More stories

  • in

    Comprehensive coverage of human last meal components revealed by a forensic DNA metabarcoding approach

    In this study we successfully applied a DNA metabarcoding approach to identify consumed food items of plant and animal origin in human stomach content samples, even when digestion was advanced and macroscopic inspection no longer possible. A wide panel of common and less common edible food items were found, including meat, fish, legumes, cereals, nuts, fruits and spices. So far, gastric content analyses in a forensic context are typically based on microscopic and macroscopic identification of food items (reviewed e.g. in1). However, this approach is characterised by low taxonomic resolution, low sensitivity, and proves ineffective when meal leftovers are rendered unidentifiable due to chewing and digestive processes. In the field of molecular ecology, studies on animals have shown that morphological identification of prey items in the stomach underestimates prey diversity, which is particularly true when digestion is advanced (e.g.25). The only study to date applying DNA metabarcoding to infer human diet was based on faecal samples and did not assess any animal components of diet, although including a controlled feeding trial of an animal-based diet12. The comparison of the obtained plant DNA sequences to self-reporting indicated that, while some items were not reported but detected by DNA metabarcoding, all but one self-reported items were detected (the only exception being coffee), thus highlighting the sensitivity of the method. The present study, based on a random sampling of 48 human stomach contents collected during routine autopsies, includes a higher number of vegetal items and shows for the first time the successful detection of dietary items of animal origin. We found no correlation between the diversity of species detected and the time since death or digestion degree, which advocates for the utility of this methodology. The Vert01 primer set, highly specific to vertebrates, enables to distinguish between commonly eaten animal taxa and is clearly advantageous over morphological identification. In line with regional eating habits and previously published diet surveys26, we found within the 48 samples mainly pig, cattle/dairy and OTUs assigned to the plant families Poaceae, Rosaceae and Asteraceae (likely cereals, fruits, lettuces; Fig. 1). We did not detect coffee (Coffea spp.) in any of the stomach content samples, in line with12, which might be due to a degrading effect of roasting procedures on DNA, the absence of this popular beverage in all of the stomach samples being unlikely. Similarly, although common in Swiss eating habits, we also did not detect potato, which is usually eaten boiled or baked. Note that additional edible plant species, not listed in Fig. 2 since not constituting at least 10% of RRA but with 100% match with the database, were also detected (e.g. buckwheat, citrus fruits, flax, mangoes, sesame; Supplementary Table S2). Because we could obviously not compare our results to self-reported diets, we applied very stringent filtering parameters to avoid the occurrence of false positives (see Bioinformatic data treatment). It is beyond the approach of this study to distinguish between the animal source and a final processed food item (e.g. dairy or egg products) based on the obtained DNA sequences. However, this could be achieved by complementing the primer set with a bacterial marker (to e.g. identify the presence of a particular cheese27) or using proteomics (see below).Overall, the Vert01 metabarcode is able to discriminate well among commonly eaten genera. However, owing to its limited taxonomic resolution (72.4% at the species level, based on in silico testing11), species-level distinction is not always possible (e.g. between perch and pikeperch) or between potentially-eaten wild species and their conspecific domestic counterparts (e.g. wild boar and pig). In Fig. 2, we present the taxonomical assignation done using ObiTools together with a common name, selected after manually inspecting each sequence using BLAST and only considering 100% matches with edible species. In some cases, the common name refers to a group of species because the barcode was not specific enough to distinguish between genera or species. This is more relevant concerning plants, as the Sper01 metabarcode length ranges from 10 to 220 bp, implying that some items with shorter metabarcode and/or closely related phylogenetically could not be distinguished to genus or species level due to limited resolutive power. This is related to the nature of this universal plant marker, which has been designed to target a region of the trnL intron of chloroplast DNA which lacks taxonomic resolution within several plant families (only 21.5% resolution at the species level9,11) but has wide taxonomic coverage. This trade-off meant for our study that we could genetically not distinguish between some close species which are clearly different morphologically (e.g. stone fruits, cucurbits). To overcome this issue and increase the taxonomic resolution of the results, it is possible to envisage multiplexing within the same PCR of additional primers specifically targeting groups of species that cannot be identified at the species level by the P6 loop of the trnL intron. Such a strategy has already been implemented to distinguish between Carpinus betulus and Corylus avellana in bison diet28. Furthermore, it must be outlined that by using these primer sets only, diet assessment is not comprehensive as it does not target all possibly present food products. Even so-called universal primers may result in preferential amplification of some taxa over others and non-amplification of target taxa29,30. For this pilot study, we chose to use two universal PCR primer pairs with wide taxonomic coverage but limited specific resolution, in order to detect a broad range of items. To gain resolution for specific vertebrate or plant taxonomic groups (e.g. fish, birds, cereals) or target taxa not covered by these primers and which could be of forensic interest (e.g. marine crustaceans and molluscs, algae, fungi), it is possible to complement Vert01 and Sper01 with additional, taxonomically-restricted PCR metabarcoding primers described in the literature (e.g.31; examples reviewed in11). Taxonomic assignation of an unknown DNA sequence strongly depends on the exhaustiveness and quality of a reference database, either public as e.g. GenBank or custom-made/local (reviewed in32). In case of a priori knowledge of the overall consumed diet in samples, local databases may be restrained to the expected DNA sequences, which subsequently improves taxonomic assignment. For this study we in silico compiled databases containing all possible sequences amplified by our markers, but restricted these to vertebrates and spermatophytes (i.e. seed plants), respectively.The duration of stomach emptying has been estimated by the percentage of a meal present in a stomach3, but this process is influenced by several variables including the type and volume of consumed food, lifestyle and health, and can therefore last from few hours to days2. While one could argue that plant items usually remain longer in the stomach, our findings do not allow to draw robust conclusions about correlations of certain food items and digestion times. In order to establish hypotheses useful for time-frame estimations, additional experiments are necessary. In a controversial case of death, MS-based proteomics provided additional information through the analysis of food-derived proteins and peptides in the gastric content sampled at autopsy, indicating a last breakfast of milk and bread. While this method is certainly promising, it might reveal difficult if digestion is in an advanced stage, and has a less comprehensive scope than a DNA metabarcoding assay33. Furthermore, the effect of food processing techniques on DNA quality must be taken into account since cooking denatures e.g. proteins which in turn renders DNA amplification preferential to immunological approaches1. Different cooking treatments (variable duration of boiling, frying, baking) of tomato seeds showed that DNA extraction yielded in good quality DNA only for fresh seeds34, while digestion did not destroy DNA21. Hence, there might be an implicit bias of DNA metabarcoding to preferentially detect non-processed food (i.e. raw versus cooked). Another issue of environmental DNA-based methods is that it is not possible to distinguish between different states of food products based on DNA sequences. As mentioned before, we could not discriminate between e.g. grapes/wine, fruits/juices, beef meat/dairy products or chicken meat/eggs, since the DNA sequence of a derived product is identical to the DNA sequence of its source. While it is less common to encounter such biases for plants, mainly in cereal-derived products, it has to be taken into account when extrapolating diet patterns from DNA metabarcoding results.Stomach content sampling is invasive, but advantageous or even required with certain animal species and in particular circumstances, including definitely the human forensic context. An advantage of stomach content over faecal samples is that food is in an early stage of digestion before passing through the pyloric sphincter into the intestines, thus the effects of inhibition by bacteria or enzymes and degradation of DNA are less significant11,18. While some food particles such as seeds sometimes remain identifiable, even morphologically, after passing through the digestive system21, others do not and the same applies to DNA which is degraded by the digestive processes taking place in the intestinal tract. In a controlled feeding experiment on insects, the detectability of food DNA in different types of dietary samples showed that regurgitates and entire animals (including stomach content) outperformed faeces regarding detectability of prey DNA13. While food journals in dietary surveys may contain errors or deliberate omissions12, they are a comprehensive and easily accessible method of human diet assessment. However, in case of deceased persons that option is no longer available.Stomach content analyses provided crucial information for criminal investigations about cases of sudden and unexplained death on numerous occasions in recent years, enabling investigators to interpret perimortem events in detail (case examples reviewed in2). The results of this pilot study show that human stomach content analyses by DNA metabarcoding can be used as a complementary tool to traditional forensic macro- and microscopic approaches, with clear advantages such as an almost unlimited flexibility in terms of nature and range of taxa targeted, as well as high sensitivity and taxonomic resolution. Consequently, information that might otherwise remain undetected can be revealed, highlighting timings and circumstances surrounding the last hours of a person and his/her food intake. In a broader perspective, taking into account the potential improvements and refinements described above, and the growing amount of research literature available for wildlife species (i.e. environmental DNA-based studies), our results open up promising and novel prospects in the broader framework of human biomedical investigations of dietary patterns, based on partially or fully digested food found in the gastrointestinal tract or in faecal samples. More

