More stories

  • in

    Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages

    1.Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Erisman, J. W. et al. Nitrogen: Too Much of a Vital Resource. WWF Science Brief (WWF Netherlands, 2015); http://www.louisbolk.org/downloads/3005.pdf3.European Union Nitrogen Expert Panel. Nitrogen Use Efficiency (NUE)—An Indicator for the Utilization of Nitrogen in Agriculture and Food Systems (Wageningen University, 2015); http://wedocs.unep.org/handle/20.500.11822/12087
    Google Scholar 
    4.Cassman, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31, 132–140 (2002).Article 

    Google Scholar 
    5.Harmsen, K. A comparison of the isotope-dilution and the difference method for estimating fertilizer nitrogen recovery fractions in crops. I. Plant uptake and loss of nitrogen. NJAS: Wageningen J. Life Sci. 50, 321–347 (2003).CAS 

    Google Scholar 
    6.Krupnik, T. J., Six, J., Ladha, J. K., Paine, M. J. & van Kessel, C. An Assessment of Fertilizer Nitrogen Recovery Efficiency by Grain Crops (Island Press, 2004).7.Jin, J. Changes in the efficiency of fertiliser use in China. J. Sci. Food Agric. 92, 1006–1009 (2012).CAS 
    Article 

    Google Scholar 
    8.Zhang, F. et al. Nutrient use efficiencies of major cereal crops in china and measures for improvement. Acta Pedol. Sin. 45, 915–924 (2008) (in Chinese with English abstract).
    Google Scholar 
    9.Yu, F. & Shi, W. Nitrogen use efficiencies of major grain crops in China in recent 10 years. Acta Pedol. Sin. 52, 1311–1324 (2015) (in Chinese with English abstract).
    Google Scholar 
    10.Ju, X. & Christie, P. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: a case study on the North China Plain. Field Crops Res. 124, 450–458 (2011).Article 

    Google Scholar 
    11.Zhang, C., Ju, X., Powlson, D., Oenema, O. & Smith, P. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environ. Sci. Technol. 53, 6678–6687 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Powlson, D. S. et al. Comments on ‘Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production,’ by R.L. Mulvaney, S.A. Khan, and T.R. Ellsworth in the Journal of Environmental Quality, 2009 38: 2295–2314. J. Environ. Qual. 39, 749–752 (2010).CAS 
    Article 

    Google Scholar 
    13.Yan, X. et al. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environ. Res. Lett. 9, 095002 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Smith, C. J. & Chalk, P. M. The residual value of fertiliser N in crop sequences: an appraisal of 60 years of research using 15N tracer. Field Crops Res. 217, 66–74 (2018).Article 

    Google Scholar 
    15.Ju, X. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Wang, L. et al. Plastic mulching reduces nitrogen footprint of food crops in China: a meta-analysis. Sci. Total Environ. 748, 141479 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Storkey, J. et al. Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528, 401–404 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G. & Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl Acad. Sci. USA 110, 18185–18189 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Raun, W. R. & Johnson, G. V. Improving nitrogen use efficiency for cereal production. Agron. J. 91, 357–363 (1999).Article 

    Google Scholar 
    20.Yan, M., Pan, G., Lavallee, J. M. & Conant, R. T. Rethinking sources of nitrogen to cereal crops. Glob. Change Biol. 26, 191–199 (2020).ADS 
    Article 

    Google Scholar  More

  • in

    African forest maps reveal areas vulnerable to the effects of climate change

    Preserving the biodiversity of rainforests, and limiting the effects of climate change on them, are global challenges that are recognized in international policy agreements and commitments1. The Central African rainforests are the second largest area of continuous rainforest in the world, after the Amazon rainforest. They store more carbon per hectare than does the Amazon and, on average, have a higher density of large trees2 than does any other continent — a feature attributed to the effects of big herbivores, particularly elephants, on the competition between trees for light, water and space3. Human activities, notably logging and over-hunting, facilitated by an expanding road network4, pose a serious threat to Central African rainforests and their value for society5.
    Read the paper: Unveiling African rainforest composition and vulnerability to global change
    How important is climate change, when acting on top of these existing human-generated pressures, for the future of these rainforests? Writing in Nature, Réjou-Méchain et al.6 provide an answer, and show that expected changes in climate in the region pose serious risks to the rainforests. Some forests in locations that have so far been relatively undisturbed by humans are more vulnerable to climate change than are those in areas already affected. For those areas already affected, the lower tree diversity as a consequence of human intervention reduces the capacity of forests to respond to climate change.The authors had access to an impressive commercial forest-inventory data set from 105 logging concessions (designated areas in which commercial operators are allowed to harvest timber), across five Central African countries. Analysing the abundance distribution of 6.1 million trees across 185,665 plots, the authors generate maps of floristically unique forest types — forests characterized by distinct sets of tree species. The spatial extent of these forest types is predominantly shaped by climate gradients, with further effects arising from human-induced pressures and variation in soil type.Previous research into links between species distribution and environmental variation used approaches such as ecological niche models, which are mechanistic or correlative models that relate field observations of species with environmental variables to predict habitat suitability. But the resulting predictions of how various species will be affected by climate change have been highly uncertain. This is mainly because of sampling bias, challenges such as spatial autocorrelation (locations closer together in space tend to be more similar to each other than do locations farther apart)7, and high variation in the responses of individual species to environmental drivers of distribution, including human-induced factors.
    Satellites could soon map every tree on Earth
    Réjou-Méchain et al. instead applied a modelling approach called supervised component generalized linear regression, which can identify the main predictive factors from an array of possibilities. This enabled them to detect distribution patterns at the scale of species assemblages (the set of species in a community), rather than focusing on individual species, and to model species and assemblage distribution in response to predictive variables, such as those of climate and human pressures, that potentially show linear dependencies on each other (collinearity). Collinearity is a challenge in niche models, and commonly occurs between climate variables, producing results that are unreliable and difficult to interpret.By combining their approach with a method called cluster analysis, Réjou-Méchain and colleagues show that the Central African rainforests are not a single bloc of forests, but instead encompass at least ten distinct forest types. This includes climate-driven types of forest such as the Atlantic coastal evergreen forest in Gabon, which harbours tree species that prefer cool, dark areas for the dry season. Another grouping, semi-deciduous forest, is found along the northern margin of the Central African region studied, and is characterized by species that can tolerate higher rates of water loss to the atmosphere (evapotranspiration).Such spatial variability in the species composition of Central African rainforests has many implications. For example, it will affect forest vulnerability to climate change, how warming might interact with human pressures to change biodiversity, and how it might affect the potential of these forests to mitigate the rise in atmospheric carbon. Global warming is projected to result in a drier, hotter environment in Central Africa, and previous research has suggested potentially dangerous implications for the fate of the rainforests there8. They might respond to limited water availability by opening canopies and becoming more prone to fires and less carbon dense. Using climate-model projections for the year 2085, Réjou-Méchain and colleagues conclude that the current climate niches associated with the ten forest types they have identified might disappear, or move to locations that would be difficult for the forests to reach through dispersal of tree seeds (by means such as wind and animals), and would hence become inaccessible.
    Prioritizing where to restore Earth’s ecosystems
    What do these findings mean for the future, and how can we manage the forests to minimize the threat from climate change? To provide an answer, Réjou-Méchain et al. looked at three components that characterize the vulnerability of forest communities to warming: their sensitivity, exposure and adaptive capacity. The authors conclude that some areas are more sensitive than others, which means that the dominant tree species in some forest types will be less able to tolerate environmental change than will those in other areas — for example, species in the northern and southwestern edge of the rainforest. Some areas, particularly those in the east, are expected to be more exposed to climate change than others. And some, especially areas under pressure from human activities, have lower local biodiversity, and might thus have less capacity to adapt compared with areas of greater biodiversity.Réjou-Méchain et al. report that the areas most vulnerable to climate change and predicted to be highly vulnerable to future human-induced pressures include forests in coastal Gabon, the Democratic Republic of the Congo (Fig. 1) and the northern margin of the domain studied. This finding suggests priority regions for targeted actions to protect forests from environmental changes. One such region under human pressure is in Cameroon and contains a forest group called degraded semi-deciduous forest. Protecting this type of forest offers a fast way of generating a carbon sink that will operate over a long time frame9. This is because it features long-lived ‘pioneer’ taxa, which colonize areas after a disturbance — whether natural or human induced. Such species frequently have a high requirement for light, and in this region have the potential to reach great heights in the absence of further disturbance.

    Figure 1 | Kahuzi-Biéga National Park, Democratic Republic of the Congo. The road marks the boundary of this forest, which is one of the few remaining forest habitats for the eastern lowland gorilla (Gorilla beringei graueri). Rainforests are under threat from human-induced pressures, such as the deforestation visible outside this park. Réjou-Méchain et al.6 present maps of Central African rainforests that could aid conservation work.Credit: Adam Amir

    As for elsewhere in sub-Saharan Africa, climate-change predictions for 2085 are uncertain for Central Africa. Réjou-Méchain and colleagues’ projections for the effects of human pressures for that year are probably underestimates, especially considering that road expansions are likely to continue to push the frontier of wilderness deeper into remote forest areas. Nevertheless, the research offers convincing evidence enabling land users and managers to take decisive actions. This could include efforts to protect the areas most vulnerable to climate change from human pressures, for example by setting up protection schemes, and actions that could include boosting forest connectivity in areas that have already experienced high levels of human pressure. To ensure the effectiveness of any interventions, it will be imperative to engage with local people in developing management solutions. Conservation and the sustainable management of rainforest carbon stocks have key roles in the reduction of carbon emissions.Perhaps most crucially, rainforests in Central Africa and the ecosystem services they provide are intertwined with people’s livelihoods and food security. Developing sustainable management plans that recognize the diversity of the ways in which people interact with and depend on these forests will be a huge challenge. It will require concerted cross-disciplinary and cross-sectoral efforts that move beyond national boundaries. More

  • in

    Substituting chemical P fertilizer with organic manure: effects on double-rice yield, phosphorus use efficiency and balance in subtropical China

    1.Kazunori, M. et al. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices. Sci. Total Environ. 566, 641–651 (2016).
    Google Scholar 
    2.FAOSTAT. http://www.fao.org/statistics/zh. (2018).3.Xu, L. et al. Effects of different fertilization treatment on paddy soil nutrients in red soil hilly region. J. Nat. Resour. 27, 1890–1898 (2012) (In Chinese).
    Google Scholar 
    4.National Bureau of Statistics of China. China Statistical Yearbook (China Statistics Press, 2010) (In Chinese).
    Google Scholar 
    5.Li, H. G. et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio 44, S274–S285 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 44(Suppl. 2), 193–206 (2015).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    7.Huang, Q. H. et al. Effects of long-term organic amendments on soil organic carbon in a paddy field: A case study on red soil. J. Integr. Agric. 13, 570–576 (2014).Article 

    Google Scholar 
    8.Wang, H. et al. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 195, 104382 (2019).Article 

    Google Scholar 
    9.Qaswar, M. et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 198, 104569 (2020).Article 

    Google Scholar 
    10.Blake, L. et al. Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 56, 263–275 (2000).Article 

    Google Scholar 
    11.Dawe, D., Dobermann, A., Ladha, J. K. & Zhen, Q. X. Do organic amendments improve yield trends and profitability in intensive rice systems?. Field Crop. Res. 83, 191–213 (2003).Article 

    Google Scholar 
    12.Nziguheba, G., Merckx, R. & Palm, C. A. Soil phosphorus dynamics and maize response to different rates of phosphorus fertilizer applied to an acrisol in Western Kenya. Plant Soil 243, 1–10 (2002).CAS 
    Article 

    Google Scholar 
    13.Xu, M. G. et al. Effects of organic manure application with chemical fertilizers on nutrient absorption and yield of rice in hunan of Southern China. Agric. Sci. China 7, 1245–1252 (2008).Article 

    Google Scholar 
    14.Bi, L. et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric. Ecosyst. Environ. 129, 534–541 (2009).Article 

