1.Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822 (2012).ADS
PubMed
PubMed Central
Article
Google Scholar
2.United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 (2017).3.Malhi, Y., Adu-Bredu, S., Asare, R. A., Lewis, S. L. & Mayaux, P. African rainforests: past, present and future. Phil. Trans. R. Soc. B 368, 20120312 (2013).PubMed
Article
PubMed Central
Google Scholar
4.James, R., Washington, R. & Rowell, D. P. Implications of global warming for the climate of African rainforests. Phil. Trans. R. Soc. B 368, 20120298 (2013).PubMed
Article
PubMed Central
Google Scholar
5.Abernethy, K., Maisels, F. & White, L. J. Environmental issues in Central Africa. Annu. Rev. Environ. Resour. 41, 1–33 (2016).Article
Google Scholar
6.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
7.De Wasseige, C., Tadoum, M., Atyi, E. & Doumenge, C. The Forests of the Congo Basin: Forests and Climate Change (Weyrich, 2015).8.Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).ADS
PubMed
PubMed Central
Article
Google Scholar
9.Parmentier, I. et al. The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).Article
Google Scholar
10.Réjou-Méchain, M. et al. Regional variation in tropical forest tree species composition in the Central African Republic: an assessment based on inventories by forest companies. J. Trop. Ecol. 24, 663–674 (2008).Article
Google Scholar
11.Réjou-Méchain, M. et al. Tropical tree assembly depends on the interactions between successional and soil filtering processes. Glob. Ecol. Biogeogr. 23, 1440–1449 (2014).Article
Google Scholar
12.Fayolle, A. et al. Geological substrates shape tree species and trait distributions in African moist forests. PLoS One 7, e42381 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
13.Fayolle, A. et al. Patterns of tree species composition across tropical African forests. J. Biogeogr. 41, 2320–2331 (2014).Article
Google Scholar
14.Droissart, V. et al. Beyond trees: biogeographical regionalization of tropical Africa. J. Biogeogr. 45, 1153–1167 (2018).Article
Google Scholar
15.Sosef, M. S. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).PubMed
PubMed Central
Article
Google Scholar
16.Parmentier, I. et al. Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. J. Biogeogr. 38, 1164–1176 (2011).Article
Google Scholar
17.Bry, X., Trottier, C., Verron, T. & Mortier, F. Supervised component generalized linear regression using a PLS-extension of the fisher scoring algorithm. J. Multivariate Anal. 119, 47–60 (2013).MathSciNet
MATH
Article
Google Scholar
18.ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).ADS
Article
CAS
Google Scholar
19.Slik, J. W. et al. Soils on exposed Sunda shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia. Proc. Natl Acad. Sci. USA 108, 12343–12347 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
20.Philippon, N. et al. The light-deficient climates of western Central African evergreen forests. Environ. Res. Lett. 14, 034007 (2019).ADS
CAS
Article
Google Scholar
21.Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
22.Beale, C. M., Lennon, J. J. & Gimona, A. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc. Natl Acad. Sci. USA 105, 14908–14912 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
23.Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob. Ecol. Biogeogr. 25, 443–454 (2016).Article
Google Scholar
24.Maguire, K. C. et al. Controlled comparison of species- and community-level models across novel climates and communities. Proc. R. Soc. B 283, 20152817 (2016).PubMed
Article
PubMed Central
Google Scholar
25.Morin-Rivat, J. et al. Present-day central African forest is a legacy of the 19th century human history. eLife 6, e20343 (2017).PubMed
PubMed Central
Article
Google Scholar
26.Ricklefs, R. E. Intrinsic dynamics of the regional community. Ecol. Lett. 18, 497–503 (2015).PubMed
Article
PubMed Central
Google Scholar
27.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article
Google Scholar
28.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
29.Rüger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368, 165–168 (2020).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
30.Ouédraogo, D.-Y. et al. The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. J. Ecol. 104, 924–935 (2016).Article
CAS
Google Scholar
31.Shipley, B. From Plant Traits to Vegetation Structure: Chance and Selection in the Assembly of Ecological Communities (Cambridge University Press, 2010).32.Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).ADS
