More stories

  • in

    Adélie penguins north and east of the ‘Adélie gap’ continue to thrive in the face of dramatic declines elsewhere in the Antarctic Peninsula region

    Fraser, W., Trivelpiece, W., Ainley, D. & Trivelpiece, S. Increases in Antarctic penguin populations: Reduced competition with whales or a loss of sea ice due to environmental warming?. Polar Biol. 11, 525–531 (1992).Article 

    Google Scholar 
    Trivelpiece, W. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. PNAS 108, 7625–7628 (2011).Article 
    CAS 

    Google Scholar 
    Fraser, W. & Hofmann, E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).Article 

    Google Scholar 
    Hinke, J., Salwicka, K., Trivelpiece, S., Watters, G. & Trivelpiece, W. Divergent responses of Pygoscelis penguins reveal common environmental driver. Oecologia 153, 845–855 (2007).Article 

    Google Scholar 
    Poncet, S. & Poncet, J. Censuses of penguin populations of the Antarctic Peninsula, 1983–87. Br. Antarct. Surv. Bull. 77, 109–129 (1987).
    Google Scholar 
    Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: Winter-summer heterogeneity in the distribution of Adélie penguin populations. Found. For. Ecol. Res. West Antarct. Penins. 70, 257–272 (1996).Article 

    Google Scholar 
    Humphries, G. R. W. et al. Mapping application for penguin populations and projected dynamics (MAPPPD): Data and tools for dynamic management and decision support. Polar Rec. 53, 160–166 (2017).Article 

    Google Scholar 
    Lynch, H., Naveen, R., Trathan, P. N. & Fagan, W. F. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 1367–1377 (2012).Article 

    Google Scholar 
    Elliot, D. H., Watts, D. R., Alley, R. B. & Gracanin, T. M. Bird and seal observations at Joinville Island and offshore islands. Antarct. J. USA 13, 154–155 (1978).
    Google Scholar 
    Bender, N. A., Crosbie, K. & Lynch, H. Patterns of tourism in the Antarctic Peninsula region: A twenty-year re-analysis. Antarct. Sci. 28, 194–203 (2016).Article 

    Google Scholar 
    Lynch, H. J. & Schwaller, M. R. Mapping the abundance and distribution of Adélie penguins using Landsat-7: First steps towards an integrated multi-sensor pipeline for tracking populations at the continental scale. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie penguin. Auk 131, 457–466 (2014).Article 

    Google Scholar 
    Parkinson, C. L. & Cavalieri, D. J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6, 871–880 (2012).Article 

    Google Scholar 
    Parkinson, C. L. Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann. Glaciol. 34, 435–440 (2002).Article 

    Google Scholar 
    Jena, B. et al. Record low sea ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar cyclones. NPJ Clim. Atmos. Sci. 5, 1–15 (2022).Article 

    Google Scholar 
    Kumar, A., Yadav, J. & Mohan, R. Seasonal sea-ice variability and its trend in the Weddell Sea sector of West Antarctica. Environ. Res. Lett. 16, 024046 (2021).
    Google Scholar 
    Strass, V. H., Rohardt, G., Kanzow, T., Hoppema, M. & Boebel, O. Multidecadal warming and density loss in the deep Weddell Sea. Antarct. J. Clim. 33, 9863–9881 (2020).Article 

    Google Scholar 
    Morioka, Y. & Behera, S. K. Remote and local processes controlling decadal sea ice variability in the Weddell Sea. J. Geophys. Res. Ocean 126, e2020JC017036 (2021).Article 

    Google Scholar 
    Veytia, D. et al. Circumpolar projections of Antarctic krill growth potential. Nat. Clim. Chang. 10, 568–575 (2020).Article 

    Google Scholar 
    Humphries, G. R. et al. Predicting the future is hard and other lessons from a population time series data science competition. Ecol. Inf. 48, 1–11 (2018).Article 

    Google Scholar 
    Borowicz, A. et al. A multi-modal survey of Adèlie penguin megacolonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).Article 

    Google Scholar 
    Cimino, M., Lynch, H., Saba, V. & Oliver, M. Projected asymmetric response of Adèlie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).Article 
    CAS 

    Google Scholar 
    McClintock, J., Silva-Rodriguez, P. & Fraser, W. Southerly breeding in gentoo penguins for the eastern Antarctic Peninsula: Further evidence for unprecedented climate change. Antarct. Sci. 22, 285–286 (2010).Article 

    Google Scholar 
    Lynch, H. J., Naveen, R. & Fagan, W. F. Censuses of penguin, blue-eyed shag Phalacrocorax atriceps and southern giant petrel Macronectes giganteus populations on the Antarctic Peninsula, 2001–2007. Mar. Ornithol. 36, 83–97 (2008).
    Google Scholar 
    Dunn, M. J. et al. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLoS ONE 11, e0164025 (2016).Article 

    Google Scholar 
    Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-1, Priority Areas for Conservation. SC-CAMLR- XXXVI/17. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-2, Priority Areas for Conservation. SC-CAMLR- XXXVI/18. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Teschke, K. et al. Planning marine protected areas under the CCAMLR regime—the case of the Weddell Sea (Antarctica). Mar. Policy 124, 104370 (2021).Article 

    Google Scholar 
    Herman, R. et al. Update on the global abundance and distribution of breeding Gentoo Penguins (Pygoscelis papua). Polar Biol. 43, 1947–1956 (2020).Article 

    Google Scholar 
    Korczak-Abshire, M., Hinke, J. T., Milinevsky, G., Juáres, M. A. & Watters, G. M. Coastal regions of the northern Antarctic Peninsula are key for gentoo populations. Biol. Lett. 17, 20200708 (2021).Article 

    Google Scholar 
    Miller, A. K., Karnovsky, N. J. & Trivelpiece, W. Z. Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands. Antarct. Mar. Biol. 156, 2527–2537 (2009).Article 

    Google Scholar 
    Herman, R. W. et al. Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar. Biol. 164, 1–13 (2017).Article 
    CAS 

    Google Scholar 
    Cimino, M. A., Fraser, W. R., Irwin, A. J. & Oliver, M. J. Satellite data identify decadal trends in the quality of Pygoscelis penguin chick-rearing habitat. Glob. Chang. Biol. 19, 136–148 (2013).Article 

    Google Scholar 
    Black, C. E. A comprehensive review of the phenology of Pygoscelis penguins. Polar Biol. 39, 405–432 (2016).Article 

    Google Scholar 
    Croxall, J. P. & Kirkwood, E. The Distribution of Penguins on the Antarctic Peninsula and Islands of the Scotia Sea (British Antarctic Survey, Cambridge, UK, 1979).
    Google Scholar 
    Naveen, R. et al. Censuses of penguin, blue-eyed shag, and southern giant petrel populations in the Antarctic Peninsula region, 1994–2000. Polar Rec. 36, 323–334 (2000).Article 

    Google Scholar 
    Woehler,E. J. The Distribution and Abundance of Antarctic and Subantarctic Penguins. In SCAR Comm. on Antarctic Res. Bird Biol. Subcomm. (Cambridge University Press, 1993).Naveen, R., Lynch, H. J., Forrest, S., Mueller, T. & Polito, M. First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins. Polar Biol. 35, 1879–1888 (2012).
    Google Scholar 
    Hallermann, N., Morgenthal, G. & Rodehorst, V. Unmanned aerial systems (UAS)–case studies of vision based monitoring of ageing structures. In Int. Symp. Non-Destructive Test. Civ. Eng. (NDT-CE) 15–17 (2015).Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. & Carbonneau, P. E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 38, 421–430 (2013).Article 

    Google Scholar 
    Cavalieri, D. J., Germain, K. M. S. & Swift, C. T. Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I. J. Glaciol. 41, 455–464 (1995).Article 

    Google Scholar 
    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. Updated daily Sea Ice Index, Version 3. In Boulder, Colo.USA. NSIDC: Natl. Snow Ice Data Cent (2017).Iles, D. T. et al. Sea ice predicts long-term trends in Adélie penguin population growth, but not annual fluctuations: Results from a range-wide multiscale analysis. Glob. Change Biol. 26, 3788–3798 (2020).Article 

    Google Scholar 
    Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian graphical models using mcmc. R package version 4. https://rdrr.io/cran/rjags/ (2016).Plummer, M. et al. Jags: A program for analysis of bayesian graphical models using gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, vol. 124, 1–10 (Vienna, Austria., 2003).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Youngflesh, C. MCMCvis: Tools to visualize, manipulate, and summarize MCMC output. J. Open Sourc. Softw. 3, 640 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2. Wiley Interdiscipl. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    Kellner,K. jagsUI: A wrapper around rjags to streamline JAGS analyses. R package version 1, 2015 (2015).Herman, R. & Lynch, H. Age-structured model reveals prolonged immigration is key for colony establishment in Gentoo Penguins. Ornithol. Appl. 124, duac04 (2022).
    Google Scholar 
    Polito, M. J., Lynch, H. J., Naveen, R. & Emslie, S. D. Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar. Ecol. Prog. Ser. 421, 265–277 (2011).Article 

    Google Scholar 
    Ballerini, T., Tavecchia, G., Olmastroni, S., Pezzo, F. & Focardi, S. Nonlinear effects of winter sea ice on the survival probabilities of Adélie penguins. Oecologia 161, 253–265 (2009).Article 

    Google Scholar 
    Wilson, P. et al. Adélie penguin population change in the pacific sector of Antarctica: Relation to sea-ice extent and the Antarctic Circumpolar Current. Mar. Ecol. Prog. Ser. 213, 301–309 (2001).Article 

    Google Scholar 
    Wienecke, B. et al. Adélie penguin foraging behaviour and krill abundance along the Wilkes and Adélie land coasts, Antarctica. Deep. Sea Res. Part II Top. Stud. Oceanogr. 47, 2573–2587 (2000).Article 

    Google Scholar 
    Ainley, D. G. The Adélie Penguin: Bellwether of Climate Change (Columbia University Press, 2002).Book 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land. Antarct. Mar. Biol. 154, 813–821 (2008).Article 

    Google Scholar 
    Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: Chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).Article 

    Google Scholar 
    Ashford, J., Zane, L., Torres, J. J., La Mesa, M. & Simms, A. R. Population structure and life history connectivity of Antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean ecosystem. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem 193–234 (Springer, 2017).Pakhomov, E. & Perissinotto, R. Antarctic neritic krill Euphausia crystallorophias: Spatio-temporal distribution, growth and grazing rates. Deep. Sea Res. Part I Oceanogr. Res. Pap. 43, 59–87 (1996).Article 

    Google Scholar 
    La Mesa, M. & Eastman, J. T. Antarctic silverfish: Life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13, 241–266 (2012).Article 

