (2020) Reactive stress-coping styles show more variable reproductive expenditure and fitness outcomes. Sci Rep. 10:9550PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Neer A, Gross S, Kesselring T, Wohlsein, Leitzen E, Siebert U (2019) Behavioural and pathological insights into a case of active cannibalism by a grey seal (Halichoerus grypus) on Helgoland, Germany. J Sea Res 148-149:12–16Article 

    Google Scholar 
    van Oers K (2008) Animal personality, behaviours or traits: what are we measuring? Eur J Pers 22:457–474Article 

    Google Scholar 
    van Oers K, Mueller JC (2010) Evolutionary genomics of animal personality. P R Soc B-Biol Sci 365:3991–4000
    Google Scholar 
    Wellenreuther M, Hansson B (2016) Detecting polygenic evolution: problems, pitfalls, and promises. Trends Genet 32:155–164. https://doi.org/10.1016/j.tig.2015.12.004CAS 
    Article 
    PubMed 

    Google Scholar 
    Wolf M, Weissing FJ (2010) An explanatory framework for adaptive personality differences. Proc R Soc B-Biol Sci 365:3959–3968. https://doi.org/10.1098/rstb.2010.0215Article 

    Google Scholar 
    Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood SA, Frasier TR, McLeod BA, Gilbert JR, White BN et al. (2011) The genetics of recolonization: an analysis of the stock structure of grey seals (Halichoerus grypus) in the Northwest Atlantic. Can J Zool 89:490–497Article 

    Google Scholar  More