  • in

    Uncovering marine connectivity through sea surface temperature

    The δ-MAPS analysis is performed onto monthly mean SST anomalies from the Mediterranean Sea Physical Reanalysis (CMEMS MED-Physics25) over the period 1987–2017. The advantage of using a reanalysis resides in the availability of a velocity field consistent with the SSTs that allows us to confirm the coupling between network domains and ocean currents within the euphotic layer.Validation of the δ-MAPS frameworkThe proposed ecoregionalization is first applied to the 2007–2010 period, when the domains, representing ecoregions, can be compared to those identified by Ref.2 using Lagrangian methods. The details of this validation are reported below and relevant figures can be found in the Supplementary Information.The 2007–2010 ecoregions in Figure S1 are consistent with the ones derived in Ref.2 through computationally intensive simulations. The name of each domain corresponds with those used in Ref.2 to ease comparison. It is worthwhile remarking that this work and the one of Ref.2 not only use very different methods to define connectivity, but also different data sources. Our study uses velocity and SST output fields from CMEMS MED Physics reanalysis, while Ref.2 uses the configuration PSY2V3 of the operational system MERCATOR OCEAN with a resolution of 8 km in the horizontal downscaled to a connectivity grid of 50 × 50 km. The data assimilation and clustering algorithms are different and Ref.2 employs a cut-off in addition to the clustering grid downscaling. These differences unavoidably translate into slightly different shapes and patterns of the domains inferred. For example, the D + V area in panel (a) of Figure S1 is effectively two separate ecoregions in Ref.2, in which the Messina Strait is not resolved at the connectivity grid level. However, this separation appears inconsistent with the surface kinetic energy (K.E.) of panel (b) in Figure S1, computed from the horizontal currents, e.g. zonal (u) and meridional (v) velocity components, as K.E. = 1/2 |V|2 where |V|= (u2 + v2)0.5. Indeed, there is no clear separation between the regions north and south at Messina Strait in our dataset. Having detailed this example and acknowledged that some differences should be expected, the overall basin eco-regionalization using δ-MAPS is consistent with that in Ref.2. The spatial accuracy is enough to well separate the main ecological areas, despite small-scale differences (i.e. some km, due to resolution choices).By and large, the SST anomaly domains in Figure S1 are bounded by ocean currents, in agreement with Ref.2. This is due to the dominance of advective forcing by ocean currents on the SSTs at equatorial and mid latitudes, on monthly timescales and spatial scales of few hundreds kilometers24. This link, which is foundational to the proposed methodology, is further quantified as follows: First, we calculate the surface K.E. per unit mass averaged over the time slot of interest; second, we select the points in the validation period (2007–2010) that exceed the 50th percentile of surface K.E. computed for the entire basin over 1987–2017 (e.g. 0.004 m2/s2); third, we compute the domain-boundary matrix augmented by 1 grid point in each direction; finally, we count which fraction of the domain boundaries computed in the boundary matrix overlaps with the K.E. fronts (above the 50th percentile threshold). The fraction obtained is high and equal to 0.73, and remains elevated when increasing the threshold to the 60th percentile (0.66). This procedure was repeated for all the time slots with Δ = 7 years used next in this study, obtaining high and very stable values in each case (mean ± variance = 0.73 ± 0.01 for the 50th percentile threshold, and 0.65 ± 0.01 for the 60th percentile threshold).Additionally, the correlation between the surface K.E. and K.E. at 50 m, 100 m, and 150 m over the whole 1987–2017 period (Figure S2) remains positive and significant, with coefficients for the whole domain (field mean c.c.  ± variance) of 0.83 ± 0.04 at 50 m, 0.68 ± 0.05 at 100 m, and 0.54 ± 0.06 at 150 m, indicating that the link extends to the whole euphotic layer.Mediterranean Sea ecoregions: long-term changesThe space-averaged (e.g. averaged on the whole basin) SSTs over the 1987–2017 period are characterized by a linear warming trend of about 0.04 °C per year, stronger in the eastern portion of the basin (Figure S3 in Supplementary Information). Over the same period, the K.E. per unit mass is characterized by different trends over decadal or quasi-decadal periods (Fig. 2, shown for surface only but the trend extends similarly to 50 m and 100 m depths) and no clear east–west contrast. A positive trend is found in the first part of the curve (1987–2001, 2.3 × 10–4 m2/s2 per year, green line in figure), followed by a central decade without statistically significant changes (2001–2010, blue line), and a steep negative trend afterward (2010–2017, – 4.1 10–4 m2/s2 per year, red line). We refer to 1987–2001, 2001–2010 and 2010–2017, as the UP, MAX and DOWN periods. The dynamical changes associated with the strengthening and weakening of ocean currents are hypothesized to coincide with a reshaping of the sub-basin ecoregions and reciprocal connectivity. The ecoregionalization inference is therefore performed considering time slots of varying length, so that yrend = yrini + Δ with yrini = y0 + n, n = 0,1,…,N, where y0 is the initial year of the dataset (1987) and N is the total number of time slots, each of duration Δ years, between 6 and 8. Time slots overlapping by more than one year among different trends periods are excluded. The choice of Δ = 7 years represents the best trade-off for having enough time slots to quantify the evolution of ecoregions and a sufficiently large number of data points in each time slot for statistical inference. We will focus on this case, but results are verified also for the other Δ values (see Supplementary Information).Figure 2Mean surface kinetic energy timeseries. Monthly time series of deseasonalized surface kinetic energy per unit mass (m2/s2), averaged over the whole Mediterranean Sea between 1987 and 2017. The shaded areas indicate the 1987–1993 (during the UP period), 2004–2010 (during MAX) and 2011–2017 (during DOWN) time slots used in Fig. 3.Full size imageStrength maps for three representative time slots are presented in Fig. 3a,c,e while maps of domain strengths for all Δ = 7 time slots can be found in Figure S4. The mean surface kinetic energy averaged within each timeslot is next compared to the number of ecoregions in corresponding timeslots. The fragmentation level, or the total number of ecoregions, and the mean surface kinetic energy content are highly correlated (Figure S5b in Supplementary Information), with a Pearson’s coefficient of 0.79 for the whole Mediterranean Sea, and 0.8 (0.65) for the eastern (western) basin. The fact that time slots are not independent does not invalidate the analysis, and a large correlation (c.c = 0.73) is retained even when using four non-overlapping time slots. A higher fragmentation occurs whenever the upper ocean layer is more energetic, and this relationship is robust to changes of Δ (see Supplementary Information). The domain strength is next compared to the mean K.E. content. For each timeslot, the domain strength is spatially averaged over the eastern and western basin separately. The correlations between the averaged strengths and the corresponding time slot mean surface K.E. values, both varying as the time slots change, are then calculated for eastern and western basins separately. No linkage is found in the western basin, but a strong anticorrelation describes the relationship in the eastern Mediterranean (c.c. − 0.74). This anticorrelation remains high (− 0.73) also when the eastern basin strengths are related to the whole basin surface K.E. averaged over each timeslot.Figure 3Domains and connectivity networks for the domain containing the Suez Canal. The three 7-year timeslots selected as representative of the UP (a,b), MAX (c,d) and DOWN (e,f) periods. The color of the domains represents their strength (left column), and the red dot shows the location of the Suez Canal. Links in the connectivity nets (right column) are colored according to the correlation between (the domain containing) the Suez Canal and other domains as labeled. Only correlations stronger than 0.35 are plotted. (Domains maps visualization produced with Matlab R2018a, https://www.mathworks.com/).Full size imageWe hypothesize that the amount of K.E. associated with semi-permanent jets, currents or large mesoscale eddies, grouped here together and named KE fronts, can be used as an indicator of their role as connectivity modulators. We identify KE fronts applying a pattern recognition algorithm on the K.E. fields for each time slot. The resulting pictures are processed by an image segmentation technique, based on K-means clustering, to separate the K.E. in four clusters of increasing energy content. The maximum-intensity group is selected as indicators for KE fronts and the number of pixels contained in each cluster is counted and used to estimate the size or abundance of each one. The maximum-intensity cluster well represents the energy-containing structures as measured by the correlation between the mean surface K.E. content in each time slot and the pixels within the corresponding cluster (c.c.  > 0.99). The more pixels reside within each cluster, the larger the KE fronts-populated areas that this cluster approximates. This estimation is carried out for the whole basin, and separately in the eastern and western parts. The number of pixels is then correlated to the number of inferred ecoregions for the whole Mediterranean (c.c. = 0.81), and for eastern (c.c. = 0.81) and western (c.c. = 0.69) basins. Figure S6 in the Supplementary Information compares the clustering maps of a low energy time slot (1987–1993, in panel (a)) and a higher one (2004–2010 in panel (b)), for the whole Mediterranean Sea for the maximum cluster. The number of ecoregions is highly correlated with the KE fronts everywhere and especially in the eastern Mediterranean Sea. The higher level of fragmentation found in the MAX period is thus associated with more abundant and/or larger surface KE fronts, acting as eco-dynamical barriers.To further strengthen this assessment, we consider that energy fronts can act as modulators for SSTa-derived domains. The ecoregionalization over a certain time slot characterizes that time range in one single ecoregion-map but stems from data known at several time points (i.e. monthly SSTa in our case). The resulting domains account therefore for the inherent physical variability of the system over time. A higher (lower) ecoregions fragmentation may therefore by associated with dynamical fronts occurring at different times and not necessarily in the same place, over a certain time range. If this is plausible, we expect to count more (less) occurrences of higher energy in broad areas where the domains are more (less) fragmented. For each time slot, the number of occurrences of a front in each pixel is therefore counted. Specifically, having defined a front as a K.E. realization above the 50th percentile of the overall (1987–2017) time varying surface K.E., we count how many times a front appears in the considered time slot at each pixel. In Figure S7 pixels are colored according to the number of occurrences in each time slot. The result is consistent with the domain fragmentation evolution. The higher fragmentation occurring in timeslots from 2001 to 2010 in the eastern basin is associated with more frequent fronts. Similar considerations hold for the other sub-basins, clearly distinguishing low energy periods from higher ones.Mediterranean ecoregions connectivity networksChanges in functional networks or connectivity among ecoregions can be assessed by comparing a network from each energy period (UP: 1987–1993, MAX: 2004–2010 and DOWN: 2011–2017) (Fig. 3b,d,f for the eastern basin and Figure S8 in the Supplementary Information for the western basin).In 1987–1993 the western basin was characterized by a high mean positive correlation of 0.73, with a strong, non-directional connectivity among the Tyrrhenian and Ligurian-Algero Provençal domains. In 2004–2010 the connectivity was overall weaker, and in particular reduced among Tyrrhenian waters. The connectivity between the Balearic domain (Bal) and the Tyrrhenian ones was also reduced. In 2011–2017 the connectivity was mostly recovered, especially in Tyrrhenian waters. In this period, the Algero-Provençal domain separated from the Ligurian Sea (Lig), enforcing its connectivity with the Balearic and the Alboran ecoregions.In the eastern basin we focus our attention on the ecoregion immediately offshore the Suez Canal (Fig. 3), the major anthropogenic corridor for the introduction of non-indigenous marine species in the Mediterranean Sea, the so-called Lessepsian immigrants32. According to δ-MAPS, connectivity from the domain surrounding Suez was high in the first decade, decreased approaching MAX, remained small until about 2010–2011 with fewer statistically significant links, and increased again in the more recent time slot considered. During the UP and DOWN periods, the strongest connections were with the eastern Levantine (domain N), followed by that with the Aegean, Ionian and Tunisian Seas. During UP the connectivity extended to the Provençal and Algerian Seas, in the western basin, while in DOWN these links were absent and replaced by a connection with the Adriatic Sea.The 1987–1993 and 2011–2017 periods, while not too dissimilar in energy levels, differed indeed for the phase of the Ionian-Adriatic Bimodal Oscillating System or BiOS33,34. The BiOS is a mode of variability characterized by a decadal reversal of the Northern Ionian Gyre (NIG) from cyclonic to anticyclonic, and vice versa. In its anticyclonic spinning the NIG deviates the inflowing Modified Atlantic Water (MAW) from the Sicily Channel towards the northern Ionian, entering the Adriatic Sea and decreasing its salinity and temperature. This prevents a portion of the MAW from reaching the Levantine basin, and enhances the outflow of Levantine waters into the western basin, along a pathway that follows the African coastline. The anticyclonic NIG co-occurs with higher concentrations of Atlantic and Western Mediterranean organisms in the Adriatic Sea. When the NIG is cyclonic, on the other hand, Levantine waters enter the Adriatic Sea, whereas the MAW preferably flows toward the Levantine35 and Lessepsian migrations influence the Adriatic Sea at various latitudes, affecting also phytoplankton phenology33,36,37. The corresponding regions and connectivity networks in the two opposite NIG periods are detailed in Figure S9 in the Supplementary Information. More

  • in

    Effects of family planning on fertility behaviour across the demographic transition

    1.Becker, G. S. & Lewis, H. G. On the interaction between the quantity and quality of children. Journal of Political Economy 81(2, pt2), s279–s288 (1973).Article 

    Google Scholar 
    2.Bulatao, R. A. & Lee, R. D. Determinants of Fertility in Developing Countries (Academic Press, 1983).
    Google Scholar 
    3.Caldwell, J. C. The mechanisms of demographic change in historical perspective. Popul. Stud. 35(1), 1–27 (1981).Article 

    Google Scholar 
    4.Carlsson, G. The decline of fertility: innovation or adjustment process. Popul. Stud. 20(2), 149–174 (1966).CAS 
    Article 

    Google Scholar 
    5.Easterlin, R. A. & Crimmins, E. M. The Fertility Revolution (University of Chicago Press, 1985).
    Google Scholar 
    6.Winterhalder, B. & Leslie, P. Risk-sensitive fertility: The variance compensation hypothesis. Evol. Hum. Behav. 23(1), 59–82. https://doi.org/10.1016/S1090-5138(01)00089-7 (2002).Article 

    Google Scholar 
    7.Sear, R., Lawson, D. W., Kaplan, H. & Shenk, M. K. Understanding Variation in Human Fertility: What Can We Learn from Evolutionary Demography? (The Royal Society, 2016).
    Google Scholar 
    8.Wood, J. W. Dynamics of Human Reproduction (Aldine de Gruyter, 1994).
    Google Scholar 
    9.Hruschka, D. J. & Burger, O. How does variance in fertility change over the demographic transition?. Philos. Trans. R. Soc. B 371, 20150155. https://doi.org/10.1098/rstb.2015.0155 (2016).Article 

    Google Scholar 
    10.Henry, L. Some data on natural fertility. Eugen. Q. 8(2), 81–91 (1961).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Campbell, K. L. & Wood, J. W. Fertility in traditional societies. In Natural Human Fertility Social and Biological Determinants (eds Diggory, P. et al.) 39–61 (MacMillan Press, 1988).
    Google Scholar 
    12.Ellison, P. T. On Fertile Ground (Harvard University Press, 2001).
    Google Scholar 
    13.Colleran, H., Jasienska, G., Nenko, I., Galbarczyk, A. & Mace, R. 2015 Fertility decline and the changing dynamics of wealth, status and inequality. Proc. R. Soc. B: Biol. Sci. 282, 20150287 (1806).Article 

    Google Scholar 
    14.Colleran, H. The cultural evolution of fertility decline. Philos. Trans. R. Soc. B: Biol. Sci. 371(1692), 20150152 (2016).Article 

    Google Scholar 
    15.Knight, F. H. Risk, Uncertainty, and Profit (Houghton Mifflin, 1921).
    Google Scholar 
    16.Ellison, P. T. Energetics and reproductive effort. Am. J. Hum. Biol. 15, 342–351 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Jasienska, G. & Ellison, P. Energetic factors and seasonal changes in ovarian function in women from rural Poland. Am. J. Hum. Biol. 16, 563–580 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Jasienska, G. & Ellison, P. T. Physical work causes suppression of ovarian function in women. Proc. R. Soc. Lond. B 265, 1847–1851 (1998).CAS 
    Article 

