More stories

  • in

    Reproductive success of the parasitic mite (Varroa destructor) is lower in honeybee colonies that target infested cells with recapping

    1.Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).CAS 
    Article 

    Google Scholar 
    2.Page, P. et al. Social apoptosis in honey bee superorganisms. Sci. Rep. 6, 1–6 (2016).Article 

    Google Scholar 
    3.Winston, M. L. The Biology of the Honey Bee. (Harvard University Press, 1991).4.Beye, M. et al. Exceptionally high levels of recombination across the honey bee genome. Genome Res. 16, 1339–1344 (2006).CAS 
    Article 

    Google Scholar 
    5.Kent, C. F., Minaei, S., Harpur, B. A. & Zayed, A. Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc. Natl. Acad. Sci. 109, 18012–18017 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010).Article 

    Google Scholar 
    7.Traynor, K. S. et al. Varroa destructor: a complex Parasite, Crippling Honey Bees Worldwide. Trends Parasitol. 36, 592–606 (2020).CAS 
    Article 

    Google Scholar 
    8.Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49, 1–6 (2010).Article 

    Google Scholar 
    9.Thompson, C. E., Biesmeijer, J. C., Allnutt, T. R., Pietravalle, S. & Budge, G. E. Parasite Pressures on Feral Honey Bees (Apis mellifera sp.). PLoS ONE 9, (2014).10.Camazine, S. Differential Reproduction of the Mite, Varroa jacobsoni (Mesostigmata: Varroidae), on Africanized and European Honey Bees (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 79, 801–803 (1986).Article 

    Google Scholar 
    11.Corrêa-Marques, M.-H. & De Jong, D. Uncapping of worker bee brood, a component of the hygienic behavior of Africanized honey bees against the mite Varroa jacobsoni Oudemans. Apidologie 29, 283–289 (1998).Article 

    Google Scholar 
    12.Allsopp, M. H. Analysis of Varroa destructor infestation of southern African honeybee populations. (University of Pretoria, 2007).13.Locke, B., Le Conte, Y., Crauser, D. & Fries, I. Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations. Ecol. Evol. 2, 1144–1150 (2012).Article 

    Google Scholar 
    14.Oddie, M. A. Y., Dahle, B. & Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 5, e3956 (2017).Article 

    Google Scholar 
    15.Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47, 467–482 (2016).Article 

    Google Scholar 
    16.Villegas, A. J. & Villa, J. D. Uncapping of pupal cells by European bees in the United States as responses to Varroa destructor and Galleria mellonella. J. Apic. Res. 45, 203–206 (2006).Article 

    Google Scholar 
    17.Spivak, M. & Gilliam, M. Facultative expression of hygienic behaviour of honey bees in relation to disease resistance. J. Apic. Res. 32, 147–157 (1993).Article 

    Google Scholar 
    18.Le Conte, Y., Arnold, G. & Desenfant, P. Influence of brood temperature and hygrometry variations on the development of the honey bee Ectoparasite Varroa jacobsoni (Mesostigmata: Varroidae). Environ. Entomol. 19, 1780–1785 (1990).Article 

    Google Scholar 
    19.Kraus, B. & Velthuis, H. H. W. High humidity in the honey bee (Apis mellifera L.) Brood nest limits reproduction of the parasitic mite varroa jacobsoni oud. Naturwissenschaften 84, 217–218 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Harris, J. W., Danka, R. G. & Villa, J. D. Changes in infestation, cell cap condition, and reproductive status of varroa destructor (Mesostigmata: Varroidae) in brood exposed to honey bees with varroa sensitive hygiene. Ann. Entomol. Soc. Am. 105, 512–518 (2012).Article 

    Google Scholar 
    21.Oddie, M. A. Y. et al. Rapid parallel evolution overcomes global honey bee parasite. Sci. Rep. 8, 1–9 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Martin, S. J. et al. Varroa destructor reproduction and cell re-capping in mite-resistant Apis mellifera populations. Apidologie 51, 369–381 (2020).CAS 
    Article 

    Google Scholar 
    23.Martin, S. J. Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L under natural conditions. Exp. Appl. Acarol. 18, 87–100 (1994).Article 

    Google Scholar 
    24.Donzé, G., Herrmann, M., Bachofen, B. & Guerin, P. R. M. Effect of mating frequency and brood cell infestation rate on the reproductive success of the honeybee parasite Varroa jacobsoni. Ecol. Entomol. 21, 17–26 (1996).Article 

    Google Scholar 
    25.Harris, J. W., Danka, R. G. & Villa, J. D. Honey bees (Hymenoptera: Apidae) with the Trait of varroa sensitive hygiene remove brood with all reproductive stages of varroa mites (Mesostigmata: Varroidae). Ann. Entomol. Soc. Am. 103, 146–152 (2010).Article 

    Google Scholar 
    26.Harris, J. W. & Harbo, J. R. Low sperm counts and reduced fecundity of mites in colonies of honey bees (Hymenoptera: Apidae) resistant to varroa jacobsoni (mesostigmata: Varroidae). J. Econ. Entomol. 92, 83–90 (1999).Article 

    Google Scholar 
    27.Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14, (2019).28.Arathi, H. S., Ho, G. & Spivak, M. Inefficient task partitioning among nonhygienic honeybees, Apis mellifera L, and implications for disease transmission. Anim. Behav. 72, 431–438 (2006).Article 

    Google Scholar 
    29.Kirrane, M. J. et al. Asynchronous Development of Honey Bee Host and Varroa destructor (Mesostigmata: Varroidae) Influences Reproductive Potential of Mites. J. Econ. Entomol. 104, 1146–1152 (2011).Article 

    Google Scholar 
    30.Locke, B. & Fries, I. Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie 42, 533–542 (2011).Article 

    Google Scholar 
    31.Chantawannakul, P., Ramsey, S., vanEngelsdorp, D., Khongphinitbunjong, K. & Phokasem, P. Tropilaelaps mite: an emerging threat to European honey bee. Curr. Opin. Insect Sci. 26, 69–75 (2018).Article 

    Google Scholar 
    32.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    33.R Core team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019), https://www.R-project.org. More

  • in

    Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change

    1.Ferrarini, A., Dai, J., Bai, Y. & Alatalo, J. M. Redefining the climate niche of plant species: A novel approach for realistic predictions of species distribution under climate change. Sci. Total Environ. 671, 1086–1093 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Ferrarini, A., Alsafran, M. H. S. A., Dai, J. & Alatalo, J. M. Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study. Clim. Dyn. 52, 1413–1423 (2019).Article 

    Google Scholar 
    3.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Mousavi Kouhi, S. M. & Erfanian, M. B. Predicting the present and future distribution of medusahead and barbed goatgrass in Iran. Ecopersia 8, 41–46 (2020).
    Google Scholar 
    6.Alavi, S. J., Ahmadi, K., Hosseini, S. M., Tabari, M. & Nouri, Z. The response of English yew (Taxus baccata L.) to climate change in the Caspian Hyrcanian Mixed Forest ecoregion. Reg. Environ. Change 19, 1495–1506 (2019).Article 

    Google Scholar 
    7.Huntley, B., Berry, P. M., Cramer, W. & McDonald, A. P. Special paper: Modelling present and potential future ranges of some European higher plants using climate response surfaces. J. Biogeogr. 22, 967 (1995).Article 

    Google Scholar 
    8.Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?: Evaluating bioclimate envelope models. Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    9.Hällfors, M. H. et al. Assessing the need and potential of assisted migration using species distribution models. Biol. Conserv. 196, 60–68 (2016).Article 

    Google Scholar 
    10.Kamakhina, G. L. Kopetdagh-Khorassan Flora: Regional Features of Central Kopetdagh. In Biogeography and Ecology of Turkmenistan (eds. Fet, V. & Atamuradov, K. I.) Vol. 72 129–148 (Springer Netherlands, 1994).11.Memariani, F., Zarrinpour, V. & Akhani, H. A review of plant diversity, vegetation, and phytogeography of the Khorassan-Kopet Dagh floristic province in the Irano-Turanian region (northeastern Iran–southern Turkmenistan). Phytotaxa 249, 8 (2016).Article 