    Google Scholar 
    Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea. Antarct. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).Article 
    CAS 

    Google Scholar 
    Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).Article 

    Google Scholar 
    La Mesa, M., Piñones, A., Catalano, B. & Ashford, J. Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula. Fish. Oceanogr. 24, 150–161 (2015).Article 

    Google Scholar 
    La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).Article 

    Google Scholar 
    Handley, J. et al. Marine important bird and biodiversity areas for penguins in Antarctica, targets for conservation action. Front. Mar. Sci. 7, 256 (2021).Article 

    Google Scholar 
    Brooks, C. et al. Workshop on identifying key biodiversity areas for the Southern Ocean using tracking data. In Tech.Rep. SC-CAMLR-41/BG/22, CCAMLR (2022).Lynch, H. J., Naveen, R. & Casanovas, P. Antarctic site inventory breeding bird survey data, 1994–2013: Ecological Archives E094–243. Ecology 94, 2653–2653 (2013).Article 

    Google Scholar 
    Myrcha, A., Tatur, A. & Valle, R. D. V. Numbers of Adélie penguins breeding at Hope Bay and Seymour Island rookeries (West Antarctica) in 1985. Pol. Polar Res. 8, 411–422 (1987).
    Google Scholar 
    Montalti, D. & Soave, G. E. The birds of Seymour Island, Antarctica. Ornitol. Neotrop. 13, 267–271 (2002).
    Google Scholar 
    Perchivale, P. J. et al. Updated estimate of the Breeding Population of Adélie penguins (Pygoscelis adeliae) at Penguin Point, Marambio/Seymour Island within the proposed Weddell Sea Marine Protected Area (2022). https://www.researchsquare.com/article/rs-2117503/v1.Che-Castaldo, C. et al. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise. Nat. Commun. 8, 832 (2017).Article 

    Google Scholar 
    Hinke, J. T., Trivelpiece, S. G. & Trivelpiece, W. Z. Variable vital rates and the risk of population declines in Adélie penguins from the Antarctic Peninsula region. Ecosphere 8, e01666 (2017).Article 

    Google Scholar  More

  • in

    House Sparrow (Passer domesticus) escape behavior is triggered faster in smaller settlements

    Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112 (2013).Article 

    Google Scholar 
    Ritzel, K. & Gallo, T. Behavior change in urban mammals: A systematic review. Front. Ecol. Evol. 8, 393 (2020).Article 

    Google Scholar 
    Gil, D. & Brumm, H. Avian Urban Ecology: Behavioural and Physiological Adaptations (Oxford University Press, 2014).
    Google Scholar 
    Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627–2634 (2005).Article 

    Google Scholar 
    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).Article 

    Google Scholar 
    Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manag. 67, 852–857 (2003).Article 

    Google Scholar 
    Cooper, W. E. & Frederick, W. G. Optimal flight initiation distance. J. Theor. Biol. 244, 59–67 (2007).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Blumstein, D. T. & Fernández-Juricic, E. A Primer of Conservation Behavior (Sinauer Associates, 2010).
    Google Scholar 
    Nunes, J. A. C. C. et al. Global trends on reef fishes’ ecology of fear: Flight initiation distance for conservation. Mar. Environ. Res. 136, 153–157 (2018).Article 
    CAS 

    Google Scholar 
    Haidt, A., Kamiński, T., Borowik, T. & Kowalczyk, R. Human and the beast—Flight and aggressive responses of European bison to human disturbance. PLoS ONE 13, e0200635 (2018).Article 

    Google Scholar 
    Breck, S. W., Poessel, S. A., Mahoney, P. & Young, J. K. The intrepid urban coyote: A comparison of bold and exploratory behavior in coyotes from urban and rural environments. Sci. Rep. 9, 2104 (2019).Article 

    Google Scholar 
    Andrade, M. & Blumstein, D. T. Anti-predator behavior along elevational and latitudinal gradients in dark-eyed juncos. Curr. Zool. 66, 239–245 (2020).Article 

    Google Scholar 
    Cooper, W. & Pérez-Mellado, V. Escape by the Balearic Lizard (Podarcis lilfordi) is affected by elevation of an approaching predator, but not by some other potential predation risk factors. Acta Herpetol. 6, 247–259 (2011).
    Google Scholar 
    Møller, A. P. Interspecific variation in fear responses predicts urbanization in birds. Behav. Ecol. 21, 365–371 (2010).Article 

    Google Scholar 
    Samia, D. S. M. et al. Rural–urban differences in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 5, 66 (2017).Article 

    Google Scholar 
    Morelli, F. et al. Contagious fear: Escape behavior increases with flock size in European gregarious birds. Ecol. Evol. 9, 6096–6104 (2019).Article 

    Google Scholar 
    Tätte, K., Møller, A. P. & Mänd, R. Towards an integrated view of escape decisions in birds: Relation between flight initiation distance and distance fled. Anim. Behav. 136, 75–86 (2018).Article 

    Google Scholar 
    Bókony, V., Kulcsár, A., Tóth, Z. & Liker, A. Personality traits and behavioral syndromes in differently urbanized populations of house sparrows (Passer domesticus). PLoS ONE 7, e36639 (2012).Article 

    Google Scholar 
    Vincze, E. et al. Habituation to human disturbance is faster in urban than rural house sparrows. Behav. Ecol. 27, 1304–1313 (2016).Article 

    Google Scholar 
    Seress, G., Bókony, V., Heszberger, J. & Liker, A. Response to predation risk in urban and rural house sparrows: Response to predation risk in house sparrows. Ethology 117, 896–907 (2011).Article 

    Google Scholar 
    Metcalf, B. M., Davies, S. & Ladd, P. G. Adaptation of behaviour by two bird species as a result of habituation to humans. Aust. Field Ornithol. 18, 306–312 (2000).
    Google Scholar 
    Blumstein, D. T. Attention, habituation, and antipredator behaviour: Implications for urban birds. In Avian Urban Ecology: Behavioural and Physiological Adaptations (eds Gil, D. & Brumm, H.) 41–53 (Oxford University Press, 2014).
    Google Scholar 
    Cavalli, M., Baladrón, A. V., Isacch, J. P., Biondi, L. M. & Bó, M. S. The role of habituation in the adjustment to urban life: An experimental approach with burrowing owls. Behav. Process. 157, 250–255 (2018).Article 
    CAS 

    Google Scholar 
    Fossett, T. E. & Hyman, J. The effects of habituation on boldness of urban and rural song sparrows (Melospiza melodia). Behaviour 159, 243–257 (2021).Article 

    Google Scholar 
    Møller, A. P., Grim, T., Ibanez-Alamo, J. D., Marko, G. & Tryjanowski, P. Change in flight initiation distance between urban and rural habitats following a cold winter. Behav. Ecol. 24, 1211–1217 (2013).Article 

    Google Scholar 
    Møller, A. P. Reproductive behaviour. In Behavioural Responses to a Changing World (eds Candolin, U. & Wong, B. B. M.) 106–118 (Oxford University Press, 2012).Chapter 

    Google Scholar 
    Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hung. 61, 373–408 (2015).Article 

    Google Scholar 
    Eötvös, C. B., Magura, T. & Lövei, G. L. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc. Urban Plan. 180, 54–59 (2018).Article 

    Google Scholar 
    Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: The role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818 (2012).Article 

    Google Scholar 
    Vincze, E. et al. Great tits take greater risk toward humans and sparrowhawks in urban habitats than in forests. Ethology 125, 686–701 (2019).Article 

    Google Scholar 
    Anderson, T. R. Biology of the Ubiquitous House Sparrow: From Genes to Populations (Oxford University Press, 2006).Book 

    Google Scholar 
    Santiago-Alarcon, D., Carbó-Ramírez, P., Macgregor-Fors, I., Chávez-Zichinelli, C. A. & Yeh, P. J. The prevalence of avian haemosporidian parasites in an invasive bird is lower in urban than in non-urban environments. Ibis 162, 201–214 (2020).Article 

    Google Scholar 
    García-Arroyo, M. & MacGregor-Fors, I. Tolerant to humans? Assessment of alert and flight initiation distances of two bird species in relation to sex, flock size, and environmental characteristics. Ethol. Ecol. Evol. 32, 445–456 (2020).Article 

    Google Scholar 
    Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).Article 

    Google Scholar 
    Cohen, S. B. & Dor, R. Phenotypic divergence despite low genetic differentiation in house sparrow populations. Sci. Rep. 8, 394 (2018).Article 

    Google Scholar 
    Martin, L. B. & Fitzgerald, L. A taste for novelty in invading house sparrows, Passer domesticus. Behav. Ecol. 16, 702–707 (2005).Article 

    Google Scholar 
    Quesada, J. et al. Bold or shy? Examining the risk-taking behavior and neophobia of invasive and non-invasive house sparrows. Anim. Biodivers. Conserv. 45, 97–106 (2022).Article 

    Google Scholar 
    Díaz, M. et al. The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS ONE 8, e64634 (2013).Article 

    Google Scholar 
    Quesada, J. & Calderon, J. Pardal comú. In Atles Dels Ocells Nidificants De Catalunya: Distribució i Abundancia 2015–2018 i Canvi des de 1980 (eds Franch, M. et al.) (Institut Català d’Ornitologia/Cossetània Edicions, 2021).
    Google Scholar 
    Shochat, E. Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106, 622–626 (2004).Article 

    Google Scholar 
    Statistical Institute of Catalonia. The municipality in figures. Bages. gencat https://www.idescat.cat/emex/?id=07 (2020).Bellet Sanfeliu, C. The evolution of urban planning in medium-sized Catalan cities (1979–2019). Urban Sci. 5, 36 (2021).Article 

    Google Scholar 
    Borras, A. & Junyent, F. Vertebrats de la Catalunya Central (Edicions Intercomarcals, 1993).
    Google Scholar 
    Vangestel, C., Braeckman, B. P., Matheve, H. & Lens, L. Constraints on home range behaviour affect nutritional condition in urban house sparrows (Passer domesticus). Biol. J. Linn. Soc. 101, 41–50 (2010).Article 

    Google Scholar 
    Herrando, S., Brotons, L., Estrada, J., Guallar, S. & Anton, M. Atles dels Ocells de Catalunya a I’hivern 2006–2009: Catalan Winter Bird Atlas 2006–2009 (Lynx Ed, 2011).
    Google Scholar 
    MacGregor-Fors, I. How to measure the urban-wildland ecotone: Redefining ‘peri-urban’ areas. Ecol. Res. 25, 883–887 (2010).Article 