    Google Scholar 
    19.Kramer, K. L. & McMillan, G. P. The effect of labor saving technology on longitudinal fertility changes. Curr. Anthropol. 47(1), 165–172 (2006).Article 

    Google Scholar 
    20.Panter-Brick, C. Lactation, birth spacing and maternal workloads among two cases in rural Nepal. J. Biosoc. Sci. 23, 137–154 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Sear, R., Steele, F., McGregor, I. A. & Mace, R. The effects of kin on child mortality in Gambia. Demography 39(1), 43–63 (2002).PubMed 
    Article 

    Google Scholar 
    22.Valeggia, C. R. & Ellison, P. T. Lactation, energetics, and postpartum fecundity. In Reproductive Ecology and Human Evolution (ed. Ellison, P. T.) 85–105 (Aldine de Gruyter, 2001).
    Google Scholar 
    23.Gibson, M. & Mace, R. An energy-saving development initiative increases birth rate and childhood malnutrition in rural Ethiopia. PloS Med. 3, 476–484 (2006).Article 

    Google Scholar 
    24.Kramer, K. L. & McMillan, G. P. Women’s labor, fertility, and the introduction of modern technology in a rural Maya village. J. Anthropol. Res. 55(4), 499–520 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Low, B., Simon, C. & Anderson, K. An evolutionary ecological perspective on demographic transitions: modeling multiple currencies. Am. J. Hum. Biol. 14(2), 149–167 (2002).PubMed 
    Article 

    Google Scholar 
    26.Low, B. S., Simon, C. S. & Anderson, K. G. The biodemography of modern women: tradeoffs when resources become limiting. In The Biodemography of Human Reproduction and Fertility (ed. Rodgers, J. L.) 105–134 (Kuwer Academic Publishers, 2003).
    Google Scholar 
    27.Dyson, T. & Murphy, M. The onset of fertility transition. Popul. Dev. Rev. 11(3), 399–440 (1985).Article 

    Google Scholar 
    28.Early, J. & Headland, T. N. Population Dynamics of a Philippine Rain Forest People (University of Florida Press, 1998).
    Google Scholar 
    29.Hill, K. & Hurtado, A. M. Ache Life History (Aldine de Gruyter, 1996).
    Google Scholar 
    30.Kramer, K. L. & Greaves, R. D. Changing patterns of infant mortality and fertility among Pumé foragers and horticulturalists. Am. Anthropol. 109(4), 713–726 (2007).Article 

    Google Scholar 
    31.Goldstein, J. R. & Klüsener, S. Spatial analysis of the causes of fertility decline in Prussia. Popul. Dev. Rev. 40(3), 497–525 (2014).Article 

    Google Scholar 
    32.Montgomery, M. R. & Casterline, J. B. The diffusion of fertility control in Taiwan: Evidence from pooled cross-section time-series models. Popul. Stud. 47(3), 457–479 (1993).CAS 
    Article 

    Google Scholar 
    33.Schmertmann, C. P., Assunção, R. M. & Potter, J. E. Knox meets Cox: Adapting epidemiological space-time statistics to demographic studies. Demography 47(3), 629–650 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Galloway, P. R., Hammel, E. A. & Lee, R. D. Fertility decline in Prussia, 1875–1910: A pooled cross-section time series analysis. Popul. Stud. 48(1), 135–158 (1994).CAS 
    Article 

    Google Scholar 
    35.Schmertmann C. P., Potter J. E. & Assunção R. M. 2011 An innovative methodology for space-time analysis with an application to the 1960–2000 Brazilian mortality transition. In Navigating Time and Space in Population Studies 19–36 (Dordrecht, 2011).36.Bongaarts, J., Cleland, J., Townsend, J. W., Bertrand, J. T. & Gupta, M. D. Family Planning Programs for the 21st Century (Population Council, 2012).
    Google Scholar 
    37.Casterline J. B. Diffusion processes and fertility transition: Introduction. In Diffusion processes and fertility transition: Selected perspectives (ed. Population N.R.C.C.o.) (National Academies Press, US, 2011).38.Cleland, J. The effects of improved survival on fertility: A reassessment. In Global Fertility Transitions Population and Development Review Supplement to Vol 27 (eds. Bulatao R.A., Casterline J.B.) (Population Council, 2001).39.Cleland, J. & Wilson, C. Demand theories of the fertility transition: an iconoclastic view. Popul. Stud. 41(1), 5–30 (1987).Article 

    Google Scholar 
    40.Montgomery, M. R. & Casterline, J. B. Social learning, social influence, and new models of fertility. Popul. Dev. Rev. 22, 151–175 (1996).Article 

    Google Scholar 
    41.Sear, R. Evolutionary contributions to the study of human fertility. Popul. Stud. 69(sup1), S39–S55 (2015).Article 

    Google Scholar 
    42.Knodel, J. & Van de Walle, E. Lessons from the past: Policy implications of historical fertility studies. Popul. Dev. Rev. 5(2), 217–245 (1979).Article 

    Google Scholar 
    43.Watkins, S. C. From local to national communities: The transformation of demographic regimes in Western Europe, 1870–1960. Popul. Dev. Rev. 16(2), 241–272 (1990).Article 

    Google Scholar 
    44.Bongaarts, J. & Watkins, S. C. Social interactions and contemporary fertility transitions. Popul. Dev. Rev. 22(4), 639–682 (1996).Article 

    Google Scholar 
    45.Boyd, R. & Richerson, P. Culture and the Evolutionary Process (Univ. Press, 1985).
    Google Scholar 
    46.Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton University Press, 1981).MATH 

    Google Scholar 
    47.Colleran, H., Jasienska, G., Nenko, I., Galbarczyk, A. & Mace, R. Community-level education accelerates the cultural evolution of fertility decline. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2013.2732 (2014).Article 

    Google Scholar 
    48.Conrad, C., Lechner, M. & Werner, W. East German fertility after unification: crisis or adaptation?. Popul. Dev. Rev. 22(2), 331–358. https://doi.org/10.2307/2137438 (1996).Article 

    Google Scholar 
    49.Easterlin, R. A. Towards a socio-economic theory of fertility: a survey of recent research on economic factors in American fertility. In Fertility and Family Planning: A World View (ed. Behrman, S. J.) 127–156 (University of Michigan Press, 1969).
    Google Scholar 
    50.Easterlin, R. A. An economic framework for fertility analysis. Stud. Fam. Plann. 6, 54–63 (1975).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Galloway, P. R., Lee, R. D. & Hammel, E. A. Infant mortality and the fertility transition: Macro evidence from Europe and new findings from Prussia. In From Death to Birth Mortality Decline and Reproductive Change (eds Montgomery, M. R. & Cohen, B.) 182–226 (National Academy Press, 1998).
    Google Scholar 
    52.Kaplan, H. A theory of fertility and parental investment in traditional and modern human societies. Yearb. Phys. Anthropol. 39, 91–135 (1996).Article 

    Google Scholar 
    53.Lee, R. D. & Bulatao, R. A. The demand for children: a critical essay. In Determinants of Fertility in Developing Countries (eds Bulatao, R. A. & Lee, R. D.) 233–287 (Academic Press, 1983).
    Google Scholar 
    54.Lesthaeghe R. & Wilson C. Modes of production secularization and the pace of the fertility decline in Western Europe 1870–1930 (1986).55.Turke, P. Evolution and demand for children. Popul. Dev. Rev. 15(1), 61–90 (1989).MathSciNet 
    Article 

    Google Scholar 
    56.Colleran, H. Farming in transition: land and property inheritance in a rural Polish population. Soc. Biol. Hum. Aff. 78, 7–19 (2014).
    Google Scholar 
    57.González-Bailón, S. & Murphy, T. E. The effects of social interactions on fertility decline in nineteenth-century France: an agent-based simulation experiment. Popul. Stud. 67(2), 135–155 (2013).Article 

    Google Scholar 
    58.Shenk, M. K., Towner, M. C., Kress, H. C. & Alam, N. A model comparison approach shows stronger support for economic models of fertility decline. Proc. Natl. Acad. Sci. 110(20), 8045–8050. https://doi.org/10.1073/pnas.1217029110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    59.Alvergne, A., Gurmu, E., Gibson, M. A. & Mace, R. Social transmission and the spread of modern contraception in rural Ethiopia. PLoS ONE 6, e22515. https://doi.org/10.1371/journal.pone.0022515 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Mace, R. & Colleran, H. Kin influence on the decision to start using modern contraception: a longitudinal study from rural Gambia. Am. J. Hum. Biol. 21, 472–477. https://doi.org/10.1002/ajhb.20940 (2009).Article 
    PubMed 

    Google Scholar 
    61.Montgomery, M., Casterline, J. B. & Heiland, F. Social Networks and the Diffusion of Fertility Control (Population Council, 1998).Book 

    Google Scholar 
    62.Veile, A. & Kramer, K. L. Pregnancy, birth and babies: motherhood and modernization in a Yucatec village. In Maternal Health, Pregnancy-Related Morbidity and Death among Indigenous Women of Mexico & Central America (ed. Schwartz, D.) 205–224 (Springer, Berlin, 2018).
    Google Scholar 
    63.Snopkowski, K., Towner, M. C., Shenk, M. K. & Colleran, H. Pathways from education to fertility decline: a multi-site comparative study. Philos. Trans. R. Soc. B: Biol. Sci. 371(1692), 20150156 (2016).Article 

    Google Scholar 
    64.Schultz T. P. The Fertility Transition: Economic Explanations. Economic Growth Center Discussion Paper No. 833. Available at SSRN: https://ssrn.com/abstract=286291 (2001).65.Becker, S. O., Cinnirella, F. & Woessmann, L. Does women’s education affect fertility? Evidence from pre-demographic transition Prussia. Eur. Rev. Econ. Hist. 17(1), 24–44 (2013).Article 

    Google Scholar 
    66.Gandrud, C. simPH: an R package for illustrating estimates from cox proportional hazard models including for interactive and nonlinear effects. J. Stat. Softw. 65(3), 1–20 (2015).Article 

    Google Scholar 
    67.Seiber, E. E., Bertrand, J. T. & Sullivan, T. M. Changes in contraceptive method mix in developing countries. Int. Fam. Plan. Perspect. 33(3), 117–123 (2007).PubMed 
    Article 

    Google Scholar 
    68.Leite, I. D. C., Gupta, N. & Rodrigues, R. D. Female sterilization in Latin America: cross-national perspectives. J. Biosoc. Sci. 36(6), 683 (2004).Article 

    Google Scholar 
    69.Bertrand, J. T., Sullivan, T. M., Knowles, E. A., Zeeshan, M. F. & Shelton, J. D. Contraceptive method skew and shifts in method mix in low-and middle-income countries. Int. Perspect. Sexual Reprod. Health 40(3), 144–153 (2014).Article 

    Google Scholar 
    70.Leslie, P. & Winterhalder, B. Demographic consequences of unpredictability in fertility outcomes. Am. J. Hum. Biol. 14(2), 168–183 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Gibson, M. & Mace, R. Labor-saving technology and fertility increase in rural Africa. Curr. Anthropol. 43(4), 631–637 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Alvergne, A., Lawson, D. W., Clarke, P. M. R., Gurmu, E. & Mace, R. Fertility, parental investment, and the early adoption of modern contraception in rural Ethiopia. Am. J. Hum. Biol. 25(1), 107–115 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Mace, R., Allal, N., Sear, R. & Prentice, A. M. The uptake of modern contraception in a Gambian community: the diffusion of an innovation over 25 years. In Social Information Transmission and Human Biology (eds Wells, J. C. K. et al.) 191–206 (Taylor & Francis Group, 2006).
    Google Scholar 
    74.Lerner, I.M. Heredity, evolution and society. San Francisco: W.H. Freeman (1968)75.Lewontin, R. C. & Levins, R. Biology Under the Influence (Monthly Review Press, 2007).
    Google Scholar 
    76.Donaldson-Matasci, M. C., Lachmann, M. & Bergstrom, C. T. Phenotypic diversity as an adaptation to environmental uncertainty. Evol. Ecol. Res. 10(4), 493–515 (2008).
    Google Scholar 
    77.Meyers, L. A. & Bull, J. J. Fighting change with change: adaptive variation in an uncertain world. Trends Ecol. Evol. 17(12), 551–557 (2002).Article 