    Google Scholar 
    12.Fet, V. Biogeographic Position of the Khorassan-Kopetdagh. In Biogeography and Ecology of Turkmenistan (eds. Fet, V. & Atamuradov, K. I.) Vol. 72 197–204 (Springer Netherlands, 1994).13.Memariani, F. Khorassan-Kopet Dagh mountains. In Plant Biogeography and Vegetation of High Mountains of Central and South-West Asia (ed. Noroozi, J.) (Springer, 2020). https://datadryad.org/stash/dataset/doi:10.5061/dryad.4sb638314.Behroozian, M., Ejtehadi, H., Peterson, A. T., Memariani, F. & Mesdaghi, M. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS ONE 15, e0237527 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Erfanian, M. B. et al. Data from: Plant community responses to environmentally-friendly piste management in northeast Iran. Dryad Dataset. https://datadryad.org/stash/dataset/doi:10.5061/dryad.4sb6383 (2019).16.Jamzad, Z. Flora of Iran vol. 76 Lamiaceae. (Research Institute of Forests & Rangelands, 2012).17.Sagharyan, M., Ganjeali, A. & Cheniany, M. Investigating the effect of antioxidant compounds and various concentrations of BAP and NAA on the improvement of in vitro stem and root formation of Nepeta binaloudensis Jamzad. NBR 6, 198–205 (2019).Article 

    Google Scholar 
    18.Nadjafi, F., Koocheki, A., Moghaddam, P. R. & Rastgoo, M. Ethnopharmacology of Nepeta binaludensis Jamzad a highly threatened medicinal plant of Iran. J. Med. Plants 8, 29–35 (2009).
    Google Scholar 
    19.Nadjafi, F., Koocheki, A., Honermeier, B. & Asili, J. Autecology, ethnomedicinal and phytochemical studies of Nepeta binaludensis Jamzad a highly endangered medicinal plant of Iran. J. Essent. Oil Bear. Plants 12, 97–110 (2009).CAS 
    Article 

    Google Scholar 
    20.Memariani, F., Akhani, H. & Joharchi, M. R. Endemic plants of Khorassan-Kopet Dagh floristic province in Irano-Turanian region: Diversity, distribution patterns and conservation status. Phytotaxa 249, 31 (2016).Article 

    Google Scholar 
    21.Salmaki, Y. & Joharchi, M. R. Phlomoides binaludensis (Phlomideae, Lamioideae, Lamiaceae), a new species from northeastern Iran. Phytotaxa 172, 265 (2014).Article 

    Google Scholar 
    22.Pahlevani, A. H., Liede-Schumann, S. & Akhani, H. Seed and capsule morphology of Iranian perennial species of Euphorbia (Euphorbiaceae) and its phylogenetic application: Perennial Species of Euphorbia in Iran. Bot. J. Linn. Soc. 177, 335–377 (2015).Article 

    Google Scholar 
    23.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933 (2001).Article 

    Google Scholar 
    24.Djamali, M. et al. Application of the global bioclimatic classification to Iran: Implications for understanding the modern vegetation and biogeography. Ecol. Mediterr. 37, 91–114 (2011).Article 

    Google Scholar 
    25.Farashi, A., Shariati, M. & Hosseini, M. Identifying biodiversity hotspots for threatened mammal species in Iran. Mamm. Biol. 87, 71–88 (2017).Article 

    Google Scholar 
    26.Hosseinzadeh, M. S., Fois, M., Zangi, B. & Kazemi, S. M. Predicting past, current and future habitat suitability and geographic distribution of the Iranian endemic species Microgecko latifi (Sauria: Gekkonidae). J. Arid Environ. 183, 104283 (2020).ADS 
    Article 

    Google Scholar 
    27.Noroozi, J. et al. Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism. Sci. Rep. 9, 12991 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Erfanian, M. B., Ejtehadi, H., Vaezi, J. & Moazzeni, H. Plant community responses to multiple disturbances in an arid region of northeast Iran. Land Degrad. Dev. 30, 1554–1563 (2019).Article 

    Google Scholar 
    29.Erfanian, M. B. et al. Plant community responses to environmentally friendly piste management in northeast Iran. Ecol. Evol. 9, 8193–8200 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Memariani, F. et al. Plant diversity of the Khorassan-Kopet Dagh Floristic Province (Irano-Turanian Region). (Magnolia Press, 2016)31.Memariani, F., Joharchi, M. R., Ejtehadi, H. & Emadzade, K. A contribution to the flora and vegetation of Binalood mountain range, NE Iran: Floristic and chorological studies in Fereizi region. Ferdowsi Univ. Int. J. Biol. Sci. J. Cell Mol. Res. 1, 1–17 (2009).
    Google Scholar 
    32.Memariani, F. & Joharchi, M. R. Iris ferdowsii (Iridaceae), a new species of section Regelia from northeast of Iran. Phytotaxa 291, 192 (2017).Article 

    Google Scholar 
    33.Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R Package. https://cran.r-project.org/package=biomod2 (2019).34.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).35.Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).Article 

    Google Scholar 
    36.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    37.Ahmadi, M., Dadashi Roudbari, A. A., Akbari Azirani, T. & Karami, J. The performance of the HadGEM2-ES model in the evaluation of seasonal temperature anomaly of Iran under RCP scenarios. J. Earth Space Phys. 45, 625–644 (2019).
    Google Scholar 
    38.Dray, S. & Dufour, A.-B. The ade4 Package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    39.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).40.Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling. Ecography 37, 191–203 (2014).Article 

    Google Scholar 
    41.Menard, S. W. Applied Logistic Regression Analysis (Sage Publications, Thousand Oaks, 2002).Book 

    Google Scholar 
    42.Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159 (1977).CAS 
    MATH 
    Article 

    Google Scholar 
    43.Araujo, M. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed 
    Article 

    Google Scholar 
    44.Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).Article 

    Google Scholar 
    45.Kaky, E., Nolan, V., Alatawi, A. & Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 60, 101150 (2020).Article 

    Google Scholar 
    46.Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43, 549–558 (2020).Article 

    Google Scholar 
    47.Abdelaal, M., Fois, M., Fenu, G. & Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép, Egypt. Ecol. Inform. 50, 68–75 (2019).Article 

    Google Scholar 
    48.Thuiller, W. et al. Endemic species and ecosystem sensitivity to climate change in Namibia. Glob. Change Biol. 12, 759–776 (2006).ADS 
    Article 

    Google Scholar 
    49.Chitale, V. S., Behera, M. D. & Roy, P. S. Future of endemic flora of biodiversity hotspots in India. PLoS ONE 9, e115264 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Fois, M., Bacchetta, G., Cogoni, D. & Fenu, G. Current and future effectiveness of the Natura 2000 network for protecting plant species in Sardinia: A nice and complex strategy in its raw state?. J. Environ. Plan. Manag. 61, 332–347 (2018).Article 

    Google Scholar 
    51.Mamet, S. D., Brown, C. D., Trant, A. J. & Laroque, C. P. Shifting global Larix distributions: Northern expansion and southern retraction as species respond to changing climate. J. Biogeogr. 46, 30–44 (2019).Article 

    Google Scholar 
    52.Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change: Predicting species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).Article 

    Google Scholar 
    53.Hosseini, S. S., Ejtehadi, H. & Memariani, F. The first report Nepeta binaloudensis Jamzad in Hezar masjed mountains of Khorasan Razavi province. In Proceedings of the 9th National Congress and 7th International Congrees of Bilogy of Iran (2016).54.Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).ADS 
    Article 

    Google Scholar 
    55.Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Casazza, G. et al. Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol. Conserv. 179, 129–138 (2014).Article 

    Google Scholar 
    57.Zhang, M.-G. et al. Major declines of woody plant species ranges under climate change in Yunnan, China. Divers. Distrib. 20, 405–415 (2014).CAS 
    Article 

    Google Scholar 
    58.Sanjerehei, M. M. & Rundel, P. W. The impact of climate change on habitat suitability for Artemisia sieberi and Artemisia aucheri (Asteraceae)—A modeling approach. Pol. J. Ecol. 65, 97–109 (2017).Article 

    Google Scholar 
    59.Abolmaali, S.M.-R., Tarkesh, M. & Bashari, H. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol. Inform. 43, 116–123 (2018).Article 

    Google Scholar 
    60.Di Musciano, M. et al. Dispersal ability of threatened species affects future distributions. Plant Ecol. 221, 265–281 (2020).Article 

    Google Scholar 
    61.Fois, M., Cuena-Lombraña, A., Fenu, G., Cogoni, D. & Bacchetta, G. The reliability of conservation status assessments at regional level: Past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. J. Nat. Conserv. 33, 1–9 (2016).Article 

