Supplementation of Lactobacillus early in life alters attention bias to threat in piglets
1.Clarke, G. et al. Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28, 1221–1238. https://doi.org/10.1210/me.2014-1108 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
2.Cryan, J. F. & O’Mahony, S. M. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol. Motil. 23, 187–192. https://doi.org/10.1111/j.1365-2982.2010.01664.x (2011).CAS
Article
PubMed
Google Scholar
3.Hollister, E. B. et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3, 36. https://doi.org/10.1186/s40168-015-0101-x (2015).Article
PubMed
PubMed Central
Google Scholar
4.Cheng, J. et al. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J. 10, 1002–1014. https://doi.org/10.1038/ismej.2015.177 (2016).Article
PubMed
Google Scholar
5.Lim, M. Y., Song, E.-J., Kang, K. S. & Nam, Y.-D. Age-related compositional and functional changes in micro-pig gut microbiome. GeroScience 41, 935–944. https://doi.org/10.1007/s11357-019-00121-y (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
6.Kim, J., Nguyen, S. G., Guevarra, R. B., Lee, I. & Unno, T. Analysis of swine fecal microbiota at various growth stages. Arch. Microbiol. 197, 753–759. https://doi.org/10.1007/s00203-015-1108-1 (2015).CAS
Article
PubMed
Google Scholar
7.Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439. https://doi.org/10.1126/science.1237439 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
8.de Weerth, C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci. Biobehav. Rev. 83, 458–471. https://doi.org/10.1016/j.neubiorev.2017.09.016 (2017).CAS
Article
PubMed
Google Scholar
9.Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A. 108, 3047–3052. https://doi.org/10.1073/pnas.1010529108 (2011).ADS
Article
PubMed Central
Google Scholar
10.Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275. https://doi.org/10.1113/jphysiol.2004.063388 (2004).CAS
Article
PubMed
PubMed Central
Google Scholar
11.Rutsch, A., Kantsjö, J. B. & Ronchi, F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol. https://doi.org/10.3389/fimmu.2020.604179 (2020).Article
PubMed
PubMed Central
Google Scholar
12.Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108, 16050–16055. https://doi.org/10.1073/pnas.1102999108 (2011).ADS
Article
PubMed
PubMed Central
Google Scholar
13.Kamada, N., Seo, S.-U., Chen, G. Y. & Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335. https://doi.org/10.1038/nri3430 (2013).CAS
Article
PubMed
Google Scholar
14.Dinan, T. G. & Cryan, J. F. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37, 1369–1378. https://doi.org/10.1016/j.psyneuen.2012.03.007 (2012).CAS
Article
PubMed
Google Scholar
15.Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From Dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041 (2016).CAS
Article
PubMed
Google Scholar
16.Parker, A., Fonseca, S. & Carding, S. R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microb. 11, 135–157. https://doi.org/10.1080/19490976.2019.1638722 (2020).CAS
Article
Google Scholar
17.Silva, Y. P., Bernardi, A. & Frozza, R. L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. https://doi.org/10.3389/fendo.2020.00025 (2020).Article
Google Scholar
18.Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23, 255-e119. https://doi.org/10.1111/j.1365-2982.2010.01620.x (2011).CAS
Article
PubMed
Google Scholar
19.Clarke, G. et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673. https://doi.org/10.1038/mp.2012.77 (2013).CAS
Article
PubMed
Google Scholar
20.Foster, J. A. & McVeyNeufeld, K.-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312. https://doi.org/10.1016/j.tins.2013.01.005 (2013).CAS
Article
PubMed
Google Scholar
21.O’Mahony, S. M. et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry 65, 263–267. https://doi.org/10.1016/j.biopsych.2008.06.026 (2009).Article
PubMed
Google Scholar