    Google Scholar 
    Lemoine-Rodríguez, R., MacGregor-Fors, I. & Muñoz-Robles, C. Six decades of urban green change in a neotropical city: A case study of Xalapa, Veracruz, Mexico. Urban Ecosyst. 22, 609–618 (2019).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Shochat, E. et al. Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60, 199–208 (2010).Article 

    Google Scholar 
    Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).Article 

    Google Scholar 
    Geue, D. & Partecke, J. Reduced parasite infestation in urban Eurasian blackbirds (Turdus merula): A factor favoring urbanization?. Can. J. Zool. 86, 1419–1425 (2008).Article 

    Google Scholar 
    MacGregor-Fors, I., Quesada, J., Lee, J.G.-H. & Yeh, P. J. On the lookout for danger: House sparrow alert distance in three cities. Urban Ecosyst. 22, 955–960 (2019).Article 

    Google Scholar  More

  • in

    Effects of thinning on soil nutrient availability and fungal community composition in a plantation medium-aged pure forest of Picea koraiensis

    Yang, B., Pang, X. Y., Hu, B., Bao, W. K. & Tian, G. L. Does thinning-induced gap size result in altered soil microbial community in pine plantation in eastern Tibetan Plateau? Ecol. Evol. 7(9), 2986–2993 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrés, B. O., Ricardo, R. P., Raquel, O. & Mirendel, R. Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands. For. Ecol. Manag. 391, 309–320 (2017).Article 

    Google Scholar 
    Hart, B. T. N., Smith, J. E., Luoma, D. L. & Hatten, J. A. Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon. For. Ecol. Manag. 422, 11–22 (2018).Article 

    Google Scholar 
    Ge, Z. M. et al. Effects of varying thinning regimes on carbon uptake, total stem wood growth, and timber production in Norway spruce (Picea abies) stands in southern Finland under the changing climate. Ann. For. Sci. 68(2), 371–383 (2011).Article 

    Google Scholar 
    Panayotov, M. et al. Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria. For. Ecol. Manag. 369, 74–88 (2016).Article 

    Google Scholar 
    Depauw, L. et al. Interactive effects of past land use and recent forest management on the understorey community in temperate oak forests in South Sweden. J. Veg. Sci. 30(5), 917–928 (2019).Article 

    Google Scholar 
    Soalleiro, R. R., Murias, M. B. & Gonzalez, J. G. A. Evaluation through a simulation model of nutrient exports in fast-growing southern European pine stands in relation to thinning intensity and harvesting operations. Ann. For. Sci. 64(4), 375–384 (2007).Article 

    Google Scholar 
    Trentini, C. P. et al. Thinning of loblolly pine plantations in subtropical Argentina: Impact on microclimate and understory vegetation. For. Ecol. Manag. 384, 236–247 (2017).Article 

    Google Scholar 
    Baena, C. W. et al. Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain). For. Ecol. Manag. 308, 223–230 (2013).Article 

    Google Scholar 
    He, Z. B. et al. Responses of soil organic carbon, soil respiration, and associated soil properties to long-term thinning in a semi-arid spruce plantation in northwestern China. Land Degrad. Dev. 29(12), 4387–4396 (2018).Article 

    Google Scholar 
    Rambo, T. R. & North, M. P. Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. For. Ecol. Manag. 257(2), 435–442 (2009).Article 

    Google Scholar 
    Zhou, L. L. et al. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China. Environ. Sci. Pollut. Res. 23(23), 24135–24150 (2016).Article 
    CAS 

    Google Scholar 
    Collins, C. G., Carey, C. J., Aronson, E. L., Kopp, C. W. & Diez, J. M. Direct and indirect effects of native range expansion on soil microbial community structure and function. J. Ecol. 104(5), 1271–1283 (2016).Article 

    Google Scholar 
    Çömez, A., Tolunay, D. & Güner, ŞT. Litterfall and the effects of thinning and seed cutting on carbon input into the soil in Scots pine stands in Turkey. Eur. J. Forest Res. 138(1), 1–14 (2019).Article 

    Google Scholar 
    Ulvcrona, K. A., Karlsson, K. & Ulvcrona, T. Identifying the biological effects of pre-commercial thinning on diameter growth in young Scots pine stands. Scand. J. For. Res. 29(5), 427–435 (2014).Article 

    Google Scholar 
    Chen, X. L. et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation. Appl. Soil. Ecol. 92, 35–44 (2015).Article 

    Google Scholar 
    Veselá, P., Vašutová, M., Edwards- Jonášová, M. & Cudlin, P. Soil fungal community in norway spruce forests under bark beetle attack. Forests 10(2), 109 (2019).Article 

    Google Scholar 
    Ardestani, M. M., Jílková, V., Bonkowski, M. & Frouz, J. The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil. Plant Ecol. 220(9), 789–800 (2019).Article 

    Google Scholar 
    Sapsford, S. J., Paap, T., Hardy, G. E. S. J. & Burgess, T. I. The “chicken or the egg”: Which comes first, forest tree decline or loss of mycorrhizae? Plant Ecol. 218(9), 1093–1106 (2017).Article 

    Google Scholar 
    Jirout, J., Šimek, M. & Elhottová, D. Inputs of nitrogen and organic matter govern the composition of fungal communities in soil disturbed by overwintering cattle. Soil Biol. Biochem. 43(3), 647–656 (2011).Article 
    CAS 

    Google Scholar 
    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505(7484), 543–545 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iwaoka, C. et al. The impacts of soil fertility and salinity on soil nitrogen dynamics mediated by the soil microbial community beneath the halophytic Shrub Tamarisk. Microb. Ecol. 75(4), 985–996 (2017).Article 
    PubMed 

    Google Scholar 
    Bahnmann, B. et al. Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biol. Biochem. 119, 162–173 (2018).Article 
    CAS 

    Google Scholar 
    Ling, J. J. et al. Genotype by environment interaction analysis of growth of Picea koraiensis families at different sites using BLUP-GGE. New For. 52(1), 113–127 (2021).Article 

    Google Scholar 
    Zhang, J. B., Wang, L. F., Na, X., Zhang, T. T. & San-Ping, A. N. Primary report on introduction of Picea balfouriana and Picea koraiensis in Gansu. J. Gansu For. Sci. Technol. 44(02), 16–19+29 (2019).
    Google Scholar 
    Yin, L. M. et al. Arbuscular mycorrhizal trees cause a higher carbon to nitrogen ratio of soil organic matter decomposition via rhizosphere priming than ectomycorrhizal trees. Soil Biol. Biochem. 157, 108246 (2021).Article 
    CAS 

    Google Scholar 
    Zhou, L. & Wang, S. L. Effects of mixed tree species on soil nutrients in Picea koraiensis plantations. J. Northeast For. Univ. 47(2), 37–41 (2019).MathSciNet 
    CAS 

    Google Scholar 
    Cabon, A. et al. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. For. Ecol. Manag. 409, 333–342 (2018).Article 

    Google Scholar 
    Splawinski, T. B. et al. Precommercial thinning of Picea mariana and Pinus banksiana: Impact of treatment timing and competitors on growth response. For. Sci. 63(1), 62–70 (2017).Article 

    Google Scholar 
    Bai, S. H. et al. Effects of forest thinning on soil-plant carbon and nitrogen dynamics. Plant Soil 411(1–2), 437–449 (2016).
    Google Scholar 
    D’Amato, A. W., Troumbly, S. J., Saunders, M. R., Puettmann, K. J. & Albers, M. A. Growth and survival of Picea glauca following thinning of plantations affected by eastern spruce budworm. North. J. Appl. For. 28(2), 72–78 (2011).Article 

    Google Scholar 
    Olivar, J., Bogino, S., Rathgeber, C., Bonnesoeur, V. & Bravo, F. Thinning has a positive effect on growth dynamics and growth–climate relationships in Aleppo pine (Pinus halepensis) trees of different crown classes. Ann. For. Sci. 71(3), 395–404 (2014).Article 

    Google Scholar 
    Weiskittel, A. R., Kenefic, L. S., Seymour, R. S. & Phillips, L. M. Long-term effects of precommercial thinning on the stem dimensions, form and branch characteristics of red spruce and balsam fir crop trees in Maine, USA. Silva Fennica 43(3), 397–409 (2009).Article 

    Google Scholar 
    Repola, J., Hökkä, H. & Penttilä, T. Thinning intensity and growth of mixed spruce-birch stands on drained peatlands in Finland. Silva Fennica 40(1), 83–99 (2006).Article 

    Google Scholar 
    Misson, L., Vincke, C. & Devillez, F. Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) Karst.) stands. For. Ecol. Manag. 177(1–3), 51–63 (2003).Article 

    Google Scholar 
    Kim, S., Kim, C., Han, S. H., Lee, S. T. & Son, Y. A multi-site approach toward assessing the effect of thinning on soil carbon contents across temperate pine, oak, and larch forests. For. Ecol. Manag. 424, 62–70 (2018).Article 

    Google Scholar 
    Gliksman, D. et al. Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant Soil 422(1–2), 317–329 (2018).Article 
    CAS 

    Google Scholar 
    Achat, D. L., Fortin, M., Landmann, G., Ringeval, B. & Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 5, 15991 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jurgensen, M. F. et al. Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. For. Sci. 43(2), 234–251 (1997).
    Google Scholar 
    Blanco, J. A., Imbert, J. B. & Castillo, F. J. Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the pyrenees. Ecol. Appl. 19(3), 682–698 (2009).Article 
    PubMed 

    Google Scholar 
    Steer, J. & Harris, J. A. Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol. Biochem. 32(6), 869–878 (2000).Article 
    CAS 

    Google Scholar 
    Coulombe, D., Sirois, L. & Paré, D. Effect of harvest gap formation and thinning on soil nitrogen cycling at the boreal–temperate interface. Can. J. For. Res. 47(3), 308–318 (2017).Article 
    CAS 

    Google Scholar 
    Hagerman, S. M., Jones, M. D., Bradfield, G. E. & SMSakakibara, S. M. Ectomycorrhizal colonization of Picea engelmannii × Picea glauca seedlings planted across cut blocks of different sizes. Can. J. For. Res. 29(12), 1856–1870 (1999).Article 

    Google Scholar 
    Ogo, S., Yamanaka, T., Akama, K., Nagakura, J. & Yamaji, K. Influence of ectomycorrhizal colonization on cesium uptake by Pinus densiflora seedlings. Mycobiology 46(4), 388–395 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sebastiana, M. et al. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak. Mycorrhiza 28(3), 247–258 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jurgensen, M., Tarpey, R., Pickens, J., Kolka, R. & Palik, B. Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Sci. Soc. Am. J. 76(4), 1418–1425 (2012).Article 
    CAS 