    Google Scholar  More

  • in

    China’s wildlife protection: add annual reviews and oversight

    Now that China has finally updated its List of Wildlife under Special State Protection, a more nimble and responsive approach is needed to aid conservation. The list should be reviewed every year, as well as subjected to the planned five-yearly updates. Species can quickly become endangered in times of rapid development.The latest additions are the first in more than 30 years (see go.nature.com/2q7sfga). During that time, China has changed profoundly, but the list of protected species has not kept pace. This lag has been disastrous for some animals that were not given the protection they needed.At least 33 species became extinct in China and many more are critically endangered (Y. Xie & W. Sung Integr. Zool. 2, 26–35; 2007; Z. Jiang et al. Biodivers. Sci. 24, 500–551; 2016).An independent government committee should be created to oversee amendments. When making decisions, it could refer to appendices of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the ‘red lists’ of threatened species curated by the Chinese Academy of Sciences and the International Union for Conservation of Nature (IUCN). These steps would build on the more forceful approach to managing wildlife that China has taken since the start of the COVID-19 pandemic. More

  • in

    Monsoon forced evolution of savanna and the spread of agro-pastoralism in peninsular India

    1.Whyte, R. O. Grassland and Fodder Resources of India Revised. (Indian Council of Agricultural Research, 1964).
    Google Scholar 
    2.Misra, R. The vegetation of the Indian Savannas. In Tropical Savannas (ed. Bourliere, F.) 151–166 (Elsevier, 1983).3.Behrensmeyer, A. K. et al. The structure and rate of late Miocene expansion of C4 plants: evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan. GSA Bull. 119, 1486–1505 (2007).CAS 
    Article 

    Google Scholar 
    4.Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Government of India Press, 1968).
    Google Scholar 
    5.Mani, M. S. The Flora. In Ecology and Biogeography in India (ed. Mani, M. S.) 159–177 (Dr. W. Junk b.v. Publishers, 1974).6.Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B 371, 20150305 (2016).Article 
    CAS 

    Google Scholar 
    7.Blasco, F. The transition from open forest to Savanna in continental Southeast Asia. In Tropical Savannas (ed. Bourliere, F.) 167–182 (Elsevier, 1983).8.Puri, G. S., Meher Homji, V. M., Gupta, R. K. & Puri, S. Forest Ecology. Phytogeography and Conservation Vol. 1 (Oxford & IBH Publishing, 1983).
    Google Scholar 
    9.Fuller, D. Q. & Korisettar, R. The vegetational context of early agriculture in South India. Man Environ. 29, 7–27 (2004).
    Google Scholar 
    10.Fuller, D. Q. Finding plant domestication in the Indian subcontinent. Curr. Anthropol. 52, S347–S362 (2011).Article 

    Google Scholar 
    11.Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. New Phytol. 191, 197–209 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Staver, A. C., Archibald, S. & Levin, S. A. Tree-cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Bond, W. J. What limits trees in C4 grasslands and savannas?. Annu. Rev. Ecol. Evol. Syst. 39, 641–659 (2008).Article 

    Google Scholar 
    14.Hirota, M., Holmgren, M., Van Nes, E. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).ADS 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    16.Mayle, F. E. & Power, M. J. Impact of a drier early–mid-Holocene climate upon Amazonian forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1829–1838 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ngomanda, A. et al. Western equatorial African forest-savanna mosaics: a legacy of late Holocene climatic change?. Clim. Past 5, 647–659 (2009).Article 

    Google Scholar 
    18.Metwally, A. A., Scott, L., Neumann, F. H., Bamford, M. K. & Oberhänsli, H. Holocene palynology and palaeoenvironments in the Savanna Biome at Tswaing Crater, central South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 402, 125–135 (2014).Article 

    Google Scholar 
    19.Kuper, R. & Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).Article 

    Google Scholar 
    21.Wanner, H. et al. Mid- to late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008).ADS 
    Article 

    Google Scholar 
    22.Kathayat, G. et al. The Indian monsoon variability and civilization changes in the Indian subcontinent. Sci. Adv. 3, e1701296 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Shinde, V. The origin and development of the Chalcolithic in Central India. Indo-Pac. Prehist. Assoc. Bull. 19, 125–136 (2000).
    Google Scholar 
    24.Fuller, D. Q. Agricultural origins and frontiers in South Asia: a working synthesis. J. World Prehist. 20, 1–86 (2006).Article 

    Google Scholar 
    25.Fuller, D. Q., Boivin, N. & Korisettar, R. Dating the Neolithic of South India: new radiometric evidence for key economic, social and ritual transformations. Antiquity 81, 755–778 (2007).Article 

    Google Scholar 
    26.Johansen, P. G. Landscape, monumental architecture, and ritual: a reconsideration of the South Indian ashmounds. J. Anthropol. Archaeol. 23, 309–330 (2004).Article 

    Google Scholar 
    27.Fuller, D. Q. Asia, South: Neolithic cultures. In Encyclopedia of Archaeology (ed. Pearsall, D.) 756–768 (Springer, 2008).
    Google Scholar 
    28.Asouti, E. & Fuller, D. Q. Trees and Woodlands of South India: Archaeological Perspectives (Left Coast Press, 2008).
    Google Scholar 
    29.Singh, G., Joshi, R. D., Chopra, S. K. & Singh, A. B. Late quaternary history of vegetation and climate of the Rajasthan desert, India. Philos. Trans. R. Soc. Lond. B Biol. Sci. 267, 467–501 (1974).ADS 
    Article 

    Google Scholar 
    30.Singh, I. B. Quaternary palaeoenvironments of the Ganga plain and anthropogenic activity. Man Environ. 30, 1–35 (2005).
    Google Scholar 
    31.Clarkson, C. et al. The oldest and longest enduring microlithic sequence in India: 35 000 years of modern human occupation and change at the Jwalapuram locality 9 rockshelter. Antiquity 83, 326–348 (2009).Article 

    Google Scholar 
    32.Riedel, N. et al. Modern pollen vegetation relationships in a dry deciduous monsoon forest: a case study from Lonar Crater Lake, central India. Quat. Int. 371 (2015).33.Sarkar, S. et al. Monsoon source shifts during the drying mid-Holocene: biomarker isotope based evidence from the core ‘monsoon zone’ (CMZ) of India. Quat. Sci. Rev. 123, 144–157 (2015).ADS 
    Article 

    Google Scholar 
    34.Chakraborty, A., Joshi, P. K., Ghosh, A. & Areendran, G. Assessing biome boundary shifts under climate change scenarios in India. Ecol. Indic. 34, 536–547 (2013).Article 

    Google Scholar 
    35.Rasquinha, D. N. & Sankaran, M. Modelling biome shifts in the Indian subcontinent under scenarios of future climate change. Curr. Sci. 111, 147–156 (2016).Article 

    Google Scholar 
    36.Berkelhammer, M. et al. An abrupt shift in the Indian monsoon 4000 years ago in Climates, Landscapes, and Civilizations (eds. Giosan, L. et al.) 75–88 (American Geophysical Union, 2013).37.Fleitmann, D. et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. Rev. 26, 170–188 (2007).ADS 
    Article 

    Google Scholar 
    38.Sinha, A. et al. A global context for megadroughts in monsoon Asia during the past millennium. Quat. Sci. Rev. 30, 47–62 (2011).ADS 
    Article 

    Google Scholar 
    39.Berkelhammer, M. et al. Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet. Sci. Lett. 290, 166–172 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Laskar, A. H., Yadava, M. G., Ramesh, R., Polyak, V. J. & Asmerom, Y. A 4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochem. Geophys. Geosyst. 14, 3555–3566 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Thamban, M., Kawahata, H. & Rao, V. P. Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: timing and implications. J. Oceanogr. 63, 1009–1020 (2007).Article 

    Google Scholar 
    42.Ponton, C. et al. Holocene aridification of India. Geophys. Res. Lett. 39, L03704 (2012).ADS 
    Article 

    Google Scholar 
    43.Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob. Ecol. Biogeogr. 25, 443–454 (2016).Article 

    Google Scholar 
    44.Gaussen, H. et al. International Map of the Vegetation at Scale 1:1.000.000 (French Institute of Pondycherry, 1964).
    Google Scholar 
    45.ESRI Inc. ArcGIS Pro (ESRI Inc., 2019).
    Google Scholar 
    46.Saha, K. Tropical Circulation Systems and Monsoons (Springer, 2010).Book 

    Google Scholar 
    47.Goswami, B. N. South Asian monsoon. In Intraseasonal Variability in the Atmosphere–Ocean Climate System (eds. Lau, W. K. M. & Waliser, D. E.) 19–61 (Springer, 2005).48.Dabadghao, P. M. & Shankarnarayan, K. A. The Grass Cover of India (Indian Council of Agricultural Research, 1973).
    Google Scholar 
    49.Prasad, S. & Enzel, Y. Holocene paleoclimates of India. Quat. Res. 66, 442–453 (2006).Article 

