More stories

  • in

    Aggressive behaviour is affected by demographic, environmental and behavioural factors in purebred dogs

    This large-scale survey study of over 9000 pet dogs suggests that aggressive behaviour toward people is affected by behaviour, demography, and environment. The studied factors daily time spent alone, and weaning age were novel, and factors living environment, family size, dogs in the family, dog experience, daily exercise, have previously been studied only in few articles14,15,20,21,22. Dogs showing aggressive behaviour were more often fearful, small-sized, males, owner’s first dogs and the only dogs in the family. In addition, probability of aggressive behaviour increased with age, and we found that the probability of aggressive behaviour differed between dog breeds. These findings suggest that improvements in the owner education and breeding practices of pet dogs could alleviate aggressive behaviour toward people. The identified factors should also be considered when planning studies that aim for the discovery of the associated hereditary factors.Fearfulness had the strongest association with aggressive behaviour. Fearful and noise-sensitive dogs have been found to behave more aggressively toward unfamiliar people than dogs with no anxieties11. In the study of Dinwoodie et al.28, the dogs with fear/anxiety problem had more biting incidences than other dogs, and they also found remarkable comorbidity between fear/anxiety and overall aggressive behaviour. Similarly, in the study of Salonen et al.12, comorbidity between fearfulness and aggressive behaviour was strong: aggressive dogs were over three times more often fearful than non-aggressive dogs. Aggressive behaviour commonly stems from fearfulness, as fear-related aggressive behaviour is a type of undesired aggressive behaviour13,29. Here, we could not separate fear-related aggressive behaviour from other types of aggressive behaviour. Therefore, it is possible that majority of the dogs in this study show fear-related aggressive behaviour.We found a significant association between sex and aggressive behaviour. Male dogs had a higher probability of aggressive behaviour than females. This association has been found before in some studies1,28,29, but Hsu et al.14 found this association only with aggressive behaviour toward the owner and Bennett and Rolf15 did not find association with unfriendliness/aggressiveness. In addition, in the study population of Guy et al.30, female dogs were more likely to have bitten than male dogs. Thus, more studies are needed to reveal the association of sex and aggressive behaviour.The probability of aggressive behaviour increased with age, and thus, older dogs were more likely aggressive than young dogs. A similar association between age and aggressiveness/unfriendliness has been found earlier10,15. However, in the study of Hsu and Sun14, age influenced only aggressive behaviour toward the owner, and the difference was significant only when comparing dogs over 10 years of age to dogs under 5 years of age. In contrast, in the study Casey et al.10, only the probability of aggressive behaviour toward strangers increased. Study of Col et al.1 found no association between age and aggressive behaviour, and it is possible that old dogs have had more opportunities to show aggressive behaviour, reflecting to our finding. As aggressive behaviour can be a sign of pain5, it is possible that older dogs have painful conditions or disorders which make them more aggressive. For example, hip dysplasia is a common disease which can cause pain-related aggressive behaviour in dogs7. In addition, some disorders, such as the blinding eye disease cataract which is common in older dogs31, can decrease the ability to perceive approaching people. This can make the dog feel insecure and increase the chance of an aggressive response. Thus, yearly health checks might reduce pain- or other disease-related aggressive behaviour.We found differences between dog breeds in the probabilities of aggressive behaviour toward people. From all the studied breeds, Rough Collie had the highest probability of aggressive behaviour. Rough Collies also commonly suffer from another behavioural problem, fearfulness32 and thus, it seems that Rough Collies would likely benefit from more behaviour-focused breeding. Besides Rough Collies, other breeds with high probability of aggressive behaviour included the Miniature Poodle, Miniature Schnauzer, German Shepherd Dog, Spanish Water Dog, and Lagotto Romagnolo. In previous studies (Miniature) Poodle19 and Miniature Schnauzer14 have scored above the average in aggressive behaviour toward strangers, and Lagotto Romagnolo in aggressive behaviour toward family members11. The two breeds having the lowest probabilities of aggressive behaviour in our study were Labrador and Golden Retrievers. These breeds have also scored low in previous studies14,19. However, some of our breed-wise results differ from previous studies. For example, in the study of Duffy et al.19, Chihuahua and Jack Russell Terrier exhibited the most severe signs of aggressive behaviour, such as biting, but in our study, when taking the other factors account (e.g. body size), these breeds were among the least aggressive breeds. Duffy et al.19 did not take other factors into account which probably explains the difference between these results. To be noted, Staffordshire Bull Terrier, which is one of the restricted breeds, for example, in Ireland2, was not among the most aggressive breeds in this study. In the future, we will also consider breeding lines among the breeds, for example, separate German Shepherd Dog to working and show line types, since the purpose that dogs were bred for can also affect behaviour33. Furthermore, some breeds are more prone to, for example, skeletal disorders, which can cause pain-related aggression34 and influence these observed breed differences.Small dogs were more prone to aggressive behaviour than large or medium-sized dogs. Association of small size and aggressive behaviour is in line with some previous studies: taller and heavier dogs were found to be less aggressive toward the owner and strangers than small dogs17, and Ley et al.35 reported that heavier dogs have higher amicability than lighter dogs. In contrast, Khoshnegah et al.9 found that large breeds displayed more aggressive behaviour toward strangers, and Bennett and Rohlf15 did not find any association between the dog’s body size and unfriendliness/aggressiveness. To be noted, however, both in our study and in the study of McGreevy et al.17, the body size estimates were based on the breed standards, not the actual height of the individuals, which can affect the results. Even though we found no multicollinearity between the breed and body size, we also ran the model without body size and obtained the same results. Thus, we think that the association of body size with aggression mainly comes from the “other breeds” group, which included 6360 individuals from breeds with different body sizes.Nevertheless, previous studies have also associated small size with fearfulness9,17,36 and thus, it seems that small dogs are more vulnerable to behavioural problems in general. Interestingly, owners handle small dogs differently than larger dogs, which can partly explain the higher proportion of behaviour problems in smaller dogs. Owners of small dogs play with and obedience train their dogs less frequently than owners of large dogs37,38, and small dogs are also less often house-trained39. We speculate that small size can make a dog easier to control even when they act aggressively, and people do not necessary feel threatened by small dogs. Therefore, the owners may not try to treat nor seek professional help for aggressive behaviour so willingly than owners of larger dogs. Professional help, however, have shown to decrease incidence of undesirable behaviours, such as aggression towards strangers, in young dogs40. In addition, we speculate that, as people may not feel threatened by small dogs, they might not consider behaviour important when making breeding decisions. Further, a recently published study associated several problematic behaviours with genetic variants known to cause small body size41.The dogs whose owners have had at least one dog before had a lower probability of aggressive behaviour than owners’ first dogs. This finding replicates previously found associations of owner’s dog experience and dominance-type aggressive behaviour21 as well as general aggressive behaviour20. It is possible that experienced owners are more aware of the importance of socialisation. Previous experience can also help owners to identify a problem at early stage, when the problem can be treated more efficiently. Furthermore, if the owners had problems with their first dogs, they may be more careful when choosing a new dog.Company of other dogs was associated with a lower probability of aggressive behaviour; dogs living with other dogs were less likely aggressive than dogs living without other dogs. Number of household dogs also decreased aggressive behaviour toward the owner in a study of Hsu and Sun14. They suggested that dogs in multi-dog families compete with each other for owners’ attention, with the best behaving dog acquiring more attention and thus, dogs are striving to be obedient. Similarly, dogs living in multi-dog households showed less aggressive behaviour toward the owner and other dogs in a more recent study of Serpell and Duffy20. Canine companions may offer something that owners cannot, such as the daily opportunity of intraspecific communication. For example, playing with other dogs could decrease aggressive behaviour emerging from frustration. On the other hand, owners of aggressive dogs may choose not to acquire another dog to avoid possible conflicts between the dogs and ease the handling of the aggressive dog.This study has some limitations. One of the limitations is that we could not examine aggressive behaviour towards family members and strangers separately due to a small number of dogs showing aggressive behaviour in many breeds. This may affect the reliability of the results, as the study of Salonen et al.12 showed distinct breed differences in the aggressive behaviour sub-traits. This also made comparisons between this study and previous ones challenging, because in many other studies aggressive behaviour was divided to sub-traits. In addition, as we did not have any health information from the dogs, we could not identify the individuals having health problems. Owners’ participation to the study was voluntary and thus, the data can be somewhat biased; owners of highly aggressive dog may have not wanted to participate to the study, or, on the other hand, they may have wanted to participate more willingly than owners of non-aggressively behaving dogs. It is also possible that owners did not report all information precisely, for example the breed of the dog. Moreover, as the questionnaire was available only online, participation required basic computer skills and access to the Internet. Finally, this study is cross-sectional and therefore, the causality of the associations discovered cannot be inferred. In the future, it is important to collect even larger datasets, to include health information and to design longitudinal studies, enabling the study of aggressive behaviour sub-traits, associations with health issues and the causal effects.Our results replicate findings of previous studies in an independent study population and suggest that aggressive behaviour is a complex trait associated with several demographic, environmental, and behavioural factors. The prevalence of aggressive behaviour could be decreased by preferring less aggressive individuals in breeding, since aggressive behaviour has been suggested to be heritable42,43. Furthermore, prevalence of aggressive behaviour could also be decreased by using only non-fearful dogs in breeding, as these traits were highly associated and may share a genetic component. Dog owners may decrease the chances of aggressive behaviour by carefully selecting the right breed for their lifestyle and by having multiple dogs. Since aggressive behaviour can be a consequence of pain, yearly health checks could also decrease aggressive behaviour especially in older dogs. More