    Google Scholar 
    Mosca, E., Montecchio, L., Barion, G., Dal Cortivo, C. & Vamerali, T. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps. Ann. Bot. 119(7), 1235–1246 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, X. & Christie, P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42(2), 201–207 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hawkes, C. V. et al. Fungal community responses to precipitation. Glob. Change Biol. 17(4), 1637–1645 (2011).Article 

    Google Scholar 
    McGuire, K. L., Fierer, N., Bateman, C., Treseder, K. K. & Turner, B. L. Fungal community composition in Neotropical rain forests: The influence of tree diversity and precipitation. Microb. Ecol. 63(4), 804–812 (2012).Article 
    PubMed 

    Google Scholar 
    Allison, S. D., Hanson, C. A. & Treseder, K. K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. 39(8), 1878–1887 (2007).Article 
    CAS 

    Google Scholar 
    Van Wyk, D. A. B., Adeleke, R., Rhode, O. H. J., Bezuidenhout, C. C. & Mienie, C. Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Bt-maize cultivation under field conditions in North West Province of South Africa. J. Basic Microbiol. 57(9), 781–792 (2017).Article 
    PubMed 

    Google Scholar 
    Zhao, C. C. et al. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Sci. Rep. https://doi.org/10.1038/srep24317 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowalchuk, G. A., Buma, D. S. & Boer, W. D. Peter GLK & van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81(1–4), 509 (2002).Article 
    PubMed 

    Google Scholar  More

  • in

    Global conservation prioritization areas in three dimensions of crocodilian diversity

    Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology 87, 50–61 (2006).Article 

    Google Scholar 
    Somaweera, R. et al. The ecological importance of crocodylians: Towards evidence-based justification for their conservation. Biol. Rev. Camb. Philos. Soc. 95, 936–959. https://doi.org/10.1111/brv.12594 (2020).Article 

    Google Scholar 
    Swain, S. et al. Anthropogenic influence on the physico-chemical parameters of Dhamra estuary and adjoining coastal water of the Bay of Bengal. Mar. Pollut. Bull. 162, 111826. https://doi.org/10.1016/j.marpolbul.2020.111826 (2021).Article 
    CAS 

    Google Scholar 
    IUCN. IUCN Red List of Threatened Species. Version 2022.1. www.iucnredlist.org (2022).Markich, S. J. & Jeffree, R. A. (eds) The Finnis River. A Natural Laboratory of Mining Impact—Past, Present and Future (Australian Nuclear Science and Technology Organisation, 2002).
    Google Scholar 
    Vieira, L. M. et al. Mercury and methyl mercury ratios in caimans (Caiman crocodilus yacare) from the Pantanal area, Brazil. J. Environ. Monitor. 13, 280–287. https://doi.org/10.1039/c0em00561d (2011).Article 
    CAS 

    Google Scholar 
    Quintela, F. M. et al. Arsenic, lead and cadmium concentrations in caudal crests of the yacare caiman (Caiman yacare) from Brazilian Pantanal. Sci. Total Environ. 707, 135479. https://doi.org/10.1016/j.scitotenv.2019.135479 (2020).Article 
    CAS 

    Google Scholar 
    Briggs-Gonzalez, V. S., Basille, M., Cherkiss, M. S. & Mazzotti, F. J. American crocodiles (Crocodylus acutus) as restoration bioindicators in the Florida Everglades. PLoS ONE 16, e0250510. https://doi.org/10.1371/journal.pone.0250510 (2021).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Grigg, G. & Kirshner, D. Biology and Evolution of Crocodylians (CSIRO Publishing, 2015).Book 

    Google Scholar 
    Subalusky, A. L., Fitzgerald, L. A. & Smith, L. L. Ontogenetic niche shifts in the American alligator establish functional connectivity between aquatic systems. Biol. Conserv. 142, 1507–1514 (2009).Article 

    Google Scholar 
    Villamarín, F., Escobedo-Galván, A. H., Siroski, P. & Magnusson, W. E. Geographic distribution, habitat, reproduction, and conservation status of crocodilians in the Americas. In Conservation Genetics of New World Crocodilians (eds Zucoloto, R. B. et al.) (Springer, 2021).
    Google Scholar 
    Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149. https://doi.org/10.1371/journal.pone.0199149 (2018).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flag ships. Conserv. Lett. 4, 1–8. https://doi.org/10.1111/j.1755-263X.2010.00151.x (2011).Article 

    Google Scholar 
    Fleishman, E., Murphy, D. D. & Brussard, P. F. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 10, 569–579 (2000).Article 

    Google Scholar 
    Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trents Ecol. Evol. 2211, 583–592 (2007).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x (2006).Article 

    Google Scholar 
    Magurran, A. E. Measuring Biological Diversity 2nd edn. (Blackwell Publishing, 2004).
    Google Scholar 
    Campos, F. S., Lourenço-de-Moraes, R., Llorente, G. A. & Solé, M. Cost-effective conservation of amphibian ecology and evolution. Sci. Adv. 36, e1602929 (2017).Article 

    Google Scholar 
    Dietz, M. S., Belote, R. T., Aplet, G. H. & Aycrigg, J. L. The world’s largest wilderness protection network after 50 years: An assessment of ecological system representation in the US National Wilderness Preservation System. Biol. Conserv. 184, 431–438 (2015).Article 

    Google Scholar 
    UNEP-WCMC, IUCN. Protected Planet Report 2016 (UNEP-WCMC and IUCN, 2016).
    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791. https://doi.org/10.1126/science.aap9565 (2018).Article 
    CAS 

    Google Scholar 
    Rodrigues, A. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643. https://doi.org/10.1038/nature02422 (2004).Article 
    CAS 

    Google Scholar 
    Ladle, R. J. & Whittaker, R. J. Conservation Biogeography 301 (Wiley-Blackwell, 2011).Book 

    Google Scholar 
    Dinerstein, E. et al. A “global safety net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, 2824 (2020).Article 

    Google Scholar 
    Lourenço-de-Moraes, R. et al. No more trouble: An economic strategy to protect taxonomic, functional and phylogenetic diversity of continental turtles. Biol. Conserv. 261, 109241. https://doi.org/10.1016/j.biocon.2021.109241 (2021).Article 

    Google Scholar 
    Brochu, C. A. Phylogenetic relationships of Necrosuchus ionensis Simpson, 1937 and the early history of caimanines. Zool. J. Linn. Soc. 163, 228–256. https://doi.org/10.1111/j.1096-3642.2011.00716.x (2011).Article 

    Google Scholar 
    Buffetaut, E. Systématique, origine et evolution des Gavialidae sud-américains. In Phylógenie et Paléobiogeography: Livre Jubilaire en l´honneur de Robert Hoffstetter (ed. Buffetaut, E.) 127–140 (Géobios, 1982).
    Google Scholar 
    Griffith, P., Lang, J. W., Turvey, S. T. & Gumbs, R. Data from: Using functional traits to identify conservation priorities for the world’s crocodylians. Zenodo. https://doi.org/10.5281/zenodo.6645415 (2022).Griffith, P., Lang, J. W., Turvey, S. T. & Gumbs, R. Using functional traits to identify conservation priorities for the world’s crocodylians. Funct. Ecol. 37, 112. https://doi.org/10.1111/1365-2435.14140 (2022).Article 
    CAS 

    Google Scholar 
    Milian-Garcia, Y. et al. Evolutionary history of Cuban crocodiles Crocodylus rhombifer and Crocodylus acutus inferred from multilocus markers. J. Exp. Zool. A 315, 358–375. https://doi.org/10.1002/jez.683 (2011).Article 

    Google Scholar 
    Rodrıguez-Soberon, R., Ross, P. & Seal, U. IUCN/SSC Conservation Breeding Specialist Group (2000).Milián-García, Y., Ramos-Targarona, R., Pérez-Fleitas, E., Espinosa-López, G. & Russello, M. A. Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: Implications for population history and in situ/ex situ conservation. Heridity 114, 272–280 (2015).Article 

    Google Scholar 
    Pacheco-Sierra, G., Gompert, Z., Dominguez-Laso, J. & Vazquez-Dominguez, E. Genetic and morphological evidence of a geographically widespread hybrid zone between two crocodile species, Crocodylus acutus and Crocodylus moreletii. Mol. Ecol. 25, 3484–3498. https://doi.org/10.1111/mec.13694 (2016).Article 

    Google Scholar 
    Borges, V. S. et al. Evolutionary significant units within populations of Neotropical broad-snouted caimans (Caiman latirostris, Daudin, 1802). J. Herpetol. 52, 282–288 (2018).Article 

    Google Scholar 
    Palmer, M. L. & Mazzoti, F. J. Structure of everglades alligator holes. Wetlands 24, 115–122 (2004).Article 

    Google Scholar 
    Marques, T. S. et al. Intraspecific isotopic niche variation in broad-snouted caiman (Caiman latirostris). Isot. Environ. Health Stud. 49, 325–335 (2013).Article 
    CAS 

    Google Scholar 
    Mascarenhas-Junior, P. B. et al. Conflicts between humans and crocodilians in urban areas across Brazil: A new approach to support management and conservation. Ethnobiol. Conserv. 10, 19. https://doi.org/10.15451/ec2021-12-10.37-1-19 (2021).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    CAS 

    Google Scholar 
    Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).Article 

    Google Scholar 
    Filogonio, R., Assis, V. B., Passos, L. F. & Coutinho, M. E. Distribution of populations of broad-snouted caiman (Caiman latirostris, Daudin 1802, Alligatoridae) in the São Francisco River basin, Brazil. Braz. J. Biol. https://doi.org/10.1590/S1519-69842010000500007 (2010).Article 

    Google Scholar 
    Marques, J. F. et al. Fires dynamics in the Pantanal: Impacts of anthropogenic activities and climate change. J. Environ. Manag. 299, 113586. https://doi.org/10.1016/j.jenvman.2021.113586 (2021).Article 

    Google Scholar 
    Mataveli, G. A. V. et al. 2020 Pantanal’s widespread fire: Short- and long-term implications for biodiversity and conservation. Biodivers. Conserv. https://doi.org/10.1007/s10531-021-02243-2 (2021).Article 
    PubMed Central 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 124–148 (2014).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).Article 
    CAS 

    Google Scholar 
    Canning, A. & Death, R. Trophic cascade direction and flow determine network flow stability. Ecol. Model. 355, 18–23 (2017).Article 

    Google Scholar 
    Wang, Y. Q., Zhu, W. Q., Huang, L., Zhou, K. Y. & Wang, R. P. Genetic diversity of Chinese alligator (Alligator sinensis) revealed by AFLP analysis: An implication on the management of captive conservation. Biodivers. Conserv. 15, 2945–2955 (2006).Article 