    Google Scholar 
    50.Fleitmann, D. et al. Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quat. Sci. Rev. 23, 935–945 (2004).ADS 
    Article 

    Google Scholar 
    51.Kale, V. S. Fluvio–sedimentary response of the monsoon-fed Indian rivers to Late Pleistocene–Holocene changes in monsoon strength: reconstruction based on existing 14C dates. Quat. Sci. Rev. 26, 1610–1620 (2007).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    52.Prasad, S. et al. Prolonged monsoon droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar Lake, central India. Earth Planet. Sci. Lett. 391, 171–182 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Dixit, Y., Hodell, D. A. & Petrie, C. A. Abrupt weakening of the summer monsoon in northwest India ∼ 4100 yr ago. Geology https://doi.org/10.1130/G35236.1 (2014).Article 

    Google Scholar 
    54.Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).ADS 
    Article 

    Google Scholar 
    55.Marzin, C. & Braconnot, P. Variations of Indian and African monsoons induced by insolation changes at 6 and 9.5 kyr BP. Clim. Dyn. 33, 215–231 (2009).Article 

    Google Scholar 
    56.Bush, R. T. & McInerney, F. A. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161–179 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Murphy, C. & Fuller, D. Q. The agriculture of early India. In Oxford Research Encyclopedia of Environmental Science (ed. Shugart, H.) (Oxford University Press, 2017).
    Google Scholar 
    58.Kumaran, N. K. P. et al. Vegetation response and landscape dynamics of Indian Summer Monsoon variations during Holocene: an eco-geomorphological appraisal of tropical evergreen forest subfossil logs. PLoS ONE 9, e93596 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Singh, G., Wasson, R. J. & Agrawal, D. P. Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Rev. Palaeobot. Palynol. 64, 351–358 (1990).Article 

    Google Scholar 
    60.Cole, M. M. The Savannas, Biogeography and Geobotany (Academic Press, 1986).61.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Kodandapani, N., Cochrane, M. A. & Sukumar, R. A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India. For. Ecol. Manag. 256, 607–617 (2008).Article 

    Google Scholar 
    63.Hegde, V., Chandran, M. D. S. & Gadgil, M. Variation in bark thickness in a tropical forest community of Western Ghats in India. Funct. Ecol. 12, 313–318 (1998).Article 

    Google Scholar 
    64.Stott, P. A., Goldammer, J. G. & Werner, W. L. The role of fire in the tropical lowland deciduous forests of Asia. In Fire in the Tropical Biota. Ecosystem Processes and Global Challenges (ed. Goldammer, J. G.) 32–44 (Springer, 1990).65.Murphy, C. & Fuller, D. Q. Seed coat thinning during horsegram (Macrotyloma uniflorum) domestication documented through synchrotron tomography of archaeological seeds. Sci. Rep. 7, 5369 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Kingwell-Banham, E. & Fuller, D. Q. Shifting cultivators in South Asia: expansion, marginalisation and specialisation over the long term. Quat. Int. 249, 84–95 (2012).Article 

    Google Scholar 
    67.Kajale, M. Excavation at Inamgaon (Deccan College Postgraduate and Research Institute, 1988).
    Google Scholar 
    68.Shirvalkar, P. & Prasad, E. The archaeology of the Late Holocene on the Deccan Plateau (The Deccan Chalcolithic). In A Companion to South Asia in the Past (eds. Schug, G. R. & Walimbe, S. R.) 240-254 (John Wiley & Sons, 2016).69.Roberts, P. et al. Local diversity in settlement, demography and subsistence across the southern Indian Neolithic-Iron Age transition: site growth and abandonment at Sanganakallu-Kupgal. Archaeol. Anthropol. Sci. 8, 575–599 (2016).Article 

    Google Scholar 
    70.Nayar, T. S. Pollen Flora of Maharashtra State, India (Today & Tomorrow Printers and Publishers, 1990).
    Google Scholar 
    71.APSA Members. The Australasian Pollen and Spore Atlas V1.0 (Australian National University, 2007).
    Google Scholar 
    72.Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13, 499–505 (2003).ADS 
    Article 

    Google Scholar 
    73.Conedera, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. 28, 555–576 (2009).ADS 
    Article 

    Google Scholar 
    74.Higuera, P., Peters, M., Brubaker, L. & Gavin, D. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 26, 1790–1809 (2007).ADS 
    Article 

    Google Scholar 
    75.McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat. Sci. Rev. 23, 901–918 (2004).ADS 
    Article 

    Google Scholar 
    76.Baldini, J., McDermott, F. & Fairchild, I. Spatial variability in cave drip water hydrochemistry: implications for stalagmite paleoclimate records. Chem. Geol. 235, 390–404 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    77.Allchin, B. & Allchin, F. R. The Rise of Civilization in India and Pakistan (Cambridge University Press, 1982).
    Google Scholar 
    78.Shinde, V. S. New light on the origin, settlement system and decline of the Jorwe culture in the Deccan India. South Asian Stud. 5, 59–72 (1989).Article 

    Google Scholar 
    79.Shinde, V. S. Settlement pattern of the Savalda culture—the first farming community of Maharashtra. Bull. Deccan Coll. Res. Inst. 49–50, 417–426 (1990).
    Google Scholar 
    80.Paddayya, K. Investigations Into the Neolithic Culture of the Shorapur Doab, South India Vol. 3 (Brill, 1973).
    Google Scholar  More

  • in

    A Graph Theory approach to assess nature’s contribution to people at a global scale