    Google Scholar 
    15.Zhao, B. Q. et al. Long-term fertilizer experiment network in China: Crop yields and soil nutrient trends. Agron. J. 102, 216–230 (2010).CAS 
    Article 

    Google Scholar 
    16.Gao, Y. et al. Phosphorus and carbon competitive sorption-desorption and associated non-point loss respond to natural rainfall events. J. Hydrol. 517, 447–457 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Powers, S. M. et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 9, 353–356 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Abe, S. S. et al. Excessive application of farmyard manure reduces rice yield and enhances environmental pollution risk in paddy fields. Arch. Agron. Soil Sci. 62, 1208–1221 (2016).Article 

    Google Scholar 
    19.Sato, S. & Comerford, N. B. Influence of soil pH on inorganic phosphorus sorption and desorption in a humid Brazilian ultisol. Rev. Bras. Ciênc. Solo 29, 685–694 (2005).CAS 
    Article 

    Google Scholar 
    20.Shasheen, S. & Tsadilas, C. Phosphorus sorption and availability to canola grown in an alfisol amended with various soil amendments. Commun. Soil Sci. Plan. 44, 89–103 (2013).Article 
    CAS 

    Google Scholar 
    21.Shepherd, M. A. & Withers, P. J. Applications of poultry litter and triple superphosphate fertilizer to a sandy soil: Effects on soil phosphorus status and profile distribution. Nutr. Cycl. Agroecosyst. 54, 233–242 (1999).Article 

    Google Scholar 
    22.Morteza, Y., Javad, S. & Mahmood, S. S. On dealing with the pollution costs in agriculture: A case study of paddy fields. Sci. Total Environ. 556, 310–318 (2016).Article 
    CAS 

    Google Scholar 
    23.Zhang, N.M., Li, C.X. & Li, Y.H. Accumulation and releasing risk of phosphorus in soils in Dianchi watershed. Soils 39, 665–667. (2007). (in Chinese). 24.Zhang, Z. J., Zhang, J. Y., He, R., Wang, Z. D. & Zhu, Y. M. Phosphorus interception in floodwater of paddy field during the rice-growing season in TaiHu Lake Basin. Environ. Pollut. 145, 425–433 (2007) (In Chinese).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Hua, L. et al. Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices. Agric. Ecosyst. Environ. 245, 112–123 (2017).CAS 
    Article 

    Google Scholar 
    26.Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).ADS 
    Article 

    Google Scholar 
    27.Shi, W. et al. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytol. 197, 825–837 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Andriamananjara, A. et al. Farmyard manure application in weathered upland soils of Madagascar sharply increase phosphate fertilizer use efficiency for upland rice. Field Crop. Res. 222, 94–100 (2018).Article 

    Google Scholar 
    29.Andriamananjara, A. et al. Farmyard manure improves phosphorus use efficiency in weathered P deficient soil. Nutr. Cycl. Agroecosyst. 115, 407–425 (2019).CAS 
    Article 

    Google Scholar 
    30.Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229-U113 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Xin, X. et al. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crop. Res. 208, 27–33 (2017).Article 

    Google Scholar 
    32.Aggarwal, R. K. & Power, J. F. Use of crop residue and manure to conserve water and enhance nutrient availability and pearl millet yields in an arid tropical region. Soil Tillage Res. 41, 43–51 (1997).Article 

    Google Scholar 
    33.Rehman, A., Ullah, A., Nadeem, F. & Farooq, M. Sustainable nutrient management. In Innovations in Sustainable Agriculture 167–211 (Springer, 2019).34.Whalen, J. K., Chang, C., Clayton, G. W. & Carefoot, J. P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 64, 962–966 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Mowrer, J., Endale, D. M., Schomberg, H. H., Norris, S. E. & Woodroof, R. H. Liming potential of poultry litter in a long-term tillage comparison study. Soil Tillage Res. 196, 104446 (2020).Article 

    Google Scholar 
    36.Miller, J., Beasley, B., Drury, C., Larney, F. & Hao, X. Y. Influence of long-term application of composted or stockpiled feedlot manure with straw or wood chips on soil cation exchange capacity. Compos. Sci. Util. 24, 54–60 (2016).CAS 
    Article 

    Google Scholar 
    37.Liang, Y. et al. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol. Biochem. 37, 1185–1195 (2005).CAS 
    Article 

    Google Scholar 
    38.Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 164, 243–266 (2004).Article 

    Google Scholar 
    39.Khan, F. et al. Effect of different levels of nitrogen and phosphorus on the phenology and yield of maize varieties. Am. J. Plant Sci. 5, 2582–2590 (2014).CAS 
    Article 

    Google Scholar 
    40.Luo, X. et al. Nitrogen: Phosphorous supply ratio and allometry in five alpine plant species. Ecol. Evol. 6, 8881–8892 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Güsewell, S. Responses of wetland graminoids to the relative supply of nitrogen and phosphorus. Plant Ecol. 176, 35–55 (2005).Article 

    Google Scholar 
    42.Hu, B. et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 5, 401–413 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Zhang, W. F. et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 80, 131–144 (2008).Article 

    Google Scholar 
    44.Andriamananjara, A. et al. Land management modifies the temperature sensitivity of soil organic carbon, nitrogen and phosphorus dynamics in a Ferralsol. Appl. Soil Ecol. 138, 112–122 (2019).Article 

    Google Scholar 
    45.Nziguheba, G., Merckx, R., Palm, C. A. & Rao, M. R. Organic residues affect phosphorus availability and maize yields in a Nitisol of Western Kenya. Biol. Fertil. Soils 32, 328–339 (2000).CAS 
    Article 

    Google Scholar 
    46.Peretyazhko, T. & Sposito, G. Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim. Cosmochim. Acta 69, 3643–3652 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Wright, A. L. Soil phosphorus stocks and distribution in chemical fractions for long-term sugarcane, pasture, turfgrass, and forest systems in Florida. Nutr. Cycl. Agroecosyst. 83, 223–231 (2009).CAS 
    Article 

    Google Scholar 
    48.Zhong, X. et al. The evaluation of phosphorus leaching risk of 23 Chinese soils I. Leaching criterion. Acta Ecol. Sin. 24, 2275–2280 (2004).
    Google Scholar 
    49.Wang, S. et al. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems. Soil Sei. Soc. Am. J. 6, 161–167 (2012).Article 
    CAS 

    Google Scholar 
    50.Haynes, R. J. & Mokolobate, M. S. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved. Nutr. Cycl. Agroecosyst. 59, 47–63 (2001).CAS 
    Article 

    Google Scholar 
    51.Ayaga, G., Todd, A. & Brookes, P. C. Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems. Soil Biol. Biochem. 38, 81–90 (2006).CAS 
    Article 

    Google Scholar 
    52.Nie, J., Zhou, J., Wang, H., Chen, X. & Du, C. Effect of long-term rice straw return on soil glomalin, carbon and nitrogen. Pedosphere 17, 295–302 (2007).CAS 
    Article 

    Google Scholar 
    53.Yu, Y. et al. Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Sci. Total Environ. 656, 625–633 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. A. 27, 31–36 (1962).CAS 
    Article 

    Google Scholar 
    55.Kitson, R. E. & Mellon, M. G. Colorimetric determination of phosphorus as molybdivanadophosporic acid. Ind. Eng. Chem. Anal. Ed. 16, 379–383 (1944).CAS 
    Article 

    Google Scholar 
    56.Soon, Y. K. & Kalra, Y. P. A comparison of plant tissue digestion methods for nitrogen and phosphorus analyses. Can. J. Soil Sci. 75, 243–245 (1995).CAS 
    Article 

    Google Scholar  More

  • in

    The serotonin transporter gene and female personality variation in a free-living passerine

    1.Réale, D., Dingemanse, N. J., Kazem, A. J. N. & Wright, J. Evolutionary and ecological approaches to the study of personality. Philos. Trans. R. Soc. B. 365, 3937–3946 (2010).Article 

    Google Scholar 
    2.Dingemanse, N. J. & Wright, J. Criteria for acceptable studies of animal personality and behavioural syndromes. Ethology 126, 865–869 (2020).Article 

    Google Scholar 
    3.Wilson, D. S. Adaptive individual differences within single populations. Philos. Trans. R. Soc. B. 353, 199–205 (1998).Article 

    Google Scholar 
    4.Van Oers, K., De Jong, G., Van Noordwijk, A. J., Kempenaers, B. & Drent, P. J. Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour 142, 1185–1206 (2005).Article 

    Google Scholar 
    5.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B. 282, 20142201 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Dochtermann, N. A., Schwab, T., Berdal, M. A., Dalos, J. & Royauté, R. The heritability of behavior: A meta-analysis. J. Hered. 110, 403–410 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: A meta-analysis. Behav. Ecol. 19, 448–455 (2008).Article 

    Google Scholar 
    8.Moiron, M., Laskowski, K. L. & Niemelä, P. T. Individual differences in behaviour explain variation in survival: a meta-analysis. Ecol. Lett. 23, 399–408 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B. 365, 3947–3958 (2010).Article 

    Google Scholar 
    10.Dingemanse, N. J. & Réale, D. What is the evidence that natural selection maintains variation in animal personalities? In Animal Personalities: Behavior, Physiology, and Evolution (eds Carere, C. & Maestripieri, D.) 201–220 (Chicago University Press, 2013).
    Google Scholar 
    11.Oers, K. V. & Mueller, J. C. Evolutionary genomics of animal personality. Philos. Trans. R. Soc. B. 365, 3991–4000 (2010).Article 

    Google Scholar 
    12.Laine, V. N. & van Oers, K. The quantitative and molecular genetics of individual differences in animal personality. In Personality in Nonhuman Animals (eds Vonk, J. et al.) 55–72 (Springer, 2017).
    Google Scholar 
    13.Bubac, C. M., Miller, J. M. & Coltman, D. W. The genetic basis of animal behavioural diversity in natural populations. Mol. Ecol. 29, 1957–1971 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Brommer, J. E. & Class, B. The importance of genotype-by-age interactions for the development of repeatable behavior and correlated behaviors over lifetime. Front. Zool. 12, S2 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).Article 

    Google Scholar 
    18.Gienapp, P., Laine, V. N., Mateman, A. C., van Oers, K. & Visser, M. E. Environment-dependent genotype-phenotype associations in avian breeding time. Front. Genet. 8, 1–9 (2017).Article 
    CAS 

    Google Scholar 
    19.Korsten, P. et al. Association between DRD4 gene polymorphism and personality variation in great tits: A test across four wild populations. Mol. Ecol. 19, 832–843 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Mueller, J. C. et al. Haplotype structure, adaptive history and associations with exploratory behaviour of the DRD4 gene region in four great tit (Parus major) populations. Mol. Ecol. 22, 2797–2809 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Riyahi, S., Sánchez-Delgado, M., Calafell, F., Monk, D. & Senar, J. C. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics 10, 516–525 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Mueller, J. C., Partecke, J., Hatchwell, B. J., Gaston, K. J. & Evans, K. L. Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Mol. Ecol. 22, 3629–3637 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Holtmann, B. et al. Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Mol. Ecol. 25, 706–722 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Class, B. & Brommer, J. E. Senescence of personality in a wild bird. Behav. Ecol. Sociobiol. 70, 733–744 (2016).Article 

    Google Scholar 
    25.Class, B., Brommer, J. E. & van Oers, K. Exploratory behavior undergoes genotype–age interactions in a wild bird. Ecol. Evol. 9, 8987–8994 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Savitz, J. B. & Ramesar, R. S. Genetic variants implicated in personality: A review of the more promising candidates. Am. J. Med. Genet. Neuropsychiatr. Genet. 131B, 20–32 (2004).Article 