    Google Scholar 
    78.Sermonti, G. The butterfly and the lion. In Organisms, Genes and Evolution: Evolutionary Theory at the Crossroads; Proceedings of the 7th International Senckenberg Conference (eds Peters, S. T. & Weingarten, M.) 103 (Franz Steiner Verlag, 2000).
    Google Scholar 
    79.Boone, J. L. & Kessler, K. L. More status or more children? Social status, fertility reduction and long-term fitness. Evol. Hum. Behav. 20, 257–277 (1999).Article 

    Google Scholar 
    80.Nolin, D. A. & Ziker, J. P. Reproductive responses to economic uncertainty. Hum. Nat. 27(4), 351–371 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Jensen, R. The (perceived) returns to education and the demand for schooling. Q. J. Econ. 125(2), 515–548 (2010).Article 

    Google Scholar 
    82.Borgerhoff, M. M. The demographic transition: are we any closer to an evolutionary explanation?. Trends Ecol. Evol. 13, 266–270 (1998).Article 

    Google Scholar 
    83.Skirbekk, V. Fertility trends by social status. Demogr. Res. 18, 145–180 (2008).Article 

    Google Scholar 
    84.Vining, D. R. J. Social verses reproductive success: the central theoretical problem of human sociobiology. Behav. Brain Sci. 9(167), 216 (1986).
    Google Scholar 
    85.Kramer, K. L. Maya Children: Helpers at the Farm (Harvard University Press, 2005).
    Google Scholar 
    86.Kramer, K. L. & Boone, J. L. Why intensive agriculturalists have higher fertility: a household labor budget approach to subsistence intensification and fertility rates. Curr. Anthropol. 43(3), 511–517 (2002).Article 

    Google Scholar 
    87.Lee, R. D. & Kramer, K. L. Children’s economic roles in the Maya family life cycle: Cain, Caldwell and Chayanov revisited. Popul. Dev. Rev. 28(3), 475–499 (2002).Article 

    Google Scholar 
    88.Kramer, K. L. Reconsidering the cost of childbearing: the timing of children’s helping behavior across the life cycle of Maya families. In SocioEconomic Aspects of Human Behavioral Ecology (ed. Alvard, M.) 335–353 (Elsevier, 2004).
    Google Scholar 
    89.Kramer, K. L., Veile, A. & Otárola-Castillo, E. Sibling competition, growth tradeoffs. Biological vs. statistical significance. PLoS ONE 11(3), e0150126. https://doi.org/10.1371/journal.pone.0150126 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Veile, A. & Kramer, K. L. Shifting weanling’s optimum: breastfeeding ecology and infant health in Yucatan. In Anthropology and Breastfeeding (eds Tomori, C. et al.) Chapter 12 (Routledge Press, 2018).
    Google Scholar 
    91.Feltz, C. J. & Miller, G. E. An asymptotic test for the equality of coefficients of variation from k populations. Stat. Med. 15(6), 647–658 (1996).Article 

    Google Scholar 
    92.Marwick, B. & Krishnamoorthy. K. Cvequality: Tests for the Equality of Coefficients of Variation from Multiple Groups. R software package version 0.1.3 (2019). Retrieved from https://github.com/benmarwick/cvequality, on 05/01/2019.93.Cahoy, D. O. A bootstrap test for equality of variances. Comput. Stat. Data Anal. 54(10), 2306–2316 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    94.Therneau, T. A Package for Survival Analysis in S. version 2.38 (2015), https://CRAN.R-project.org/package=survival. More

  • in

    A heterocyte glycolipid-based calibration to reconstruct past continental climate change

    1.Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).3.Prahl, F. G. & Wakeham, S. G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330, 367–369 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Rampen, S. W. et al. Evaluation of long chain 1,14-alkyl diols in marine sediments as indicators for upwelling and temperature. Org. Geochem. 76, 39–47 (2014).CAS 
    Article 

    Google Scholar 
    6.Conte, M. H. et al. Global temperature calibration of the alkenone unsaturation index (UK’37) in surface waters and comparison with surface sediments. Geochem. Geophys. Geosyst. 7, Q02005 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).CAS 
    Article 

    Google Scholar 
    8.Robinson, S. A. et al. Early Jurassic North Atlantic sea‐surface temperatures from TEX86 palaeothermometry. Sedimentology 64, 215–230 (2017).Article 

    Google Scholar 
    9.Forster, A., Schouten, S., Baas, M. & Sinninghe Damsté, J. S. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35, 919–922 (2007).ADS 
    Article 

    Google Scholar 
    10.LaRiviere, J. P. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Zachos, J. C. et al. Extreme warming of mid-latitude coastal ocean during the Paleocene–Eocene Thermal Maximum: inferences from TEX86 and isotope data. Geology 34, 737–740 (2006).ADS 
    Article 

    Google Scholar 
    12.Powers, L. A. et al. Crenarchaeotal membrane lipids in lake sediments: a new paleotemperature proxy for continental paleoclimate reconstruction? Geology 32, 613–616 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Toney, J. L. et al. Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States. Geochim. Cosmochim. Acta 74, 1563–1578 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    14.De Jonge, C. et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim. Cosmochim. Acta 141, 97–112 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Tierney, J. E. & Russell, J. M. Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of the MBT/CBT paleoproxy. Org. Geochem. 40, 1032–1036 (2009).CAS 
    Article 

    Google Scholar 
    16.Bauersachs, T., Rochelmeier, J. & Schwark, L. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers. Biogeosciences 12, 3741–3751 (2015).ADS 
    Article 

    Google Scholar 
    17.Gambacorta, A., Trincone, A., Soriente, A. & Sodano, G. Chemistry of glycolipids from the heterocysts of nitrogen-fixing cyanobacteria. Curr. Top. Phytochem. 2, 145–150 (1999).CAS 

    Google Scholar 
    18.Bauersachs, T. et al. Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry 70, 2034–2039 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Wörmer, L., Cirés, S., Velázquez, D., Quesada, A. & Hinrichs, K.-U. Cyanobacterial heterocyst glycolipids in cultures and environmental samples: diversity and biomarker potential. Limnol. Oceanogr. 57, 1775–1788 (2012).ADS 
    Article 

    Google Scholar 
    20.Whitton, B. Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer Netherlands, 2012).21.Bauersachs, T., Stal, L. J., Grego, M. & Schwark, L. Temperature induced changes in the heterocyst glycolipid composition of N2 fixing heterocystous cyanobacteria. Org. Geochem. 69, 98–105 (2014).CAS 
    Article 

    Google Scholar 
    22.Stal, L. J. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ. Microbiol. 11, 1632–1645 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Loomis, S. E., Russell, J. M., Ladd, B., Street-Perrott, F. A. & Sinninghe Damsté, J. S. Calibration and application of the branched GDGT temperature proxy on East African lake sediments. Earth Planet. Sci. Lett. 357–358, 277–288 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    24.Loomis, S. E., Russell, J. M., Eggermont, H., Verschuren, D. & Sinninghe Damsté, J. S. Effects of temperature, pH and nutrient concentration on branched GDGT distributions in East African lakes: implications for paleoenvironmental reconstruction. Org. Geochem. 66, 25–37 (2014).CAS 
    Article 

    Google Scholar 
    25.Bauersachs, T. et al. Heterocyte glycolipids indicate polyphyly of stigonematalean cyanobacteria. Phytochemistry 166, 112059 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hecky, R. E. & Kling, H. J. The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: species composition, biomass, chlorophyll content, and spatio-temporal distribution. Limnol. Oceanogr. 26, 548–564 (1981).ADS 
    Article 

    Google Scholar 
    27.Descy, J.-P. & Sarmento, H. Microorganisms of the East African great lakes and their response to environmental changes. Freshw. Rev. 1, 59–73 (2008).Article 

    Google Scholar 
    28.McGlue, M. M. et al. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. J. Paleolimnol. 40, 635–653 (2008).ADS 
    Article 

    Google Scholar 
    29.Bale, N. J. et al. Impact of trophic state on the distribution of intact polar lipids in surface waters of lakes. Limnol. Oceanogr. 61, 1065–1077 (2016).ADS 
    Article 

    Google Scholar 
    30.Bauersachs, T. et al. Distribution of long chain heterocyst glycolipids in cultures of the thermophilic cyanobacterium Mastigocladus laminosus and a hot spring microbial mat. Org. Geochem. 56, 19–24 (2013).CAS 
    Article 

    Google Scholar 
    31.Rethemeyer, J. et al. Distribution of polar membrane lipids in permafrost soils and sediments of a small high Arctic catchment. Org. Geochem. 41, 1130–1145 (2010).CAS 
    Article 

    Google Scholar 
    32.D’Andrea, W. J., Huang, Y., Fritz, S. C. & Anderson, N. J. Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc. Natl Acad. Sci. USA 108, 9765–9769 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Russell, J. M., Hopmans, E. C., Loomis, S. E., Liang, J. & Sinninghe Damsté, J. S. Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: effects of temperature, pH, and new lacustrine paleotemperature calibrations. Org. Geochem. 117, 56–69 (2018).CAS 
    Article 

    Google Scholar 
    34.Pérez, L. et al. Bioindicators of climate and trophic state in lowland and highland aquatic ecosystems of the Northern Neotropics. Rev. Biol. Trop. 61, 603–644 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S. & Verschuren, D. Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochim. Cosmochim. Acta 73, 4232–4249 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    36.Deng, L., Jia, G., Jin, C. & Li, S. Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org. Geochem. 96, 11–17 (2016).CAS 
    Article 

    Google Scholar 
    37.Vollmer, M. K. et al. Deep-water warming trend in Lake Malawi, East Africa. Limnol. Oceanogr. 50, 727–732 (2005).ADS 
    Article 

    Google Scholar 
    38.Kraemer, B. M. et al. Century-long warming trends in the upper water column of Lake Tanganyika. PLoS ONE 10, e0132490 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Moisander, P. H., Paerl, H. W. & Zehr, J. P. Effects of inorganic nitrogen on taxa-specific cyanobacterial growth and nifH expression in a subtropical estuary. Limnol. Oceanogr. 53, 2519–2532 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kahru, M., Leppänen, J.-M. & Rud, O. Cyanobacterial blooms cause heating of the sea surface. Mar. Ecol. Prog. Ser. 101, 1–7 (1993).ADS 
    Article 

    Google Scholar 
    43.Wurl, O. et al. Warming and inhibition of salinization at the ocean’s surface by cyanobacteria. Geophys. Res. Lett. 45, 4230–4237 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Capone, D. et al. An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Mar. Ecol. Prog. Ser. 172, 281–292 (1998).ADS 
    Article 

    Google Scholar 
    45.Tierney, J. E. et al. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, 252–255 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Gasse, F., Lédée, V., Massault, M. & Fontes, J. C. Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342, 57–59 (1989).ADS 
    Article 

    Google Scholar 
    47.Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. Compilations and splined-smoothed calculations of continuous records of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing since the penultimate glacial maximum. Earth Syst. Sci. Data 9, 363–387 (2017).ADS 
    Article 

    Google Scholar 
    48.Ivory, S. J. & Russell, J. Lowland forest collapse and early human impacts at the end of the African Humid Period at Lake Edward, equatorial East Africa. Quat. Res. 89, 7–20 (2018).Article 

    Google Scholar 
    49.Powers, L. A. Large temperature variability in the southern African tropics since the last glacial maximum. Geophys. Res. Lett. 32, L08706 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Woltering, M., Johnson, T. C., Werne, J. P., Schouten, S. & Sinninghe Damsté, J. S. Late Pleistocene temperature history of Southeast Africa: a TEX86 temperature record from Lake Malawi. Palaeogeogr. Palaeoclimatol. Palaeoecol. 303, 93–102 (2011).Article 

    Google Scholar 
    51.Berke, M. A., Johnson, T. C., Werne, J. P., Schouten, S. & Sinninghe Damsté, J. S. A mid-Holocene thermal maximum at the end of the African Humid Period. Earth Planet. Sci. Lett. 351–352, 95–104 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Bonnefille, R., Roeland, J. C. & Guiot, J. Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature 346, 347–349 (1990).ADS 
    Article 

    Google Scholar 
    53.Sinninghe Damsté, J. S., Ossebaar, J., Schouten, S. & Verschuren, D. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quat. Sci. Rev. 50, 43–54 (2012).ADS 
    Article 

    Google Scholar 
    54.Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999).ADS 
    Article 

    Google Scholar 
    55.Berke, M. A. et al. Characterization of the last deglacial transition in tropical East Africa: insights from Lake Albert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 409, 1–8 (2014).Article 