    Google Scholar 
    Zhai, T. et al. Effects of population bottleneck and balancing selection on the chinese alligator are revealed by locus-specific characterization of MHC genes. Sci. Rep. 7, 5549. https://doi.org/10.1038/s41598-017-05640-2 (2017).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Sharma, S. P. et al. Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India. Sci. Rep. https://doi.org/10.1038/s41598-021-85201-w (2021).Article 
    PubMed Central 

    Google Scholar 
    Nair, T. & Krishna, Y. C. Vertebrate fauna of the Chambal River basin, with emphasis on the National Chambal Sanctuary, India. J. Threat. Taxa 5, 3620–3641 (2013).Article 

    Google Scholar 
    Sharma, R. & Singh, L. Status of mugger crocodile (Crocodylus palustris) in National Chambal Sanctuary after thirty years and its implications on conservation of Gharial (Gavialis gangeticus). Zoo’s Print 30, 9–16 (2015).
    Google Scholar 
    Sinhg, H. & Rao, R. Status, threats and conservation challenges to key aquatic fauna (crocodile and dolphin) in National Chambal Sanctuary, India. Aquat. Ecosyst. Health Manag. 20, 59–70 (2017).Article 

    Google Scholar 
    UNEP-WCMC, IUCN. Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC, IUCN, 2021).
    Google Scholar 
    Smolensky, N. L., Hurtado, L. A. & Fitzgerald, L. A. DNA barcoding of Cameroon samples enhances our knowledge on the distributional limits of putative species of Osteolaemus (African dwarf crocodiles). Conserv. Genet. 16, 235–240. https://doi.org/10.1007/s10592-014-0639-3 (2014).Article 
    CAS 

    Google Scholar 
    Shirley, M. H., Villanova, V. L., Vliet, K. A. & Austin, J. D. Genetic barcoding facilitates captive and wild management of three cryptic African crocodile species complexes. Anim. Conserv. 18, 322–330 (2015).Article 

    Google Scholar 
    Shirley, M. H., Carr, A. N., Nestler, J. H., Vliet, K. A. & Brochu, C. A. Systematic revision of the living African Slender-snouted Crocodiles (Mecistops Gray, 1844). Zootaxa 4504, 151–193. https://doi.org/10.11646/zootaxa.4504.2.1 (2018).Article 

    Google Scholar 
    Murray, C. M., Russo, P., Zorrilla, A. & McMahan, C. D. Divergent morphology among populations of the New Guinea crocodile, Crocodylus novaeguineae (Schmidt, 1928): Diagnosis of an independent lineage and description of a new species. Copeia 107, 517–523. https://doi.org/10.1643/CG-19-240 (2019).Article 

    Google Scholar 
    Hekkala, E. H. et al. An ancient icon reveals new mysteries: Mummy DNA resurrects a cryptic species within the Nile crocodile. Mol. Ecol. 20, 4199–4215 (2011).Article 
    CAS 

    Google Scholar 
    Mobaraki, A. et al. Conservation status of the mugger crocodile Crocodylus palustris: Establishing a task force for a poster species of climate change. Crocodile Specialist Group Newslett. 40(3), 12–20 (2021).
    Google Scholar 
    Cunningham, S. W., Shirley, M. H. & Hekkala, E. R. Fine scale patterns of genetic partitioning in the rediscovered African crocodile, Crocodylus suchus (Saint-Hilaire 1807). PeerJ 12, e1901 (2016).Article 

    Google Scholar 
    Platt, S. G. et al. Siamese Crocodile Crocodylus siamensis. In Crocodiles. Status Survey and Conservation Action Plan 4th edn (eds Manolis, S. C. & Stevenson, C.) (Crocodile Specialist Group, 2019).
    Google Scholar 
    Arcgis Software v. Version 10.1 (2011).Lourenço-de-Moraes, R. et al. Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. J. Biogeogr. 47, 275–287 (2020).Article 

    Google Scholar 
    Pavoine, S., Vallet, J., Dufour, A. B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402. https://doi.org/10.1111/j.1600-0706.2008.16668.x (2009).Article 

    Google Scholar 
    Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20(1), 1–16 (2020).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    Pio, D. V. et al. Spatial predictions of phylogenetic diversity in conservation decision making. Conserv. Biol. 256, 1229–1239 (2011).Article 

    Google Scholar 
    Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).Article 

    Google Scholar 
    Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B 366, 2536–2544 (2011).Article 

    Google Scholar 
    Trindade-Filho, J., Carvalho, R. A., Brito, D. & Loyola, R. D. How does the inclusion of data deficient species change conservation priorities for amphibians in the Atlantic Forest?. Biodivers. Conserv. 21, 2709–2718 (2012).Article 

    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).
    Google Scholar 
    Swenson, N. G. Functional and Phylogenetic Ecology in R (Springer, 2014).Book 
    MATH 

    Google Scholar 
    Mouchet, M., Villéger, S., Mason, N. W. H. & Mouillo, D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).Article 

    Google Scholar 
    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).Article 
    CAS 

    Google Scholar 
    Sharp, R. et al. InVEST 3.10.2.post28+ug.ga4e401c.d20220324 User’s Guide (The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2020).
    Google Scholar 
    Lourenço-de-Moraes, R. et al. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Sci. Rep. 9, 8523. https://doi.org/10.1038/s41598-019-44732-z (2019).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Sánchez-Fernandez, D. & Abellán, P. Using null models to identify underrepresented species in protected areas: A case study using European amphibians and reptiles. Biol. Conserv. 184, 290–299 (2015).Article 

    Google Scholar  More

  • in

    Macroecological processes drive spiritual ecosystem services obtained from giant trees

    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. Camb. Phil. Soc. 92, 1434–1458 (2017).Article 

    Google Scholar 
    Voigt, C. C., Borissov, I. & Kelm, D. H. Bats fertilize roost trees. Biotropica 47, 403–406 (2015).Article 

    Google Scholar 
    Blicharska, M. & Mikusiński, G. Incorporating social and cultural significance of large old trees in conservation policy. Conserv. Biol. 28, 1558–1567 (2014).Article 

    Google Scholar 
    Sponsel, L. E. Spiritual Ecology: A Quiet Revolution (ABC-CLIO, 2012).Omura, H. Trees, forests and religion in Japan. Mt. Res. Dev. 24, 179–182 (2004).Article 

    Google Scholar 
    Heintzman, P. Nature-based recreation and spirituality: a complex relationship. Leis. Sci. 32, 72–89 (2009).Article 

    Google Scholar 
    Irvine, K. N., Hoesly, D., Bell-Williams, R. & Warber, S. L. in Biodiversity and Health in the Face of Climate Change (eds Marselle, M. R. et al.) 213–247 (Springer, 2019).Millennium Ecosystem Assessment Ecosystems and Human Well-Being: Synthesis (Island Press, 2005).Vihervaara, P., Rönkä, M. & Walls, M. Trends in ecosystem service research: early steps and current drivers. Ambio 39, 314–324 (2010).Article 

    Google Scholar 
    Brown, J. H. Macroecology (Univ. Chicago Press, 1995).Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Matsui, K. Geography of Religion in Japan: Religious Space, Landscape, and Behavior (Springer, 2013).Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Giant Trees Follow-Up Survey Report, the Sixth Census of the National Survey of the Natural Environment (in Japanese) (Biodiversity Center of Japan & Ministry of the Environment, 2001); https://www.biodic.go.jp/reports2/6th/kyojuflup/6_kyojuflup.pdfMakino, K. Folkloristics of Giant Trees (in Japanese) (Kobunsha, 1986).Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).Article 
    CAS 

    Google Scholar 
    Muthukrishna, M. et al. Beyond Western, Educated, Industrial, Rich, and Democratic (WEIRD) psychology: measuring and mapping scales of cultural and psychological distance. Psychol. Sci. 31, 678–701 (2020).Article 

    Google Scholar 
    Twigger-Ross, C. L. & Uzzell, D. L. Place and identity processes. J. Environ. Psychol. 16, 205–220 (1996).Article 

    Google Scholar 
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, 2011).Watanabe, T., Matsunaga, K., Kanazawa, Y., Suzuki, K. & Rotherham, I. D. Landforms and distribution patterns of giant Castanopsis sieboldii trees in urban areas and western suburbs of Tokyo, Japan. Urban For. Urban Green. 60, 126997 (2021).Article 

    Google Scholar 
    Uryu, S. jpmesh: Utilities for Japanese Mesh Code. R package version 2.1.0 https://CRAN.R-project.org/package=jpmesh (2022).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Yamanouchi, T. et al. A Checklist of Japanese Plant Names (Japan Node of Global Biodiversity Information Facility, 2019); https://www.gbif.jp/v2/activities/wamei_checklist.html More

  • in

    User-focused evaluation of National Ecological Observatory Network streamflow estimates