    Google Scholar 
    27.Craig, I. W. & Halton, K. E. Genetics of human aggressive behaviour. Hum. Genet. 126, 101–113 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Miller-Butterworth, C. M., Kaplan, J. R., Barmada, M. M., Manuck, S. B. & Ferrell, R. E. The serotonin transporter: Sequence variation in Macaca fascicularis and its relationship to dominance. Behav. Genet. 37, 678–696 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Jannini, E. A., Burri, A., Jern, P. & Novelli, G. Genetics of human sexual behavior: Where we are, where we are going. Sex. Med. Rev. 3, 65–77 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Timm, K., Van Oers, K. & Tilgar, V. SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. J. Exp. Biol. 221, jeb171595 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Timm, K., Koosa, K. & Tilgar, V. The serotonin transporter gene could play a role in anti-predator behaviour in a forest passerine. J. Ethol. 37, 221–227 (2019).Article 

    Google Scholar 
    32.Edwards, H. A., Hajduk, G. K., Durieux, G., Burke, T. & Dugdale, H. L. No association between personality and candidate gene polymorphisms in a wild bird population. PLoS ONE 10, 1–13 (2015).
    Google Scholar 
    33.Van Dongen, W. F. D., Robinson, R. W., Weston, M. A., Mulder, R. A. & Guay, P. J. Variation at the DRD4 locus is associated with wariness and local site selection in urban black swans. BMC Evol. Biol. 15, 1–11 (2015).Article 

    Google Scholar 
    34.Sibley, C. G. Behavioral mimicry in the titmice (Paridae) and certain other birds. Wilson Bull. 67, 128–132 (1955).
    Google Scholar 
    35.Thys, B. et al. The female perspective of personality in a wild songbird: Repeatable aggressiveness relates to exploration behaviour. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    36.Thys, B., Lambreghts, Y., Pinxten, R. & Eens, M. Nest defence behavioural reaction norms: Testing life-history and parental investment theory predictions. R. Soc. Open Sci. 6, 182180 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    37.Thys, B., Pinxten, R. & Eens, M. Long-term repeatability and age-related plasticity of female behaviour in a free-living passerine. Anim. Behav. 172, 45–54 (2021).Article 

    Google Scholar 
    38.Grunst, A. S. et al. Variation in personality traits across a metal pollution gradient in a free-living songbird. Sci. Total Environ. 630, 668–678 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    39.Graffelman, J. Exploring diallelic genetic markers: The HardyWeinberg package. J. Stat. Softw. 64, 1–23 (2015).Article 

    Google Scholar 
    40.Solé, X., Guinó, E., Valls, J., Iniesta, R. & Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 22, 1928–1929 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Benjamini, Y. & Hocherg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    42.Therneau, T. coxme: Mixed effects Cox models. R package version 2.2-16. https://CRAN.R-project.org/package=coxme (2020).43.Balding, D. J. A tutorial on statistical methods for population association studies. Nat. Rev. Genet. 7, 781–791 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).Article 

    Google Scholar 
    45.Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).Article 

    Google Scholar 
    46.Sinnwell, J., Therneau, T. & Schaid, D. The kinship 2 R Package for Pedigree Data. Hum. Hered. 78, 91–93 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    49.Deans, C. & Maggert, K. A. What do you mean, “Epigenetic”?. Genetics 199, 887–896 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Hedrick, P. W. Genetic polymorphism in heterogeneous environments: The age of genomics. Annu. Rev. Ecol. Evol. Syst. 37, 67–93 (2006).Article 

    Google Scholar 
    52.Krams, I. et al. Hissing calls improve survival in incubating female great tits (Parus major). Acta Ethol. 17, 83–88 (2014).Article 

    Google Scholar 
    53.Munafò, M. R., Yalcin, B., Willis-Owen, S. A. & Flint, J. Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-analysis and new data. Biol. Psychiatry 63, 197–206 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Chamary, J. V., Parmley, J. L. & Hurst, L. D. Hearing silence: Non-neutral evolution at synonymous sites in mammals. Nat. Rev. Genet. 7, 98–108 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Sauna, Z. E. & Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12, 683–691 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Pastinen, T. Genome-wide allele-specific analysis: Insights into regulatory variation. Nat. Rev. Genet. 11, 533–538 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Vergnes, M., Depaulis, A. & Boehrer, A. Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol. Behav. 36, 653–658 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Lesch, K. P. & Merschdorf, U. Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behav. Sci. Law 18, 581–604 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Seo, D., Patrick, C. J. & Kennealy, P. J. Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress. Violent Behav. 13, 383–395 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Thys, B., Eens, M., Pinxten, R. & Iserbyt, A. Pathways linking female personality with reproductive success are trait- and year-specific. Behav. Ecol. 32, 114–123 (2020).Article 

    Google Scholar  More

  • in

    The hierarchy of root branching order determines bacterial composition, microbial carrying capacity and microbial filtering

    1.Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. N. Phytol. 206, 1196–1206 (2015).Article 

    Google Scholar 
    2.Feng, H. et al. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting Rhizobacteria Bacillus amyloliquefaciens SQR9. Mol. Plant Microbe Interact. 31, 995–1005 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Dennis, P. G., Miller, A. J. & Hirsch, P. R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol. 72, 313–327 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Schreiter, S. et al. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front. Microbiol. 5, 144 (2014).8.Zhang, N. et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374, 689–700 (2014).CAS 
    Article 

    Google Scholar 
    9.Yang, C.-H. & Crowley, D. E. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66, 345 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.DeAngelis, K. M. et al. Selective progressive response of soil microbial community to wild oat roots. ISME J. 3, 168–178 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Shi, S. et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio 6, e00746–00715 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    13.Lu, T. et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6, 231 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Mei, C. & Flinn, B. S. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat. Biotechnol. 4, 81–95 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Hijri, M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26, 209–214 (2016).PubMed 
    Article 

    Google Scholar 
    16.Waschkies, C., Schropp, A. & Marschner, H. Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant Soil 162, 219–227 (1994).Article 

    Google Scholar 
    17.Benizri, E. et al. Replant diseases: bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol. Biochem. 37, 1738–1746 (2005).CAS 
    Article 

    Google Scholar 
    18.Pankhurst, C. E. et al. Management practices to improve soil health and reduce the effects of detrimental soil biota associated with yield decline of sugarcane in Queensland, Australia. Soil Tillage Res. 72, 125–137 (2003).Article 

    Google Scholar 
    19.Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA 115, E1157 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Zhang, Y. et al. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 5, 97 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.McCormack, M. L. et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. N. Phytol. 207, 505–518 (2015).Article 

    Google Scholar 
    25.Pregitzer, K. S. et al. Fine root architecture of nine North American trees. Ecol. Monogr. 72, 293–309 (2002).Article 

    Google Scholar 
    26.Holdaway, R. J., Richardson, S. J., Dickie, I. A., Peltzer, D. A. & Coomes, D. A. Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. J. Ecol. 99, 954–963 (2011).Article 

    Google Scholar 
    27.Fitter, A. H. Morphometric analysis of root systems: application of the technique and influence of soil fertility on root system development in two herbaceous species. Plant Cell Environ. 5, 313–322 (1982).
    Google Scholar 
    28.Valenzuela-Estrada, L. R., Vera-Caraballo, V., Ruth, L. E. & Eissenstat, D. M. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). Am. J. Bot. 95, 1506–1514 (2008).PubMed 
    Article 

    Google Scholar 
    29.Hishi, T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions. J. For. Res. 12, 126–133 (2007).Article 

    Google Scholar 
    30.Guo, D. et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. N. Phytol. 180, 673–683 (2008).Article 

    Google Scholar 
    31.Makita, N. et al. Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol. 29, 579–585 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Guo, D., Mitchell, R. J., Withington, J. M., Fan, P.-P. & Hendricks, J. J. Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J. Ecol. 96, 737–745 (2008).CAS 
    Article 

    Google Scholar 
    33.Gu, J., Yu, S., Sun, Y., Wang, Z. & Guo, D. Influence of root structure on root survivorship: an analysis of 18 tree species using a minirhizotron method. Ecol. Res. 26, 755–762 (2011).Article 

    Google Scholar 
    34.Wang, B. & Qiu, Y. L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299–363 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Tibbett, M. & Sanders, F. E. Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality. Ann. Bot. 89, 783–789 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Sanders, F. E. & Tinker, P. B. Phosphate flow into mycorrhizal roots. Pestic. Sci. 4, 385–395 (1973).CAS 
    Article 

    Google Scholar 
    37.Hodge, A. & Storer, K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386, 1–19 (2015).CAS 
    Article 

    Google Scholar 
    38.Bending, G. D. & Read, D. J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. N. Phytol. 130, 401–409 (1995).CAS 
    Article 

    Google Scholar 
    39.Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl Acad. Sci. USA 113, 8741 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Gui, H., Hyde, K., Xu, J. & Mortimer, P. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. Sci. Rep. 7, 42184–42184 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Svenningsen, N. B. et al. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 12, 1296–1307 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Olsson, P. A. & Wallander, H. Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol. Ecol. 27, 195–205 (1998).CAS 
    Article 

    Google Scholar 
    43.Hestrin, R., Hammer, E. C., Mueller, C. W. & Lehmann, J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2, 233 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Garbaye, J. Helper bacteria: a new dimension to the mycorrhizal symbiosis. N. Phytol. 128, 197–210 (1994).Article 

    Google Scholar 
    45.Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).CAS 
    Article 

    Google Scholar 
    46.Cornelissen, J., Aerts, R., Cerabolini, B., Werger, M. & van der Heijden, M. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Reich, P. B. et al. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol. Lett. 8, 811–818 (2005).Article 

    Google Scholar 
    48.Minerovic, A. J., Valverde-Barrantes, O. J. & Blackwood, C. B. Physical and microbial mechanisms of decomposition vary in importance among root orders and tree species with differing chemical and morphological traits. Soil Biol. Biochem. 124, 142–149 (2018).CAS 
    Article 

    Google Scholar 
    49.Fan, P. & Guo, D. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia 163, 509–515 (2010).PubMed 
    Article 

    Google Scholar 
    50.Segal, E., Kushnir, T., Mualem, Y. & Shani, U. Water uptake and hydraulics of the root hair rhizosphere. Vadose Zone J. 7, 1027–1034 (2008).Article 

    Google Scholar 
    51.Gordon, W. S. & Jackson, R. B. Nutrient concentrations in fine roots. Ecology 81, 275–280 (2000).Article 

    Google Scholar 
    52.Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Yates, C. F. et al. Tree‐induced alterations to soil properties and rhizoplane‐associated bacteria following 23 years in a common garden. Plant Soil, https://doi.org/10.1007/s11104-021-04846-8 (2021).54.Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).Article 
    PubMed 

    Google Scholar 
    55.Wang, N., Wang, C. & Quan, X. Variations in fine root dynamics and turnover rates in five forest types in northeastern China. J. Forestry Res. 31, 871–884 (2020).CAS 
    Article 

    Google Scholar 
    56.Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Jia, S., Wang, Z., Li, X., Zhang, X. & McLaughlin, N. B. Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiol. 31, 718–726 (2011).PubMed 
    Article 

    Google Scholar 
    58.Lavely, E. K. et al. On characterizing root function in perennial horticultural crops. Am. J. Botany, https://doi.org/10.1002/ajb2.1530 (2020).59.Iffis, B., St-Arnaud, M. & Hijri, M. Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons. FEMS Microbiol. Lett. 358, 44–54 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Toljander, J. F., Lindahl, B. D., Paul, L. R., Elfstrand, M. & Finlay, R. D. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol. Ecol. 61, 295–304 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.McCormack, M., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. Predicting fine root lifespan from plant functional traits in temperate trees. N. Phytol. 195, 823–831 (2012).Article 

    Google Scholar 
    62.Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).Article 

    Google Scholar 
    63.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Apprill, A., McNally, S., Parsons, R. J. & Weber, L. K. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    65.Trexler, R. V. & Bell, T. H. Testing sustained soil-to-soil contact as an approach for limiting the abiotic influence of source soils during experimental microbiome transfer. FEMS Microbiol. Lett. 366, https://doi.org/10.1093/femsle/fnz228 (2019).66.Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    Article 