    For each case study area, a search query was executed (Table 1). Query terms were based on the hashtags of the geographical name of the study areas; therefore, the post download was related to the name of the study area (e.g., Galapagos), with all downloaded posts including this name as query. Query search was limited to English, the most common language amongst tourists. This might have overlooked posts where the name of the place was in a different language. For most marine areas, this was considered irrelevant as the name of the place is not translated to other languages (e.g., Tayrona, Vamizi, Skomer). In some of the cases, the name of the place could appear in a variety of languages (e.g., Great Barrier Reef), however, the use of non-English place hashtags as queries generally retrieved a significantly lower number of posts (e.g., Gran Barrera de Coral in Spanish with 1900 posts, or Grand Barrière de Corail in French with 14 posts, while Great Barrier Reef had over 10,000 posts). In the specific case of Easter Island, we observed that the use of three particular queries was linked to a high number of posts: Easter Island and the local name Rapanui had over 10,000 posts each, and Isla de Pascua in Spanish had 8700 posts. In this case, three separate posts’ downloads were performed, and data were merged for subsequent analysis. The above, rather than a limitation of the methodological approach, demonstrates its flexibility to adapt to different data acquisition requirements.To illustrate the most relevant information contained as part of the posts downloaded for each of the 14 areas, we selected the 150 most frequent hashtags from each dataset in order to create the network graph and represent the dominant discourse in relation to the area in question. Network graphs were delineated using eigenvector, betweenness and edge betweenness as centrality measures. Eigenvector centrality measure (hereafter Eigenvector) allows identifying those hashtags that are frequently posted with other hashtags also frequently posted, and it can be interpreted as the pairs or groups of features more frequently related to the case study by the users. Betweenness centrality (hereafter betweenness) and edge betweenness centrality (hereafter edge betweenness) provide information about clusters of hashtags that describe users’ experiences or perceptions and that connect (by means of a hashtag) to other clusters representing other types of experiences or perceptions. These high betweenness hashtags structure the general discourse about an area and their removal would fragment the network and disconnect distant concepts. Therefore, hashtags and links with high betweenness can show the discourse parallel or additional to the main discourse and their relations, allowing to identify less frequent activities or perceptions but that are equally important to understand the network as a whole.Network centrality measuresResults indicated that network graphs captured information on distinct types of ecosystem services, for example, those based on wildlife and nature, heritage, or beach tourism. In areas such as Galapagos, central hashtags were nature, wildlife, photography, travel and adventure, evidencing a preference for wildlife and nature-based tourism. In this area, betweenness evidenced the connections between the most frequent hashtags group with other peripheric hashtags and provided a complete picture on the discourse of Galapagos’ visitors (Fig. 2). As such, nature and wildlife-based travel and photography is related with natural science concepts like evolution and endemism, and specific biotic and abiotic components like crabs and waves, altogether related with positive feelings (i.e., happy). Other areas emerging for their wildlife and nature were Skomer nature reserve, characterised by the hashtags birds (including the species Puffin), nature and wildlife photography; and Península Valdés, characterized by many locality names and by fauna, with the frequently posted hashtags’ wildlife, whales and nature funnelling most connections to other less frequent hashtags (e.g., wind, hiking, relax) and providing a full picture of the social perception on nature recreation activities, iconic fauna and positive feelings. Three networks, Sandwich Harbour, Glacier Bay and Macquarie Island also included popular hashtags related with nature, wildlife and photography; however, most hashtags had low betweenness and edge betweenness limiting the diversity of the posts (all network graphs are available at the Figshare repository, https://doi.org/10.6084/m9.figshare.13325627.v2).Figure 2Example of network graphs in Galapagos case study. In plot (A) node size represents the Eigenvector centrality and edges represent normalized strength (weighted degree). In plot (B) node size represents normalized Betweenness centrality and edges represent normalized Edge betweenness.Full size imageRegarding cultural heritage, Easter Island was characterised by popular hashtags related with Easter Island stone statues (moais) and with travel; and edge betweenness evidenced a diversity of peripherical nodes that describe other cultural elements, like design, music and food, and evidence social preferences for different cultural elements of the island, beyond the moais. Other areas reflected cultural identity by the frequent post of local names (e.g., Ytrehvaler), words related with the country’s identity (e.g., Isole Egadi) and positive feelings about this identity (e.g., Tawharanui). In Tayrona National Park network, the full discourse identified cultural identity like Kogui (indigenous culture) linked with the popular posts related with nature and summer holidays. Similarly, in Tawharanui and Isole Egadi, beach, nature and summer where the most frequent posts that, in some cases, where connected with places and activities. In these cases, and particularly in Isole Egadi and Ytrehvaler, edge betweenness allows to identify connections between places and activities, wildlife or natural structures, providing relevant information for area management and conservation.A group of areas were appreciated by their underwater ecosystems. For Great Barrier Reef, popular hashtags were related with the coral reef: ocean, diving, underwater photography, travel, nature, coral and reef; whereas betweenness highlighted a set of hashtags related with conservation: science, sustainability, save the reef, 4 ocean (Fig. 3) and evidenced the presence of a conservationist discourse in the social media. In Toguean Island network, the frequent hashtags beach, wonderful and charming are connected to peripherical hashtags related with the sea (e.g., sea life, diving), while in Vamizi, popular hashtags were related with high-income tourism, private island, travel, luxury travel, and were connected to less frequent hashtags linked to the sea, including recreational fisheries. These last two examples illustrate differences in the benefits, and beneficiaries, provided by two popular touristic destinations.Figure 3Example of network graphs in Great Barrier Reef case study. In plot (A) node size represents the Eigenvector centrality and edges represent normalized strength (weighted degree). In plot (B) node size represents normalized Betweenness centrality and edges represent normalized Edge betweenness.Full size imageNetwork communitiesThe division of hashtags in communities allows for a more detailed exploration of the words included in the 150 most frequent hashtags selection, independently of their centrality measures, and allowed a categorisation of hashtags within cultural ecosystem services classes in each area (Table 2). Hashtags were grouped in 3 to 5 communities, with some communities relatively constant across case studies, e.g., aesthetics, wildlife and nature appreciation (Fig. 4) (all other network graphs are available at the Figshare repository, https://doi.org/10.6084/m9.figshare.13325627.v2).Table 2 Cultural Ecosystem Services’ types (CES) depicted from the community analysis (Fast Greedy algorithm). The order of the CES class does not imply a priority rank.Full size tableFigure 4Communities assessed through Fast-Greedy algorithm for the case studies Glacier Bay (A) and Tayrona (C). The node size represents the normalized Eigenvector and the colour represents the community. The colour and width of the edges represents the normalized edge strength (weighted degree).Full size imageIn some of the areas, the communities were diverse in hashtag composition, for example, in Galapagos, wildlife (and related words) was distinctive of several communities, but other communities were characterised by different concepts: beach, holidays, happiness, snorkelling and diving. In Easter Island, the hashtags related with the stone statues and cultural heritage characterise one community, while the other communities include a diversity of hashtags classified under adventure, nature, underwater recreational activities; therefore, it widens the information provided by the centrality metrics. Tayrona (Fig. 4) is also a diverse network with one community characterised by hashtags like beach, summer, happiness (wellbeing), but other communities contain a diversity of hashtags like forest, hiking, indigenous and wildlife (classified in recreational, cultural heritage, nature and aesthetics; Table 2).In some areas, the communities were not so diverse, but provided additional information on the posts. For example, in MacQuarie Island the communities highlighted iconic fauna, including several penguin species, and biodiversity conservation. In several areas, network communities informed of the iconic fauna and specific places: puffins and other bird species in Skomer; southern right whale, sealions and penguins in Península Valdés; glaciers and mountains in Glacier bay (Fig. 4); desert and dunes in Sandwich harbour. Finally, Ytrehvaler is a network characterised by many local names (in Norwegian), evidencing a national tourism, and hashtags related with scenery.Merged network of the 14 case studiesThe merged network highlighted several hashtags that act as bridges between communities of hashtags (Fig. 5). Nature, travel, photo and travel photography are key to structure the global network. However, several low eigenvector hashtags connect smaller groups: sunset and island connect the subgroups from Easter Island, Isole Egadi and Vamizi.Figure 5Global network graph including the fourteen case studies where the node size represents the Eigenvector centrality. The coloured clusters arrange the case studies to facilitate the visual identification of areas connected in the network.Full size imageFrom the hashtag travel photography diverges a branch that connects 7 areas through adventure; a small group of hashtags deriving from this node represent Sandwich harbour and Vamizi, connected through Africa. The hashtag ocean, connected to adventure, relates Great Barrier Reef with Tawharanui, and to wanderlust (a German expression for the desire to explore the world) that connects Península Valdés, Skomer and Macquairie Island. These three areas and Tayrona are also connected through the central hashtag travel photography, and Skomer and Macquairie Island through wildlife photography. The hashtag adventure is also connected to a group of hashtags from Galapagos that also derive to the high eigenvector hashtag nature.The hashtag nature is key to include the fragile sub-network Ytrehvaler, and also derives to other high eigenvector hashtag, travel, that in turn, connects to the small sub-network from Glacier bay. Photo, a central hashtag related with travel, connects to paradise, that is key to integrate Toguean Island, a few hashtags from Tayrona related with the Caribbean and beach, and a group of hashtags from Peninsula Valdez related with whale watching. Some other small hashtags, that are connected to high eigenvector hashtags but are not included in any particular area are shared by many of the areas, e.g., sun, relax, landscape photography, nature lovers, sunset, sky. More

  • in

    Reburial potential and survivability of the striped venus clam (Chamelea gallina) in hydraulic dredge fisheries

    1.Péres, J. M. & Picard, J. New manual for benthic bionomics in the Mediterranean Sea. Trav. Stn. Marittime Endoume 31, 137 (1964).
    Google Scholar 
    2.Moschino, V. & Marin, M. G. Seasonal changes in physiological responses and evaluation of “well-being” in the Venus clam Chamelea gallina from the Northern Adriatic Sea. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 145, 433–440 (2006).Article 

    Google Scholar 
    3.Barillari, A., Boldrin, A., Mozzi, C. & Rabitti, S. Some relationships between the nature of the sediments and the presence of the clam Chamelea (Venus) gallina in the upper Adriatic sea, near Venice. Atti dell’istituto Veneto di Sci. Lett. ed Arti. Cl. di Sci. Mat. Fis. e Nat. 137, 19–34 (1979).4.Froglia, C. Clam fisheries with hydraulic dredges in the Adriatic Sea. In Marine Invertebrates Fisheries: Their Assessment and Management (ed. Caddy, J. F.) 507–524 (Wiley, 1989).
    Google Scholar 
    5.Orban, E. et al. Nutritional and commercial quality of the striped venus clam, Chamelea gallina, from the Adriatic sea. Food Chem. 101, 1063–1070 (2007).CAS 
    Article 

    Google Scholar 
    6.Marini, M., Jones, B. H., Campanelli, A., Grilli, F. & Lee, C. M. Seasonal variability and Po River plume influence on biochemical properties along western Adriatic coast. J. Geophys. Res. Ocean 113, 1–18 (2008).7.Italian National Management Plan for hydraulic dredges. National management plan for fishing activities with the hydraulic dredger system and rakes for boats as identified in the designation of fishing gear in mechanical dredgers including hydraulic mechanized dredger (HMD) and mechanized dredger. Public Law No. 9913 of Italian Ministry for Agricultural, Food and Forestry Policies (2019).8.Morello, E. B., Froglia, C., Atkinson, R. J. A. & Moore, P. G. Impacts of hydraulic dredging on a macrobenthic community of the Adriatic Sea, Italy. Can. J. Fish. Aquat. Sci. 62, 2076–2087 (2005).Article 