  • in

    Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands

    1.Stocker, T. F. et al. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).2.IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).3.Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).ADS 
    Article 

    Google Scholar 
    4.Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. 110, 19456–19459 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    5.DeMalach, N., Zaady, E. & Kadmon, R. Contrasting effects of water and nutrient additions on grassland communities: a global meta‐analysis. Glob. Ecol. Biogeogr. 26, 983–992 (2017).Article 

    Google Scholar 
    6.Gruner, D. S. et al. Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos 126, 8–17 (2017).Article 

    Google Scholar 
    7.Komatsu, K. J. et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl Acad. Sci. 116, 17867–17873 (2019).CAS 
    Article 

    Google Scholar 
    8.Korell, L., Auge, H., Chase, J. M., Harpole, S. & Knight, T. M. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 26, 325–327 (2020).ADS 
    Article 

    Google Scholar 
    9.Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. Understanding plant communities of the future requires filling knowledge gaps. Glob. Change Biol. 26, 328–329 (2020).ADS 
    Article 

    Google Scholar 
    10.Yue, K. et al. Changes in plant diversity and its relationship with productivity in response to nitrogen addition, warming and increased rainfall. Oikos 129, 939–952 (2020).11.Chase, J. M. & Knight, T. M. Scale‐dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).Article 

    Google Scholar 
    12.Chase, J. M. et al. Embracing scale‐dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).Article 

    Google Scholar 
    13.Spake, R. et al. Implications of scale dependence for cross‐study syntheses of biodiversity differences. Ecol. Lett. 24, 374–390 (2020).Article 

    Google Scholar 
    14.Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).ADS 
    Article 

    Google Scholar 
    15.Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. 117, 4464–4470 (2020).CAS 
    Article 

    Google Scholar 
    16.Wilcox, K. R. et al. Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Glob. Change Biol. 23, 4376–4385 (2017).Article 

    Google Scholar 
    17.Beier, C. et al. Precipitation manipulation experiments–challenges and recommendations for the future. Ecol. Lett. 15, 899–911 (2012).Article 

    Google Scholar 
    18.Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Knapp, A. K. et al. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Glob. Change Biol. 21, 2624–2633 (2015).ADS 
    Article 

    Google Scholar 
    20.Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).Article 

    Google Scholar 
    21.Stuart-Haëntjens, E. et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci. Total Environ. 636, 360–366 (2018).ADS 
    Article 

    Google Scholar 
    22.Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).PubMed 

    Google Scholar 
    24.Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Thompson, P. L., Isbell, F., Loreau, M., O’connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. R. Soc. B 285, 20180038 (2018).Article 

    Google Scholar 
    26.Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).Article 

    Google Scholar 
    27.McCluney, K. E. et al. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol. Rev. 87, 563–582 (2012).Article 

    Google Scholar 
    28.Brooker, R. W. Plant–plant interactions and environmental change. New Phytol. 171, 271–284 (2006).Article 

    Google Scholar 
    29.Maron, J. L., Baer, K. C. & Angert, A. L. Disentangling the drivers of context‐dependent plant–animal interactions. J. Ecol. 102, 1485–1496 (2014).Article 

    Google Scholar 
    30.Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93–96 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).ADS 
    Article 

    Google Scholar 
    33.Safriel, U. et al. in Ecosystems and Human Well-being: Current State and Trends.: Findings of the Condition and Trends Working Group (Island Press, 2005).34.Hoover, D. L. et al. Traversing the wasteland: a framework for assessing ecological threats to drylands. BioScience 70, 35–47 (2020).Article 

    Google Scholar 
    35.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).Article 

    Google Scholar 
    36.McGlinn, D. J. et al. Measurement of Biodiversity (MoB): a method to separate the scale‐dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evolution 10, 258–269 (2019).Article 

    Google Scholar 
    37.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    38.Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).Article 

    Google Scholar 
    39.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    40.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evolution 7, 1451–1456 (2016).Article 

    Google Scholar 
    41.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6 (2019).42.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    43.Bates, D. et al. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).44.Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17 (2020).45.Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3–25 (2020).46.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).47.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).48.Fox, J. et al. Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals. J. Stat. Softw. 87, 1–27 (2018).49.Gelman, A.& Su, Y. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. R package version 1.11–2 (2020). More

  • in

    Microbial iron and carbon metabolism as revealed by taxonomy-specific functional diversity in the Southern Ocean

    1.Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Lechtenfeld OJ, Hertkorn N, Shen Y, Witt M, Benner R. Marine sequestration of carbon in bacterial metabolites. Nat Commun. 2015;6:6711.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.DeLong E (ed). Microbial Metagenomics, Metatranscriptomics, and Metaproteomics, 1st edn. San Diego, CA, USA: Academic Press; 2013.5.White RA III, Callister SJ, Moore RJ, Baker ES, Jansson JK. The past, present and future of microbiome analyses. Nat Protoc. 2016;11:2049.CAS 
    Article 

    Google Scholar 
    6.Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Lindh MV, Sjostedt J, Andersson AF, Baltar F, Hugerth LW, Lundin D, et al. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ Microbiol. 2015;17:2459–76.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Ruiz‐González C, Logares R, Sebastián M, Mestre M, Rodríguez‐Martínez R, Galí M, et al. Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. Mol Ecol. 2019;28:1930–45.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Ocean plankton. Struct Funct Glob Ocean Microbiome Sci. 2015;348:1261359.
    Google Scholar 
    13.Ibarbalz FM, Henry N, Brandao MC, Martini S, Busseni G, Byrne H, et al. Global trends in marine plankton diversity across kingdoms of life. Cell. 2019;179:1084–97 e21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh HJ, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell. 2019;179:1068–83 e21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Ghiglione JF, Galand PE, Pommier T, Pedros-Alio C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA. 2012;109:17633–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, et al. Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA. 2008;105:3805–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Metabolic architecture of the deep ocean microbiome. bioRxiv. 2019:635680. https://doi.org/10.1101/635680.19.Martin JH, Gordon RM, Fitzwater SE. Iron in Antarctic waters. Nature. 1990;345:156–8.CAS 
    Article 