    Google Scholar 
    56.Loomis, S. E. et al. The tropical lapse rate steepened during the last glacial maximum. Sci. Adv. 3, e1600815 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Tierney, J. E., Russell, J. M. & Huang, Y. A molecular perspective on Late Quaternary climate and vegetation change in the Lake Tanganyika basin, East Africa. Quat. Sci. Rev. 29, 787–800 (2010).ADS 
    Article 

    Google Scholar 
    58.Schouten, S., Rijpstra, W. I. C., Durisch-Kaiser, E., Schubert, C. J. & Sinninghe Damsté, J. S. Distribution of glycerol dialkyl glycerol tetraether lipids in the water column of Lake Tanganyika. Org. Geochem. 53, 34–37 (2012).CAS 
    Article 

    Google Scholar 
    59.Haberyan, K. A. & Hecky, R. E. The late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeogr. Palaeoclimatol. Palaeoecol. 61, 169–197 (1987).CAS 
    Article 

    Google Scholar 
    60.Berke, M. A. et al. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa. Quat. Sci. Rev. 55, 59–74 (2012).ADS 
    Article 

    Google Scholar 
    61.Weijers, J. W. H., Schefuß, E., Schouten, S. & Sinninghe Damsté, J. S. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science 315, 1701–1704 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Klages, J. P. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Costa, K. M., Russell, J. M., Vogel, H. & Bijaksana, S. Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 467–475 (2015).Article 

    Google Scholar 
    65.Ohlendorf, C. et al. Mechanisms of lake-level change at Laguna Potrok Aike (Argentina) – insights from hydrological balance calculations. Quat. Sci. Rev. 71, 27–45 (2013).ADS 
    Article 

    Google Scholar 
    66.Hawes, I., Howard-Williams, C. & Sorrell, B. Decadal timescale variability in ecosystem properties in the ponds of the McMurdo Ice Shelf, southern Victoria Land, Antarctica. Antarct. Sci. 26, 219–230 (2014).ADS 
    Article 

    Google Scholar 
    67.Bauersachs, T. et al. Rapid analysis of long-chain glycolipids in heterocystous cyanobacteria using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23, 1387–1394 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Shirkhorshidi, A. S., Aghabozorgi, S. & Wah, T. Y. A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS ONE 10, e0144059 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Kelly, M. A. et al. Expanded glaciers during a dry and cold last glacial maximum in equatorial East Africa. Geology 42, 519–522 (2014).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans

    1.Danovaro, R., Snelgrove, P. V. R. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).PubMed 
    Article 

    Google Scholar 
    2.Ebbe, B. et al. In Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 139–160 (Blackwell Publishing Ltd, 2010).3.Edgcomb, V. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr. Opin. Microbiol. 31, 169–175 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Bienhold, C., Zinger, L., Boetius, A. & Ramette, A. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS ONE 11, e0148016 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.del Campo, J. & Massana, R. Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162, 435–448 (2011).PubMed 
    Article 

    Google Scholar 
    6.López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).PubMed 
    Article 

    Google Scholar 
    7.Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean—challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).PubMed 
    Article 

    Google Scholar 
    8.Caron, D. A. et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 15, 6–20 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Jürgens, K. & Massana, R. In Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 383–441 (Wiley, 2008).10.Moran, M. A. The global ocean microbiome. Science 350, aac8455 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).Article 

    Google Scholar 
    13.Patterson, D. J., Nygaard, K., Steinberg, G. & Turley, C. M. Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J. Mar. Biol. Assoc. UK 73, 67 (1993).Article 

    Google Scholar 
    14.Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Arndt, H. et al. In The Flagellates—Unity, Diversity and Evolution (eds. Leadbeater, B. S. & Green, J. C.) 240–268 (Taylor & Francis Ltd, 2000).16.Boenigk, J. & Arndt, H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van. Leeuwenhoek 81, 465–480 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Caron, D. A., Davis, P. G., Madin, L. P. & Sieburth, J. M. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218, 795–797 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Gooday, A. J. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J. Oceanogr. 58, 305–332 (2002).CAS 
    Article 

    Google Scholar 
    19.Molari, M., Manini, E. & Dell’Anno, A. Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems. Glob. Biogeochem. Cycles 27, 212–221 (2013).CAS 
    Article 

    Google Scholar 
    20.Pasulka, A. et al. SSU-rRNA gene sequencing survey of benthic microbial eukaryotes from Guaymas Basin hydrothermal vent. J. Eukaryot. Microbiol. 66, 637–653 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Stoeck, T., Taylor, G. T. & Epstein, S. S. Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl. Environ. Microbiol. 69, 5656–5663 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Pachiadaki, M. G. et al. In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs. Deep Sea Res. Part II Top. Stud. Oceanogr. 129, 223–231 (2016).Article 

    Google Scholar 
    23.Cordier, T., Barrenechea, I., Lejzerowicz, F., Reo, E. & Pawlowski, J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. Prog. Oceanogr. 178, 102175 (2019).Article 

    Google Scholar 
    24.Pawlowski, J. et al. Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS ONE 6, e18169 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Scheckenbach, F., Hausmann, K., Wylezich, C., Weitere, M. & Arndt, H. Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc. Natl Acad. Sci. USA 107, 115–120 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Schlitzer, R. Ocean Data View (2012). http://odv.awi.de.28.Schoenle, A., Nitsche, F., Werner, J. & Arndt, H. Deep-sea ciliates: recorded diversity and experimental studies on pressure tolerance. Deep Sea Res. Part I: Oceanograp. Res. Pap. 128, 55–66 (2017).CAS 
    Article 

    Google Scholar 
    29.Živaljić, S. et al. A barotolerant ciliate isolated from the abyssal deep sea of the North Atlantic: Euplotes dominicanus sp. n. (Ciliophora, Euplotia). Eur. J. Protistol. 73, 125664 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Logares, R. et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome 8, 55 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 0091 (2017).Article 

    Google Scholar 
    32.Forster, D. et al. Benthic protists: the under-charted majority. FEMS Microbiol. Ecol. 92, fiw120 (2016).33.Schoenle, A., Hohlfeld, M., Hermanns, K. & Arndt, H. V9_DeepSea (Deep Sea Reference Database) [Data set]. Commun. Biol., Zenodo https://doi.org/10.5281/zenodo.4305675 (2021).34.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucl. Acids Res. 41, D597–D604 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Clopton, R. E., Janovy, J. & Percival, T. J. Host stadium specificity in the gregarine assemblage parasitizing Tenebrio molitor. J. Parasitol. 78, 334–337 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Leander, B. S. Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol. 24, 60–67 (2008).PubMed 
    Article 

    Google Scholar 
    38.del Campo, J. et al. Assessing the diversity and distribution of apicomplexans in host and free-living environments using high-throughput amplicon data and a phylogenetically informed reference framework. Front. Microbiol. 10, 2373 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Baker, P. et al. Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 148, 21–34 (2018).Article 

    Google Scholar 
    41.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).CAS 
    Article 

    Google Scholar 
    43.Xu, D. et al. Pigmented microbial eukaryotes fuel the deep sea carbon pool in the tropical Western Pacific Ocean. Environ. Microbiol. 20, 3811–3824 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 7608 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Schoenle, A. et al. Global comparison of bicosoecid Cafeteria-like flagellates from the deep ocean and surface waters, with reorganization of the family Cafeteriaceae. Eur. J. Protistol. 73, 125665 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Massana, R. et al. Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate. ISME J. 15, 154–167 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Živaljić, S. et al. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: literature review and own experiments. Deep Sea Res Part II Top. Stud. Oceanogr. 148, 251–259 (2018).Article 
    CAS 

    Google Scholar 
    48.Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Devey, C. W. et al. Habitat characterization of the Vema Fracture Zone and Puerto Rico Trench. Deep Sea Res Part II Top. Stud. Oceanogr. 148, 7–20 (2018).Article 

    Google Scholar 
    50.Levin, L. A. & Sibuet, M. Understanding continental margin biodiversity: a new imperative. Annu. Rev. Mar. Sci. 4, 79–112 (2012).Article 

    Google Scholar 
    51.Gooday, A. J. In Encyclopedia of Ocean Science (eds. Cochran, J. et al.) 684–705 (Elsevier, 2019).52.Vuillemin, A. et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci. Adv. 5, eaaw4108 (2019).53.De Corte, D., Paredes, G., Yokokawa, T., Sintes, E. & Herndl, G. J. Differential response of Cafeteria roenbergensis to different bacterial and archaeal prey characteristics. Micro. Ecol. 78, 1–5 (2019).Article 

    Google Scholar 
    54.Ballen-Segura, M., Felip, M. & Catalan, J. Some mixotrophic flagellate species selectively graze on Archaea. Appl. Environ. Microbiol. 83, e02317–16 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Schoenle, A. et al. Methodological studies on estimates of abundance and diversity of heterotrophic flagellates from the deep-sea floor. J. Mar. Sci. Eng. 4, 22 (2016).Article 

    Google Scholar 
    56.Schoenle, A. et al. New phagotrophic euglenids from deep sea and surface waters of the Atlantic Ocean (Keelungia nitschei, Petalomonas acorensis, Ploeotia costaversata). Eur. J. Protistol. 69, 102–116 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Danovaro, R. Methods for the Study of Deep-sea Sediments, their Functioning and Biodiversity (ed. Danovaro, R.) 181–196 (CRC Press, 2010).58.Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Butler, H. & Rogerson, A. Temporal and spatial abundance of naked amoebae (gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol. 42, 724–730 (1995).Article 

    Google Scholar 
    60.Goryatcheva, N. V. The cultivation of colourless marine flagellate Bodo marina. Biol. Inland Waters Bull. 11, 25–28 (1971).
    Google Scholar 
    61.Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Van der Auwera, G., Chapelle, S. & De Wächter, R. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 338, 133–136 (1994).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Hillis, D. M., Dixon, M. T. & Ribosomal, D. N. A. Molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411–453 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10–12 (2011).Article 

    Google Scholar 
    65.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Mahé, F. Stampa: sequence taxonomic assigment by massive pairwise aligments. https://github.com/frederic-mahe/stampa (2018).68.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).69.Vavrek, M. J. Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 1T (2011).
    Google Scholar 
    70.Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).Article 

    Google Scholar 
    71.Oksanen, J. et al. vegan: Community Ecology Package. The R Project for Statistical Computing. https://cran.r-project.org, https://github.com/vegandevs/vegan (2019).72.Hennig, C. fpc: Flexible Procedures for Clustering. The R Project for Statistical Computing. https://www.unibo.it/sitoweb/christian.hennig/en/ (2019).73.Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. The R Project for Statistical Computing. https://rdrr.io/cran/VennDiagram/ (2018).74.Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Kolde, R. pheatmap: Pretty Heatmaps. The R Project for Statistical Computing. https://CRAN.R-project.org/package=pheatmap (2019).76.Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. Handbook of the Protists. (eds. Archibald, J. M. et al.) 1–1657 (Springer, 2017).77.Okamura, T. & Kondo, R. Suigetsumonas clinomigrationis gen. et sp. nov., a novel facultative anaerobic nanoflagellate isolated from the meromictic Lake Suigetsu, Japan. Protist 166, 409–421 (2015).PubMed 
    Article 

    Google Scholar 
    78.Rybarski, A. et al. Revision of the phylogeny of Placididea (Stramenopiles): molecular and morphological diversity of novel placidid protists from extreme aquatic environments. Eur. J. Protistol.(in press).79.Scheckenbach, F., Wylezich, C., Weitere, M., Hausmann, K. & Arndt, H. Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquat. Microb. Ecol. 38, 239–247 (2005).Article 

    Google Scholar 
    80.Park, J. S. & Simpson, A. G. B. Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles: novel halotolerant heterotrophic stramenopiles. Environ. Microbiol. 12, 1173–1184 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Moriya, M., Nakayama, T. & Inouye, I. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae Sedis). Protist 151, 41–55 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Živaljić, S. et al. Influence of hydrostatic pressure on the behaviour of three ciliate species isolated from the deep sea. Mar. Biol. 167, 63 (2020).Article 

    Google Scholar  More

  • in

    Deep genetic structure at a small spatial scale in the endangered land snail Xerocrassa montserratensis

    1.Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).Article 

    Google Scholar 
    2.Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 (2004).Article 