    As part of the streamflow data release, NEON released four relevant data products: Gauge Height26, Elevation of Surface Water29, Stage-discharge Rating Curves30, and Continuous Discharge15. Data users are able to download this full suite of information and protocols to inform decisions on data usage and applicability. We evaluated the quality of the Continuous Discharge product using all four relevant NEON data products, considering the validity of model inputs as well as the goodness-of-fit of final streamflow estimates. We analyzed 1) the fit of the regression between manual stage height readings and continuous pressure transducer data used to estimate continuous stream surface elevation, 2) the fit of rating curves transforming stream surface elevation to streamflow, and 3) the proportion of streamflow estimates over the maximum manually-measured streamflow.Stage classificationThe rating curve models predicting streamflow required continuous stream stage estimates as model inputs. NEON predicted continuous gauge height with a two step approach. First, continuous in-stream transducer readings were converted to water height by applying an offset between the transducer elevation and the staff gauge (Eq. 1). This offset is derived from the NEON geolocation database as the difference between the location of the pressure transducer and the staff gauge27. The offset changes only when the location of either the staff gauge or transducer moves.$${h}_{wc}=frac{{P}_{sw}}{p,ast ,g},ast ,1000+{h}_{stage}$$
    (1)
    Conversion of pressure data to water height used by NEON27 where hwc is the estimated water column height (m), Psw is calibrated surface water pressure (kPa), p is the density of water (999 kg/m3), g is the acceleration due to gravity (9.81 m/s2), and hstage is the offset between the pressure transducer and the staff gauge (m).Then, NEON uses a linear regression between manually-measured reference stage height and the calculated gauge height from Eq. 1, yielding final predictions of continuous stream gauge height27. In an ideal setting, stage and gauge height should correlate perfectly28. In the field, sensor uncertainty, manual reference measurement error, and shifting conditions in the stream can convolute the relationship. We tested the goodness of fit between continuously estimated stream gauge height values and manual stage measurements using the Nash-Sutcliffe model efficiency coefficient (Eq. 2). Nash-Sutcliffe coefficient is a commonly used metric in hydrology used to evaluate how well a model performed relative to observed values (manually measured stage and calculated gauge height). For the purposes of this discussion, manual reference measurements will be referred to as ‘stage’ and automated, sensed readings as ‘gauge height’.$$NSE=1-frac{Sigma {left({Q}_{o}-{Q}_{m}right)}^{2}}{Sigma {left({Q}_{o}-{bar{Q}}_{o}right)}^{2}}$$
    (2)
    Equation 2 presents Nash-Sutcliffe model efficiency coefficient, where Qo is an observed value (streamflow or stage height), Qm is a modeled value, and ({bar{Q}}_{o}) is the mean of observed values.Stage, gauge height, and regression data were sourced from the NEON Continuous Discharge product, representing what was directly applied to streamflow estimation. Up to 26 stage measurements were available per year. We examined every regression between stage and gauge height (one per site year in which data was available) and classified each as either ‘good’, ‘fair’, or ‘poor’ quality based on their goodness of fit. Regressions with a NSE (Eq. 2) of 0.90 or greater were considered good, those with a NSE of less than 0.90 but greater than or equal to 0.75 were considered fair, and those with an NSE of less than 0.75 were considered poor (Fig. 2).Drift detectionBecause electronic instruments, such as pressure transducers, can have systematic directional drift, referred to as ‘drift’, during deployment, we developed an approach to detect periods of time when NEON’s Elevation of Surface Water product drifted. We used two methods to assess and flag the potential for instrument drift at monthly time steps. First, we flagged any period the manually measured stage fell outside NEON’s uncertainty bound for gauge height made at the same time. From this, we calculated the proportion of stage measurements outside of the gauge height uncertainty bounds per month. This proved to be a relatively lenient filter that missed periods of manually identified drift. We found adding a second filter that flagged any month where the difference between the manually measured stage and gauge height exceeded 6 cm, was effective in catching the majority of periods where drift was identified. Second, we calculated the average differences between stage and gauge height for each month (Fig. 3). To determine appropriate cut-off values to classify areas of potential drift, we manually audited and flagged periods of observable directional drift. Our goal was to set a maximum cut-off difference which retained as much usable data as possible while still capturing 70% of the manually flagged directional drift periods. Applying this method, we determined a cut-off value of 6 cm average monthly deviation between observed and predicted stage values.Using these two filters in combination, we again classified data into three groups: ‘likely no drift’, ‘potential drift’, and ‘not assessed’. Site-months with no more than 50% of stage measurements outside of the gauge height time series uncertainty and an average difference between stage and gauge height less than 6 cm were considered to have ‘likely no drift’. Site-months with either more than 50% of stage readings outside of the gauge height time series uncertainty or an average difference between stage and gauge height more than 6 cm were deemed to have ‘potential drift’. Site-months with no stage measurements could not be evaluated and were considered ‘not assessed’. Although this approach to identify drift is imperfect, in that slight drift could be missed and times without manual measurements are not possible to assess, we believe this is a helpful method given the data available from NEON and the fact drift has been observed when visually inspecting data (Fig. 3).Rating curve classificationTo evaluate how well rating curves predicted streamflow, we assessed each rating curve used to convert stage to discharge. NEON prepares a new rating curve for each site’s water year (beginning on October 1st)27. In cases where NEON reported multiple rating curves for a site’s water year each curve was assessed separately across the time series which it was used. We classified rating curves into three tiers based on two metrics: the Nash-Sutcliffe coefficient (Eq. 2) between observed and predicted streamflow, and the percentage of continuous discharge values above the maximum manually measured gauging used to construct the rating curve.First, we calculated the Nash-Sutcliffe coefficient for each rating curve to estimate how well rating curves captured the variation in the stage-streamflow relationship. We used the reported values for modeled and manually measured streamflow from the ‘Y1simulated’ and ‘Y1observed’ columns in the ‘sdrc_resultsResiduals’ table of the Stage-discharge rating curves product. NEON generally conducts between 12 and 24 manual gaugings per year to build and maintain the stage-discharge relationship.Second, we calculated the percentage of continuous streamflow values outside the range of manually measured estimates of streamflow. This was useful to assess if the stage-discharge relationship is representative of observed flow conditions. The relationship between discharge and stage is often nonlinear, with inflection points around changes in channel morphology making gauging the stream at high and low flow conditions critical to building a reliable rating curve16. A rating curve based on a large number of direct field measurements all taken during a narrow range of baseflows, for example, could generate a rating curve with a high Nash-Sutcliffe coefficient that is unreliable when extrapolated to high or low flow events. Using these two metrics, we were able to classify rating curves into categories of relative quality. To calculate the percentage of values in the continuous streamflow product that fall outside the range of manually gauged streamflow values, we extracted the maximum and minimum gauging values from the ‘sdrc_resultsResiduals’ table in the Stage-discharge Rating Curve product. We then compared the predicted values derived from each rating curve (as reported in the ‘csd_continuousDischarge’ table) to the extracted range and calculated the proportion of values which fell outside of it.We used the Nash-Sutcliffe coefficient and percentage of streamflow values over the maximum observed field measurements to classify rating curves into three categories outlined in Table 1.To integrate stage-gauge regressions, drift detections, and rating curve classification, we produced a summary table with classifications for all three tests and the corresponding metrics used in each classification (Fig. 5). The table is grouped by month and site so users can query sites and determine which months have the appropriate data for their needs. More

  • in

    Active predation, phylogenetic diversity, and global prevalence of myxobacteria in wastewater treatment plants

    Myxococcota and Bdellovibrionota were active constituents of activated sludge microbiotaTo explore the predating activity and diversity of predatory bacteria in activated sludge, 13C-labeled Escherichia coli and Pseudomonas putida cells (determined as 97.09 and 97.30 atom% 13C, respectively) were added to the sludge microcosms for maximumly eight days of incubation, and 13C incorporation was examined using rRNA-SIP to identify prokaryotic and eukaryotic microorganisms involved in actively consuming the 13C-labeled prey cells. Bacterial 16S rRNA gene amplicon sequencing-based analysis indicated the relative contribution of 47.9% and 42.7% of the obtained sequences by the added biomass upon amendment in the 13C-E. coli (Fig. 1A) and 13C-P. putida (Fig. 1B) microcosms, which dropped below 1.0% after 16 h and eight days of incubation, respectively. The overall bacterial community structure at the steady state was highly comparable to that of the control microcosms (Fig. 1C), indicating that the prey cell amendments did not induce too strong fluctuation in the microbiota structure during the SIP experiment that prevented disentangling the indigenous community dynamics.Fig. 1: The dynamics of the prokaryotic communities and mineralization of the added 13C-biomass during the microcosm experiment.The overall prokaryotic communities were obtained by 16S rRNA gene amplicon sequencing of the total DNA from the activated sludge microcosms amended with 13C-E. coli (A) and 13C-P. putida (B) cells, and the control group (C) without amendment. The structure of the active prokaryotic communities was inferred based on amplicon sequencing of the light rRNA fractions from the microcosms amended with 13C-E. coli (D) and 13C-P. putida (E) cells. The temporal change in the proportion of produced 13CO2 in total CO2 indicated the mineralization of the 13C-labeled cells of E. coli and P. putida in duplicate microcosms (F). Relative sequence abundance of the ten most abundant prokaryotic phyla, together with the genera Escherichia-Shigella and Pseudomonas, was shown.Full size imageThe metabolically active bacterial communities, as inferred by 16S rRNA gene transcripts of the light rRNA fractions from the microcosms, were rather consistent throughout the experiment (Fig. 1D, E), but they showed clear compositional differences compared to the overall prokaryotic communities inferred by 16S rRNA gene amplicon sequences (Fig. 1A, B). Myxococcota and Bdellovibrionota species showed an average relative abundance of 17.5 (±0.7) % and 2.7 (±0.2) % in the 16S rRNA gene transcripts, respectively, which were significantly higher than 5.4 (±0.6) % and 1.3 (±0.1) % in the 16S rRNA genes of bacterial communities (p 1% in the 13C-heavy fractions, strong 13C-labeling was found for the as-yet-uncultivated myxobacterial mle1-27 clade (average EF 2.66 across time and treatments), which contributed to 10.3% to 38.9% of the 16S rRNA gene transcripts in the 13C-heavy fractions, indicating its high metabolic activity in consuming the 13C-labeled biomass of both E. coli and P. putida. Comparatively, Haliangium spp. and uncultured Polyangiaceae belonging to Myxococcota, as well as the as-yet-uncultivated OM27 clade belonging to Bdellovibrionota, also exhibited strong 13C-labeling (maximum EF across time: 2.4–39.5), but almost exclusively in the microcosms amended with 13C-E. coli cells (Fig. 2A). The as-yet-uncultivated myxobacterial VHS-B3-70 clade exhibited the strongest enrichment (average EF 16.67 across time and treatments) but made up only 0.2% to 2.3% of 16S rRNA gene transcripts of the 13C-heavy fraction (Fig. 2A). Overall, our microcosm experiment tracking added 13C-labeled prey bacterial cells with rRNA-SIP suggested prominent predatory activity of Myxococcota and Bdellovibrionota lineages including largely as-yet-uncultivated ones (e.g., the mle1-27, VHS-B3-70, and OM27 clades) in activated sludge.Fig. 2: The enrichment of incorporators of added 13C-biomass in heavy rRNA fractions and the temporal labeling patterns.13C-labeled prokaryotic (A) and micro-eukaryotic (B) genus-level taxa were identified by SIP in the microcosms added with E. coli and P. putida after one, two, and four days of incubation. Enrichment factor (EF) was calculated for microorganisms using heavy and light rRNA gradient fractions of the 13C- and 12C-microcosms to infer 13C-labeling. Taxa with an EF  > 0.1 in at least one of the treatment groups at one sampling time point was considered labeled. The area of circles indicates the relative sequence abundance of the labeled taxa in heavy 13C-rRNA. The negative EFs and positive EFs 1% in the heavy rRNA fractions of at least one of the 13C-E. coli and 13C-P. putida microcosms at a sampling point.Full size imageMyxococcota and Bdellovibrionota predated more selectively than protistsFor the micro-eukaryotes, several taxa belonging to Ciliophora, especially Cyrtophoria spp. and Telotrochidium spp., and also Peritrichia spp., Vaginicola spp., Aspidisca spp., and Epistylis spp., were highly enriched (maximum EF across time and treatments: 0.9–6.7) in the 13C-heavy rRNA fractions (Fig. 3B), in agreement with the dominance of Ciliophora in the micro-eukaryotic rRNA gene transcripts (Fig. 2B). The Candida-Lodderomyces clade and Cyberlindnera-Candida clade within Ascomycota, Magnoliophyta spp. within Phragmoplastophyta, and Poteriospumella spp. and unclassified Chromulinales within Ochrophyta were also strongly labeled (maximum EF: 13.5–242.5, Fig. 2B). Moreover, the 13C-biomass incorporation by micro-eukaryotes was independent of whichever prey bacteria (Fig. 2B, D), revealing no detectable prey preference in the metabolically active micro-eukaryotic predators. On the contrary, differential labeling by 13C-E. coli and 13C-P. putida cells was frequently observed for the predatory bacteria (Fig. 2A, C). The most obvious example was the OM27 clade ASVs belonging to Bdellovibrionota, which were found to incorporate 13C-labeled biomass exclusively of E. coli (Fig. 2C). Comparatively, Haliangium-affiliated ASV27 and ASV63 were labeled only by 13C-E. coli, ASV57 labeled by both 13C-E. coli and 13C-P. putida, while ASV72 and ASV76 were also labeled by 13C-P. putida, but only at a later sampling point (Fig. 2C). These results on the divergent labeling patterns with the tested prey bacteria together strongly implied population-specific predating behaviors of predatory bacteria in activated sludge.Fig. 3: In situ relative abundance of Myxococcota and Bdellovibrionota in aerobic and anaerobic sludge at a local WWTP (WWTP01) based on sampling over two years.The abundance of the abundant genera belonging to Myxococcota and Bdellovibrionota in aerobic and anaerobic sludge were compared according to amplicon sequencing-based analysis of bacterial 16S rRNA gene V3-V4 region. The top 10 abundant genus-level taxa across samples collected from eight samplings are shown, with the putative predators identified by SIP in the microcosm experiment highlighted. The asterisk denotes significant difference in relative abundance between aerobic and anaerobic sludges (p 0.1% in the activated sludge of WWTP01, including the putative predators identified in the microcosm experiment, i.e., Haliangium spp. (2.8 ± 0.7%) which represented the most abundant myxobacterial lineage in the activated sludge, uncultured Polyangiaceae (0.4 ± 0.1%), and the mle1-27 clade (0.2 ± 0.0%; Fig. 3). Moreover, Pajaroellobacter (1.2 ± 0.2%), Nannocystis (0.4 ± 0.1%), Phaselicystis (0.3 ± 0.1%), and several other myxobacterial clades, although not identified as putative predators in the microcosm experiment, were among the abundant myxobacteria in situ in the activated sludge. Although the myxobacterial genera showed comparable relative abundance in the anaerobic tanks, fed by returned activated sludge, to their counterparts in the aerobic tanks, the obligately aerobic myxobacteria were presumably metabolically inactive in the anerobic sludge. Unlike Myxococcota, members of Bdellovibrionota altogether showed significantly higher relative abundance in the aerobic sludge (1.0 ± 0.2%) than in the anaerobic sludge (0.6 ± 0.1%, paired samples Wilcoxon test p  More