    Google Scholar 
    20.Church MJ, Hutchins DA, Ducklow HW. Limitation of bacterial growth by dissolved organic matter and iron in the Southern ocean. Appl Environ Microbiol. 2000;66:455–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Obernosterer I, Fourquez M, Blain S. Fe and C co-limitation of heterotrophic bacteria in the naturally fertilized region off the Kerguelen Islands. Biogeosciences. 2015;12:1983–92.Article 

    Google Scholar 
    22.Fourquez M, Obernosterer I, Blain S. A method for the use of the radiotracer 55Fe for microautoradiography and CARD-FISH of natural bacterial communities. FEMS Microbiol Lett. 2012;337:132–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Koedooder C, Gueneugues A, Van Geersdaële R, Vergé V, Bouget F-Y, Labreuche Y, et al. The role of the glyoxylate shunt in the acclimation to iron limitation in marine heterotrophic bacteria. Front Mar Sci. 2018;5:435.Article 

    Google Scholar 
    24.Blain S, Tagliabue A (eds). Iron Cycle in Oceans, 1st edn. London, UK: ISTE Ltd and John Wiley & Sons, Inc.; 2016.25.Dittmar T, Arnosti C. An inseparable liaison: marine microbes and nonliving organic matter. In: Gasol JM, Kirchman DL, editors. Microbial Ecology of the Oceans, 3rd edn. Hoboken NJ, USA: John Wiley and Sons, Inc.; 2018, pp 189–229.26.Blain S, Queguiner B, Armand L, Belviso S, Bombled B, Bopp L, et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature. 2007;446:1070–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lasbleiz M, Leblanc K, Armand LK, Christaki U, Georges C, Obernosterer I, et al. Composition of diatom communities and their contribution to plankton biomass in the naturally iron-fertilized region of Kerguelen in the Southern Ocean. FEMS Microbiol Ecol. 2016;92:fiw171.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Obernosterer I, Catala P, Lebaron P, West NJ. Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the Southern Ocean. Limnol Oceanogr. 2011;56:2391–401.CAS 
    Article 

    Google Scholar 
    29.Blain S, Capparos J, Guéneuguès A, Obernosterer I, Oriol L. Distributions and stoichiometry of dissolved nitrogen and phosphorus in the iron-fertilized region near Kerguelen (Southern Ocean). Biogeosciences. 2015;12:623–35.Article 

    Google Scholar 
    30.d’Ovidio F, Della Penna A, Trull TW, Nencioli F, Pujol M-I, Rio M-H, et al. The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen Plateau. Biogeosciences. 2015;12:5567–81.Article 
    CAS 

    Google Scholar 
    31.Landa M, Blain S, Christaki U, Monchy S, Obernosterer I. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms. ISME J. 2016;10:39–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Landa M, Blain S, Harmand J, Monchy S, Rapaport A, Obernosterer I. Major changes in the composition of a Southern Ocean bacterial community in response to diatom-derived dissolved organic matter. FEMS Microbiol Ecol. 2018;94:8.Article 
    CAS 

    Google Scholar 
    33.Fourquez M, Beier S, Jongmans E, Hunter R, Obernosterer I. Uptake of Leucine, chitin, and iron by prokaryotic groups during spring phytoplankton blooms induced by natural iron fertilization off Kerguelen Island (Southern Ocean). Front Mar Sci. 2016;3:256.Article 

    Google Scholar 
    34.Debeljak P, Toulza E, Beier S, Blain S, Obernosterer I. Microbial iron metabolism as revealed by gene expression profiles in contrasted Southern Ocean regimes. Environ Microbiol. 2019;21:2360–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Christaki U, Gueneugues A, Liu Y, Blain S, Catala P, Colombet J, et al. Seasonal microbial food web dynamics in contrasting Southern Ocean productivity regimes. Limnol Oceanogr. 2021;66:108–22.CAS 
    Article 

    Google Scholar 
    36.Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Bendall ML, Stevens SL, Chan LK, Malfatti S, Schwientek P, Tremblay J, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    44.Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Kanehisa M, Sato Y. Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2019;36:2251–2.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Saier MH Jr., Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The transporter classification database (TCDB): recent advances. Nucleic Acids Res. 2016;44:D372–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Dupont CL, Yang S, Palenik B, Bourne PE. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc Natl Acad Sci USA. 2006;103:17822–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    59.Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Rodriguez RL, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems. 2018;3:3.Article 

    Google Scholar 
    68.Pearson WR An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinformatics. 2013;Chapter 3:Unit3 1.69.Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Satinsky BM, Gifford SM, Crump BC, Moran MA. Use of internal standards for quantitative metatranscriptome and metagenome analysis. Methods Enzymol. 2013;531:237–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Kuhaudomlarp S, Patron NJ, Henrissat B, Rejzek M, Saalbach G, Field RA. Identification of Euglena gracilis beta-1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149. J Biol Chem. 2018;293:2865–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Ho A, Di Lonardo DP, Bodelier PL. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:3.
    Google Scholar 
    74.Rodionov DA, Gelfand MS, Todd JD, Curson AR, Johnston AW. Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol. 2006;2:e163.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Rincon-Enriquez G, Crete P, Barras F, Py B. Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions. Mol Microbiol. 2008;67:1257–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Py B, Barras F. Building Fe–S proteins: bacterial strategies. Nat Rev Microbiol. 2010;8:436–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. Adv Bot Res. 2013;66:289–326.CAS 
    Article 

    Google Scholar 
    78.Jaggavarapu S, O’Brian MR. Differential control of Bradyrhizobium japonicum iron stimulon genes through variable affinity of the iron response regulator (Irr) for target gene promoters and selective loss of activator function. Mol Microbiol. 2014;92:609–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.McAdams HH, Srinivasan B, Arkin AP. The evolution of genetic regulatory systems in bacteria. Nat Rev Genet. 2004;5:169–78.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Fourquez M, Devez A, Schaumann A, Guéneuguès A, Jouenne T, Obernosterer I, et al. Effects of iron limitation on growth and carbon metabolism in oceanic and coastal heterotrophic bacteria. Limnol Oceanogr. 2014;59:349–60.CAS 
    Article 

    Google Scholar 
    82.Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol. 2007;42:187–219.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Wei Y, Lee JM, Richmond C, Blattner FR, Rafalski JA, LaRossa RA. High-density microarray-mediated gene expression profiling of Escherichia coli. J Bacteriol. 2001;183:545–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Hendrickson EL, Liu Y, Rosas-Sandoval G, Porat I, Soll D, Whitman WB, et al. Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate. J Bacteriol. 2008;190:2198–205.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Gifford SM, Sharma S, Booth M, Moran MA. Expression patterns reveal niche diversification in a marine microbial assemblage. ISME J. 2013;7:281–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell. 2010;141:1241–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Gregg KJ, Zandberg WF, Hehemann JH, Whitworth GE, Deng L, Vocadlo DJ, et al. Analysis of a new family of widely distributed metal-independent alpha-mannosidases provides unique insight into the processing of N-linked glycans. J Biol Chem. 2011;286:15586–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Matulewicz M, Cerezo A. Water-soluble sulfated polysaccharides from the red seaweed Chaetangium fastigiatum. Analysis of the system and the structures of the α-D-(1→3)-linked mannans. Carbohydr Polym. 1987;7:121–32.CAS 
    Article 