    Google Scholar 
    3.Régnier, C. et al. Mass extinction in poorly known taxa. Proc. Natl. Acad. Sci. USA 112, 7761–7766 (2015).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Cuttelod, A., Seddon, M. & Neubert, E. European Red List of Non-Marine Molluscs (2011).5.Aubry, S., Labaune, C., Magnin, F., Roche, P. & Kiss, L. Active and passive dispersal of an invading land snail in Mediterranean France. J. Anim. Ecol. 75, 802–813 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Guiller, A. & Madec, L. Historical biogeography of the land snail Cornu aspersum: A new scenario inferred from haplotype distribution in the Western Mediterranean basin. BMC Evol. Biol. 10, 18 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Ochman, H., Jonest, J. S. & Selander, R. K. Molecular area effects in Cepaea. Proc. Natl. Acad. Sci. USA 80, 4189–4193 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Chueca, L. J., Gómez-Moliner, B. J., Madeira, M. J. & Pfenninger, M. Molecular phylogeny of Candidula (Geomitridae) land snails inferred from mitochondrial and nuclear markers reveals the polyphyly of the genus. Mol. Phylogenet. Evol. 118, 357–368 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Moreira, F., Calado, G. & Dias, S. Conservation status of a recently described endemic land snail, Candidula coudensis, from the Iberian peninsula. PLoS ONE 10, e0138464 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Sauer, J. & Hausdorf, B. Reconstructing the evolutionary history of the radiation of the land snail genus Xerocrassa on Crete based on mitochondrial sequences and AFLP markers. BMC Evol. Biol. 10, 299 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Davison, A. Land snails as a model to understand the role of history and selection in the origins of biodiversity. Popul. Ecol. 44, 129–136 (2002).Article 

    Google Scholar 
    12.Pfenninger, M., Posada, D. & Shaw, K. Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): Fragmentation, corridor migration, and secondary contact. Evolution (N. Y). 56, 1776–1788 (2002).13.Madeira, P. M. et al. High unexpected genetic diversity of a narrow endemic terrestrial mollusc. PeerJ 2017, e3069 (2017).Article 

    Google Scholar 
    14.Sauer, J., Oldeland, J. & Hausdorf, B. Continuing fragmentation of a widespread species by geographical barriers as initial step in a land snail radiation on Crete. PLoS ONE 8, e62569 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Haig, S. M. Molecular contributions to conservation. Ecology 79, 413–425 (1998).Article 

    Google Scholar 
    16.Ezzine, I. K., Pfarrer, B., Dimassi, N., Said, K. & Neubert, E. At home at least: The taxonomic position of some North African Xerocrassa species (Pulmonata, Geomitridae). Zookeys 712, 1–27 (2017).Article 

    Google Scholar 
    17.Bank, R. A. & Neubert, E. Checklist of the Land and Freshwater Gastropoda of Europe. http://www.marinespecies.org/aphia.php?p=sourcedetails&id=279050 (2017).18.Chueca, L. J., Gómez-Moliner, B. J., Forés, M. & Madeira, M. J. Biogeography and radiation of the land snail genus Xerocrassa (Geomitridae) in the Balearic Islands. J. Biogeogr. 44, 760–772 (2017).Article 

    Google Scholar 
    19.Martínez-Ortí, A. Xerocrassa montserratensis. The IUCN Red List of Threatened Species e.T22254A9368348. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T22254A9368348.en (2011).20.Martínez-Ortí, A. & Bros, V. Taxonomic clarification of three taxa of Iberian geomitrids, Helix montserratensis Hidalgo, 1870 and subspecies (Gastropoda, Pulmonata), based on morpho–anatomical data. Anim. Biodivers. Conserv. 40, 247–267 (2017).Article 

    Google Scholar 
    21.Bros, V. Composició de la comunitat de mol· luscs de les codines en el Parc Natural de Sant Llorenç del Munt i l’Obac, i l’impacte del trepig i l’erosió en el Montcau. In VII Monografies de Sant Llorenç del Munt i l’Obac 43–52 (2011).22.Santos, X., Bros, V. & Ros, E. Contrasting responses of two xerophilous land snails to fire and natural reforestation. Contrib. Zool. 81, 167–180 (2012).Article 

    Google Scholar 
    23.Hidalgo, J. G. Description de trois espèces nouvelles d’Helix d’Espagne. J. Conchyliol. 18, 298–299 (1870).
    Google Scholar 
    24.Bofill, A. Catálogo de los moluscos testáceos terrestres del llano de Barcelona. Crónica Científ. 3, 1–24 (1879).
    Google Scholar 
    25.Bofill, A. La Helix montserratensis. Su origen y su distribución en el tiempo y en el espacio. Mem. Real Acad. Cienc. Artes Barcelona 2, 331–343 (1898).26.Altimira, C. Notas malacológicas. Contribución al conocimiento de la fauna malacológica terrestre y de agua dulce de Cataluña. Misc. Zool. 3, 7–10 (1971).27.Van Riel, P. et al. Molecular systematics of the endemic Leptaxini (Gastropoda: Pulmonata) on the Azores islands. Mol. Phylogenet. Evol. 37, 132–143 (2005).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Kruckenhauser, L. et al. Paraphyly and budding speciation in the hairy snail (Pulmonata, Hygromiidae). Zool. Scr. 43, 273–288 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Dempsey, Z. W., Goater, C. P. & Burg, T. M. Living on the edge: Comparative phylogeography and phylogenetics of Oreohelix land snails at their range edge in Western Canada. BMC Evol. Biol. 20, 3 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Ursenbacher, S., Alvarez, C., Armbruster, G. F. J. & Baur, B. High population differentiation in the rock-dwelling land snail (Trochulus caelatus) endemic to the Swiss Jura Mountains. Conserv. Genet. 11, 1265–1271 (2010).Article 

    Google Scholar 
    31.Jesse, R., Véla, E. & Pfenninger, M. Phylogeography of a land snail suggests trans-Mediterranean Neolithic transport. PLoS ONE 6, e20734 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Hausdorf, B. Biogeography of the Limacoidea sensu lato (Gastropoda: Stylommatophora): vicariance events and long-distance dispersal. J. Biogeogr. 27, 379–390 (2000).Article 

    Google Scholar 
    33.Neiber, M. T., Sagorny, C., Sauer, J., Walther, F. & Hausdorf, B. Phylogeographic analyses reveal Transpontic long distance dispersal in land snails belonging to the Caucasotachea atrolabiata complex (Gastropoda: Helicidae). Mol. Phylogenet. Evol. 103, 172–183 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Simonová, J., Simon, O. P., Kapic, Š, Nehasil, L. & Horsák, M. Medium-sized forest snails survive passage through birds’ digestive tract and adhere strongly to birds’ legs: More evidence for passive dispersal mechanisms. J. Molluscan Stud. 82, 422–426 (2016).Article 

    Google Scholar 
    35.Watanabe, Y. & Chiba, S. High within-population mitochondrial DNA variation due to microvicariance and population mixing in the land snail Euhadra quaesita (Pulmonata: Bradybaenidae). Mol. Ecol. 10, 2635–2645 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Nägele, K.-L. & Hausdorf, B. Comparative phylogeography of land snail species in mountain refugia in the European Southern Alps. J. Biogeogr. 42, 821–832 (2015).Article 

    Google Scholar 
    37.Shakun, J. D., Lea, D. W., Lisiecki, L. E. & Raymo, M. E. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett. 426, 58–68 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20, 1–17 (2005).
    Google Scholar 
    39.Santos, X., Bros, V. & Miño, À. Recolonization of a burned Mediterranean area by terrestrial gastropods. Biodivers. Conserv. 18, 3153–3165 (2009).Article 

    Google Scholar 
    40.Bishop, P. Drainage rearrangement by river capture, beheading and diversion. Prog. Phys. Geogr. Earth Environ. 19, 449–473 (1995).Article 

    Google Scholar 
    41.Castelltort, F. X., Balasch, J. C., Cirés, J. & Colombo, F. Consecuencias de la migración lateral de una cuenca de drenaje (Homoclinal shifting) en la formación de la cuenca erosiva de la Plana de Vic. NE de la Cuenca del Ebro. Geogaceta 61, 55–58 (2017).42.Irwin, D. E. Phylogeographic breaks without geographic barriers to gene flow. Evolution (N. Y). 56, 2383–2394 (2002).43.Falniowski, A. et al. Melanopsidae (Caenogastropoda: Cerithioidea) from the eastern Mediterranean: Another case of morphostatic speciation. Zool. J. Linn. Soc. 190, 483–507 (2020).Article 

    Google Scholar 
    44.Proćków, M., Strzała, T., Kuźnik-Kowalska, E., Proćków, J. & Mackiewicz, P. Ongoing speciation and gene flow between taxonomically challenging Trochulus species complex (Gastropoda: Hygromiidae). PLoS ONE 12, e0170460 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Fiorentino, V., Manganelli, G., Giusti, F., Tiedemann, R. & Ketmaier, V. A question of time: The land snail Murella muralis (Gastropoda: Pulmonata) reveals constraints on past ecological speciation. Mol. Ecol. 22, 170–186 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Bamberger, S. et al. Genome‐wide nuclear data confirm two species in the Alpine endemic land snail Noricella oreinos s.l. (Gastropoda, Hygromiidae). J. Zool. Syst. Evol. Res. 00, 1–23 (2020).47.Torrado, H., Carreras, C., Raventos, N., Macpherson, E. & Pascual, M. Individual-based population genomics reveal different drivers of adaptation in sympatric fish. Sci. Rep. 10, 12683 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Alexander, A. et al. What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?. Mol. Ecol. 25, 2754–2772 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Petit, R. J., El Mousadik, A. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855 (1998).Article 

    Google Scholar 
    53.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).54.Narum, S. R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 7, 783–787 (2006).CAS 
    Article 

    Google Scholar 
    55.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).56.Miller, M. P. Alleles in space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).59.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).60.Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 35, 1550–1552 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018). More

  • in

    Projected shifts in loggerhead sea turtle thermal habitat in the Northwest Atlantic Ocean due to climate change

    1.IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. (2014).2.Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).PubMed 
    Article 

    Google Scholar 
    3.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3(10), 919–925 (2013).ADS 
    Article 

    Google Scholar 
    4.Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002), 881–884 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Weatherdon, L. V., Magnan, A. K., Rogers, A. D., Sumaila, U. R. & Cheung, W. W. Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: an update. Front. Mar. Sci. 3, 48 (2016).Article 

    Google Scholar 
    6.Mawdsley, J. R., O’Malley, R. & Ojima, D. S. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv. Biol. 23(5), 1080–1089 (2009).PubMed 
    Article 

    Google Scholar 
    7.Cañadas, A. & Hammond, P. S. Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: Implications for conservation. Endanger. Species Res. 4(3), 309–331 (2008).Article 

    Google Scholar 
    8.Franco, A. M., Catry, I., Sutherland, W. J. & Palmeirim, J. M. Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels?. Anim. Conserv. 7(3), 291–300 (2004).Article 

    Google Scholar 
    9.Spotila, J. R., Reina, R. D., Steyermark, A. C., Plotkin, P. T. & Paladino, F. V. Pacific leatherback turtles face extinction. Nature 405(6786), 529–530 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Wallace, B. P. et al. Impacts of fisheries bycatch on marine turtle populations worldwide: Toward conservation and research priorities. Ecosphere 4(3), 1–49 (2013).Article 

    Google Scholar 
    11.Dunn, D. C., Boustany, A. M. & Halpin, P. N. Spatio-temporal management of fisheries to reduce by-catch and increase fishing selectivity. Fish Fish. 12(1), 110–119 (2011).Article 

    Google Scholar 
    12.Senko, J., White, E. R., Heppell, S. S. & Gerber, L. R. Comparing bycatch mitigation strategies for vulnerable marine megafauna. Anim. Conserv. 17(1), 5–18 (2014).Article 

    Google Scholar 
    13.Howell, E. A., Kobayashi, D. R., Parker, D. M., Balazs, G. H. & Polovina, J. J. TurtleWatch: A tool to aid in the bycatch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery. Endanger. Species Res. 5(2–3), 267–278 (2008).Article 

    Google Scholar 
    14.Swimmer, Y. et al. Sea turtle bycatch mitigation in US longline fisheries. Front. Mar. Sci. 4, 260 (2017).Article 

    Google Scholar 
    15.Saba, V. S., Stock, C. A., Spotila, J. R., Paladino, F. V. & Tomillo, P. S. Projected response of an endangered marine turtle population to climate change. Nat. Clim. Change 2(11), 814–820 (2012).ADS 
    Article 