22.Schmidt, B. et al. Establishment of normal gut microbiota is compromised under excessive hygiene conditions. PLoS ONE 6, e28284. https://doi.org/10.1371/journal.pone.0028284 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
23.Mulder, I. E. et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 7, 79. https://doi.org/10.1186/1741-7007-7-79 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
24.Quigley, E. M. M. Probiotics in functional gastrointestinal disorders: what are the facts?. Curr. Opin. Pharmacol. 8, 704–708. https://doi.org/10.1016/j.coph.2008.08.007 (2008).CAS
Article
PubMed
Google Scholar
25.Dowarah, R., Verma, A. K. & Agarwal, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: a review. Anim. Nutr. 3, 1–6. https://doi.org/10.1016/j.aninu.2016.11.002 (2017).Article
PubMed
Google Scholar
26.Cussotto, S., Sandhu, K. V., Dinan, T. G. & Cryan, J. F. The neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front. Neuroendocrinol. 51, 80–101. https://doi.org/10.1016/j.yfrne.2018.04.002 (2018).CAS
Article
PubMed
Google Scholar
27.Barros-Santos, T. et al. Effects of chronic treatment with new strains of Lactobacillus plantarum on cognitive, anxiety- and depressive-like behaviors in male mice. PLoS ONE https://doi.org/10.1371/journal.pone.0234037 (2020).Article
PubMed
PubMed Central
Google Scholar
28.Liu, W.-H. et al. Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav. Brain Res. 298, 202–209. https://doi.org/10.1016/j.bbr.2015.10.046 (2016).CAS
Article
PubMed
Google Scholar
29.Davis, D. J. et al. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci. Rep. 6, 33726. https://doi.org/10.1038/srep33726 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
30.Jang, H. M., Lee, K. E. & Kim, D. H. The preventive and curative effects of Lactobacillus reuteri NK33 and bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients https://doi.org/10.3390/nu11040819 (2019).Article
PubMed
PubMed Central
Google Scholar
31.Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775. https://doi.org/10.1016/j.cell.2016.06.001 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
32.Zhang, N. et al. Efficacy of probiotics on stress in healthy volunteers: a systematic review and meta-analysis based on randomized controlled trials. Brain Behav. 10, e01699. https://doi.org/10.1002/brb3.1699 (2020).Article
PubMed
PubMed Central
Google Scholar
33.Liu, R. T., Walsh, R. F. L. & Sheehan, A. E. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev. 102, 13–23. https://doi.org/10.1016/j.neubiorev.2019.03.023 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
34.Lyte, M. Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microb. 5, 381–389. https://doi.org/10.4161/gmic.28682 (2014).Article
Google Scholar
35.Tabouy, L. et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav. Immun. 73, 310–319. https://doi.org/10.1016/j.bbi.2018.05.015 (2018).Article
PubMed
Google Scholar
36.Mao, J.-H. et al. Genetic and metabolic links between the murine microbiome and memory. Microbiome 8, 53. https://doi.org/10.1186/s40168-020-00817-w (2020).Article
PubMed
PubMed Central
Google Scholar
37.Mendl, M., Burman, O. H. P. & Paul, E. S. An integrative and functional framework for the study of animal emotion and mood. Proc. Biol. Sci. 277, 2895–2904. https://doi.org/10.1098/rspb.2010.0303 (2010).Article
PubMed
PubMed Central
Google Scholar
38.Kraimi, N. et al. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: a review. Physiol. Behav. 210, 112658. https://doi.org/10.1016/j.physbeh.2019.112658 (2019).CAS
Article
PubMed
Google Scholar
39.Xiao, L. et al. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 1, 16161. https://doi.org/10.1038/nmicrobiol.2016.161 (2016).CAS
Article
PubMed
Google Scholar
40.Douglas, C., Bateson, M., Walsh, C., Bédué, A. & Edwards, S. A. Environmental enrichment induces optimistic cognitive biases in pigs. Appl. Anim. Behav. Sci. 139, 65–73. https://doi.org/10.1016/j.applanim.2012.02.018 (2012).Article