    Google Scholar 
    89.Kolender AA, Pujol CA, Damonte EB, Matulewicz MC, Cerezo AS. The system of sulfated α-(1→3)-linked D-mannans from the red seaweed Nothogenia fastigiata: structures, antiherpetic and anticoagulant properties. Carbohydr Res. 1997;304:53–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert WJAR. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–9.Article 

    Google Scholar 
    91.Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Teeling H, Fuchs BM, Bennke CM, Kruger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife. 2016;5:e11888.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Chen J, Robb CS, Unfried F, Kappelmann L, Markert S, Song T, et al. Alpha‐and beta‐mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018;20:4127–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Biersmith A, Benner R. Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Mar Chem. 1998;63:131–44.CAS 
    Article 

    Google Scholar 
    95.Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000;289:1902–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.DeLong EF, Beja O. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol. 2010;8:e1000359.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Olson DK, Yoshizawa S, Boeuf D, Iwasaki W, DeLong EF. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 2018;12:1047–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Kim SY, Waschuk SA, Brown LS, Jung KH. Screening and characterization of proteorhodopsin color-tuning mutations in Escherichia coli with endogenous retinal synthesis. Biochim Biophys Acta. 2008;1777:504–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.von Lintig J, Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. J Biol Chem. 2000;275:11915–20.Article 

    Google Scholar 
    101.Korotkov KV, Sandkvist M, Hol WG. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol. 2012;10:336–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Intrataxonomic trends in herbivore enamel δ13C are decoupled from ecosystem woody cover

    1.Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).Article 

    Google Scholar 
    2.Kingston, J. D. Shifting adaptive landscapes: progress and challenges in reconstructing early hominid environments. Am. J. Phys. Anthropol. 134, 20–58 (2007).Article 

    Google Scholar 
    3.Levin, N. E. Environment and climate of early human evolution. Annu. Rev. Earth Planet. Sci. 43, 405–429 (2015).CAS 
    Article 

    Google Scholar 
    4.Campisano, C. J. et al. The Hominin sites and Paleolakes Drilling Project: high-resolution paleoclimate records from the East African Rift system and their implications for understanding the environmental context of hominin evolution. PaleoAnthropology 2017, 1–43 (2017).
    Google Scholar 
    5.Lupien, R. L. et al. Vegetation change in the Baringo Basin, East Africa across the onset of Northern Hemisphere glaciation 3.3–2.6 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 570, 109426 (2019).Article 

    Google Scholar 
    6.Yost, C. L. et al. Phytoliths, pollen, and microcharcoal from the Baringo Basin, Kenya reveal savanna dynamics during the Plio-Pleistocene transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 570, 109779 (2020).Article 

    Google Scholar 
    7.Reed, K. E. Paleoecological patterns at the Hadar hominin site, Afar regional state, Ethiopia. J. Hum. Evol. 54, 743–768 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kovarovic, K., Su, D. F., Lintulaakso, K. in Methods in Paleoecology (eds Croft, D. A., Su. D. F. & Simpson, S. W.) 351–372 (Springer, 2018).9.Barr, W. A. in Methods in Paleoecology (eds Croft, D. A., Su. D. F. & Simpson, S. W.) 339–349 (Springer, 2018).10.Fortelius, M. et al. An ecometric analysis of the fossil mammal record of the Turkana Basin. Philos. Trans. R. Soc. Lond. B 371, 20150232 (2016).Article 

    Google Scholar 
    11.Polly, P. D. et al. History matters: ecometrics and integrative climate change biology. Proc. R. Soc. Lond. B 278, 1131–1140 (2011).
    Google Scholar 
    12.Wang, Y. & Cerling, T. E. A model of fossil tooth enamel and bone diagenesis: implications for stable isotope studies and paleoenvironment reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 281–289 (1994).Article 

    Google Scholar 
    13.Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jaeger, J. J. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11, 306–318 (1996).Article 

    Google Scholar 
    14.Schoeninger, M. J., Reeser, H. & Hallin, K. Paleoenvironment of Australopithecus anamensis at Allia Bay, East Turkana, Kenya: evidence from mammalian herbivore enamel stable isotopes. J. Anthropol. Archaeol. 22, 200–207 (2003).Article 

    Google Scholar 
    15.Levin, N. E., Simpson, S. W., Quade, J., Cerling, T. E. & Frost, S. R. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. The geology of early humans in the Horn of Africa. Geol. Soc. Am. Spec. Pap. 446, 215–234 (2008).
    Google Scholar 
    16.Levin, N. E., Haile-Selassie, Y., Frost, S. R. & Saylor, B. Z. Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene. Proc. Natl Acad. Sci. USA 112, 12304–12309 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Kingston, J. D. in Paleontology and Geology of Laetoli: Human Evolution in Context (ed. Harrison, T.) 293–328 (Springer, 2011).18.Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl Acad. Sci. USA 112, 11467–11472 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Wynn, J. G. et al. Dietary flexibility of Australopithecus afarensis in the face of paleoecological change during the middle Pliocene: faunal evidence from Hadar, Ethiopia. J. Hum. Evol. 99, 93–106 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Robinson, J. R., Rowan, J., Campisano, C. J., Wynn, J. G. & Reed, K. E. Late Pliocene environmental change during the transition from Australopithecus to Homo. Nat. Ecol. Evol. 1, 0159 (2017).Article 

    Google Scholar 
    21.Ambrose, S. H. & DeNiro, M. J. The isotopic ecology of East African mammals. Oecologia 69, 395–406 (1986).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Sponheimer, M. et al. Diets of southern African Bovidae: stable isotope evidence. J. Mammal. 84, 471–479 (2003).Article 

    Google Scholar 
    24.Tieszen, L. L., Senyimba, M. M., Imbaba, S. K. & Troughton, J. H. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37, 337–350 (1979).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Tiezsen, L. L., Boutton, T., Tesdahl, K. & Slade, N. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for the 13C analysis of diet. Oecologia 57, 32–37 (1983).Article 

    Google Scholar 
    26.O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).Article 

    Google Scholar 
    27.Kingdon, J. et al. Mammals of Africa Vol. 1 (A&C Black, 2013).28.Kingston, J. D. & Harrison, T. Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 272–306 (2007).Article 

    Google Scholar 
    29.Patterson, D. B. et al. Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo. Nat. Ecol. Evol. 3, 1048–1056 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Sponheimer, M. & Lee-Thorp, J. A. Using carbon isotope data of fossil bovid communities for palaeoenvironmental reconstruction: research articles: human origins research in South Africa. S. Afr. J. Sci. 99, 273–275 (2003).CAS 

    Google Scholar 
    31.Lee-Thorp, J. A., Sponheimer, M. & Luyt, J. Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. J. Hum. Evol. 53, 595–601 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Bedaso, Z., Wynn, J. G., Alemseged, Z. & Geraads, D. Paleoenvironmental reconstruction of the Asbole fauna (Busidima Formation, Afar, Ethiopia) using stable isotopes. Geobios 43, 165–177 (2010).Article 

    Google Scholar 
    33.Bedaso, Z. K., Wynn, J. G., Alemseged, Z. & Geraads, D. Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: implication for Australopithecus afarensis habitat and food resources. J. Hum. Evol. 64, 21–38 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Leichliter, J. N. et al. Small mammal insectivore carbon isotopes as environmental proxies in a South African savanna ecosystem. Am. J. Phys. Anthropol. 159, 206–207 (2016).
    Google Scholar 
    35.Codron, J. et al. Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia 165, 89–99 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Marston, C. G. et al. ‘Remote’ behavioural ecology: do megaherbivores consume vegetation in proportion to its presence in the landscape? PeerJ 8, e8622 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Hernandez-Fernández, M. & Vrba, E. S. Plio-Pleistocene climatic change in the Turkana Basin (East Africa): evidence from large mammal faunas. J. Hum. Evol. 50, 595–626 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Lintulaakso, K. & Kovarovic, K. Diet and locomotion, but not body size, differentiate mammal communities in worldwide tropical ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 454, 20–29 (2016).Article 