    Google Scholar 
    69.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Bressan, M. et al. A rapid flow cytometry method to assess bacterial abundance in agricultural soil. Appl. Soil Ecol. 88, 60–68 (2015).Article 

    Google Scholar 
    72.Oksanen, J. et al. Vegan: community ecology package. R. Package Version 2. 2-1 2, 1–2 (2015).
    Google Scholar 
    73.Bisanz, J. E. MicrobeR: Handy functions for microbiome analysis in R. (2019).74.R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012). More

  • in

    Microbial evolution and transitions along the parasite–mutualist continuum

    1.Garcia, J. R. & Gerardo, N. M. The symbiont side of symbiosis: do microbes really benefit? Front. Microbiol. 5, 510 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Law, R. & Dieckmann, U. Symbiosis through exploitation and the merger of lineages in evolution. Proc. Biol. Sci. 265, 1245–1253 (1998).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    3.Keeling, P. J. & McCutcheon, J. P. Endosymbiosis: the feeling is not mutual. J. Theor. Biol. 434, 75–79 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Wooldridge, S. A. Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners? BioEssays 32, 615–625 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Mushegian, A. A. & Ebert, D. Rethinking ‘mutualism’ in diverse host-symbiont communities. BioEssays 38, 100–108 (2016).PubMed 
    Article 

    Google Scholar 
    6.Mathis, K. A. & Bronstein, J. L. Our current understanding of commensalism. Ann. Rev. Ecol. Evol. Syst. 51, 167–189 (2020).Article 

    Google Scholar 
    7.Ewald, P. W. Transmission modes and evolution of the parasitism-mutualism continuum. Ann. N. Y. Acad. Sci. 503, 295–306 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9, 214–217 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Schu, M. G. & Schrallhammer, M. Cultivation conditions can cause a shift from mutualistic to parasitic behavior in the symbiosis between Paramecium and its bacterial symbiont Caedibacter taeniospiralis. Curr. Microbiol. 75, 1099–1102 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Osman, E. O. et al. Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 8, 8 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Kümmerli, R., Jiricny, N., Clarke, L. S., West, S. A. & Griffin, A. S. Phenotypic plasticity of a cooperative behaviour in bacteria. J. Evol. Biol. 22, 589–598 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Kumamoto, C. A. Niche-specific gene expression during C. albicans infection. Curr. Opin. Microbiol. 11, 325–330 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Thrall, P. H., Hochberg, M. E., Burdon, J. J. & Bever, J. D. Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol. Evol. 22, 120–126 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Chamberlain, S. A., Bronstein, J. L. & Rudgers, J. A. How context dependent are species interactions? Ecol. Lett. 17, 881–890 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108 (Suppl. 2), 10800–10807 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Hosokawa, T. et al. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat. Microbiol. 1, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    17.Gupta, A. & Nair, S. Dynamics of insect–microbiome interaction influence host and microbial symbiont. Front. Microbiol. 11, 1357 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Lutzoni, F. & Pagel, M. Accelerated evolution as a consequence of transitions to mutualism. Proc. Natl Acad. Sci. USA 94, 11422–11427 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Kaltenpoth, M. et al. Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proc. Natl Acad. Sci. USA 111, 6359–6364 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Manzano-Marı́n, A. et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 14, 259–273 (2020).Article 
    CAS 

    Google Scholar 
    21.Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.McFall-Ngai, M. J. The importance of microbes in animal development: lessons from the squid-Vibrio symbiosis. Annu. Rev. Microbiol. 68, 177–194 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Brown, S. P., Cornforth, D. M. & Mideo, N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol. 20, 336–342 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Fisher, R. M., Henry, L. M., Cornwallis, C. K., Kiers, E. T. & West, S. A. The evolution of host-symbiont dependence. Nat. Commun. 8, 15973 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.McDowell, J. M. Genomes of obligate plant pathogens reveal adaptations for obligate parasitism. Proc. Natl Acad. Sci. USA 108, 8921–8922 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Wilson, B. A. & Salyers, A. A. Is the evolution of bacterial pathogens an out-of-body experience? Trends Microbiol. 11, 347–350 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Bull, J. J. & Rice, W. R. Distinguishing mechanisms for the evolution of co-operation. J. Theor. Biol. 149, 63–74 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. Biol. Sci. 281, 20132146 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    30.Duron, O. et al. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLoS Pathog. 11, e1004892 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Clayton, A. L. et al. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect–bacterial symbioses. PLoS Genet. 8, e1002990 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.West, S. A., Kiers, E. T., Simms, E. L. & Denison, R. F. Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc. Biol. Sci. 269, 685–694 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Sørensen, M. E. S. et al. The role of exploitation in the establishment of mutualistic microbial symbioses. FEMS Microbiol. Lett. 366, fnz148 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).Article 

    Google Scholar 
    35.Frederickson, M. E. Mutualisms are not on the verge of breakdown. Trends Ecol. Evol. 32, 727–734 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Mueller, U. G., Ishak, H., Lee, J. C., Sen, R. & Gutell, R. R. Placement of attine ant-associated Pseudonocardia in a global Pseudonocardia phylogeny (Pseudonocardiaceae, Actinomycetales): a test of two symbiont-association models. Antonie Van Leeuwenhoek 98, 195–212 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Dietel, A.-K., Kaltenpoth, M. & Kost, C. Convergent evolution in intracellular elements: plasmids as model endosymbionts. Trends Microbiol. 26, 755–768 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Hurst, G. D. D. Extended genomes: symbiosis and evolution. Interface Focus. 7, 20170001 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Melnyk, R. A., Hossain, S. S. & Haney, C. H. Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. ISME J. 13, 1575–1588 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.King, K. C. et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 10, 1915–1924 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Shapiro, J. W. & Turner, P. E. Evolution of mutualism from parasitism in experimental virus populations. Evolution 72, 707–712 (2018).PubMed 
    Article 

    Google Scholar 
    42.Zhang, H. et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for brassica protection and yield enhancement. Mol. Plant. 13, 1420–1433 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Tso, G. H. W. et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science 362, 589–595 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Harrison, E., Guymer, D., Spiers, A. J., Paterson, S. & Brockhurst, M. A. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr. Biol. 25, 2034–2039 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Porter, S. S., Faber-Hammond, J., Montoya, A. P., Friesen, M. L. & Sackos, C. Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium. ISME J. 13, 301–315 (2019).PubMed 
    Article 

    Google Scholar 
    46.Herrera, P. et al. Molecular causes of an evolutionary shift along the parasitism–mutualism continuum in a bacterial symbiont. Proc. Natl Acad. Sci. USA 117, 21658–21666 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Li, E. et al. Rapid evolution of bacterial mutualism in the plant rhizosphere. Preprint at bioRxiv https://doi.org/10.1101/2020.12.07.414607 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Pankey, M. S. et al. Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. eLife 6, e24414 (2017).Article 

    Google Scholar 
    49.Jansen, G. et al. Evolutionary transition from pathogenicity to commensalism: global regulator mutations mediate fitness gains through virulence attenuation. Mol. Biol. Evol. 32, 2883–2896 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Chain, P. S. G. et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA 101, 13826–13831 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Hendry, T. A. et al. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. mBio 9, e01033-18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Nygaard, S. et al. Reciprocal genomic evolution in the ant–fungus agricultural symbiosis. Nat. Commun. 7, 12233 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Bennett, G. M. & Moran, N. A. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc. Natl Acad. Sci. USA 112, 10169–10176 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Gluck-Thaler, E. et al. Repeated gain and loss of a single gene modulates the evolution of vascular pathogen lifestyles. bioRxiv https://doi.org/10.1101/2020.04.24.058529 (2020).Article 

    Google Scholar 
    55.Arredondo-Alonso, S. et al. Plasmids shaped the recent emergence of the major nosocomial pathogen Enterococcus faecium. mBio 11, e03284-19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Driscoll, T. P. et al. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. Preprint at bioRxiv https://doi.org/10.1101/2020.06.01.128066 (2020).Article 

    Google Scholar 
    57.Frantzeskakis, L. et al. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 19, 381 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Savory, E. A. et al. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 6, e30925 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Barreto, H. C., Sousa, A. & Gordo, I. The landscape of adaptive evolution of a gut commensal bacteria in aging mice. Curr. Biol. 30, 1102–1109.e5 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Parkhill, J. et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Deng, W. et al. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184, 4601–4611 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Achtman, M. et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA 96, 14043–14048 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Rasmussen, S. et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163, 571–582 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Hinnebusch, B. J. et al. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Lindler, L. E., Plano, G. V., Burland, V., Mayhew, G. F. & Blattner, F. R. Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect. Immun. 66, 5731–5742 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Du, Y., Rosqvist, R. & Forsberg, Å. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect. Immun. 70, 1453–1460 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Sun, Y.-C., Jarrett, C. O., Bosio, C. F. & Hinnebusch, B. J. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe 15, 578–586 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Ohnishi, M., Kurokawa, K. & Hayashi, T. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9, 481–485 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Franzin, F. M. & Sircili, M. P. Locus of enterocyte effacement: a pathogenicity island involved in the virulence of enteropathogenic and enterohemorragic Escherichia coli subjected to a complex network of gene regulation. Biomed. Res. Int. 2015, 534738 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Broaders, E., O’Brien, C., Gahan, C. G. M. & Marchesi, J. R. Evidence for plasmid-mediated salt tolerance in the human gut microbiome and potential mechanisms. FEMS Microbiol. Ecol. 92, fiw019 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.McCarthy, A. J. et al. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. Genome Biol. Evol. 6, 2697–2708 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    74.Niehus, R., Mitri, S., Fletcher, A. G. & Foster, K. R. Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nat. Commun. 6, 8924 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Koonin, E. V. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res https://doi.org/10.12688/f1000research.8737.1 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Nowack, E. C. M. et al. Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc. Natl Acad. Sci. USA 113, 12214–12219 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Waterworth, S. C. et al. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio 11, e02430-19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Ma, W., Dong, F. F. T., Stavrinides, J. & Guttman, D. S. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet. 2, e209 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    80.Nikoh, N. et al. Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc. Natl Acad. Sci. USA 111, 10257–10262 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Sheppard, S. K., Guttman, D. S. & Fitzgerald, J. R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Day, T., Gandon, S., Lion, S. & Otto, S. P. On the evolutionary epidemiology of SARS-CoV-2. Curr. Biol. 30, R849–R857 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Tardy, L., Giraudeau, M., Hill, G. E., McGraw, K. J. & Bonneaud, C. Contrasting evolution of virulence and replication rate in an emerging bacterial pathogen. Proc. Natl Acad. Sci. USA 116, 16927–16932 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Alves, J. M. et al. Parallel adaptation of rabbit populations to myxoma virus. Science 363, 1319–1326 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Kerr, P. J. Myxomatosis in Australia and Europe: a model for emerging infectious diseases. Antivir. Res. 93, 387–415 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Longdon, B. et al. The causes and consequences of changes in virulence following pathogen host shifts. PLoS Pathog. 11, e1004728 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.van Boven, M. et al. Detecting emerging transmissibility of avian influenza virus in human households. PLoS Comput. Biol. 3, e145 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Moses, A. S., Millar, J. A., Bonazzi, M., Beare, P. A. & Raghavan, R. Horizontally acquired biosynthesis genes boost Coxiella burnetii’s physiology. Front. Cell Infect. Microbiol. 7, 174 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    89.Flórez, L. V. et al. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat. Commun. 8, 1–9 (2017).Article 

    Google Scholar 
    90.Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).PubMed 
    Article 

    Google Scholar 
    91.Ewald, P. W. Host-parasite relations, vectors, and the evolution of disease severity. Annu. Rev. Ecol. Syst. 14, 465–485 (1983).Article 

    Google Scholar 
    92.Bull, J. J. Perspective: Virulence. Evolution 48, 1423–1437 (1994).CAS 
    PubMed 