    Google Scholar 
    9.Froglia, C. The contribution of scientific research to the management of bivalve mollusc fishing with hydraulic dredgers. Biol. Mar. Mediterr. 7, 71–82 (2000).
    Google Scholar 
    10.STECF. Commission Decision of 25 February 2016 setting up a Scientific, Technical and Economic Committee for Fisheries, C(2016) 1084, OJ C 74, 26.2.2016, 4–10 (2016).11.Gaspar, M. B., Pereira, A. M., Vasconcelos, P. & Monteiro, C. C. Age and growth of Chamelea gallina from the Algarve coast (southern Portugal): influence of seawater temperature and gametogenic cycle on growth rate. J. Molluscan Stud. 70, 371–377 (2004).Article 

    Google Scholar 
    12.Deval, M. C. Shell growth and biometry of the striped venus Chamelea gallina (L) in the Marmara Sea, Turkey. J. Shellfish Res. 20, 155–159 (2001).
    Google Scholar 
    13.Polenta, R. Observations on Growth of the Striped Venus Clam Chamelea gallina L. in the Middle Adriatic (Università di Bologna, 1993).
    Google Scholar 
    14.European Council. Council Regulation (EC) No 1967/2006 of 21 December 2006 concerning management measures for the sustainable exploitation of fishery resources in the Mediterranean Sea, amending Regulation (EEC) No 2847/93 and repealing Regulation (EC) No 1626/94. Off. J. Eur. Union, L 409/11 75 (2006).15.European Council. Commission Delegated Regulation (EU) 2016/2376 of 13 October 2016 establishing a rejection plan for bivalve molluscs Venus spp. in Italian territorial waters. Off. J. Eur. Union, L 352/48 2 (2016).16.European Council. Commission Delegated Regulation (EU) 2020/3 of 28 August 2019 establishing a discard plan for Venus shells (Venus spp.) in certain Italian territorial waters. Off. J. Eur. Union, L2/1 4 (2020).17.European Council. Commission Delegated Regulation (EU) 2020/2237 amending the Delegated Reg. (EU) 2020/3 concerning the waiver for the minimum conservation reference size for the conservation of the striped venus clam (Venus spp.) in certain Italian territorial waters. Off. J. Eur. Union, L436/1 3 (2020).18.European Council. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 etc. Off. J. Eur. Union, L 354/22 40 (2013).19.Petetta, A. et al. Dredge selectivity in a Mediterranean striped venus clam (Chamelea gallina) fishery. Fish. Res. 238, 105895 (2021).Article 

    Google Scholar 
    20.Sala, A., Brčić, J., Herrmann, B., Lucchetti, A. & Virgili, M. Assessment of size selectivity in hydraulic clam dredge fisheries. Can. J. Fish. Aquat. Sci. 74, 339–348 (2017).Article 

    Google Scholar 
    21.Marin, M. G. et al. Effects of hydraulic dredging on target species Chamelea gallina from the northern Adriatic Sea: physiological responses and shell damage. J. Mar. Biol. Assoc. U. K. 83, 1281–1285 (2003).Article 

    Google Scholar 
    22.Moschino, V., Chícharo, L. & Marin, M. G. Effects of hydraulic dredging on the physiological responses of the target species Chamelea gallina (Mollusca: Bivalvia): laboratory experiments and field surveys. Sci. Mar. 72, 493–501 (2008).
    Google Scholar 
    23.Morello, E. B., Froglia, C., Atkinson, R. J. A. & Moore, P. G. Hydraulic dredge discards of the clam (Chamelea gallina) fishery in the western Adriatic Sea, Italy. Fish. Res. 76, 430–444 (2005).Article 

    Google Scholar 
    24.Moschino, V., Deppieri, M. & Marin, M. G. Evaluation of shell damage to the clam Chamelea gallina captured by hydraulic dredging in the Northern Adriatic Sea. ICES J. Mar. Sci. 60, 393–401 (2003).Article 

    Google Scholar 
    25.Brooks, S. P. J. et al. Differential survival of Venus gallina and Scapharca inaequivalvis during anoxic stress: covalent modification of phosphofructokinase and glycogen phosphorylase during anoxia. J. Comp. Physiol. B 161, 207–212 (1991).CAS 
    Article 

    Google Scholar 
    26.Eertman, R. H. M., Wagenvoort, A. J., Hummel, H. & Smaal, A. C. “Survival in air” of the blue mussel Mytilus edulis L. as a sensitive response to pollution-induced environmental stress. J. Exp. Mar. Biol. Ecol. 170, 179–195 (1993).Article 

    Google Scholar 
    27.Crawley, M. J. The R book 2nd edn. (Wiley, 2013).MATH 

    Google Scholar 
    28.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 

    Google Scholar 
    29.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-137 (2018).30.Morello, E. B., Froglia, C., Atkinson, R. J. A. & Moore, P. G. The effects of hydraulic dredging on the reburial of several molluscan species. Biol. Mar. Mediterr. 13, 610–613 (2006).
    Google Scholar 
    31.Henderson, S. M. & Richardson, C. A. A comparison of the age, growth rate and burrowing behaviour of the razor clams, Ensis siliqua and E. ensis. J. Mar. Biol. Assoc. U. K. 74, 939–954 (1994).Article 

    Google Scholar 
    32.Chıcharo, L., Chıcharo, M., Gaspar, M., Regala, J. & Alves, F. Reburial time and indirect mortality of Spisula solida clams caused by dredging. Fish. Res. 59, 247–257 (2002).Article 

    Google Scholar 
    33.Leitão, F. M. & Gaspar, M. B. Comparison of the burrowing response of undersized cockles (Cerastoderma edule) after fishing disturbance caused by hand dredge and harvesting knife. Mar. Biol. Res. 7, 509–514 (2011).Article 

    Google Scholar 
    34.Gaspar, M. B. et al. The influence of dredge design on the catch of Callista chione (Linnaeus, 1758). In Coastal Shellfish—A Sustainable Resource (ed. Burnell, G.) 153–167 (Springer, 2001).
    Google Scholar 
    35.Chícharo, M. A. et al. Adenylic-derived indices and reburying time as indicators of the effects of dredging-induced stress on the clam Spisula solida. Mar. Biol. 142, 1113–1117 (2003).Article 

    Google Scholar 
    36.Broadhurst, M. K., Suuronen, P. & Hulme, A. Estimating collateral mortality from towed fishing gear. Fish Fish. 7, 180–218 (2006).Article 

    Google Scholar 
    37.Uhlmann, S. S. & Broadhurst, M. K. Mitigating unaccounted fishing mortality from gillnets and traps. Fish Fish. 16, 183–229 (2015).Article 

    Google Scholar 
    38.ICES. Report of the Workshop on Methods for Estimating Discard Survival (WKMEDS) (2015).39.Breen, M., Huse, I., Ingolfsson, I., Madsen, N. & Soldal, A. V. SURVIVAL: an assessment of mortality in fish escaping from trawl codends and its use in fisheries management. EU Final Report (2007).40.Boscolo, R., Cornello, M. & Giovanardi, O. Condition index and air survival time to compare three kinds of Manila clam Tapes philippinarum (Adams & Reeve) farming systems. Aquac. Int. 11, 243–254 (2003).Article 

    Google Scholar 
    41.Ahrens, M. J., Nieuwenhuis, R. & Hickey, C. W. Sensitivity of juvenile Macomona liliana (bivalvia) to UV-photoactivated fluoranthene toxicity. Environ. Toxicol. 17, 567–577 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Hutchins, C. M., Teasdale, P. R., Lee, S. Y. & Simpson, S. L. Influence of sediment metal spiking procedures on copper bioavailability and toxicity in the estuarine bivalve Indoaustriella lamprelli. Environ. Toxicol. Chem. Int. J. 28, 1885–1892 (2009).CAS 
    Article 

    Google Scholar 
    43.Ballarin, L., Pampanin, D. M. & Marin, M. G. Mechanical disturbance affects haemocyte functionality in the Venus clam Chamelea gallina. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 136, 631–640 (2003).Article 

    Google Scholar 
    44.Lucchetti, A. & Sala, A. Impact and performance of Mediterranean fishing gear by side-scan sonar technology. Can. J. Fish. Aquat. Sci. 69, 1806–1816 (2012).Article 