    Google Scholar 
    39.Barr, W. A. Bovid locomotor functional trait distributions reflect land cover and annual precipitation in sub-Saharan Africa. Evol. Ecol. Res. 18, 253–269 (2017).
    Google Scholar 
    40.Eronen, J. T. et al. Precipitation and large herbivorous mammals I: estimates from present-day communities. Evol. Ecol. Res. 12, 217–233 (2010).
    Google Scholar 
    41.Eronen, J. T. et al. Precipitation and large herbivorous mammals II: application to fossil data. Evol. Ecol. Res. 12, 235–248 (2010).
    Google Scholar 
    42.Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.White, T. D. et al. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science 326, 67–93 (2009).Article 
    CAS 

    Google Scholar 
    44.Venter, Z. S., Cramer, M. D. & Hawkins, H. J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proc. Natl Acad. Sci. USA 107, 19691–19695 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Du, A., Robinson, J. R., Rowan, J., Lazagabaster, I. A. & Behrensmeyer, A. K. Stable carbon isotopes from paleosol carbonate and herbivore enamel document differing paleovegetation signals in the eastern African Plio-Pleistocene. Rev. Palaeobot. Palynol. 261, 41–52 (2019).Article 

    Google Scholar 
    47.Brown, F. H., McDougall, I. & Gathogo, P. N. in The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 7–20 (Springer, 2013).48.McDougall, I. et al. New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo–Turkana Basin, East Africa. J. Geol. Soc. 169, 213–226 (2012).CAS 
    Article 

    Google Scholar 
    49.Herries, A. I. et al. in The Paleobiology of Australopithecus (eds Reed, K. E., Fleagle, J. G. & Leakey, R. E.) 21–40 (Springer, 2013).50.Pickering, R. et al. U–Pb-dated flowstones restrict South African early hominin record to dry climate phases. Nature 565, 226–229 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Erena, M. G., Bekele, A. & Debella, H. J. Diet composition of forest inhabiting Cape buffalo (Syncerus caffer caffer) in western Ethiopia. Int. J. Ecol. Environ. Sci. 45, 165–178 (2019).
    Google Scholar 
    52.Pianka, E. R. in Theoretical Ecology. Principles and Applications (ed. May, R. M.) 114–141 (Blackwell Scientific, 1976).53.Schoener, T. W. The controversy over interspecific competition: despite spirited criticism, competition continues to occupy a major domain in ecological thought. Am. Sci. 70, 586–595 (1982).
    Google Scholar 
    54.Gordon, I. J. & Prins, H. H. T. in The Ecology of Browsing and Grazing (eds Gordon, I. J. & Prins, H. H. T.) 309–321 (Springer, 2008).55.O’Kane, C. A., Duffy, K. J., Page, B. R. & Macdonald, D. W. Effects of resource limitation on habitat usage by the browser guild in Hluhluwe-iMfolozi Park, South Africa. J. Trop. Ecol. 29, 39–47 (2013).Article 

    Google Scholar 
    56.Codron, J. et al. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J. Archaeol. Sci. 32, 1757–1772 (2005).Article 

    Google Scholar 
    57.Codron, D., Codron, J., Lee-thorp, A. J., Sponheimer, M. & Brink, S. J. Dietary variation in impala Aepyceros melampus recorded by carbon isotope composition of feces. Acta Zool. Sin. 52, 1015–1025 (2006).CAS 

    Google Scholar 
    58.Uno, K. T. et al. High-resolution stable isotope profiles of modern elephant (Loxodonta africana) tusk dentin and tail hair from Kenya: implications for identifying seasonal variability in climate, ecology, and diet in ancient proboscideans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109962 (2020).Article 

    Google Scholar 
    59.Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 6355–6363 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Owen-Smith, R. N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).61.Uno, K. T. et al. Forward and inverse methods for extracting climate and diet information from stable isotope profiles in proboscidean molars. Quat. Intern. 557, 92–109 (2020).Article 

    Google Scholar 
    62.White, F. The Vegetation of Africa: A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa (3 plates), 1:5,000,000 (UNESCO, 1983).63.Uno, K. T. et al. A Pleistocene palaeovegetation record from plant wax biomarkers from the Nachukui Formation, West Turkana, Kenya. Philos. Trans. R. Soc. Lond. B 371, 20150235 (2016).Article 
    CAS 

    Google Scholar 
    64.Behrensmeyer, A. K., Kidwell, S. M. & Gastaldo, R. A. Taphonomy and paleobiology. Paleobiology 26, 103–147 (2000).Article 

    Google Scholar 
    65.Faith, J. T., Du, A. & Rowan, J. Addressing the effects of sampling on ecometric-based paleoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol 528, 175–185 (2019).Article 

    Google Scholar 
    66.Shorrocks, B. & Bates, W. The Biology of African Savannahs (Oxford Univ. Press, 2015).67.Tieszen, L. L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci. 18, 227–248 (1991).Article 

    Google Scholar 
    68.Cornwell, W. K. et al. Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide. Glob. Ecol. Biogeogr. 27, 1056–1067 (2018).Article 

    Google Scholar 
    69.Luyt, J., Hare, V. J. & Sealy, J. The relationship of ungulate δ13C and environment in the temperate biome of southern Africa, and its palaeoclimatic application. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 282–291 (2019).Article 

    Google Scholar 
    70.Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2020); www.protectedplanet.net71.ArcGIS Desktop Release 10 (Environmental Systems Research Institute, 2012).72.Ogutu, J. et al. Changing wildlife populations in Nairobi national park and adjoining Athi-Kaputiei plains: collapse of the migratory wildebeest. Open Conserv. Biol. J. 7, 11–26 (2013).Article 

    Google Scholar 
    73.Forest Atlas of the Democratic Republic of the Congo (Ministry of Environment and Sustainable Development of the Democratic Republic of the Congo and World Resources Institute, 2020); https://www.wri.org/resources/maps/forest-atlas-democratic-republic-congo74.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/75.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). More

  • in

    Adaptation to chronic drought modifies soil microbial community responses to phytohormones

    1.Bardgett, R. D. Plant-soil interactions in a changing world. F1000 Biol. Rep. 3, 16 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Faure, D., Vereecke, D. & Leveau, J. H. Molecular communication in the rhizosphere. Plant Soil 321, 279–303 (2009).CAS 
    Article 

    Google Scholar 
    3.de Zelicourt, A., Al-Yousif, M. & Hirt, H. Rhizosphere microbes as essential partners for plant stress tolerance. Mol. Plant 6, 242–245 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84, 2281–2291 (2003).Article 

    Google Scholar 
    5.Jones, P., Garcia, B., Furches, A., Tuskan, G. & Jacobson, D. Plant host-associated mechanisms for microbial selection. Front. Plant Sci. 10, 862 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.de Vries, F. T. et al. Changes in root‐exudate‐induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. N. Phytol. 224, 132–145 (2019).Article 
    CAS 

    Google Scholar 
    7.Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. & Belimov, A. A. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157, 361–379 (2010).CAS 
    Article 

    Google Scholar 
    8.Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd-Allah, E. F. & Hashem, A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front. Microbiol. 8, 2104 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Xu, L. & Coleman-Derr, D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr. Opin. Microbiol. 49, 1–6 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Wittenmeyer, L. & Merbach, W. Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. J. Plant Nutr. Soil Sci. 168, 531–540 (2005).Article 
    CAS 