Google Scholar
41.Brydges, N. M., Leach, M., Nicol, K., Wright, R. & Bateson, M. Environmental enrichment induces optimistic cognitive bias in rats. Anim. Behav. 81, 169–175. https://doi.org/10.1016/j.anbehav.2010.09.030 (2011).Article
Google Scholar
42.Paul, E. S., Harding, E. J. & Mendl, M. Measuring emotional processes in animals: the utility of a cognitive approach. Neurosci. Biobehav. Rev. 29, 469–491. https://doi.org/10.1016/j.neubiorev.2005.01.002 (2005).Article
PubMed
Google Scholar
43.Crump, A., Arnott, G. & Bethell, E. Affect-driven attention biases as animal welfare indicators: review and methods. Animals 8, 136 (2018).Article
Google Scholar
44.Hutton, S. B. Cognitive control of saccadic eye movements. Brain Cogn. 68, 327–340. https://doi.org/10.1016/j.bandc.2008.08.021 (2008).CAS
Article
PubMed
Google Scholar
45.Dolan, R. J. & Vuilleumier, P. Amygdala automaticity in emotional processing. Ann. N. Y. Acad. Sci. 985, 348–355. https://doi.org/10.1111/j.1749-6632.2003.tb07093.x (2003).ADS
CAS
Article
PubMed
Google Scholar
46.Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J. & Van Ijzendoorn, M. H. Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychol. Bull. 133, 1–24. https://doi.org/10.1037/0033-2909.133.1.1 (2007).Article
PubMed
Google Scholar
47.Verbeek, E., Colditz, I., Blache, D. & Lee, C. Chronic stress influences attentional and judgement bias and the activity of the HPA axis in sheep. PLoS ONE https://doi.org/10.1371/journal.pone.0211363 (2019).Article
PubMed
PubMed Central
Google Scholar
48.Lee, C., Verbeek, E., Doyle, R. & Bateson, M. Attention bias to threat indicates anxiety differences in sheep. Biol. Lett. https://doi.org/10.1098/rsbl.2015.0977 (2016).Article
PubMed
PubMed Central
Google Scholar
49.Brilot, B. O. & Bateson, M. Water bathing alters threat perception in starlings. Biol. Lett. 8, 379–381. https://doi.org/10.1098/rsbl.2011.1200 (2012).Article
PubMed
PubMed Central
Google Scholar
50.Luo, L., Reimert, I., de Haas, E. N., Kemp, B. & Bolhuis, J. E. Effects of early and later life environmental enrichment and personality on attention bias in pigs (Sus scrofa domesticus). Anim. Cogn. 22, 959–972. https://doi.org/10.1007/s10071-019-01287-w (2019).Article
PubMed
PubMed Central
Google Scholar
51.Bögels, S. M. & Mansell, W. Attention processes in the maintenance and treatment of social phobia: hypervigilance, avoidance and self-focused attention. Clin. Psychol. Rev. 24, 827–856. https://doi.org/10.1016/j.cpr.2004.06.005 (2004).Article
PubMed
Google Scholar
52.Bethell, E. J., Holmes, A., MacLarnon, A. & Semple, S. Evidence that emotion mediates social attention in Rhesus Macaques. PLoS ONE https://doi.org/10.1371/journal.pone.0044387 (2012).Article
PubMed
PubMed Central
Google Scholar
53.Cisler, J. M. & Koster, E. H. W. Mechanisms of attentional biases towards threat in anxiety disorders: an integrative review. Clin. Psychol. Rev. 30, 203–216 (2010).Article
Google Scholar
54.Koster, E. H. W., Crombez, G., Verschuere, B., Van Damme, S. & Wiersema, J. R. Components of attentional bias to threat in high trait anxiety: facilitated engagement, impaired disengagement, and attentional avoidance. Behav. Res. Ther. 44, 1757–1771. https://doi.org/10.1016/j.brat.2005.12.011 (2006).Article
PubMed
Google Scholar
55.Mogg, K., Bradley, B., Miles, F. & Dixon, R. Brief report time course of attentional bias for threat scenes: testing the vigilance-avoidance hypothesis. Cogn. Emot. 18, 689–700. https://doi.org/10.1080/02699930341000158 (2004).Article
Google Scholar
56.Mogg, K. & Bradley, B. P. A cognitive-motivational analysis of anxiety. Behav. Res. Ther. 36, 809–848. https://doi.org/10.1016/S0005-7967(98)00063-1 (1998).CAS
Article
PubMed
Google Scholar