    Google Scholar 
    93.Rafaluk, C., Jansen, G., Schulenburg, H. & Joop, G. When experimental selection for virulence leads to loss of virulence. Trends Parasitol. 31, 426–434 (2015).PubMed 
    Article 

    Google Scholar 
    94.Alizon, S. & Van Baalen, M. Transmission-virulence trade-offs in vector-borne diseases. Theor. Popul. Biol. 74, 6–15 (2008).PubMed 
    Article 

    Google Scholar 
    95.Cressler, C. E., McLeod, D. V., Rozins, C., Hoogen, J. V. D. & Day, T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology 143, 915–930 (2016).PubMed 
    Article 

    Google Scholar 
    96.Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Yamamura, N. Vertical transmission and evolution of mutualism from parasitism. Theor. Popul. Biol. 44, 95–109 (1993).Article 

    Google Scholar 
    98.Hall, J. P. J., Brockhurst, M. A., Dytham, C. & Harrison, E. The evolution of plasmid stability: are infectious transmission and compensatory evolution competing evolutionary trajectories? Plasmid 91, 90–95 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Kiers, E. T. & Denison, R. F. Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu. Rev. Ecol. Evol. Syst. 39, 215–236 (2008).Article 

    Google Scholar 
    100.Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Herre, E. A. et al. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol. Evol. 14, 49–53 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Nussbaumer, A. D., Fisher, C. R. & Bright, M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441, 345–348 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Dusi, E., Krenek, S., Petzoldt, T., Kaltz, O. & Berendonk, T. U. When enemies do not become friends: experimental evolution of heat-stress adaptation in a vertically transmitted parasite. Preprint at bioRxiv https://doi.org/10.1101/2020.01.23.917773 (2020).Article 

    Google Scholar 
    104.Engelstädter, J. & Hurst, G. D. D. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 40, 127–149 (2009).Article 

    Google Scholar 
    105.Fenton, A., Johnson, K. N., Brownlie, J. C. & Hurst, G. D. D. Solving the Wolbachia paradox: modeling the tripartite interaction between host, Wolbachia, and a natural enemy. Am. Nat. 178, 333–342 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Zug, R. & Hammerstein, P. Evolution of reproductive parasites with direct fitness benefits. Heredity 120, 266–281 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Drew, G. C., Frost, C. L. & Hurst, G. D. Reproductive parasitism and positive fitness effects of heritable microbes. in eLS https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0028327 (2019).108.Parratt, S. R. et al. Superparasitism drives heritable symbiont epidemiology and host sex ratio in a wasp. PLoS Pathog. 12, e1005629 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    109.Sachs, J. L. & Wilcox, T. P. A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum. Proc. Biol. Sci. 273, 425–429 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    110.Le Clec’h, W., Dittmer, J., Raimond, M., Bouchon, D. & Sicard, M. Phenotypic shift in Wolbachia virulence towards its native host across serial horizontal passages. Proc. Biol. Sci. 284, 20171076 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    111.Stewart, A. D., Logsdon, J. M. & Kelley, S. E. An empirical study of the evolution of virulence under both horizontal and vertical transmission. Evolution 59, 730–739 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Rigaud, T., Souty-Grosset, C., Raimond, R., Mocquard, J.-P. & Juchault, P. Feminizing endocytobiosis in the terrestrial crustacean Armadilidium vulgare Latr. (isopoda) – recent acquisitions. Cell Res. 15, 259–273 (1991).
    Google Scholar 
    113.King, K. C. Defensive symbionts. Curr. Biol. 29, R78–R80 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Flórez, L. V., Biedermann, P. H. W., Engl, T. & Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32, 904–936 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    115.Couret, J., Huynh-Griffin, L., Antolic-Soban, I., Acevedo-Gonzalez, T. S. & Gerardo, N. M. Even obligate symbioses show signs of ecological contingency: impacts of symbiosis for an invasive stinkbug are mediated by host plant context. Ecol. Evol. 9, 9087–9099 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Ashby, B. & King, K. Friendly foes: the evolution of host protection by a parasite. Evol. Lett. 1, 211–221 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Duron, O. Arsenophonus insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiol. Ecol. 90, 184–194 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    118.Ferrari, J., Darby, A. C., Daniell, T. J., Godfray, H. C. J. & Douglas, A. E. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60–65 (2004).Article 

    Google Scholar 
    119.Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Polin, S., Simon, J.-C. & Outreman, Y. An ecological cost associated with protective symbionts of aphids. Ecol. Evol. 4, 826–830 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.Degnan, P. H., Yu, Y., Sisneros, N., Wing, R. A. & Moran, N. A. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc. Natl Acad. Sci. USA 106, 9063–9068 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    122.Weldon, S. R., Strand, M. R. & Oliver, K. M. Phage loss and the breakdown of a defensive symbiosis in aphids. Proc. Biol. Sci. 280, 20122103 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T. & Hoffmann, A. A. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol. 5, e114 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    124.Kwong, W. K., del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Tuovinen, V. et al. Two basidiomycete fungi in the cortex of wolf lichens. Curr. Biol. 29, 476–483.e5 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    126.Spribille, T. et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    127.Coyte, K. Z. & Rakoff-Nahoum, S. Understanding competition and cooperation within the mammalian gut microbiome. Curr. Biol. 29, R538–R544 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    128.Lopez-Medina, E. et al. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog. 11, e1005129 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    129.Harriott, M. M. & Noverr, M. C. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob. Agents Chemother. 53, 3914–3922 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Diebel, L. N., Liberati, D. M., Diglio, C. A., Dulchavsky, S. A. & Brown, W. J. Synergistic effects of Candida and Escherichia coli on gut barrier function. J. Trauma. Acute Care Surg. 47, 1045 (1999).CAS 
    Article 

    Google Scholar 
    131.Barroso-Batista, J. et al. Specific eco-evolutionary contexts in the mouse gut reveal Escherichia coli metabolic versatility. Curr. Biol. 30, 1049–1062.e7 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    132.King, K. C., Stevens, E. & Drew, G. C. Microbiome: evolution in a world of interaction. Curr. Biol. 30, R265–R267 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    133.Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    134.Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host-microbe symbioses are not holobionts. mBio 7, e02099 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Bakken, J. S. et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9, 1044–1049 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    136.Bourtzis, K. et al. Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta Tropica 132, S150–S163 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    137.O’Neill, S. L. in Dengue and Zika: Control and Antiviral Treatment Strategies (eds Hilgenfeld, R. & Vasudevan, S. G.) 355–360 (Springer, 2018).138.Nelson, P. G. & May, G. Coevolution between mutualists and parasites in symbiotic communities may lead to the evolution of lower virulence. Am. Nat. 190, 803–817 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    139.Nelson, P. & May, G. Defensive symbiosis and the evolution of virulence. Am. Nat. 196, 333–343 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    140.Ford, S. A. & King, K. C. Harnessing the power of defensive microbes: evolutionary implications in nature and disease control. PLoS Pathog. 12, e1005465 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    141.Nowak, M. A. & May, R. M. Superinfection and the evolution of parasite virulence. Proc. Biol. Sci. 255, 81–89 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    142.Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    143.Frank, S. A. Host–symbiont conflict over the mixing of symbiotic lineages. Proc. Biol. Sci. 263, 339–344 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    144.Ford, S. A., Kao, D., Williams, D. & King, K. C. Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 7, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    145.Engl, T. et al. Evolutionary stability of antibiotic protection in a defensive symbiosis. Proc. Natl Acad. Sci. USA 115, E2020–E2029 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    146.Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    147.Schneider, D. S. & Ayres, J. S. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat. Rev. Immunol. 8, 889–895 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    148.Voges, M. J. E. E. E., Bai, Y., Schulze-Lefert, P. & Sattely, E. S. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc. Natl Acad. Sci. USA 116, 12558–12565 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    149.Gandon, S. & Michalakis, Y. Evolution of parasite virulence against qualitative or quantitative host resistance. Proc. Biol. Sci. 267, 985–990 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    150.Best, A., White, A. & Boots, M. The coevolutionary implications of host tolerance. Evolution 68, 1426–1435 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    151.Bor, B. et al. Rapid evolution of decreased host susceptibility drives a stable relationship between ultrasmall parasite TM7x and its bacterial host. Proc. Natl Acad. Sci. USA 115, 12277–12282 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    152.Schulte, R. D., Makus, C., Hasert, B., Michiels, N. K. & Schulenburg, H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc. Natl Acad. Sci. USA 107, 7359–7364 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    153.Kerr, P. J. et al. Next step in the ongoing arms race between myxoma virus and wild rabbits in Australia is a novel disease phenotype. Proc. Natl Acad. Sci. USA 114, 9397–9402 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    154.Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    155.Frederickson, M. E. Rethinking mutualism stability: cheaters and the evolution of sanctions. Q. Rev. Biol. 88, 269–295 (2013).PubMed 
    Article 

    Google Scholar 
    156.Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    157.Fitt, W. K. & Trench, R. K. The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. N. Phytol. 94, 421–432 (1983).Article 

    Google Scholar 
    158.Wilkerson, F. P., Kobayashi, D. & Muscatine, L. Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 7, 29–36 (1988).Article 

    Google Scholar 
    159.Lowe, C. D., Minter, E. J., Cameron, D. D. & Brockhurst, M. A. Shining a light on exploitative host control in a photosynthetic endosymbiosis. Curr. Biol. 26, 207–211 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    160.Kodama, Y. & Fujishima, M. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria. FEMS Microbiol. Ecol. 90, 946–955 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    161.Iwai, S., Fujita, K., Takanishi, Y. & Fukushi, K. Photosynthetic endosymbionts benefit from host’s phagotrophy, including predation on potential competitors. Curr. Biol. 29, 3114–3119.e3 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    162.Reisser, W. et al. Viruses distinguish symbiotic Chlorella spp. of Paramecium bursaria. Endocytobiosis Cell Res. 7, 245–251 (1991).
    Google Scholar 
    163.Ahmadjian, V. The lichen symbiosis. Ann. Botany 75, 101–102 (1993).
    Google Scholar 
    164.Wilson, C. G. & Sherman, P. W. Anciently asexual bdelloid rotifers escape lethal fungal parasites by drying up and blowing away. Science 327, 574–576 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    165.Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl Acad. Sci. USA 115, E5970–E5979 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    166.Bergstrom, C. T. & Lachmann, M. The Red King effect: when the slowest runner wins the coevolutionary race. Proc. Natl Acad. Sci. USA 100, 593–598 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    167.Veller, C., Hayward, L. K., Hilbe, C. & Nowak, M. A. The Red Queen and King in finite populations. Proc. Natl Acad. Sci. USA 114, E5396–E5405 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    168.Vigneron, A. et al. Insects recycle endosymbionts when the benefit is over. Curr. Biol. 24, 2267–2273 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    169.Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    170.Hom, E. F. Y. & Murray, A. W. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 345, 94–98 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    171.Hall, J. P. J. et al. Environmentally co-occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable context-dependent fitness effects. Env. Microbiol. 17, 5008–5022 (2015).CAS 
    Article 

    Google Scholar 
    172.Banaszak, A. T., García Ramos, M. & Goulet, T. L. The symbiosis between the gastropod Strombus gigas and the dinoflagellate Symbiodinium: an ontogenic journey from mutualism to parasitism. J. Exp. Mar. Biol. Ecol. 449, 358–365 (2013).Article 

    Google Scholar 
    173.Nakazawa, T. & Katayama, N. Stage-specific parasitism by a mutualistic partner can increase the host abundance. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.602675 (2020).Article 

    Google Scholar 
    174.Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    175.Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial cross-protection mutualism. Proc. Natl Acad. Sci. USA 113, 6236–6241 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    176.Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    177.Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl Acad. Sci. USA 107, 2124–2129 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    178.Regus, J. U., Gano, K. A., Hollowell, A. C., Sofish, V. & Sachs, J. L. Lotus hosts delimit the mutualism–parasitism continuum of Bradyrhizobium. J. Evol. Biol. 28, 447–456 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    179.Hay, M. E. et al. Mutualisms and aquatic community structure: the enemy of my enemy is my friend. Annu. Rev. Ecol. Evol. Syst. 35, 175–197 (2004).Article 