    Google Scholar 
    12.Borghi, L., Kang, J., Ko, D., Lee, Y. & Martinoia, E. The role of ABCG-type ABC transporters in phytohormone transport. Biochem. Soc. Trans. 43, 924–930 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    14.Hamer, U. & Marschner, B. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol. Biochem. 37, 445–454 (2005).CAS 
    Article 

    Google Scholar 
    15.Mondini, C., Cayuela, M. L., Sanchez-Monedero, M. A., Roig, A. & Brookes, P. C. Soil microbial biomass activation by trace amounts of readily available substrate. Biol. Fertil. Soils 42, 542–549 (2006).Article 

    Google Scholar 
    16.Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    17.Fahad, S. et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22, 4907–4921 (2015).Article 

    Google Scholar 
    18.Speirs, J., Binney, A., Collins, M., Edwards, E. & Loveys, B. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). J. Exp. Bot. 64, 1907–1916 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.McAdam, S. A., Brodribb, T. J. & Ross, J. J. Shoot‐derived abscisic acid promotes root growth. Plant Cell Environ. 39, 652–659 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Ibort, P., Molina, S., Ruiz-Lozano, J. M. & Aroca, R. Molecular insights into the involvement of a never ripe receptor in the interaction between two beneficial soil bacteria and tomato plants under well-watered and drought conditions. Mol. Plant Microbe Interact. 31, 633–650 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Timmusk, S. et al. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 6, e17968 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Ghosh, D., Gupta, A. & Mohapatra, S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis 77, 265–278 (2019).CAS 
    Article 

    Google Scholar 
    23.Carvalhais, L. C., Dennis, P. G. & Schenk, P. M. Plant defence inducers rapidly influence the diversity of bacterial communities in a potting mix. Appl. Soil Ecol. 84, 1–5 (2014).Article 

    Google Scholar 
    24.Olds, C. L., Glennon, E. K. & Luckhart, S. Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes Infect. 20, 484–492 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hartung, W., Sauter, A., Turner, N. C., Fillery, I. & Heilmeier, H. Abscisic acid in soils: what is its function and which factors and mechanisms influence its concentration? Plant Soil 184, 105–110 (1996).CAS 
    Article 

    Google Scholar 
    26.Belimov, A. A. et al. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol. Biochem. 74, 84–91 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Glick, B. R., Penrose, D. M. & Li, J. P. A model for the lowering of plant ethylene concentrations by plant growth-promoting rhizobacteria. J. Theor. Biol. 190, 63–68 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20, 219–229 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.de Ollas, C. & Dodd, I. C. Physiological impacts of ABA–JA interactions under water-limitation. Plant Mol. Biol. 91, 641–650 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Carvalhais, L. C. et al. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol. Plant Microbe Interact. 28, 1049–1058 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Ngumbi, E. & Kloepper, J. Bacterial-mediated drought tolerance: current and future prospects. Appl. Soil Ecol. 105, 109–125 (2016).Article 

    Google Scholar 
    32.Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Kudoyarova, G. et al. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front. Plant Sci. 10, 1368 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Wallenstein, M. D. & Hall, E. K. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109, 35–47 (2012).Article 

    Google Scholar 
    35.Martiny, J. B. et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 11, 490–499 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Grime, J. P. et al. The response of two contrasting limestone grasslands to simulated climate change. Science 289, 762–765 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Fridley, J. D., Lynn, J. S., Grime, J. P. & Askew, A. P. Longer growing seasons shift grassland vegetation towards more-productive species. Nat. Clim. Change 6, 865–868 (2016).Article 

    Google Scholar 
    38.Sayer, E. J. et al. Links between soil microbial communities and plant traits in a species‐rich grassland under long‐term climate change. Ecol. Evol. 7, 855–862 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Trinder, S., Askew, A. P. & Whitlock, R. Climate‐driven evolutionary change in reproductive and early‐acting life‐history traits in the perennial grass Festuca ovina. J. Ecol. 108, 1398–1410 (2020).CAS 
    Article 

    Google Scholar 
    40.Fridley, J. D., Grime, J. P., Askew, A. P., Moser, B. & Stevens, C. J. Soil heterogeneity buffers community response to climate change in species‐rich grassland. Glob. Change Biol. 17, 2002–2011 (2011).Article 

    Google Scholar 
    41.Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress‐response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).CAS 
    Article 

    Google Scholar 
    43.Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).CAS 
    Article 

    Google Scholar 
    44.Chanclud, E. & Morel, J. B. Plant hormones: a fungal point of view. Mol. Plant Pathol. 17, 1289–1297 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Sembdner, G. A. P. B. & Parthier, B. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Biol. 44, 569–589 (1993).CAS 
    Article 

    Google Scholar 
    46.Eng, F. et al. Jasmonic acid biosynthesis by fungi: derivatives, first evidence on biochemical pathways and culture conditions for production. PeerJ 9, e10873 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Fuchslueger, L. et al. Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. J. Ecol. 104, 1453–1465 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).Article 

    Google Scholar 
    49.Waring, B. G., Averill, C. & Hawkes, C. V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol. Lett. 16, 887–894 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Staddon, P. L. et al. Mycorrhizal fungal abundance is affected by long‐term climatic manipulations in the field. Glob. Change Biol. 9, 186–194 (2003).Article 

    Google Scholar 
    51.Van Gestel, M., Merckx, R. & Vlassak, K. Microbial biomass responses to soil drying and rewetting: the fate of fast-and slow-growing microorganisms in soils from different climates. Soil Biol. Biochem. 25, 109–123 (1993).Article 

    Google Scholar 
    52.Belimov, A. A. et al. Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. N. Phytol. 181, 413–423 (2009).CAS 
    Article 

    Google Scholar 
    53.Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann. Microbiol. 65, 1627–1637 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Kakumanu, M. L., Ma, L. & Williams, M. A. Drought-induced soil microbial amino acid and polysaccharide change and their implications for C-N cycles in a climate change world. Sci. Rep. 9, 1–12 (2019).CAS 

    Google Scholar 
    56.Puertolas, J., Alcobendas, R., Alarcón, J. J. & Dodd, I. C. Long‐distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone. Plant Cell Environ. 36, 1465–1475 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Axtell, C. A. & Beattie, G. A. Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl. Environ. Microbiol. 68, 4604–4612 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Wesener, F. & Tietjen, B. Primed to be strong, primed to be fast: modeling benefits of microbial stress responses. FEMS Microbiol. Ecol. 95, 114 (2019).Article 
    CAS 

    Google Scholar 
    59.Andrade‐Linares, D. R., Lehmann, A. & Rillig, M. C. Microbial stress priming: a meta‐analysis. Environ. Microbiol. 18, 1277–1288 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Grime, J. P. et al. Long-term resistance to simulated climate change in an infertile grassland. Proc. Natl Acad. Sci. USA 105, 10028–10032 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Giannetta, B., Plaza, C., Zaccone, C., Vischetti, C. & Rovira, P. Ecosystem type effects on the stabilization of organic matter in soils: combining size fractionation with sequential chemical extractions. Geoderma 353, 423–434 (2019).CAS 
    Article 

    Google Scholar 
    62.Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Tworkoski, T., Wisniewski, M. & Artlip, T. Application of BABA and s-ABA for drought resistance in apple. J. Appl. Hortic. 13, 95–90 (2011).Article 

    Google Scholar 
    64.Rohwer, C. L. & Erwin, J. E. Horticultural applications of jasmonates: a review. J. Hortic. Sci. Biotechnol. 83, 283–304 (2008).CAS 
    Article 