    Google Scholar 
    45.Italian Ministry Decree (DM) 22/12/2000. Ministerial Decree of 22 December 2000 Subject: discipline for fishing for bivalve molluscs. Changes to the Ministerial Decree 21.7.98 Being Registered At The Central Budget Office (2000).46.Anjos, M. et al. Bycatch and discard survival rate in a small-scale bivalve dredge fishery along the Algarve coast (southern Portugal). Sci. Mar. 82, 75–90 (2018).Article 

    Google Scholar 
    47.Bargione, G. et al. Age and growth of striped Venus Clam Chamelea gallina (Linnaeus, 1758) in the Mid-Western Adriatic Sea: a comparison of three laboratory techniques. Front. Mar. Sci. 7, 807 (2020).Article 

    Google Scholar  More

  • in

    Internode elongation and strobili production of Humulus lupulus cultivars in response to local strain sensing

    Figure 4 illustrates the length of fertile internodes 20–40 within the various treatments of: FC, FN, F45, T45, N45, and B90. The FC, FN, and F45 treatments grew lengthier internodes from node 20–40 than the T45, N45, and B45 treatments (Fig. 4). Internode width, however, was greater in T45, N45, and B90 as compared to the undisturbed FC, FN, and F45 treatments (Table 1). The T45 and N45 treatments had a 27.9% and 26.6% reduction in internode elongation compared to the FC, FN, and F45 treatments. Of the treatments, B90 had the shortest internodes and widest internode thickness between node 20–40 (Tables 1, 2). Due to the shorter internode lengths in the mechanically affected treatments, the density of nodes per unit area was ~ 25% greater in T45 and N45 from node 20–40 and an additional 28% shorter in B90. In other words, B90 internodes were ~ 54% shorter between nodes 20–40 as compared to the untouched treatments and had the densest node concentration (cf Fig. 4 and Table 2). Both touched and bent bines were significantly reduced in elongation (Table 1; P  12–25. Thus, amassing many fertile nodes per vertical distance within a high sidewall greenhouse (e.g. ≥ 6 m) would be one viable means to increase the yield potential of hop in controlled environment production as long as plant resources did not become limiting. What’s more the 15.25 cm rise over run staircase created by the B90 internode bending treatment would allow for approximately double the bine length from the container to the top of a high sidewall greenhouse as compared to a vertically trellised bine (an additional direct step toward increasing node quantity per unit vertical production area). Secondly, the time and resource investment in overcoming the hop cultivar specific 11–24 infertile juvenile phase adds approximately three weeks to a single hop crop cycle e.g.11,36. Thus, it would be more time and space efficient to grow fewer crop cycles per annum that contain larger amounts of fertile nodes within a cycle as compared to additional cycles that contain the unfertile juvenile phase.In conclusion, repeated touch and/or bine bending within the active elongation zone of hop bines resulted in shortened internode length with higher cone production per given area. Mechanical stimuli did not reduce cone yield or flower quality. The results demonstrate that successive local internode strain can aid the control of internode elongation. Moreover, the study provides evidence that thigmomorphogenic cues can be used as a management tool to increase bine compactness and increase node density per unit area. This finding is especially important for growth control when production space is limiting and/or of high-value (e.g. greenhouse production)1. Hence, mechanical perturbation was an effective non-chemical means to control hop internode length. Nonetheless, models aimed at predicting internode length of hop bines in response to strain should still take into account a cultivar parameter. The results are practical on a commercial scale because the methods of touch and bending used in this study are easy to apply with minimal investment in labor, have a short time interval of application (approximately 5–10 s−1 per bine per 24 h), and the application duration is relatively short ~ 30 days out of the 90–120 day crop cycle, making this a practical endeavor when one considers that high value vine crops are already repeatedly handled by humans throughout their production cycle (e.g. viticulture grape and controlled environment cucumber production). More

  • in

    Effect of land use, habitat suitability, and hurricanes on the population connectivity of an endemic insular bat

    1.Ceballos, G. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Meyer, C. F. J., Struebig, M. J. & Willig, M. R. Responses of tropical bats to habitat fragmentation, logging, and deforestation. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) 63–103 (Springer, 2016). https://doi.org/10.1007/978-3-319-25220-9_4.
    Google Scholar 
    3.Torres-Romero, E. J., Giordano, A. J., Ceballos, G. & López-Bao, J. V. Reducing the sixth mass extinction: understanding the value of human-altered landscapes to the conservation of the world’s largest terrestrial mammals. Biol. Conserv. 249, 108706 (2020).Article 

    Google Scholar 
    4.Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. Global biodiversity conservation: the critical role of hotspots BT—biodiversity hotspots: distribution and protection of conservation priority areas. In (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-20992-5_1.5.Bosso, L., Mucedda, M., Fichera, G., Kiefer, A. & Russo, D. A gap analysis for threatened bat populations on Sardinia. Hystrix Ital. J. Mammal. 27, 212–214 (2016).
    Google Scholar 
    6.Upham, N. S. Past and present of insular Caribbean mammals: understanding Holocene extinctions to inform modern biodiversity conservation. J. Mammal. 98, 913–917 (2017).Article 

    Google Scholar 
    7.Gould, W. A., Castro-Prieto, J. & Álvarez-Berríos, N. L. Climate change and biodiversity conservation in the Caribbean islands. In Encyclopedia of the World’s Biomes (eds Goldstein, M. & DellaSala, D.) 114–125 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-409548-9.12091-3.
    Google Scholar 
    8.Schoener, T. W., Spiller, D. A. & Losos, J. B. Variable ecological effects of hurricanes: the importance of seasonal timing for survival of lizards on Bahamian islands. Proc. Natl. Acad. Sci. 101, 177 LP – 181 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    9.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752–1246752 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Turvey, S. T., Kennerley, R. J., Nuñez-Miño, J. M. & Young, R. P. The Last Survivors: current status and conservation of the non-volant land mammals of the insular Caribbean. J. Mammal. 98, 918–936 (2017).Article 

    Google Scholar 
    12.Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb313 (2020).Article 

    Google Scholar 
    13.Turvey, S. T. & Crees, J. J. Extinction in the anthropocene. Curr. Biol. 29, R982–R986 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Donihue, C. M. et al. Hurricane effects on neotropical lizards span geographic and phylogenetic scales. Proc. Natl. Acad. Sci. 117, 10429 LP – 10434 (2020).Article 
    CAS 

    Google Scholar 
    15.Gannon, M. R., Kurta, A., Rodríguez-Durán, A. & Willig, M. R. Bats of Puerto Rico: An Island Focus and a Caribbean Perspective (Texas Tech University Press, 2005).
    Google Scholar 
    16.Miller, G. L. & Lugo, A. E. Guide to the ecological systems of Puerto Rico. IITF-GTR-35. (2009).17.Guzmán-Colón, D. K., Pidgeon, A. M., Martinuzzi, S. & Radeloff, V. C. Conservation planning for island nations: using a network analysis model to find novel opportunities for landscape connectivity in Puerto Rico. Glob. Ecol. Conserv. 23, e01075 (2020).Article 

    Google Scholar 
    18.Gould, W. A. et al. The Puerto Rico Gap Analysis Project Volume 1: Land Cover, Vertebrate Species Distributions, and Land Stewardship. General technical reports IITF-39 vol. 1 https://www.fs.usda.gov/treesearch/pubs/38430 (2008).19.Gould, W. A. Puerto Rico gap analysis project. GAP Anal. Bull. 16, 71–79 (2009).
    Google Scholar 
    20.Gould, W. A., Quiñones, M., Solorzano, M., Alcobas, W. & Alarcon, C. Protected Natural Areas of Puerto Rico. Res. Map IITF-RMAP-02. Rio Piedras, PR US Dep. Agric. For. Serv. Int. Inst. Trop. For. (2011).21.Junta de Planificación. Plan de Uso de Terrenos, Guías de Ordenación del Territorio. 220 (2015).22.Gould, W. A., Wadsworth, F. H., Quiñones, M., Fain, S. J. & Álvarez-Berríos, N. L. Land use, conservation, forestry, and agriculture in Puerto Rico. Forests 8, 242–263 (2017).Article 