    Google Scholar 
    180.Pike, V. L., Lythgoe, K. A. & King, K. C. On the diverse and opposing effects of nutrition on pathogen virulence. Proc. Biol. Sci. 286, 20191220 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    181.Corbin, C., Heyworth, E. R., Ferrari, J. & Hurst, G. D. D. Heritable symbionts in a world of varying temperature. Heredity 118, 10–20 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    182.Thomas, M. B. & Blanford, S. Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 18, 344–350 (2003).Article 

    Google Scholar 
    183.Delor, I. & Cornelis, G. R. Role of Yersinia enterocolitica Yst toxin in experimental infection of young rabbits. Infect. Immun. 60, 4269–4277 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    184.Kouse, A. B., Righetti, F., Kortmann, J., Narberhaus, F. & Murphy, E. R. RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS ONE 8, e63781 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    185.Kishimoto, M., Baird, A. H., Maruyama, S., Minagawa, J. & Takahashi, S. Loss of symbiont infectivity following thermal stress can be a factor limiting recovery from bleaching in cnidarians. ISME J. 14, 3149–3152 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    186.Zhang, B., Leonard, S. P., Li, Y. & Moran, N. A. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proc. Natl Acad. Sci. USA 116, 24712–24718 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    187.Guay, J.-F., Boudreault, S., Michaud, D. & Cloutier, C. Impact of environmental stress on aphid clonal resistance to parasitoids: role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J. Insect Physiol. 55, 919–926 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    188.Bensadia, F., Boudreault, S., Guay, J.-F., Michaud, D. & Cloutier, C. Aphid clonal resistance to a parasitoid fails under heat stress. J. Insect Physiol. 52, 146–157 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    189.Vorburger, C. & Gouskov, A. Only helpful when required: a longevity cost of harbouring defensive symbionts. J. Evol. Biol. 24, 1611–1617 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    190.Parratt, S. R. & Laine, A.-L. The role of hyperparasitism in microbial pathogen ecology and evolution. ISME J. 10, 1815–1822 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    191.Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    192.Hajishengallis, G. & Lamont, R. J. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol. 24, 477–489 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    193.Neville, B. A., d’Enfert, C. & Bougnoux, M.-E. Candida albicans commensalism in the gastrointestinal tract. FEMS Yeast Res. 15, fov081 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    194.Chow, J., Tang, H. & Mazmanian, S. K. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr. Opin. Immunol. 23, 473–480 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    195.Bonhoeffer, S., Lenski, R. E. & Ebert, D. The curse of the pharaoh: the evolution of virulence in pathogens with long living propagules. Proc. Biol. Sci. 263, 715–721 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    196.Rafaluk-Mohr, C. The relationship between parasite virulence and environmental persistence: a meta-analysis. Parasitology 146, 897–902 (2019).PubMed 
    Article 

    Google Scholar 
    197.Ebert, D., Joachim Carius, H., Little, T. & Decaestecker, E. The evolution of virulence when parasites cause host castration and gigantism. Am. Nat. 164, S19–S32 (2004).PubMed 
    Article 

    Google Scholar 
    198.McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    199.Moran, N. A. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc. Natl Acad. Sci. USA 93, 2873–2878 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    200.Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    201.Wernegreen, J. J. Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide. PLoS ONE 6, e28905 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    202.Wernegreen, J. J. Genome evolution in bacterial endosymbionts of insects. Nat. Rev. Genet. 3, 850–861 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    203.Mao, M., Yang, X. & Bennett, G. M. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc. Natl Acad. Sci. USA 115, E11691–E11700 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    204.Husnik, F. et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153, 1567–1578 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    205.Łukasik, P. et al. Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas. Proc. Natl Acad. Sci. USA 115, E226–E235 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    206.Keeling, P. J., McCutcheon, J. P. & Doolittle, W. F. Symbiosis becoming permanent: survival of the luckiest. Proc. Natl Acad. Sci. USA 112, 10101–10103 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    207.Karnkowska, A. et al. A eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274–1284 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    208.John, U. et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci. Adv. 5, eaav1110 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    209.Venkova, T., Yeo, C. C. & Espinosa, M. Editorial: The good, the bad, and the ugly: multiple roles of bacteria in human life. Front. Microbiol. 9, 1702 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    210.Cirstea, M., Radisavljevic, N. & Finlay, B. B. Good bug, bad bug: breaking through microbial stereotypes. Cell Host Microbe 23, 10–13 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    211.Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    212.Leonard, S. P. et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science 367, 573–576 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    213.Wolinska, J. & King, K. C. Environment can alter selection in host–parasite interactions. Trends Parasitol. 25, 236–244 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    214.Kiers, E. T., Palmer, T. M., Ives, A. R., Bruno, J. F. & Bronstein, J. L. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13, 1459–1474 (2010).Article 

    Google Scholar 
    215.Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    216.Magalon, H., Nidelet, T., Martin, G. & Kaltz, O. Host growth conditions influence experimental evolution of life history and virulence of a parasite with vertical and horizontal transmission. Evolution 64, 2126–2138 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    217.Bull, J. J., Molineux, I. J. & Rice, W. R. Selection of benevolence in a host-parasite system. Evolution 45, 875–882 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    218.Gibson, A. K. et al. The evolution of reduced antagonism—a role for host–parasite coevolution. Evolution 69, 2820–2830 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    219.Kubinak, J. L. & Potts, W. K. Host resistance influences patterns of experimental viral adaptation and virulence evolution. Virulence 4, 410–418 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    220.Matthews, A. C., Mikonranta, L. & Raymond, B. Shifts along the parasite–mutualist continuum are opposed by fundamental trade-offs. Proc. Biol. Sci. 286, 20190236 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    221.Marchetti, M. et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol. 8, e1000280 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    222.Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Biol. Sci. 102, 3004–3009 (2005).CAS 

    Google Scholar 
    223.Jeon, K. W. Genetic and physiological interactions in the amoeba-bacteria symbiosis. J. Eukaryot. Microbiol. 51, 502–508 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    224.Wang, X. et al. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1, 1–9 (2010).PubMed Central 

    Google Scholar 
    225.Bull, J. J. & Molineux, I. J. Molecular genetics of adaptation in an experimental model of cooperation. Evolution 46, 882–895 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    226.Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    227.Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Env. Microbiol. 73, 4308–4316 (2007).CAS 
    Article 

    Google Scholar 
    228.Shapiro, J. W., Williams, E. S. C. P. & Turner, P. E. Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli. PeerJ 4, e2060 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    229.Porter, S. S. & Simms, E. L. Selection for cheating across disparate environments in the legume-rhizobium mutualism. Ecol. Lett. 17, 1121–1129 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    230.Weese, D. J., Heath, K. D., Dentinger, B. T. M. & Lau, J. A. Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution 69, 631–642 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    231.Slater, S. C. et al. Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J. Bacteriol. 191, 2501–2511 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    232.Proença, J. T., Barral, D. C. & Gordo, I. Commensal-to-pathogen transition: one-single transposon insertion results in two pathoadaptive traits in Escherichia coli–macrophage interaction. Sci. Rep. 7, 4504 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    233.Hu, G. et al. Microevolution during serial mouse passage demonstrates FRE3 as a virulence adaptation gene in Cryptococcus neoformans. mBio 5, e00941-14 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    234.Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    235.Sicard, M. et al. When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). J. Evol. Biol. 17, 985–993 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    236.Margulis, L. Words as battle cries: symbiogenesis and the new field of endocytobiology. BioScience 40, 673–677 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    237.Didelot, X., Barker, M., Falush, D. & Priest, F. G. Evolution of pathogenicity in the Bacillus cereus group. Syst. Appl. Microbiol. 32, 81–90 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    238.Oishi, S., Moriyama, M., Koga, R. & Fukatsu, T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). Zool. Lett. 5, 16 (2019).Article 

    Google Scholar 
    239.Kang, Y. et al. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathog. 10, e1004232 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    240.Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T. & Poon, A. F. Y. Ancestral reconstruction. PLoS Comput. Biol. 12, e1004763 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    241.Rafaluk-Mohr, C., Ashby, B., Dahan, D. A. & King, K. C. Mutual fitness benefits arise during coevolution in a nematode-defensive microbe model. Evol. Lett. 2, 246–256 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    242.Ford, S. A., Williams, D., Paterson, S. & King, K. C. Co-evolutionary dynamics between a defensive microbe and a pathogen driven by fluctuating selection. Mol. Ecol. 26, 1778–1789 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    243.Hall, A. R., Ashby, B., Bascompte, J. & King, K. C. Measuring coevolutionary dynamics in species-rich communities. Trends Ecol. Evol. 35, 539–550 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    244.Betts, A., Rafaluk, C. & King, K. C. Host and parasite evolution in a tangled bank. Trends Parasitol. 32, 863–873 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    245.Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    246.Unterholzner, S. J., Poppenberger, B. & Rozhon, W. Toxin-antitoxin systems: biology, identification, and application. Mob. Genet. Elem. 3, e26219 (2013).Article 
    CAS 

    Google Scholar 
    247.Croucher, N. J. et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331, 430–434 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    248.Wu, M. et al. Phylogenomics of the reproductive parasite wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2, E69 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    249.Frost, C. L. et al. The hypercomplex genome of an insect reproductive parasite highlights the importance of lateral gene transfer in symbiont biology. mBio 11, e02590-19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    250.Bamford, D. H. Do viruses form lineages across different domains of life? Res. Microbiol. 154, 231–236 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    251.Casjens, S. et al. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35, 490–516 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    252.Casjens, S. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49, 277–300 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    The sublethal effects of neonicotinoids on spiders are independent of their nutritional status

    1.Holmstrum, P. et al. Interactions between effects of environmental chemicals and natural stressors: A review. Sci. Total Environ. 408, 3746–3762 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    2.Wahl, O. & Ulm, K. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica. Oecologia 59, 106–128 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Schmehl, D. R., Teal, P. E. A., Frazier, J. L. & Grozinger, C. M. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol. 71, 177–190 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Tosi, S., Nieh, J. C., Sgolastra, F., Cabbri, R. & Medrzycki, P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. Biol. Sci. 284, 20171711 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Stuligross, C. & Williams, N. M. Pesticide and resource stressors additively impair wild bee reproduction. Proc. Biol. Sci. 287, 20201390 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    6.Liess, M., Foit, K., Knillmann, S., Schäfer, R. B. & Liess, H.-D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).
    Google Scholar 
    9.Simpson, S. J., Le Couteur, D. G. & Raubenheimer, D. Putting the balance back in diet. Cell 161, 18–23 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Wise, D. Food limitation of the spider Linyphia marginata: Experimental field studies. Ecology 56, 637–646 (1975).Article 

    Google Scholar 
    11.Bilde, T. & Toft, S. Quantifying food limitation of arthropod predators in the field. Oecologia 115, 54–58 (1998).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wilder, S. M. & Rypstra, A. Diet quality affects mating behaviour and egg production in a wolf spider. Anim. Behav. 76, 439–445 (2008).Article 

    Google Scholar 
    13.Tanaka, K. & Itô, Y. Decrease in respiratory rate in a wolf spider, Pardosa astrigera (L. Koch), under starvation. Res. Popul. Ecol. 24, 360–374 (1982).Article 

    Google Scholar 
    14.O’Connor, K. I., Taylor, A. C. & Metcalfe, N. B. The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. J. Fish Biol. 57, 41–51 (2000).Article 

    Google Scholar 
    15.McCue, M. D. Specific dynamic action: A century of investigation. Comp. Biochem. Physiol. A. 144, 381394 (2006).Article 
    CAS 