    Google Scholar 
    65.Creamer, R. E. et al. An inter-laboratory comparison of multi-enzyme and multiple substrate-induced respiration assays to assess method consistency in soil monitoring. Biol. Fertil. Soils 45, 623–633 (2009).CAS 
    Article 

    Google Scholar 
    66.Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03. (U.S. Department of Agriculture, Natural Resources Conservation Service, 2019).67.Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).Article 

    Google Scholar 
    68.Bardgett, R. D. & McAlister, E. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).Article 

    Google Scholar 
    69.Bardgett, R. D., Hobbs, P. J. & Frostegård, Å. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22, 261–264 (1996).Article 

    Google Scholar 
    70.Zhu, Z. et al. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil-part 2: turnover and microbial utilization. Plant Soil 416, 243–257 (2017).CAS 
    Article 

    Google Scholar 
    71.R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).72.Bates, D. M., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
    Google Scholar 
    73.Cohen, J. The effect size index: d. Stat. Power Anal. Behav. Sci. 2, 284–288 (1988).
    Google Scholar 
    74.Anderson, T. H. & Domsch, A. K. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem. 25, 393–395 (1993).Article 

    Google Scholar 
    75.Pinheiro, J.C., Bates, D.M. Mixed-Effects Models in S and S-PLUS (Springer, 2000).76.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).Article 

    Google Scholar 
    77.Sayer, E. J. et al. Data from: Adaptation to chronic drought modifies soil microbial community responses to phytohormones. figshare https://doi.org/10.6084/m9.figshare.14130065 (2021). More

  • in

    The game changing role of traditional ecological knowledge based Agri amendment systems in nutrient dynamics in the stress prone semi arid tropics

    1.Andriamananjara, A. et al. Farmyard manure improves phosphorus use efficiency in weathered P deficient soil. Nutr. Cycl. Agroecosyst. 115(3), 407–425 (2019).CAS 
    Article 

    Google Scholar 
    2.Arora, N. K. & Mishra, J. Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl. Soil. Ecol. 107, 405–407 (2016).Article 

    Google Scholar 
    3.Bellakki, M. A. & Badanur, V. P. Long-term effect of integrated nutrient management on properties of Vertisol under dryland agriculture. J. Indian Soc. Soil Sci. 45, 438–442 (1997).CAS 

    Google Scholar 
    4.Bowman, R. A. A rapid method to determine phosphorus in soils. Soil Sci. Soc. Am. J. 52, 1301–1304 (1988).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Bulluck, L. R., Brosius, M., Evanylo, G. K. & Ristaino, J. B. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol. 19(2), 147–160 (2002).Article 

    Google Scholar 
    6.CBD. Convention on Biological Diversity. Traditional knowledge and the Convention on Biological Diversity; Article 8(j) Traditional Knowledge, Innovations and Practices (2016).7.Das, B. B. & Dkhar, M. S. Rhizosphere microbial populations and physico chemical properties as affected by organic and inorganic farming practices. Am.-Eur. J. Agric. Environ. Sci. 10(2), 140–150 (2011).
    Google Scholar 
    8.De Oliveira Freitas, N., Yano-Melo, A.M., da Silva, F.S.B., de Melo, N.F., & Maia, L. C. Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil. Sci. Agric. (Piracicaba, Braz.) 68(2), 223–229 (2011).9.Fabre, A., Pinay, G. & Ruffinoni, C. Seasonal changes in inorganic and organic phosphorus in the soil of a riparian forest. Biogeochem. 35, 419–432 (1996).Article 

    Google Scholar 
    10.Gangopadhyay, S. K., Sarkar, D., Sahu, A. K. & Das, K. Forms and distribution of potassium in some soils of Ranchi Plateau. J. Indian Soc. Soil Sci. 53(3), 413–416 (2005).CAS 

    Google Scholar 
    11.Gupta, P. K. Soil, Plant, Water and Fertilizer Analysis (Agrobios, 2009).
    Google Scholar 
    12.Ishaq, M., Ibrahim, M. & Lal, R. Tillage effect on soil properties at different levels of fertilizer application in Punjab. Pak. Soil Tillage Res. 68, 93–99 (2002).Article 

    Google Scholar 
    13.Jackson, M. L. Soil Chemical Analysis 111–203 (Prentice Hall India P Limited, 1967).
    Google Scholar 
    14.Jagadeesan, S., Kumar, M. D., & Sivamohan, M. V. K. (2016). Positive Externalities of Surface Irrigation on Farm Wells and Drinking Water Supplies in Large Water Systems: The Case of Sardar Sarovar Project. In: Rural Water Systems for Multiple Uses and Livelihood Security (pp. 229–252). Elsevier.15.Kamali, F. P., Borges, J. A., Meuwissen, M. P., de Boer, I. J. & Lansink, A. G. O. Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis. Agric. Syst. 157, 118–128 (2017).Article 

    Google Scholar 
    16.Kang, B. T. Nitrogennitrogen cycling in the multiple cropping systems. In Advances in Nitrogen Cycling in Agriculture Ecosystems (ed. Wilson, J. R.) 333–348 (CAB International, 1988).
    Google Scholar 
    17.Klerkx, L. & Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways?. Glob. Food Secur. 24, 100347 (2020).Article 

    Google Scholar 
    18.Lawanprasert, A., Kunket, K., Arayarangsarit, L., and Prasertsak, A. Comparison between Conventional and Organic Paddy Fields in Irrigated Rice Ecosystem. 4th INWEPF Steering Meeting and Symposium, 2, 1–9 (2007).19.Maurya, D.M., Thakkar, M.G., Chamyal, L.S. Quaternary geology of the arid zone of Kachchh: Terra incognita. Proc. Ind. Nat. Sci. Acad. 69, A, No.2, March 03. pp. 123–135 (2003).20.McGrath, D. A., Comeford, N. B. & Duryea, M. L. Litter dynamics and monthly fluctuations in soil phosphorus availability in an Amazonian agroforest. Forest Ecol. Manag. 131, 167–181 (2000).Article 

    Google Scholar 
    21.Mpai, T., Jaiswal, S.K., & Dakora, F.D. Accumulation of phosphorus and carbon and the dependency on biological N-2 fixation for nitrogen nutrition in Polhillia, Wiborgia and Wiborgiella species growing in natural stands in cape fynbos, South Africa. SYMBIOSIS (2020).22.NBSS and LUP circular. Guide to land use planning for kachchh and north Gujarat. National bureau of soil science and land use planning, western zone, Udaipur, 2005.23.Olsen, S. R., Cole, C, V., Watanabe, F. S., and Dean, L. A.. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. National Agricultural Society, USA. 939 (1954).24.Palekar, S. The Philosophy of Spiritual Farming. Zero Budget Natural Farming Research, Development & Extension Movement, Amravati (Maharashtra) (2006).25.Parry ML et al. (eds). Cross-chapter case studies. Indigenous knowledge for adaptation to climate change. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007).26.Pasricha, N. S. Potassiumpotassium dynamics in soils in relation to crop nutrition. J. Indian Soc. Soil Sci. 50, 333–334 (2002).CAS 

    Google Scholar 
    27.Patidar, A. K., Maurya, D. M., Thakkar, M. G. & Chamyal, L. S. Fluvial geomorphology and neotectonic activity based on field and GPR data Katrol hill range, Kachchh, western India. Quaternary Int. 159(2007), 74–92 (2007).ADS 
    Article 