Article
Google Scholar
33.Parry, M. et al. Climate Change 2007 – Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the IPCC (Cambridge University Press, 2007).34.Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
35.Lachenaud, O., Stévart, T., Ikabanga, D., Ndjabounda, E. C. N. & Walters, G. The littoral forests of the Libreville area (Gabon) and their importance for conservation: description of a new endemic species (Rubiaceae). Plant Ecol. Evol. 146, 68–74 (2013).Article
Google Scholar
36.Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).PubMed
Article
PubMed Central
Google Scholar
37.Claeys, F. et al. Climate change would lead to a sharp acceleration of Central African forests dynamics by the end of the century. Environ. Res. Lett. 14, 044002 (2019).ADS
CAS
Article
Google Scholar
38.McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
39.Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).ADS
CAS
PubMed
Article
Google Scholar
40.Purvis, A. Phylogenetic approaches to the study of extinction. Annu. Rev. Ecol. Evol. Syst. 39, 301–319 (2008).Article
Google Scholar
41.Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
42.Neves, D. M. et al. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10, 1188 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
43.Letcher, S. G. Phylogenetic structure of angiosperm communities during tropical forest succession. Proc. R. Soc. B 277, 97–104 (2010).PubMed
Article
PubMed Central
Google Scholar
44.Letouzey, R. Notice de la carte phytogéographique du Cameroun au 1:500000 (Institut de la Carte Internationale de la végétation Toulouse-France et Institut de la recherche agronomique (Herbier National) Yaoundé-Cameroun, 1985).45.Boulvert, Y. Carte phytogéographique de la République Centrafricaine (feuille oust–feuille est) à 1 000 000 (Editions de l’ORSTOM, 1986).46.Fyllas, N. M., Quesada, C. A. & Lloyd, J. Deriving plant functional types for Amazonian forests for use in vegetation dynamics models. Perspect. Plant Ecol. Evol. Syst. 14, 97–110 (2012).Article
Google Scholar
47.Mitchard, E. T. A. et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014).PubMed
PubMed Central
Article
Google Scholar
48.Visconti, P., Pressey, R. L., Bode, M. & Segan, D. B. Habitat vulnerability in conservation planning—when it matters and how much. Conserv. Lett. 3, 404–414 (2010).Article
Google Scholar
49.Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).Article
Google Scholar
50.Gourlet-Fleury, S. et al. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Phil. Trans. R. Soc. B 368, 20120302 (2013).PubMed
Article
PubMed Central
Google Scholar
51.Clark, C. J., Poulsen, J. R., Malonga, R. & Elkan, P. W. Jr. Logging concessions can extend the conservation estate for Central African tropical forests. Conserv. Biol. 23, 1281–1293 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
52.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
53.Réjou-Méchain, M. et al. Detecting large-scale diversity patterns in tropical trees: can we trust commercial forest inventories? For. Ecol. Manage. 261, 187–194 (2011).Article
Google Scholar
54.African Plant Database v.3.4.0 (Conservatoire et Jardin Botaniques de la Ville de Genève and South African National Biodiversity Institute, Pretoria, accessed 10 February 2017).55.The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121 (2009).Article
Google Scholar
56.Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2016).Article
Google Scholar
57.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed
Article
PubMed Central
Google Scholar
58.Zanne, A. E. et al. Data from: towards a worldwide wood economic spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).59.Gourlet-Fleury, S. et al. Environmental filtering of dense‐wooded species controls above‐ground biomass stored in African moist forests. J. Ecol. 99, 981–990 (2011).Article
Google Scholar
60.Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).PubMed
Article
PubMed Central
Google Scholar
61.Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).ADS
Article
Google Scholar
62.Bénédet, F. et al. CoForTraits, African plant traits information database v.1.0, https://doi.org/10.18167/DVN1/Y2BIZK (2013).63.Davies, T. J. et al. Phylogenetic conservatism in plant phenology. J. Ecol. 101, 1520–1530 (2013).Article
Google Scholar
64.Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).ADS
Article
Google Scholar
65.Menzel, A. Phenology: its importance to the global change community. Clim. Change 54, 379 (2002).Article