    Google Scholar 
    16.Secor, S. M. Specific dynamic action: A review of the postprandial metabolic response. J. Comp. Physiol. B 179, 1–56 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Van Leeuwen, T. E., Rosenfeld, J. S. & Richards, J. G. Effects of food ration on SMR: Influence of food consumption on individual variation in metabolic rate in juvenile coho salmon (Onchorhynchus kisutch). J. Anim. Ecol. 81, 395–402 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Parthasarathy, B. & Somanathan, H. Body condition and food shapes group dispersal but not solitary dispersal in a social spider. Behav. Ecol. 29, 619–627 (2018).Article 

    Google Scholar 
    19.Koemel, N. A., Barnes, C. L. & Wilder, S. M. Metabolic and behavioral responses of predators to prey nutrient content. J. Insect Physiol. 116, 25–31 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Řezáč, M., Řezáčová, V. & Heneberg, P. Neonicotinoid insecticides limit the potential of spiders to re-colonize disturbed agroecosystems when using silk-mediated dispersal. Sci. Rep. 9, 12272 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Řezáč, M., Řezáčová, V. & Heneberg, P. Contact application of neonicotinoids suppresses the predation rate in different densities of prey and induces paralysis of common farmland spiders. Sci. Rep. 9, 5724 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Fagan, W. F. et al. Nitrogen in insects: implications for trophic complexity and species diversification. Am. Nat. 160, 784–802 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Raubenheimer, D., Mayntz, D., Simpson, S. J. & Tøft, S. Nutrient-specific compensation following diapause in a predator: Implications for intraguild predation. Ecology 88, 2598–2608 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Lease, H. M. & Wolf, B. O. Exoskeletal chitin scales iso¬metrically with body size in terrestrial insects. J. Morphol. 271, 759–768 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    25.Wilder, S. M., Norris, M., Lee, R. W., Raubenheimer, D. & Simpson, S. J. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 16, 895–902 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Salomon, M., Mayntz, D. & Lubin, Y. Colony nutrition skews reproduction in a social spider. Behav. Ecol. 19, 605–611 (2008).Article 

    Google Scholar 
    27.Jensen, K., Mayntz, D., Wang, T., Simpson, S. J. & Overgaard, J. Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. J. Insect Physiol. 56, 1095–1100 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D. & Simpson, S. J. Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim. Behav. 81, 993–999 (2011).Article 

    Google Scholar 
    29.Wiggins, W. D. & Wilder, S. M. Mismatch between dietary requirements for lipid by a predator and availability of lipid in prey. Oikos 127, 1024–1032 (2018).CAS 
    Article 

    Google Scholar 
    30.Uetz, G. W., Bischoff, J. & Raver, J. Survivorship of wolf spiders (Lycosidae) reared on different diets. J. Arachnol. 20, 207–211 (1992).
    Google Scholar 
    31.Sigsgaard, L., Toft, S. & Villareal, S. Diet-dependent survival, development and fecundity of the spider Atypena formosana (Oi) (Araneae: Linyphiidae) implications for biological control in rice. Biocontrol Sci. Technol. 11, 233–244 (2001).Article 

    Google Scholar 
    32.Fisker, E. N. & Toft, S. Effects of chronic exposure to a toxic prey in a generalist predator. Physiol. Entomol. 29, 129–138 (2004).Article 

    Google Scholar 
    33.Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D. & Simpson, S. J. Prey nutrient composition has different effects on Pardosa wolf spiders with dissimilar life histories. Oecologia 165, 577–583 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Wilder, S. M. Spider nutrition: An integrative perspective. Adv. Insect Physiol. 40, 87–136 (2011).Article 

    Google Scholar 
    35.Barnes, C. L., Hawlena, D. & Wilder, S. M. Predators buffer the effects of variation in prey nutrient content for nutrient deposition. Oikos 128, 360–367 (2019).Article 

    Google Scholar 
    36.Jensen, K. et al. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B 279, 2212–2218 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Toft, S. & Macías-Hernández, N. Metabolic adaptations for isopod specialization in three species of Dysdera spiders from the Canary Islands. Physiol. Entomol. 42, 191–198 (2017).CAS 
    Article 

    Google Scholar 
    38.Barry, K. L. & Wilder, S. M. Macronutrient intake affects reproduction of a predatory insect. Oikos 122, 1058–1064 (2013).Article 

    Google Scholar 
    39.Wilder, S. M. & Schneider, J. M. Micronutrient consumption by female Argiope bruennichi affects offspring survival. J. Insect Physiol. 100, 128–132 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Demaree, S. R., Gilbert, C. D., Mersmann, H. J. & Smith, S. B. Conjugated linoleic acid differentially modifies fatty acid composition in subcellular fractions of muscle and adipose tissue but not adiposity of postweaning pigs. J. Nutr. 132, 3272–3279 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Nagao, K. & Yanagita, T. Conjugated fatty acids in food and their health benefits. J. Biosci. Bioeng. 100, 152–157 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hennessy, A. A., Ross, P. R., Fitzgerald, G. F. & Stanton, C. Sources and bioactive properties of conjugated dietary fatty acids. Lipids 51, 377–397 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hawley, J., Simpson, S. J. & Wilder, S. M. Effects of prey macronutrient content on body composition and nutrient intake in a web-building spider. PLoS ONE 9, e99165 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Dicks, L. Bees, lies and evidence-based policy. Nature 494, 283 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    47.Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356, 1395–1397 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Song, F. et al. Specific loops D, E and F of nicotinic acetylcholine receptor β1 subunit may confer imidacloprid selectivity between Myzus persicae and its predatory enemy Pardosa pseudoannulata. Insect Biochem. Mol. Biol. 39, 833–841 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Korenko, S., Sýkora, J., Řezáč, M. & Heneberg, P. Neonicotinoids suppress contact chemoreception in a common farmland spider. Sci. Rep. 10, 7019 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Benamú, M. et al. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure. Chemosphere 181, 241–249 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Korenko, S., Saska, P., Kysilková, K., Řezáč, M. & Heneberg, P. Prey contaminated with neonicotinoids induces feeding deterrent behavior of a common farmland spider. Sci. Rep. 9, 15895 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Park, Y. et al. Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 61, 255–259 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Sun, Q. et al. Imidacloprid promotes high fat diet-induced adiposity in female C57BL/6J mice and enhances adipogenesis in 3T3-L1 adipocytes via the AMPKα-mediated pathway. J. Agric. Food Chem. 65, 6572–6581 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Sun, Q. et al. Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. J. Agric. Food Chem. 64, 9293–9306 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.McCluney, K. E. & Sabo, J. L. Water availability directly determines per capita consumption at two trophic levels. Ecology 90, 1463–1469 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.McCluney, K. E. & Sabo, J. L. Tracing water sources of terrestrial animal populations with stable isotopes: Laboratory tests with crickets and spiders. PLoS ONE 5, e15696 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Leinbach, I. L., McCluney, K. E. & Sabo, J. L. Predator water balance alters intraguild predation in a streamside food web. Ecology 100, e02635 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Noldus, L. P., Spink, A. J. & Tegelenbosch, R. A. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 33, 398–414 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Pétillon, J. J., Deruytter, D., Decae, A., Renault, D. & Bonte, D. Habitat use, but not dispersal limitations, as the mechanism behind the aggregated population structure of the mygalomorph species Atypus affinis. Anim. Biol. 62, 181–192 (2012).Article 

    Google Scholar 
    61.Radwan, M. A. & Mohamed, M. S. Imidacloprid induced alterations in enzyme activities and energy reserves of the land snail, Helix aspersa. Ecotoxicol. Environ. Saf. 95, 91–97 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Ribeiro, S., Sousa, J. P., Nogueira, A. J. A. & Soares, A. M. V. M. Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus. Ecotoxicol. Environ. Saf. 49, 131–138 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Rambabu, P. J. & Rao, M. B. Effect of an organochlorine and three organophosphate pesticides on glucose, glycogen, lipid and protein contents in tissues of the freshwater snail, Bellamya dissimilis (Müller). Bull. Environ. Contam. Toxicol. 53, 142–148 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Dutra, B. K., Fernandes, F. A., Lauffer, A. L. & Oliveira, G. T. Carbofuran-induced alterations in the energy metabolism and reproductive behaviors of Hyalella castroi (Crustacea, Amphipoda). Comp. Biochem. Physiol. Part C 149, 640–646 (2009).CAS 

    Google Scholar 
    65.Messiad, R., Habes, D. & Soltani, N. Reproductive effects of a neonicotinoid insecticide (Imidacloprid) in the German Cockroaches Blattella germanica L. (Dictyoptera, Blattellidae). J. Entomol. Zool. Stud. 3, 1–6 (2015).
    Google Scholar 
    66.Abdelsalam, S. A., Alzahrani, A. M., Elmenshawy, O. M., Sedky, A. & Abdel-Moneim, A. M. Biochemical and ultrastructural changes in the ovaries of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) following acute imidacloprid poisoning. J. Asia Pac. Entomol. 23, 709–714 (2020).Article 

    Google Scholar 
    67.Tufi, S., Stel, J. M., De Boer, J., Lamoree, M. H. & Leonards, P. E. G. Metabolomics to explore imidacloprid-induced toxicity in the central nervous system of the freshwater snail Lymnaea stagnalis. Environ. Sci. Technol. 49, 14529–14536 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Ewere, E. E., Reichelt-Brushett, A. & Benkerndorff, K. Imidacloprid and formulated product impacts the fatty acids and enzymatic activities in tissues of Sydney rock oysters, Saccostrea glomerata. Mar. Environ. Res. 151, 104765 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Capowiez, Y., Rault, M., Mazzia, C. & Belzunces, L. Earthworm behavior as a biomarker: A case study using imidacloprid. Pedobiologia 47, 542–547 (2003).
    Google Scholar 
    70.Drobne, D. et al. Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Chemosphere 71, 1326–1334 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes

    1.Cadwell, K. The virome in host health and disease. Immunity 42, 805–813 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Paez-Espino, D. et al. Uncovering earth’s virome. Nature https://doi.org/10.1038/nature19094 (2016).Article 
    PubMed 

    Google Scholar 
    3.Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Dolja, V. V. & Koonin, E. V. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 244, 36–52 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Li, C.-X. et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 4, e05378 (2015).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    6.Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Atoni, E. et al. Metagenomic Virome Analysis of Culex Mosquitoes from Kenya and China. Viruses 10, 30 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    8.Sadeghi, M. et al. Virome of > 12 thousand Culex mosquitoes from throughout California. Virology 523, 74–88 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Zakrzewski, M. et al. Mapping the virome in wild-caught Aedes aegypti from Cairns and Bangkok. Nat. Publ. Group https://doi.org/10.1038/s41598-018-22945-y (2018).Article 

    Google Scholar 
    10.Xia, H. et al. Comparative metagenomic profiling of viromes associated with four common mosquito species in China. Virol. Sin. 33, 59–66 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Frey, K. G. et al. Bioinformatic characterization of mosquito viromes within the eastern United States and Puerto Rico: ciscovery of novel viruses. Evolut. Bioinform. 12s2, EBO.S38518 (2016).Article 

    Google Scholar 
    12.Chandler, J. A., Liu, R. M. & Bennett, S. N. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 06, 403 (2015).Article 

    Google Scholar 
    13.Chandler, J. A. et al. Metagenomic shotgun sequencing of a Bunyavirus in wild-caught Aedes aegypti from Thailand informs the evolutionary and genomic history of the Phleboviruses. Virology 464–465, 312–319 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    14.Cholleti, H. et al. Discovery of novel viruses in mosquitoes from the Zambezi valley of Mozambique. PLoS ONE 11, e0162751 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Scarpassa, V. M. et al. An insight into the sialotranscriptome and virome of Amazonian anophelines. BMC Genom. https://doi.org/10.1186/s12864-019-5545-0 (2019).Article 

    Google Scholar 
    16.Hameed, M. et al. A viral metagenomic analysis reveals rich viral abundance and diversity in mosquitoes from pig farms. Transbound. Emerg. Dis. 67, 328–343 (2019).PubMed 
    Article 