    Google Scholar 
    28.Preparation of Soil Sampling Protocols: Sampling Techniques and Strategies, 1992. EPA/600/R-92/128 July.29.Reganold, J. P. et al. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS ONE 5(9), e12346. https://doi.org/10.1371/journal.pone.0012346 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Saxena, R. C., Chaudhary, S. L. & Nene, Y. L. A Textbook on Ancient History of Indian Agriculture, Asian Agri-History Foundation (AAHF) (Secunderabad; and Rajasthan chapter of AAHF, 2009).
    Google Scholar 
    31.Sharma S.B., and Gobi, T.A. Impact of drought on soil and microbial diversity in different agro ecosystems of the semi arid zones. In: Plant, Soil and Microbes – Interactions and Implications in Crop Science (Editors: Dr. Khalid Rehman Hakeem, Dr.MohdSayeedAkhtarandDr.Siti Nor Akmar Abdullah), Springer International Publishing Switzerland. (ISBN 978–3–319–27453–9 ISBN 978–3–319–27455–3 (eBook) DOI https://doi.org/10.1007/978-3-319-27455-3) (2016).32.Sharma, S.B. The relevance of Traditional Ecological Knowledge (TEK) in agricultural sustainability of the semi arid tropics. In:Adaptive Soil Management: from theory to practices. (Rakshit A, Abhilash P. C., Singh H. B., Ghosh S.(Eds.). Springer nature, Singapore. ISBN 978–981–10–3637–8 ISBN 978–981–10–3638–5 (eBook) (2017a). https://doi.org/10.1007/978-981-10-3638-533.Sharma S. B. Traditional Ecological Knowledge-Based Practices and Bio-formulations: Key to Agricultural Sustainability. In: Probiotics in Agroecosystem (Eds. Vivek Kumar, Manoj Kumar, Shivesh Sharma). Springer Nature. ISBN 978–981–10–4058–0 ISBN 978–981–10–4059–7 (eBook). DOI https://doi.org/10.1007/978-981-10-4059-7 (2017b)34.Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. & Thivakaran, G. A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus. 2, 587. https://doi.org/10.1186/2193-1801-2-587 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Subbiah, B. V. & Asija, G. L. A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 25, 259–260 (1956).CAS 

    Google Scholar 
    36.Sugiyama, A., Vivanco, J. M., Jayanty, S. S. & Manter, D. K. Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant. Dis. 94, 1329–1335 (2010).CAS 
    Article 

    Google Scholar 
    37.Tandon, H. L. S.. Phosphorusphosphorus research and agriculture production in India. New Delhi: Fertilization Development and Consultation Organisation 160p (1987).38.The UN Sustainable Development Goals. United Nations, New York, 2015. Available at :http://www.un.org/sustainabledevelopment/summit/.39.Topp, C. F., Watson, C. A., & Stockdale, E. Utilising the concept of nutrients as a currency within organic farming system. In Proceedings of the UK Organic Research 2002 Conference (pp. 157–160). Organic Centre Wales, Institute of Rural Studies, University of Wales Aberystwyth (2002)..40.United Nations World Population Prospects, 2019. World Population Prospects (2019)41.Walkley, A. & Black, I. A. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Sharma, S. B. & Thivakaran, G. A. Microbial dynamics in traditional eco-knowledge vis-à-vis chemical-intensive agri-amendment systems of stress prone semi-arid tropics. Appl. Soil. Ecol. 155, 103668 (2020).Article 

    Google Scholar  More

  • in

    Co-existence of AMF with different putative MAT-alleles induces genes homologous to those involved in mating in other fungi: a reply to Malar et al.

    Although Malar et al. “do not exclude the possibility that the genes identified by Mateus et al. are involved in mating,” they qualify the homology inference between genes differentially expressed in the co-inoculation treatment and genes involved in mating in other fungal species as “spurious evolutionary relationships” or “not the best ortholog”. Those statements imply that they attach no importance to the demonstrated sequence homology relationships identified in Mateus et al. Orthology does not necessarily imply conservation of gene function and genes with equivalent functions are not necessarily orthologs [3]. Therefore, it is misleading to assume that two genes have the same function when interpreting the role of a “best candidate ortholog” identified in silico. Moreover, relying only on an in silico search for exploring orthologs can lead to serious problems for inferring function as none of the search algorithms are free from bias if subfunctionalization or neofunctionalization events occurred among the homologs.Malar et al. have not considered, or have misunderstood, the experimental evidence on gene expression in interpreting their homology search. It is not surprising that their “best homologs” were not upregulated, because we already saw that those genes were not upregulated in the original dataset. Our approach comprised performing an experiment to identify genes that were specifically upregulated when two isolates coexisted in planta. We then identified their putative function by homology. We did not look at whether the genes were the closest orthologs. However, we discussed the limitations of an homology approach to identify gene function [2]. To our surprise, a consistent set of 20 genes was upregulated in the co-inoculation treatment in different host plants, and 9 of these 20 (upregulated in more than one host plant) shared the common feature of homology to genes involved in different steps of mating in other fungal species (Figs. 3 and 4 of Mateus et al.).Malar et al. claim the identification of hundreds of hits of the 18 genes differentially expressed in Mateus et al. “against the high-quality protein databases from the JGI Mycocosm Rhiir2” (referring to the protein database “Rhiir2” of R. irregularis). In fact, Malar et al. compared the 18 genes against “all protein gene catalogs of fungal species from the JGI fungal genomic resource” comprising 1318 taxa. The interpretation of the number of hits on a such large dataset is misleading because if a gene is highly conserved across the fungal kingdom, we would expect hundreds of hits in this database. In contrast, if an R. irregularis gene is highly specific to the Glomeromycotina taxa, we would expect very few hits (because there are less Glomeromycotina genomes in the database). Consequently, the number of hits in Table 1 from Malar et al. reflect the size of the database used and how conserved a given gene is, rather than whether a gene is from a large gene family. Malar et al. identified the so-called “closest ortholog” in R. irregularis of fungal mating genes from other fungal species by showing the “best hit” using OrthoMCL. However, differentiating paralogs from orthologs is a complicated task, in very distant species, especially if the organisms are highly paralogous. A more cautious analysis for each gene, including a confirmation that they are located in similar genomic locations, would lend more certitude that a given gene could be an ortholog. Consequently, the evaluation of RNA expression of their “best hit” remains incomplete in terms of the effort to find the best orthologs. More

  • in

    Bacterial communities in larger islands have reduced temporal turnover

    The underpinning method employed to construct a STR may affect the shape, scaling exponent (w), and fit of the STR power function. Here we used three differing approaches to construct STRs; including, what we term in this study, the ‘every possible window’ (EPW) [10], ‘cumulative moving window’ (CMW) [8], and ‘moving window’ (MW) approaches. The differences in each method are extensively detailed in the Material and Methods. The STRs for the bacterial communities within each of the tree-hole islands were plotted, of which all relationships were significant (Fig. 1 and Table S1). Overall, the resulting STR power law exponents (w) were found to range from 0.048 to 0.350 (Fig. 1) and were typically within the exponent ranges observed from meta-analyses of STRs for a wide range of animals, plants, and microbial communities [9,10,11]. However, these values varied by the approach used to construct STRs (Fig. 2A). The EPW based w values ranged from 0.048 to 0.128, with a mean w of 0.088 ± 0.029 (mean ± SD). The CMW w values ranged from 0.073 to 0.150, with a mean w = 0.111 ± 0.029. Whereas, the MW minimum and maximum w values were 0.223 ± 0.350, with a mean of 0.289 ± 0.044 (Fig. 2A). The EPW and CMW w values were significantly lower than the MW w values (Fig. 2A). However, they were not significantly different from each other, despite that EPW values were uniformly lower (Fig. 2A).Fig. 1: Species-time relationships for the tree-hole bacterial communities.A, B, and C represent species–time relationships (STR) constructed using every possible window, cumulative moving window, and moving window approaches, respectively. Given in each instance is the tree-hole number (TH1–TH10) and the STR power law equation. All STRs were significant (P  More