Google Scholar
66.Borchert, R., Rivera, G. & Hagnauer, W. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34, 27–39 (2002).Article
Google Scholar
67.Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
68.Schamp, B. S. & Aarssen, L. W. The assembly of forest communities according to maximum species height along resource and disturbance gradients. Oikos 118, 564–572 (2009).Article
Google Scholar
69.New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).Article
Google Scholar
70.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surface for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article
Google Scholar
71.Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).PubMed
PubMed Central
Article
Google Scholar
72.Nachtergaele, F. et al. The harmonized world soil database. In Proc. 19th World Congress of Soil Science, Soil Solutions for a Changing World (eds Gilkes, R. & Prakongkep, N.) 34–37 (International Union of Soil Sciences, 2010).73.Woolmer, G. et al. Rescaling the human footprint: a tool for conservation planning at an ecoregional scale. Landsc. Urban Plan. 87, 42–53 (2008).Article
Google Scholar
74.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
75.Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).PubMed
Article
PubMed Central
Google Scholar
76.Linard, C., Gilbert, M., Snow, R. W., Noor, A. M. & Tatem, A. J. Population distribution, settlement patterns and accessibility across Africa in 2010. PLoS One 7, e31743 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
77.Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139 (2019).
Google Scholar
78.Boulesteix, A.-L. & Strimmer, K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinform. 8, 32–44 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
79.Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).Article
Google Scholar
80.Tenenhaus, M. La Régression PLS: Théorie et Pratique (Editions Technip, 1998).81.Sabatier, R., Lebreton, J. D. & Chessel, D. in Multiway Data Analysis (eds Coppi, R. & Bolasco, S.) 341–352 (1989).82.Ter Braak, C. J. F. in Theory and Models In Vegetation Science (eds Prentice, I. C. & van der Maarel, E.) 69–77 (Springer, 1987).83.Bry, X. & Verron, T. THEME: THEmatic model exploration through multiple co-structure maximization. J. Chemometr. 29, 637–647 (2015).CAS
Article
Google Scholar
84.Cornu, G., Mortier, F., Trottier, C. & Bry, X. SCGLR: supervised component generalized linear regression. R version 3.0 https://cran.r-project.org/web/packages/SCGLR/index.html (2016).85.Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).MathSciNet
Article
Google Scholar
86.Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
87.Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gGussian finite mixture models. R J. 8, 289–317 (2016).PubMed
PubMed Central
Article
Google Scholar
88.Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).Article
Google Scholar
89.Renard, D. et al. RGeostats: the geostatistical package v.11.0. 1 http://rgeostats.free.fr/ (MINES ParisTech, 2014).90.Platts, P. J., Omeny, P. A. & Marchant, R. AFRICLIM: high-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 53, 103–108 (2015).Article
Google Scholar
91.Janssens, S. B. et al. A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodivers. Data J. 8, e39677 (2020).PubMed
PubMed Central
Article
Google Scholar
92.Abouheif, E. A method for testing the assumption of phylogenetic independence in comparative data. Evol. Ecol. Res. 1, 895–909 (1999).
Google Scholar
93.Chao, A., Chiu, C.-H. & Jost, L. Phylogenetic diversity measures based on Hill numbers. Phil. Trans. R. Soc. B 365, 3599–3609 (2010).PubMed
Article
PubMed Central
Google Scholar
94.R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2017).95.Chessel, D., Dufour, A. B. & Thioulouse, J. The ade4 package – I: one-table methods. R News 4, 5–10 (2004).
Google Scholar
96.Lafarge, T. & Pateiro-Lopez, B. alphashape3d: implementation of the 3D alpha-shape for the reconstruction of 3D sets from a point cloud. R version 1.3.1 https://cran.r-project.org/web/packages/alphashape3d/index.html (2017).97.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).98.Hijmans, R. J. raster: geographic data analysis and modelling. R version 3.4-5 https://cran.r-project.org/web/packages/raster/index.html (2017).99.Marcon, E. & Hérault, B. entropart: An R package to measure and partition diversity. J. Stat. Softw. 67, 1–26 (2015).
Google Scholar
100.Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
Google Scholar More