57.Ellenbogen, M. A., Schwartzman, A. E., Stewart, J. & Walker, C. D. Stress and selective attention: the interplay of mood, cortisol levels, and emotional information processing. Psychophysiology 39, 723–732. https://doi.org/10.1017/s0048577202010739 (2002).Article
PubMed
Google Scholar
58.Koster, E. H. W., Verschuere, B., Crombez, G. & Van Damme, S. Time-course of attention for threatening pictures in high and low trait anxiety. Behav. Res. Ther. 43, 1087–1098. https://doi.org/10.1016/j.brat.2004.08.004 (2005).Article
PubMed
Google Scholar
59.Richards, H. J., Benson, V., Donnelly, N. & Hadwin, J. A. Exploring the function of selective attention and hypervigilance for threat in anxiety. Clin. Psychol. Rev. 34, 1–13. https://doi.org/10.1016/j.cpr.2013.10.006 (2014).Article
PubMed
Google Scholar
60.McLeman, M. A., Mendl, M., Jones, R. B., White, R. & Wathes, C. M. Discrimination of conspecifics by juvenile domestic pigs, Sus scrofa. Anim. Behav. 70, 451–461. https://doi.org/10.1016/j.anbehav.2004.11.013 (2005).Article
Google Scholar
61.Kristensen, H. H., Jones, R. B., Schofield, C. P., White, R. P. & Wathes, C. M. The use of olfactory and other cues for social recognition by juvenile pigs. Appl. Anim. Behav. Sci. 72, 321–333. https://doi.org/10.1016/S0168-1591(00)00209-4 (2001).Article
PubMed
Google Scholar
62.Nores, C., Llaneza, L. & Álvarez, Á. Wild boar “Sus scrofa” mortality by hunting and wolf “Canis lupus” predation: an example in northern Spain. Wildlife Biol. 14, 44–51 (2008).Article
Google Scholar
63.Verbeek, E., Ferguson, D. & Lee, C. Are hungry sheep more pessimistic? The effects of food restriction on cognitive bias and the involvement of ghrelin in its regulation. Physiol. Behav. 123, 67–75 (2014).CAS
Article
Google Scholar
64.Forkman, B., Boissy, A., Meunier-Salaün, M. C., Canali, E. & Jones, R. B. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol. Behav. 92, 340–374. https://doi.org/10.1016/j.physbeh.2007.03.016 (2007).CAS
Article
PubMed
Google Scholar
65.Ruis, M. A. W. et al. Adaptation to social isolation: acute and long-term stress responses of growing gilts with different coping characteristics. Physiol. Behav. 73, 541–551. https://doi.org/10.1016/S0031-9384(01)00548-0 (2001).CAS
Article
PubMed
Google Scholar
66.Stolba, A. & Wood-Gush, D. G. M. The behaviour of pigs in a semi-natural environment. Anim. Prod. 48, 419–425. https://doi.org/10.1017/S0003356100040411 (1989).Article
Google Scholar
67.Fleming, S. A. & Dilger, R. N. Young pigs exhibit differential exploratory behavior during novelty preference tasks in response to age, sex, and delay. Behav. Brain Res. 321, 50–60. https://doi.org/10.1016/j.bbr.2016.12.027 (2017).Article
PubMed
Google Scholar
68.Bethell, E. J., Cassidy, L. C., Brockhausen, R. R. & Pfefferle, D. Toward a standardized test of fearful temperament in primates: a sensitive alternative to the human intruder task for laboratory-housed Rhesus Macaques (Macaca mulatta). Front. Psychol. https://doi.org/10.3389/fpsyg.2019.01051 (2019).Article
PubMed
PubMed Central
Google Scholar
69.du Sert, N. P. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).CAS
Article
Google Scholar
70.European Union. Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs. Off. J. Eur. Union (2018).71.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Core Team, 2021).
Google Scholar
72.Tremblay, A. & Ransijn, J. LMERConvenienceFunctions: Model Selection and Post-Hoc Analysis for (G)LMER Models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions (2020).73.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).74.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. 82, 26. https://doi.org/10.18637/jss.v082.i13 (2017).75.Russell, L. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.1. https://CRAN.R-project.org/package=emmeans (2020).76.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (2016). More