  • in

    A latitudinal gradient of deep-sea invasions for marine fishes

    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
    Google Scholar 
    Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).
    Google Scholar 
    Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).
    Google Scholar 
    Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).ADS 
    CAS 

    Google Scholar 
    Alexander Pyron, R. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. B Biol. Sci. 280, 1–10 (2013).
    Google Scholar 
    Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).
    Google Scholar 
    Wright, S., Keeling, J. & Gillman, L. The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc. Natl Acad. Sci. USA 103, 7718–7722 (2006).ADS 
    CAS 

    Google Scholar 
    Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).
    Google Scholar 
    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS 
    CAS 

    Google Scholar 
    Igea, J. & Tanentzap, A. J. Angiosperm speciation speeds up near the poles. Ecol. Lett. 23, 1–40 (2020).
    Google Scholar 
    Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).ADS 
    CAS 

    Google Scholar 
    Rabosky, D. L. & Huang, H. A robust semi-parametric test for detecting trait-dependent diversification. Syst. Biol. 65, 181–193 (2016).
    Google Scholar 
    Hansen, J. et al. Global temperature change. Proc. Natl Acad. Sci. USA 103, 14288–14293 (2006).ADS 
    CAS 

    Google Scholar 
    Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, E140–E150 (2019).
    Google Scholar 
    Gerringer, M. E., Linley, T. D., Jamieson, A. J., Goetze, E. & Drazen, J. C. Pseudoliparis swirei sp. Nov.: A newly-discovered hadal snailfish (Scorpaeniformes: Liparidae) from the Mariana Trench. Zootaxa 4358, 161–177 (2017).
    Google Scholar 
    Childress, J. J. Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol. Evol. 10, 30–36 (1995).CAS 

    Google Scholar 
    Seibel, B. A. & Drazen, J. C. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos. Trans. R. Soc. B Biol. Sci. 362, 2061–2078 (2007).CAS 

    Google Scholar 
    Eme, D., Anderson, M. J., Myers, E. M. V., Roberts, C. D. & Liggins, L. Phylogenetic measures reveal eco-evolutionary drivers of biodiversity along a depth gradient. Ecography 43, 689–702 (2020).
    Google Scholar 
    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).CAS 

    Google Scholar 
    Brown, A. & Thatje, S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: Physiological contributions to adaptation of life at depth. Biol. Rev. 89, 406–426 (2014).
    Google Scholar 
    Zintzen, V., Anderson, M. J., Roberts, C. D., Harvey, E. S. & Stewart, A. L. Effects of latitude and depth on the beta diversity of New Zealand fish communities. Sci. Rep. 7, 1–10 (2017).CAS 

    Google Scholar 
    Coleman, R. R., Copus, J. M., Coffey, D. M., Whitton, R. K. & Bowen, B. W. Shifting reef fish assemblages along a depth gradient in Pohnpei, Micronesia. PeerJ 2018, 1–30 (2018).
    Google Scholar 
    Neat, F. C. & Campbell, N. Proliferation of elongate fishes in the deep sea. J. Fish. Biol. 83, 1576–1591 (2013).CAS 

    Google Scholar 
    Martinez, C. M. et al. The deep sea is a hot spot of fish body shape evolution. Ecol. Lett. 24, 1788–1799 (2021).
    Google Scholar 
    Webb, P. Introduction to Oceanography (Online OER textbook, 2017).Hanly, P. J., Mittelbach, G. G. & Schemske, D. W. Speciation and the latitudinal diversity gradient: Insights from the global distribution of endemic fish. Am. Nat. 189, 604–615 (2017).
    Google Scholar 
    Tedesco, P. A., Paradis, E., Lévêque, C. & Hugueny, B. Explaining global-scale diversification patterns in actinopterygian fishes. J. Biogeogr. 44, 773–783 (2017).
    Google Scholar 
    Cooney, C. R., Seddon, N. & Tobias, J. A. Widespread correlations between climatic niche evolution and species diversification in birds. J. Anim. Ecol. 85, 869–878 (2016).
    Google Scholar 
    Title, P. O. & Burns, K. J. Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds. Ecol. Lett. 18, 433–440 (2015).
    Google Scholar 
    Seeholzer, G. F., Claramunt, S. & Brumfield, R. T. Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution 71, 702–715 (2017).
    Google Scholar 
    Kozak, K. H. & Wiens, J. J. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13, 1378–1389 (2010).
    Google Scholar 
    Schnitzler, J., Graham, C. H., Dormann, C. F., Schiffers, K. & Peter Linder, H. Climatic niche evolution and species diversification in the cape flora, South Africa. J. Biogeogr. 39, 2201–2211 (2012).
    Google Scholar 
    Ghezelayagh, A. et al. Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nat. Ecol. Evol. 1–10. https://doi.org/10.1038/s41559-022-01801-3 (2022).Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471–12476 (2018).ADS 
    CAS 

    Google Scholar 
    Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).
    Google Scholar 
    O’Hara, T. D., Hugall, A. F., Woolley, S. N. C., Bribiesca-Contreras, G. & Bax, N. J. Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors. Nature 565, 636–639 (2019).ADS 

    Google Scholar 
    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
    Google Scholar 
    Hulsey, C. D., Roberts, R. J., Loh, Y. H. E., Rupp, M. F. & Streelman, J. T. Lake Malawi cichlid evolution along a benthic/limnetic axis. Ecol. Evol. 3, 2262–2272 (2013).CAS 

    Google Scholar 
    Woolley, S. N. C. et al. Deep-sea diversity patterns are shaped by energy availability. Nature 533, 393–396 (2016).ADS 
    CAS 

    Google Scholar 
    Pigot, A. L., Owens, I. P. F. & Orme, C. D. L. The environmental limits to geographic range expansion in birds. Ecol. Lett. 13, 705–715 (2010).
    Google Scholar 
    Gerringer, M. E., Linley, T. D. & Nielsen, J. G. Revision of the depth record of bony fishes with notes on hadal snailfishes (Liparidae, Scorpaeniformes) and cusk eels (Ophidiidae, Ophidiiformes). Mar. Biol. 168, 1–9 (2021).
    Google Scholar 
    Kolora, S. R. R. et al. Origins and evolution of extreme life span in Pacific Ocean rockfishes. Science 374, 842–847 (2021).ADS 
    CAS 

    Google Scholar 
    Rutschmann, S. et al. Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol. Ecol. 20, 4707–4721 (2011).
    Google Scholar 
    Wilson, L. A. B., Colombo, M., Hanel, R., Salzburger, W. & Sánchez-Villagra, M. R. Ecomorphological disparity in an adaptive radiation: opercular bone shape and stable isotopes in Antarctic icefishes. Ecol. Evol. 3, 3166–3182 (2013).
    Google Scholar 
    Ingram, T. Speciation along a depth gradient in a marine adaptive radiation. Proc. R. Soc. B. 278, 613–618 (2011).
    Google Scholar 
    Hyde, J. R., Kimbrell, C. A., Budrick, J. E., Lynn, E. A. & Vetter, R. D. Cryptic speciation in the vermilion rockfish (Sebastes miniatus) and the role of bathymetry in the speciation process. Mol. Ecol. 17, 1122–1136 (2008).CAS 