    Google Scholar 
    17.Fauver, J. R. et al. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-speci. Virology 498, 288–299 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Xiao, P. et al. Metagenomic sequencing from mosquitoes in China reveals a variety of insect and human viruses. Front. Cell. Infect. Microbiol. 8, 131–211 (2018).Article 
    CAS 

    Google Scholar 
    19.Shi, C. et al. Stable distinct core eukaryotic viromes in different mosquito species from Guadeloupe, using single mosquito viral metagenomics. Microbiome https://doi.org/10.1186/s40168-019-0734-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.World Health Organization. A global brief on vector-borne diseases. (2014).21.Vasilakis, N. & Tesh, R. B. Insect-specific viruses and their potential impact on arbovirus transmission. Curr. Opin. Virol. 15, 69–74 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Goenaga, S. et al. Potential for co-infection of a mosquito-specific flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes. Viruses 7, 5801–5812 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Hall-Mendelin, S. et al. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Parasit. Vectors 9, 414 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Colmant, A. M. G. et al. The recently identified flavivirus Bamaga virus is transmitted horizontally by Culex mosquitoes and interferes with West Nile virus replication in vitro and transmission in vivo. PLoS Negl. Trop. Dis. 12, e0006886 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Romo, H., Kenney, J. L., Blitvich, B. J. & Brault, A. C. Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerg. Microbes Infect 7, 181 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Schultz, M. J., Frydman, H. M. & Connor, J. H. Dual Insect specific virus infection limits Arbovirus replication in Aedes mosquito cells. Virology 518, 406–413 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Thongsripong, P. et al. Mosquito vector diversity across habitats in central Thailand endemic for dengue and other arthropod-borne diseases. PLoS Negl. Trop. Dis. 7, e2507 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Kukutla, P., Steritz, M. & Xu, J. Depletion of ribosomal RNA for mosquito gut metagenomic RNA-seq. JoVE https://doi.org/10.3791/50093 (2013).Article 
    PubMed 

    Google Scholar 
    29.Rattanarithikul, R., Harrison, B. A. & Panthusiri, P. Coleman RE (2005) Illustrated keys to the mosquitoes of Thailand I. Background; geographic distribution; lists of genera, subgenera, and species; and a key to the genera. Southeast Asian J. Trop. Med. Public Health 36 Suppl 1, 1–80 (2005).PubMed 

    Google Scholar 
    30.Rattanarithikul, R. et al. Illustrated keys to the mosquitoes of Thailand. II. Genera Culex and Lutzia. Southeast Asian J. Trop. Med. Public Health 36 Suppl 2, 1–97 (2005).PubMed 

    Google Scholar 
    31.Rattanarithikul, R., Harrison, B. A., Panthusiri, P., Peyton, E. L. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand III. Genera Aedeomyia, Ficalbia, Mimomyia, Hodgesia, Coquillettidia, Mansonia, and Uranotaenia. Southeast Asian J. Trop. Med. Public Health 37 Suppl 1, 1–85 (2006).PubMed 

    Google Scholar 
    32.Rattanarithikul, R., Harrison, B. A., Harbach, R. E., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand. IV. Anopheles. Southeast Asian J. Trop. Med. Public Health 37 Suppl 2, 1–128 (2006).PubMed 

    Google Scholar 
    33.Rattanarithikul, R., Harbach, R. E., Harrison, B. A., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand V. Genera Orthopodomyia, Kimia, Malaya, Topomyia, Tripteroides, and Toxorhynchites. Southeast Asian J. Trop. Med. Public Health 38, 1–65 (2007).PubMed 

    Google Scholar 
    34.Rattanarithikul, R. et al. Illustrated keys to the mosquitoes of Thailand. VI. Tribe Aedini. Southeast Asian J. Trop. Med. Public Health 41 Suppl 1, 1–225 (2010).PubMed 

    Google Scholar 
    35.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    39.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. bioRxiv 447110 (2018).42.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for interface of large phylogenetic trees. 1–8 (2010).43.Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz239 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Ryan, F. P. Human endogenous retroviruses in multiple sclerosis: potential for novel neuro-pharmacological research. Curr. Neuropharmacol. 9, 360–369 (2011).47.Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15, R46 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Simmonds, P. et al. ICTV virus taxonomy profile: Flaviviridae. J. Gen. Virol. 98, 2–3 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Kyaw, A. K. et al. Virus research. Virus Res. 247, 120–124 (2018).Article 
    CAS 

    Google Scholar 
    51.Valles, S. M. et al. ICTV virus taxonomy profile: Iflaviridae. J. Gen. Virol. 98, 527–528 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Kobayashi, D. et al. Isolation and characterization of a new iflavirus from Armigeres spp. mosquitoes in the Philippines. J. Gen. Virol. 98, 2876–2881 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Viruses, I. C. O. T. O., King, A. M. Q., Adams, M. J., Lefkowitz, E. & Carstens, E. B. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (Elsevier, Amsterdam, 2011).
    Google Scholar 
    54.Hillman, B. I. & Cai, G. The family narnaviridae: Simplest of RNA viruses. Adv. Virus Res. 86, 149–176 (2013).PubMed 
    Article 

    Google Scholar 
    55.Turina, M. et al. ICTV virus taxonomy profile: Ourmiavirus. J. Gen. Virol. 98, 129–130 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Yong, C. Y., Yeap, S. K., Omar, A. R. & Tan, W. S. Advances in the study of nodavirus. PeerJ 5, e3841 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Sahul Hameed, A. S. et al. ICTV virus taxonomy profile: Nodaviridae. J. Gen. Virol. 100, 3–4 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Sanborn, M. et al. Metagenomic analysis reveals three novel and prevalent mosquito biruses from a single pool of Aedes vexans nipponii collected in the Republic of Korea. Viruses 11, 222 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    59.Olendraite, I. et al. ICTV virus taxonomy profile: Polycipiviridae. J. Gen. Virol. 100, 554–555 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Wichgers Schreur, P. J., Kormelink, R. & Kortekaas, J. Genome packaging of the Bunyavirales. Curr. Opin. Virol. 33, 151–155 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Marklewitz, M., Zirkel, F., Kurth, A., Drosten, C. & Junglen, S. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family. Proc. Natl. Acad. Sci. U.S.A. 112, 7536–7541 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Walker, P. J. et al. ICTV virus taxonomy profile: Rhabdoviridae. J. Gen. Virol. 99, 447–448 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Sun, Q. et al. Complete genome sequence of Menghai rhabdovirus, a novel mosquito-borne rhabdovirus from China. Adv. Virol. 162, 1103–1106 (2017).CAS 

    Google Scholar 
    64.Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J. H. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 281, 215–220 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Flegontov, P. et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol 23, 1787–1793 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Kaur, D. et al. Occurrence of Setaria digitata in a cow. J Parasit Dis 39, 477–478 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Heneberg, P. et al. Intermediate hosts of the trematode Collyriclum faba (Plagiochiida: Collyriclidae) identified by an integrated morphological and genetic approach. Parasit. Vectors 8, 85 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Enabulele, E. E., Lawton, S. P., Walker, A. J. & Kirk, R. S. Molecular and morphological characterization of the cercariae of Lecithodendrium linstowi (Dollfus, 1931), a trematode of bats, and incrimination of the first intermediate snail host Radix balthica. Parasitology 145, 307–312 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Greiman, S. E. et al. Real-time PCR detection and phylogenetic relationships of Neorickettsia spp. in digeneans from Egypt, Philippines, Thailand, Vietnam and the United States. Parasitol. Int. 66, 1003–1007 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Lantova, L. & Volf, P. Mosquito and sand fly gregarines of the genus Ascogregarina and Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina)—Overview of their taxonomy, life cycle, host specificity and pathogenicity. Infect. Genet. Evol. 28, 616–627 (2014).PubMed 
    Article 

    Google Scholar 
    71.Roychoudhury, S. et al. Comparison of the morphology of oocysts and the phylogenetic analysis of four Ascogregarina species (Eugregarinidae: Lecudinidae) as inferred from small subunit ribosomal DNA sequences. Parasitol. Int. 56, 113–118 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Muslim, A., Fong, M.-Y., Mahmud, R., Lau, Y.-L. & Sivanandam, S. Armigeres subalbatus incriminated as a vector of zoonotic Brugia pahangi filariasis in suburban Kuala Lumpur Peninsular Malaysia. Parasites Vectors 6, 219 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Hiscox, A. et al. Armigeres subalbatus colonization of damaged pit latrines: A nuisance and potential health risk to residents of resettlement villages in Laos. Med. Vet. Entomol. 30, 95–100 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Chaves, L. F., Imanishi, N. & Hoshi, T. Population dynamics of Armigeres subalbatus (Diptera: Culicidae) across a temperate altitudinal gradient. Bull. Entomol. Res. 105, 589–597 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Ohba, S.-Y., Van Soai, N., Van Anh, D. T., Nguyen, Y. T. & Takagi, M. Study of mosquito fauna in rice ecosystems around Hanoi, northern Vietnam. Acta Trop. 142, 89–95 (2015).PubMed 
    Article 

    Google Scholar 
    76.Tsuda, Y., Takagi, M., Suwonkerd, W., Sugiyama, A. & Wada, Y. Comparisons of rice field mosquito (Diptera: Culicidae) abundance among areas with different agricultural practices in northern Thailand. J. Med. Entom. 35, 845–848 (1998).CAS 
    Article 

    Google Scholar 
    77.Ohba, S.-Y. et al. Mosquitoes and their potential predators in rice agroecosystems of the Mekong Delta, southern Vietnam. J. Am. Mosq. Control Assoc. 27, 384–392 (2011).PubMed 
    Article 

    Google Scholar 
    78.Su, C.-L. et al. Molecular epidemiology of Japanese encephalitis virus in mosquitoes in Taiwan during 2005–2012. PLoS Negl. Trop. Dis. 8, e3122 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Keiser, J. et al. Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop. 95, 40–57 (2005).PubMed 
    Article 

    Google Scholar 
    80.Apiwathnasorn, C., Samung, Y., Prummongkol, S., Asavanich, A. & Komalamisra, N. Surveys for natural host plants of Mansonia mosquitoes inhabiting Toh Daeng peat swamp forest, Narathiwat Province, Thailand. Southeast Asian J. Trop. Med. Public Health 37, 279–282 (2006).PubMed 

    Google Scholar 
    81.Surtees, G., Simpson, D. I. H., Bowen, E. T. W. & Grainger, W. E. Ricefield development and arbovirus epidemiology, Kano Plain, Kenya. Trans. R. Soc. Trop. Med. Hyg. 64, 511–518 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Kwa, B. H. Environmental change, development and vector-borne disease: Malaysia’s experience with filariasis, scrub typhus and dengue. Environ. Dev. Sustain. 10, 209–217 (2008).Article 

    Google Scholar 
    83.Cook, S. et al. Molecular evolution of the insect-specific flaviviruses. J. Gen. Virol. 93, 223–234 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Parry, R. & Asgari, S. Aedes anphevirus: an insect-specific virus distributed worldwide in Aedes aegypti mosquitoes that has complex interplays with Wolbachia and Dengue Virus Infection in Cells. J. Virol. 92, e00224–18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Shi, M. et al. High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in western Australia. J. Virol. 91, e00680–17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    86.Thongsripong, P. et al. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases. Ecol. Evol. 8, 1352–1368 (2018).PubMed 
    Article 

    Google Scholar 
    87.Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 27, 105–117 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 1–12 (2014).MathSciNet 
    Article 
    CAS 

    Google Scholar 
    89.Pollock, J., Glendinning, L., Wisedchanwet, T. & Watson, M. The madness of microbiome: attempting to find consensus ‘best practice’ for 16S microbiome studies. Appl. Environ. Microbiol. 84, e02627–17 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Blair, C. D., Olson, K. E. & Bonizzoni M. The widespread occurrence and potential biological roles of endogenous viral elements in insect genomes. Curr. Issues Mol. Biol. 34, 13–30 (2020).PubMed 
    Article 

    Google Scholar  More