    Google Scholar 
    16.Santidrián Tomillo, P. et al. Global analysis of the effect of local climate on the hatchling output of leatherback turtles. Sci. Rep. 5, 16789 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Patel, S. H. et al. Climate impacts on sea turtle breeding phenology in Greece and associated foraging habitats in the wider Mediterranean region. PLoS ONE 11(6), e0157170 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Shoop, C. R. & Kenney, R. D. Seasonal distributions and abundances of loggerhead and leatherback sea turtles in waters of the northeastern United States. Herpetol. Monogr. 6, 43–67 (1992).Article 

    Google Scholar 
    19.Coles, W. & Musick, J. A. Satellite sea surface temperature analysis and correlation with sea turtle distribution off North Carolina. Copeia 2000(2), 551–554 (2000).Article 

    Google Scholar 
    20.Kleisner, K. M. et al. Marine species distribution shifts on the US Northeast Continental Shelf under continued ocean warming. Prog. Oceanogr. 153, 24–36 (2017).ADS 
    Article 

    Google Scholar 
    21.Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21(2), 272–281 (2012).Article 

    Google Scholar 
    22.Stoneburner, D. L. Satellite telemetry of loggerhead sea turtle movement in the Georgia Bight. Copeia 1982, 400–408 (1982).Article 

    Google Scholar 
    23.Hart, K. M. & Hyrenbach, K. D. Satellite telemetry of marine megavertebrates: The coming of age of an experimental science. Endanger. Species Res. 10, 9–20 (2009).Article 

    Google Scholar 
    24.Hebblewhite, M. & Haydon, D. T. Distinguishing technology from biology: A critical review of the use of GPS telemetry data in ecology. Philos. Trans. R. Soc. B Biol. Sci. 365(1550), 2303–2312 (2010).Article 

    Google Scholar 
    25.Hays, G. C. & Hawkes, L. A. Satellite tracking sea turtles: Opportunities and challenges to address key questions. Front. Mar. Sci. 5, 432 (2018).Article 

    Google Scholar 
    26.Hawkes, L. A., Broderick, A. C., Coyne, M. S., Godfrey, M. H. & Godley, B. J. Only some like it hot—Quantifying the environmental niche of the loggerhead sea turtle. Divers. Distrib. 13(4), 447–457 (2007).Article 

    Google Scholar 
    27.Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Chang. 3(3), 234–238 (2013).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    28.Roe, J. H. et al. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean. Proc. R. Soc. B Biol. Sci. 281(1777), 20132559 (2014).Article 

    Google Scholar 
    29.Winton, M. V. et al. Estimating the distribution and relative density of satellite-tagged loggerhead sea turtles using geostatistical mixed effects models. Mar. Ecol. Prog. Ser. 586, 217–232 (2018).ADS 
    Article 

    Google Scholar 
    30.Araújo, M. B. & Townsend, P. A. Uses and misuses of bioclimatic envelope modeling. Ecology 93(7), 1527–1539 (2012).PubMed 
    Article 

    Google Scholar 
    31.Gilman P, et al. National offshore wind strategy: facilitating the development of the offshore wind industry in the United States. National Renewable Energy Lab. (NREL), Golden, CO (United States) (2016).32.Northeast Fisheries Science Center (NEFSC) and Southeast Fisheries Science Center (SEFSC). Preliminary summer 2010 regional abundance estimate of loggerhead turtles (Caretta caretta) in northwestern Atlantic Ocean continental shelf waters. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 11–03; 33 p (2011).33.Ceriani, S. A., Weishampel, J. F., Ehrhart, L. M., Mansfield, K. L. & Wunder, M. B. Foraging and recruitment hotspot dynamics for the largest Atlantic loggerhead turtle rookery. Sci. Rep. 7(1), 1–3 (2017).CAS 
    Article 

    Google Scholar 
    34.Fofonoff, N. P. The Gulf Stream. In Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel (eds. Warren, B. A., & Wunsch, C.) 112–139 (MIT Press, 1981) Cambridge, MA.35.Patel, S. H., Miller, S. & Smolowitz, R. J. Understanding impacts of the sea scallop fishery on loggerhead sea turtles through satellite tagging. Final report for 2015 Sea Scallop Research Set-Aside (RSA). NOAA grant: NA15 NMF 4540055. Coonamessett Farm Foundation, East Falmouth, MA (2016).36.Patel, S. H. et al. Loggerhead turtles are good ocean-observers in stratified mid-latitude regions. Estuar. Coast. Shelf Sci. 213, 128–136 (2018).ADS 
    Article 

    Google Scholar 
    37.Crowe, L. M., Hatch, J. M., Patel, S. H., Smolowitz, R. J. & Haas, H. L. Riders on the storm: loggerhead sea turtles detect and respond to a major hurricane in the Northwest Atlantic Ocean. Mov. Ecol. 8(1), 1–3 (2020).Article 

    Google Scholar 
    38.Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. M. TMB: Automatic differentiation and Laplace approximation. J. Stat. Softw. 70(5), 1–21 (2016).Article 

    Google Scholar 
    39.R Core Team. R: A language and environment for statistical computing (2017).40.Johnson, D. S., London, J. M., Lea, M.-A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89(5), 1208–1215 (2008).PubMed 
    Article 

    Google Scholar 
    41.Albertsen, C. M., Whoriskey, K., Yurkowski, D., Nielsen, A. & Flemming, J. M. Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder. Ecology 96(10), 2598–2604 (2015).PubMed 
    Article 

    Google Scholar 
    42.Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. American Statistical Association (2015).43.Turtle Expert Working Group (TEWG). An assessment of the loggerhead turtle population in the western North Atlantic Ocean. NOAA Tech. Mem. NMFS-SEFSC. 575(131), 744 (2009).
    Google Scholar 
    44.Clay, P. M. Management regions, statistical areas and fishing grounds: Criteria for dividing up the sea. J. Northwest Atl. Fish. Sci. 19, 103–126 (1996).Article 

    Google Scholar 
    45.Murray, K. T. & Orphanides, C. D. Estimating the risk of loggerhead turtle Caretta caretta bycatch in the US mid-Atlantic using fishery-independent and-dependent data. Mar. Ecol. Prog. Ser. 477, 259–270 (2013).ADS 
    Article 

    Google Scholar 
    46.Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate. J. Geophys. Res. Oceans 121(1), 118–132 (2016).ADS 
    Article 

    Google Scholar 
    47.Amante, C. & Eakins, B. W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24 (2009).48.Reynolds, R. W. & Smith, T. M. Improved global sea surface temperature analyses using optimum interpolation. J. Clim. 7(6), 929–948 (1994).ADS 
    Article 

    Google Scholar 
    49.Chamberlain, S. rerddap – General purpose client for ‘ERDDAP’ servers. R Package (2016).50.Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60(2), 255–265 (1973).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    51.Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70(2–3), 141–159 (2004).Article 

    Google Scholar 
    52.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    53.Benjamin, M. A., Rigby, R. A. & Stasinopoulos, D. M. Generalized autoregressive moving average models. J. Am. Stat. Assoc. 98(461), 214–223 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    54.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4(43), 1686 (2019).ADS 
    Article 

    Google Scholar 
    55.Tanaka, K. R., Torre, M. P., Saba, V. S., Stock, C. A. & Chen, Y. An ensemble high‐resolution projection of changes in the future habitat of American lobster and sea scallop in the Northeast US continental shelf. Diversity and Distributions (2020).56.McHenry, J., Welch, H., Lester, S. E. & Saba, V. Projecting marine species range shifts from only temperature can mask climate vulnerability. Glob. Change Biol. 25(12), 4208–4221 (2019).ADS 
    Article 

    Google Scholar 
    57.Selden, R. L., Batt, R. D., Saba, V. S. & Pinsky, M. L. Diversity in thermal affinity among key piscivores buffers impacts of ocean warming on predator–prey interactions. Glob. Change Biol. 24(1), 117–131 (2018).ADS 
    Article 

    Google Scholar 
    58.Griffin, D. B. et al. Foraging habitats and migration corridors utilized by a recovering subpopulation of adult female loggerhead sea turtles: Implications for conservation. Mar. Biol. 160(12), 3071–3086 (2013).Article 

    Google Scholar 
    59.Unal I. Defining an optimal cut-point value in ROC analysis: an alternative approach. Computational and mathematical methods in medicine (2017).60.Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21(20), 7881 (2005).Article 
    CAS 

    Google Scholar 
    61.Link, J. et al. The Northeast US continental shelf Energy Modeling and Analysis exercise (EMAX): Ecological network model development and basic ecosystem metrics. J. Mar. Syst. 74(1–2), 453–474 (2008).Article 

    Google Scholar 
    62.Bane, J. M. Jr., Brown, O. B., Evans, R. H. & Hamilton, P. Gulf Stream remote forcing of shelfbreak currents in the Mid-Atlantic Bight. Geophys. Res. Lett. 15(5), 405–407 (1988).ADS 
    Article 

    Google Scholar 
    63.Hawkes, L. A. et al. Home on the range: spatial ecology of loggerhead turtles in Atlantic waters of the USA. Divers. Distrib. 17(4), 624–640 (2011).Article 

    Google Scholar 
    64.Mansfield, K. L., Saba, V. S., Keinath, J. A. & Musick, J. A. Satellite tracking reveals a dichotomy in migration strategies among juvenile loggerhead turtles in the Northwest Atlantic. Mar. Biol. 156(12), 2555–2570 (2009).Article 

    Google Scholar 
    65.Lentz, S. J. Seasonal warming of the Middle Atlantic Bight Cold Pool. J. Geophys. Res. Oceans 122(2), 941–954 (2017).ADS 
    Article 

    Google Scholar 
    66.Iverson, A. R., Fujisaki, I., Lamont, M. M. & Hart, K. M. Loggerhead sea turtle (Caretta caretta) diving changes with productivity, behavioral mode, and sea surface temperature. PLoS ONE 14(8), e0220372 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Braun-McNeill, J., Sasso, C. R., Epperly, S. P. & Rivero, C. Feasibility of using sea surface temperature imagery to mitigate cheloniid sea turtle–fishery interactions off the coast of northeastern USA. Endanger. Species Res. 5(2–3), 257–266 (2008).Article 

    Google Scholar 
    68.Murray, K. T. Characteristics and magnitude of sea turtle bycatch in US mid-Atlantic gillnet gear. Endanger. Species Res. 8(3), 211–224 (2009).Article 

    Google Scholar 
    69.Murray, K. T. Interactions between sea turtles and dredge gear in the US sea scallop (Placopecten magellanicus) fishery, 2001–2008. Fish. Res. 107(1–3), 137–146 (2011).Article 

    Google Scholar 
    70.Witt, M. J., Hawkes, L. A., Godfrey, M. H., Godley, B. J. & Broderick, A. C. Predicting the impacts of climate change on a globally distributed species: The case of the loggerhead turtle. J. Exp. Biol. 213(6), 901–911 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103(2), 247–260 (2003).Article 

    Google Scholar 
    72.Saunders, M. A. & Lea, A. S. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature 451(7178), 557–560 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    73.McClellan, C. M. & Read, A. J. Complexity and variation in loggerhead sea turtle life history. Biol. Lett. 3(6), 592–594 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.McClellan, C. M., Braun-McNeill, J., Avens, L., Wallace, B. P. & Read, A. J. Stable isotopes confirm a foraging dichotomy in juvenile loggerhead sea turtles. J. Exp. Mar. Biol. Ecol. 387(1–2), 44–51 (2010).Article 

    Google Scholar 
    75.Hatase, H. et al. Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Mar. Ecol. Prog. Ser. 233, 273–281 (2002).ADS 
    Article 

    Google Scholar 
    76.Hatase, H., Omuta, K. & Tsukamoto, K. Bottom or midwater: Alternative foraging behaviours in adult female loggerhead sea turtles. J. Zool. 273(1), 46–55 (2007).Article 

    Google Scholar 
    77.Hawkes, L. A. et al. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Curr. Biol. 16(10), 990–995 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Reich, K. J. et al. Polymodal foraging in adult female loggerheads (Caretta caretta). Mar. Biol. 157(1), 113–121 (2010).Article 

    Google Scholar 
    79.Smolowitz, R. J., Patel, S. H., Haas, H. L. & Miller, S. A. Using a remotely operated vehicle (ROV) to observe loggerhead sea turtle (Caretta caretta) behavior on foraging grounds off the mid-Atlantic United States. J. Exp. Mar. Biol. Ecol. 471, 84–91 (2015).Article 