    Google Scholar 
    Kai, Y., Orr, J. W., Sakai, K. & Nakabo, T. Genetic and morphological evidence for cryptic diversity in the Careproctus rastrinus species complex (Liparidae) of the North Pacific. Ichthyol. Res. 58, 143–154 (2011).
    Google Scholar 
    Gerringer, M. E. et al. Habitat influences skeletal morphology and density in the snailfishes (family Liparidae). Front. Zool. 18, 1–22 (2021).
    Google Scholar 
    Saveliev, P. A. & Metelyov, E. A. Species composition and distribution of eelpouts (Zoarcidae, Perciformes, Actinopterygii) in the northwestern Sea of Okhotsk in summer. Prog. Oceanogr. 196, 102605 (2021).
    Google Scholar 
    Quattrini, A. M. et al. Niche divergence by deep-sea octocorals in the genus Callogorgia across the continental slope of the Gulf of Mexico. Mol. Ecol. 22, 4123–4140 (2013).
    Google Scholar 
    Zardus, J. D., Etter, R. J., Chase, M. R., Rex, M. A. & Boyle, E. E. Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Mol. Ecol. 15, 639–651 (2006).CAS 

    Google Scholar 
    Schüller, M. Evidence for a role of bathymetry and emergence in speciation in the genus Glycera (Glyceridae, Polychaeta) from the deep Eastern Weddell Sea. Polar Biol. 34, 549–564 (2011).
    Google Scholar 
    Smith, W. L., Everman, E. & Richardson, C. Phylogeny and taxonomy of flatheads, scorpionfishes, sea robins, and stonefishes (Percomorpha: Scorpaeniformes) and the evolution of the lachrymal saber. Copeia 106, 94–119 (2018).
    Google Scholar 
    Jamon, M., Renous, S., Gasc, J. P., Bels, V. & Davenport, J. Evidence of force exchanges during the six-legged walking of the bottom-dwelling fish,Chelidonichthys lucerna. J. Exp. Zool. 307A, 542–547 (2007).
    Google Scholar 
    McCune, A. R. & Carlson, R. L. Twenty ways to lose your bladder: common natural mutants in zebrafish and widespread convergence of swim bladder loss among teleost fishes. Evol. Dev. 6, 246–259 (2004).
    Google Scholar 
    Rabosky, D. L. Speciation rate and the diversity of fishes in freshwaters and the oceans. J. Biogeogr. 47, 1207–1217 (2020).
    Google Scholar 
    Daane, J. M. et al. Historical contingency shapes adaptive radiation in Antarctic fishes. Nat. Ecol. Evol. 3, 1102–1109 (2019).
    Google Scholar 
    Mu, Y. et al. Whole genome sequencing of a snailfish from the Yap Trench (~7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. PLoS Genet. 17, e1009530 (2021).CAS 

    Google Scholar 
    Yancey, P. H., Gerringer, M. E., Drazen, J. C., Rowden, A. A. & Jamieson, A. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc. Natl Acad. Sci. USA 111, 4461–4465 (2014).ADS 
    CAS 

    Google Scholar 
    Janzen, D. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
    Google Scholar 
    Kozak, K. H. & Wiens, J. J. Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. R. Soc. B: Biol. Sci. 274, 2995–3003 (2007).
    Google Scholar 
    Sheldon, K. S., Huey, R. B., Kaspari, M. & Sanders, N. J. Fifty years of mountain passes: a perspective on Dan Janzen’s classic article. Am. Nat. 191, 553–565 (2018).
    Google Scholar 
    Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Organ. Biol. 1, oby002 (2019).
    Google Scholar 
    Santidrián Tomillo, P., Fonseca, L., Paladino, F. V., Spotila, J. R. & Oro, D. Are thermal barriers ‘higher’ in deep sea turtle nests? PLoS ONE 12, 1–14 (2017).
    Google Scholar 
    Brown, J. H. Why marine islands are farther apart in the tropics. Am. Nat. 183, 842–846 (2014).
    Google Scholar 
    Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).ADS 
    CAS 

    Google Scholar 
    Hattermann, T. Antarctic thermocline dynamics along a narrow shelf with easterly winds. J. Phys. Oceanogr. 48, 2419–2443 (2018).ADS 

    Google Scholar 
    Robison, B. H. What drives the diel vertical migrations of Antarctic midwater fish? J. Mar. Biol. Ass. 83, 639–642 (2003).
    Google Scholar 
    Bourgeaud, L. et al. Climatic niche change of fish is faster at high latitude and in marine environments. Preprint at bioRxiv https://doi.org/10.1101/853374 (2019).Pie, M. R. et al. The evolution of latitudinal range limits in tropical reef fishes: heritability, limits, and inverse Rapoport’s rule. J. Biogeogr. 00, 1–12 (2021).
    Google Scholar 
    Powell, M. G. & Glazier, D. S. Asymmetric geographic range expansion explains the latitudinal diversity gradients of four major taxa of marine plankton. Paleobiology 43, 196–208 (2017).
    Google Scholar 
    Lawson, A. M. & Weir, J. T. Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes. Ecol. Lett. 17, 1427–1436 (2014).
    Google Scholar 
    Boag, T. H., Gearty, W. & Stockey, R. G. Metabolic tradeoffs control biodiversity gradients through geological time. Curr. Biol. 31, 2906–2913.e3 (2021).CAS 

    Google Scholar 
    Near, T. J. et al. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc. Natl Acad. Sci. USA 109, 3434–3439 (2012).ADS 
    CAS 

    Google Scholar 
    Hotaling, S., Borowiec, M. L., Lins, L. S. F., Desvignes, T. & Kelley, J. L. The biogeographic history of eelpouts and related fishes: Linking phylogeny, environmental change, and patterns of dispersal in a globally distributed fish group. Mol. Phylogenet. Evol. 162, 107211 (2021).
    Google Scholar 
    Thatje, S., Hillenbrand, C.-D., Mackensen, A. & Larter, R. Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89, 682–692 (2008).
    Google Scholar 
    Keller, I. & Seehausen, O. Thermal adaptation and ecological speciation. Mol. Ecol. 21, 782–799 (2012).CAS 

    Google Scholar 
    Deutsch, C., Penn, J. L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 585, 557–562 (2020).ADS 
    CAS 

    Google Scholar 
    Labeyrie, L. D., Duplessy, J. C. & Blanc, P. L. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327, 477–482 (1987).ADS 
    CAS 

    Google Scholar 
    Boag, T. H., Stockey, R. G., Elder, L. E., Hull, P. M. & Sperling, E. A. Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution. Proc. R. Soc. B: Biol. Sci. 285, 2011724 (2018).
    Google Scholar 
    Koslow, J. A. Community structure in North Atlantic deep-sea fishes. Prog. Oceanogr. 31, 321–338 (1993).ADS 

    Google Scholar 
    Brunn, A. The abyssal fauna: its ecology, distribution, and origin. Nature 177, 1105–1108 (1956). Fr.ADS 

    Google Scholar 
    Gaither, M. R. et al. Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides. Mol. Phylogenet. Evol. 104, 73–82 (2016).
    Google Scholar 
    Eastman, J. T. Evolution and diversification of Antarctic notothenioid fishes. Am. Zool. 31, 93–110 (1991).
    Google Scholar 
    Quattrini, A. M., Gómez, C. E. & Cordes, E. E. Environmental filtering and neutral processes shape octocoral community assembly in the deep sea. Oecologia 183, 221–236 (2017).ADS 

    Google Scholar 
    Stefanoudis, P. V. et al. Depth-dependent structuring of reef fish assemblages from the shallows to the rariphotic zone. Front. Mar. Sci. 6, 1–16 (2019).
    Google Scholar 
    Zintzen, V., Anderson, M. J., Roberts, C. D. & Diebel, C. E. Increasing variation in taxonomic distinctness reveals clusters of specialists in the deep sea. Ecography 34, 306–317 (2011).
    Google Scholar 
    Price, S. A., Claverie, T., Near, T. J. & Wainwright, P. C. Phylogenetic insights into the history and diversification of fishes on reefs. Coral Reefs 34, 997–1009 (2015).ADS 

    Google Scholar 
    Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. Evolution in a Community Context: On Integrating Ecological Interactions and Macroevolution. Trends Ecol. Evol. 32, 291–304 (2017).
    Google Scholar 
    Linley, T. D. et al. Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae. Deep Sea Res. Part I Oceanogr. Res. Pap. 114, 99–110 (2016).ADS 

    Google Scholar 
    Jamieson, A. J., Linley, T. D., Eigler, S. & Macdonald, T. A global assessment of fishes at lower abyssal and upper hadal depths (5000 to 8000 m). Deep Sea Res. Part I Oceanogr. Res. Pap. 103642. https://doi.org/10.1016/j.dsr.2021.103642 (2021).Boers, N. Observation-based early-warning signals for a collapse of the Atlantic meridional overturning circulation. Nat. Clim. Chang. 11, 680–688 (2021).ADS 

    Google Scholar 
    Paulus, E. Shedding light on deep-sea biodiversity—a highly vulnerable habitat in the face of anthropogenic change. Front. Mar. Sci. 8, 667048 (2021).Froese, R. & Pauly, D. FishBase. FishBase www.fishbase.org (2019).Boettiger, C., Lang, D. T. & Wainwright, P. C. Rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039 (2012).CAS 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 

    Google Scholar 
    Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).ADS 

    Google Scholar 
    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. Part I: Oceanogr. Res. Pap. 126, 85–102 (2017).ADS 

    Google Scholar 
    Alfaro, M. E. et al. Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nat. Ecol. Evol. 2, 688–696 (2018).
    Google Scholar 
    Magnuson-Ford, K. & Otto, S. P. Linking the investigations of character evolution and species diversification. Am. Nat. 180, 225–245 (2012).
    Google Scholar 
    Goldberg, E. E. & Igić, B. Tempo and mode in plant breeding system evolution. Evolution 66, 3701–3709 (2012).
    Google Scholar 
    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).CAS 

    Google Scholar 
    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).
    Google Scholar 
    Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. (2019).Collyer, M. L. & Adams, D. C. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).
    Google Scholar 
    Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: What are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).
    Google Scholar 
    Freckleton, R. P., Phillimore, A. B. & Pagel, M. Relating traits to diversification: a simple test. Am. Nat. 172, 102–115 (2008).
    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 

    Google Scholar 
    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).ADS 
    CAS 

    Google Scholar 
    May, M. R. & Moore, B. R. A Bayesian approach for inferring the impact of a discrete character on rates of continuous-character evolution in the presence of background-rate variation. Syst. Biol. 69, 530–544 (2020).
    Google Scholar 
    Höhna. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).
    Google Scholar 
    Burress, E. D. & Muñoz, M. M. Ecological opportunity from innovation, not islands, drove the anole lizard adaptive radiation. Syst. Biol. 0, 1–12 (2021).
    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 

    Google Scholar 
    Ives, A. R. & Helmus, M. R. Phylogenetic metrics of community similarity. Am. Nat. 176, E128–E142 (2010).
    Google Scholar 
    Costello, M. J. & Breyer, S. Ocean depths: the mesopelagic and implications for global warming. Curr. Biol. 27, R36–R38 (2017).CAS 

    Google Scholar  More