    Google Scholar 
    23.QGIS.org. QGIS Geographic Information System (2016).24.Martinuzzi, S., Gould, W. A., González, O. M. R., Quiñones, M. & Jiménez, M. E. Urban and rural land use in Puerto Rico. Res. Map IITF-RMAP-01. Rio Piedras, PR US Dep. Agric. For. Serv. Int. Inst. Trop. For. (2008).25.Gould, W. A., Martinuzzi, S. & González, O. M. R. High and low density development in Puerto Rico. Res. Map IITF-RMAP-11. Rio Piedras, PR US Dep. Agric. For. Serv. Int. Inst. Trop. For. (2008).26.Gannon, M. R. & Willig, M. R. The effects of Hurricane Hugo on bats of the Luquillo experimental forest of Puerto Rico. Biotropica 26, 320 (1994).Article 

    Google Scholar 
    27.Gannon, M. R. & Willig, M. R. Long-term monitoring protocol for bats: lessons from the Luquillo Experimental Forest of Puerto Rico. For. Biodivers. North Cent. South Am. Caribbean. Res. Monit. Man Biosph. Ser. 21, 271–291 (1998).
    Google Scholar 
    28.Gannon, M. R. & Willig, M. R. Island in the storm: disturbance ecology of plant-visiting bats on the hurricane-prone island of Puerto Rico. In Island Bats: Evolution, Ecology, and Conservation (eds Fleming, T. H. & Racey, P.) 281–301 (University of Chicago Press, 2009).
    Google Scholar 
    29.Jones, K. E., Barlow, K. E., Vaughan, N., Rodríguez-Durán, A. & Gannon, M. R. Short-term impacts of extreme environmental disturbance on the bats of Puerto Rico. Anim. Conserv. 4, 59–66 (2001).Article 

    Google Scholar 
    30.Rodríguez-Durán, A. & Vázquez, R. The bat Artibeus jamaicensis in Puerto Rico (West Indies): seasonality of diet, activity, and effect of a hurricane. Acta Chiropterologica 3, 53–61 (2001).
    Google Scholar 
    31.Rodríguez-Durán, A., Nieves, N. A. & Avilés-Ruiz, Y. Hurricane-mediated extirpation of a bat from an Antillean Island. Caribb. Nat. 78, 1–7 (2020).
    Google Scholar 
    32.Genoways, H. H. & Baker, R. J. Stenoderma rufum. Mamm. Species https://doi.org/10.2307/3503991 (1972).Article 

    Google Scholar 
    33.Kwiecinski, G. G. & Coles, W. C. Presence of Stenoderma rufum beyond the Puerto Rican bank. Occas. Pap. Museum Texas Tech Univ. https://doi.org/10.5962/bhl.title.156896 (2007).Article 

    Google Scholar 
    34.Liu, X. et al. Litterfall production prior to and during Hurricanes Irma and Maria in four Puerto Rican forests. Forests 9, 367 (2018).Article 

    Google Scholar 
    35.Rodríguez-Durán, A. Stenoderma rufum. IUCN Red List Threat. Species e.T20743A22065638 https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T20743A22065638.en (2016).Article 

    Google Scholar 
    36.Gannon, M. R. Foraging Ecology, Reproductive Biology, and Systematics of the Red Fig-Eating Bat (Stenoderma rufum) in the Tabonuco Rain Forest of Puerto Rico (Texas Tech University, 1991).
    Google Scholar 
    37.Meyer, C. F. J. & Kalko, E. K. V. Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. J. Biogeogr. 35, 1711–1726 (2008).Article 

    Google Scholar 
    38.Estrada-Villegas, S., Meyer, C. F. J. & Kalko, E. K. V. Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biol. Conserv. 143, 597–608 (2010).Article 

    Google Scholar 
    39.Feng, Y., Negrón-Juárez, R. I. & Chambers, J. Q. Remote sensing and statistical analysis of the effects of hurricane María on the forests of Puerto Rico. Remote Sens. Environ. 247, 111940 (2020).ADS 
    Article 

    Google Scholar 
    40.Soto-Centeno, J. A. & Steadman, D. W. Fossils reject climate change as the cause of extinction of Caribbean bats. Sci. Rep. 5, 7971 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Razgour, O. Beyond species distribution modeling: a landscape genetics approach to investigating range shifts under future climate change. Ecol. Inform. 30, 250–256 (2015).Article 

    Google Scholar 
    42.Rodríguez-Durán, A. Bat assemblages in the West Indies: the role of caves. In Island Bats: Evolution, Ecology and Conservation (eds Fleming, T. H. & Racey, P.) 265–280 (University of Chicago Press, 2009).
    Google Scholar 
    43.Nassar, J. M., Aguirre, L. F., Rodríguez-Herrera, B. & Medellín, R. A. Threats, status, and conservation perspectives for leaf-nosed bats. In Phyllostomid Bats: A Unique Mammalian Radiation (eds Fleming, T. H. et al.) 470 (University of Chicago Press, 2020).
    Google Scholar 
    44.Rodríguez-Durán, A. Nonrandom aggregations and distribution of cave-dwelling bats in Puerto Rico. J. Mammal. 79, 141–146 (1998).Article 

    Google Scholar 
    45.Rodríguez-Durán, A. & Padilla-Rodríguez, E. New records for the bat fauna of Mona Island, Puerto Rico, with notes on their natural history. Caribb. J. Sci. 46, 102–105 (2010).Article 

    Google Scholar 
    46.Rodríguez-Durán, A. & Feliciano-Robles, W. Conservation value of remnant habitat for neotropical bats on islands. Caribb. Nat. 35, 1–10 (2016).
    Google Scholar 
    47.Gómez-Ruiz, E. P. & Lacher, T. E. Modelling the potential geographic distribution of an endangered pollination corridor in Mexico and the United States. Divers. Distrib. 23, 67–78 (2017).Article 

    Google Scholar 
    48.Shah, V. B. & McRae, B. H. Circuitscape: a tool for landscape ecology. In Proceedings of the 7th Python in Science Conference, vol. 7, 62–66 (SciPy Conference California, 2008).49.McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Carroll, C., McRae, B. H. & Brookes, A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of Gray wolf populations in Western North America. Conserv. Biol. 26, 78–87 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Theobald, D. M., Reed, S. E., Fields, K. & Soulé, M. Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conserv. Lett. 5, 123–133 (2012).Article 

    Google Scholar 
    52.Dutta, T., Sharma, S., McRae, B. H., Roy, P. S. & DeFries, R. Connecting the dots: mapping habitat connectivity for tigers in central India. Reg. Environ. Change 16, 53–67 (2016).Article 

    Google Scholar 
    53.Mallory, C. D. & Boyce, M. S. Prioritization of landscape connectivity for the conservation of Peary caribou. Ecol. Evol. 9, 2189–2205 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Osipova, L. et al. Using step-selection functions to model landscape connectivity for African elephants: accounting for variability across individuals and seasons. Anim. Conserv. 22, 35–48 (2019).Article 

    Google Scholar 
    55.GBIF.org. GBIF Occurrence Download (2019). https://doi.org/10.15468/dl.atjvik56.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    57.Vermote, E. & NOAA CDR Program. NOAA Climate Data Record (CDR) of AVHRR Normalized Difference Vegetation Index (NDVI), Version 5 (2019). https://doi.org/10.7289/V5ZG6QH9.58.de Moraes, W. M. & Viveiros Grelle, C. E. Does environmental suitability explain the relative abundance of the tailed tailless bat, Anoura caudifer. Nat. Conserv. 10, 221–227 (2012).Article 

    Google Scholar 
    59.Gutiérrez, E. E., Boria, R. A. & Anderson, R. P. Can biotic interactions cause allopatry? Niche models, competition, and distributions of South American mouse opossums. Ecography 37, 741–753 (2014).Article 

    Google Scholar 
    60.Gutiérrez, E. E. et al. The taxonomic status of Mazama bricenii and the significance of the Táchira depression for mammalian endemism in the Cordillera de Mérida, Venezuela. PLoS ONE 10, 1–24 (2015).
    Google Scholar 
    61.Ancillotto, L., Mori, E., Bosso, L., Agnelli, P. & Russo, D. The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy—first confirmed record and potential distribution. Mamm. Biol. 96, 61–67 (2019).Article 

    Google Scholar 
    62.Alberdi, A., Aizpurua, O., Aihartza, J. & Garin, I. Unveiling the factors shaping the distribution of widely distributed alpine vertebrates, using multi-scale ecological niche modelling of the bat Plecotus macrobullaris. Front. Zool. 11, 77 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    64.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop.) 31, 161–175 (2008).Article 

    Google Scholar 
    65.R Core Team. R: A Language and Environment for Statistical Computing (2018).66.Muscarella, R. et al. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).Article 

    Google Scholar 
    67.Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar  More