    Google Scholar 
    80.Patel, S. H., Dodge, K. L., Haas, H. L. & Smolowitz, R. J. Videography reveals in-water behavior of loggerhead turtles (Caretta caretta) at a foraging ground. Front. Mar. Sci. 3, 254 (2016).Article 

    Google Scholar 
    81.James, M. C., Andrea Ottensmeyer, C. & Myers, R. A. Identification of high-use habitat and threats to leatherback sea turtles in northern waters: new directions for conservation. Ecol. Lett. 8(2), 195–201 (2005).Article 

    Google Scholar 
    82.Dodge, K. L., Galuardi, B., Miller, T. J. & Lutcavage, M. E. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean. PLoS ONE 9(3), e91726 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Smolowitz, R., Milliken, H. O. & Weeks, M. Design, evolution, and assessment of a sea turtle deflector dredge for the US Northwest Atlantic Sea scallop fishery: Impacts on fish bycatch. North Am. J. Fish. Manag. 32(1), 65–76 (2012).Article 

    Google Scholar 
    84.Hart, D. R. & Chute, A. S. Essential fish habitat source document: Sea scallop, Placopecten magellanicus, life history and habitat characteristics. NOAA Tech. Mem. NMFS NE 189, 21 (2004).
    Google Scholar 
    85.Rheuban, J. E., Doney, S. C., Cooley, S. R. & Hart, D. R. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery. PLoS ONE 13(9), e0203536 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Framework Adjustment 23 to the Scallop Fisheries Management Plan. NOAA-NMFS-2011-0255 (2012).87.Murray, K. T. Estimated magnitude of sea turtle interactions and mortality in US Bottom Trawl Gear, 2014–2018 (2020).88.Houghton, J. D., Doyle, T. K., Wilson, M. W., Davenport, J. & Hays, G. C. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87(8), 1967–1972 (2006).PubMed 
    Article 

    Google Scholar 
    89.Nelson, D. A. Life history and environmental requirements of loggerhead turtles. Fish and Wildlife Service, US Department of the Interior (1988). More

  • in

    Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects

    1.Benelli, G. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microbial Technol 95, 58–68 (2016).CAS 
    Article 

    Google Scholar 
    2.Dash, A. P., Valecha, N. & Anvikar, A. R. Malaria in India: challenges and opportunities. J. Biosci 33(4), 583–928 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.World Malaria Report: Geneva: World Health Organization. Accessed 18th July 2017.4.Olotu, A. et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young African children. N. Engl. J. Med 374, 2519–2529 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Solomona, S., Plattnerb, G. K., Knuttic, R. & Friedlingsteind, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. U.S.A. 106, 1704–1709 (2009).ADS 
    Article 

    Google Scholar 
    6.Shaalan, E. A. S., Canyonb, D., Younesc, M. W. F., Abdel-Wahaba, H. & Mansoura, A. H. A review of botanical phytochemicals with mosquitocidal potential. Environ. Int. 3, 1149–1166 (2005).Article 
    CAS 

    Google Scholar 
    7.Sundukov, Y. N. First record of the ground beetle Trechoblemus postilenatus (Coleoptera, Carabidae) in Primorskii krai. Far East Entomol. 165, 16 (2006).
    Google Scholar 
    8.Soni, N. & Prakash, S. Green nanoparticles for mosquito control. Sci. World J. 214, 1–6 (2014).Article 

    Google Scholar 
    9.Abinaya, M. et al. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors. Environ. Sci. Pollut. Res 25, 5 (2018).Article 
    CAS 

    Google Scholar 
    10.Shawkey, A. M., Rabeh, M. A., Abdulall, A. K. & Abdellatif, A. O. Green nanotechnology: anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Adv. Life Sci. Technol. 13, 60–70 (2013).
    Google Scholar 
    11.Thomas, S., Ravishankaran, S. & Johnson Amala Justin, N. A. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar. J. 16(11), 1–7 (2017).
    Google Scholar 
    12.Murugan, K. et al. Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol. Mol. Plant Pathol. 101, 202–213 (2018).CAS 
    Article 

    Google Scholar 
    13.Kalimuthu, K., Panneerselvam, C., Murugan, K. & Hwang, J. S. Green synthesis of silver nanoparticles using Cadaba indica Lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. J. Entomol. Acarol. Res. 45(2), e11 (2013).Article 

    Google Scholar 
    14.Patra, A., Raja, A. S. M. & Shah, N. Current developments in (Malaria) mosquito protective methods: a review paper. Int. J. Mosquito Res. 6(1), 38–45 (2019).
    Google Scholar 
    15.Wahab, R., Ahmad, J. & Ahmad, N. Application of multi-dimensional (0D, 1D, 2D) nanostructures for the cytological evaluation of cancer cells and their bacterial response. Colloids Surf. A Physicochem. Eng. Asp. 583, 123953 (2019).CAS 
    Article 

    Google Scholar 
    16.Bhadra, J., Alkareem, A. & Al-Thani, N. A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J. Polym. Res. 27(5), 1–20 (2020).Article 
    CAS 

    Google Scholar 
    17.Jaganathana, A. et al. (+16), Earthworm-mediated synthesis of silver nanoparticles: a potent toolagainst hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol. Int. 65(2016), 276–284 (2016).Article 
    CAS 

    Google Scholar 
    18.Abdelkhalek, A. & Al-Askar, A. A. Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against Tobacco mosaic virus. Appl. Sci. 10, 15 (2020).Article 
    CAS 

    Google Scholar 
    19.Ishwarya, R. et al. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J. Photochem. Photobiol. 2018(178), 249–258 (2018).Article 
    CAS 

    Google Scholar 
    20.Murugan, K. et al. Nano-insecticides for the control of human and crop pests. In Short Views on Insect Genomics and Proteomics. Entomology in Focus (eds Raman, C. et al.) 229–251 (Springer, 2016).
    Google Scholar 
    21.Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4), 493–496 (1966).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Anitha, J. et al. Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol. Int. 65, 276–284 (2016).Article 
    CAS 

    Google Scholar 
    23.Wahab, R., Khan, F. & Al-Khedhairy, A. A. Hematite iron oxide nanoparticles: apoptosis of myoblast cancer cells and their arithmetical assessment. RSC Adv. 8(44), 24750–24759 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Ashley, E. A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Rajan, R., Chandran, K., Harper, S. L., Yun, S. I. & Kalaichelvan, P. T. Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind. Crop Prod. 70, 356–373 (2015).CAS 
    Article 

    Google Scholar 
    26.Suresh, U. et al. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 114, 1551–1562 (2015).PubMed 
    Article 

    Google Scholar 
    27.Natarajan, K., Selvaraj, S. & Murty, V. R. Microbial production of silver nanoparticle. Digest J. Nanomat. Biostruct. 5, 135–140 (2010).
    Google Scholar 
    28.Song, Y. J., Jang, H. K. & Kim, S. B. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extract. Process Biochem. 44, 1133–1138 (2009).CAS 
    Article 

    Google Scholar 
    29.Krishnan, R. & Maru, G. B. Isolation and analysis of polymeric polyphenol fractions from black tea. Food Chem. 94, 331–340 (2006).CAS 
    Article 

    Google Scholar 
    30.Shankar, S., Rai, A., Ahmad, A. & Sastry, M. Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496–550 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A. & Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22, 577–583 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Benelli, G. Plant-synthesized nanoparticles: an eco-friendly tool against mosquito vectors? In Nanoparticles in the Fight Against Parasites Parasitology Research Monographs (ed. Mehlhorn, H.) 155–172 (Springer, 2015).
    Google Scholar 
    33.Sadraei, R. A simple method for preparation of nano-sized ZnO. Res. Rev. J. Chem. 5(2), 45–49 (2016).CAS 

    Google Scholar 
    34.Priyadarshini, K. A. et al. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 111(3), 997–1006 (2012).PubMed 
    Article 

    Google Scholar 
    35.Satheeshkumar, K. & Kathireswari, P. Biological synthesis of Silver nanoparticles (Ag-NPS) by Lawsonia inermis (Henna) plant aqueous extract and its antimicrobial activity against human pathogens. Int. J. Curr. Microbiol. Appl. Sci. 5, 926–937 (2016).
    Google Scholar 
    36.Nareshkumar, G. et al. Electron channeling contrast imaging for III-nitride thin film structures. Mat. Sci. Semicon. Proc. 2016(47), 44–50 (2016).Article 
    CAS 

    Google Scholar 
    37.Gandhi, S. & Madhusudhan, N. Retrieval of exoplanet emission spectra with HyDRA. Mon. Not. R. Astron. Soc. 47, 1–20 (2017).
    Google Scholar 
    38.Murugan, K. et al. Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol. Res. 114, 3657–3664 (2015).PubMed 
    Article 

    Google Scholar 
    39.Dinesh, D. et al. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?. Parasitol. Res. 114, 1519–1529 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Baxter, J. B. & Aydil, E. S. Nanowire based dye sensitized solar cells. Appl. Phys. Lett. 86, 53114 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    42.Reddy, K. M. et al. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 213902–213903 (2007).ADS 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Chwalibog, A. et al. Visualization of interaction between inorganic nano-particles and bacteria or fungi. Int. J. Nanomedicine. 2010(5), 1085–1094 (2010).Article 
    CAS 

    Google Scholar 
    44.Saha, S., Dhanasekaran, D., Chandraleka, S. & Panneerselvam, C. A Synthesis, characterization and antimicrobial activity of cobalt metal complex against multi drug resistant bacterial and fungal pathogen Facta universitatis series. Phys. Chem. Technol. 7(1), 73–80 (2009).CAS 

    Google Scholar 
    45.Vivek, M., Kumar, P. S., Steffi, S. & Sudha, S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects Avicenna. J. Med. Biotechnol. 3(3), 143 (2011).CAS 

    Google Scholar 
    46.Chobu, M., Nkwengulila, G., Mahande, A. M., Mwangonde, B. J. & Kweka, E. J. Direct and indirect effect of predators on Anopheles gambiae sensu stricto. Acta Trop. 142, 131–137 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Murugan, K. et al. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol. Res. 115, 1085–1096 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Subramaniam, J. et al. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?. Environ. Sci. Pollut. Res. Int. 22(24), 20067–20083 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Murugan, K. et al. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol. Res. 114, 3601–3610 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Mahesh Kumar, P. et al. Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti. Parasitol. Res. 111, 609–618 (2012).PubMed 
    Article 

    Google Scholar 
    51.Khooshe-Bast, Z., Sahebzadeh, N., Ghaffari-Moghaddam, M. & Mirshekar, A. Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agric Slov. 107(2), 299 (2016).CAS 
    Article 

    Google Scholar 
    52.Ahmad, J., Wahab, R., Siddiqui, M. A., Saquib, Q. & Al-Khedhairy, A. A. Cytotoxicity and cell death induced by engineered nanostructures (quantum dots and nanoparticles) in human cell lines. J. Biol. Inorg. Chem. 25(2), 325–338 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Wahab, R. et al. Gold quantum dots impair the tumorigenic potential of glioma stem-like cells via β-catenin downregulation in vitro. Int. J. Nanomed. 14, 1131–1148 (2019).CAS 
    Article 

    Google Scholar 
    54.Wahab, R., Saquib, Q. & Faisal, M. Zinc oxide nanostructures: a motivated dynamism against cancer cells. Process Biochem. 98(June), 83–92 (2020).CAS 
    Article 

    Google Scholar 
    55.Wahab, R. et al. Microwave plasma-assisted silicon nanoparticles: cytotoxic, molecular, and numerical responses against cancer cells. RSC Adv. 9(23), 13336–13347 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Anitha, J., Selvakumar, R. & Murugan, K. Chitosan capped ZnO nanoparticles with cell specific apoptosis induction through P53 activation and G2/M arrest in breast cancer cells—In vitro approaches. Int. J. Biol. Macromol. 136, 686–696 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Wahab, R. et al. Zinc oxide quantum dots: Multifunctional candidates for arresting C2C12 cancer cells and their role towards caspase 3 and 7 genes. RSC Adv. 6(31), 26111–26120 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Liu, J. & Wang, Z. Increased oxidative stress a selective anticancer therapy. Oxid. Med. Cell. Longev. 2015, 294303 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    59.Droese, S. & Brandt, U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol. 748, 145–169 (2012).CAS 
    Article 

    Google Scholar 
    60.Gupta, S. C. et al. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal. 16, 1295–1322 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More