Behavioral responses of the European mink in the face of different threats: conspecific competitors, predators, and anthropic disturbances
1.Becker, L. J. S. & Gabor, C. R. Effects of turbidity and visual vs. chemical cues on anti-predator response in the endangered fountain darter (Etheostoma fonticola). Ethology 118, 994–1000. https://doi.org/10.1111/eth.12002 (2010).Article
Google Scholar
2.Hettyey, A., Roelli, F., Thürlimann, N., Zürcher, A. & Van Buskirk, J. Visual cues contribute to predator detection in anuran larvae. Biol. J. Linn. Soc. 106, 820–827. https://doi.org/10.1111/j.1095-8312.2012.01923.x (2012).Article
Google Scholar
3.Sánchez-González, B., Barja, I. & Navarro-Castilla, Á. Wood mice modify food intake under different degrees of predation risk: influence of acquired experience and degradation of predator’s faecal volatile compounds. Chemoecoly. 27, 115–122. https://doi.org/10.1007/s00049-017-0237-1 (2017).CAS
Article
Google Scholar
4.Pereira, A. & Moita, M. A. Is there anybody out there? Neural circuits of threat detection in vertebrates. Curr. Opin. Neurobiol. 41, 179–187. https://doi.org/10.1016/j.conb.2016.09.011 (2016).CAS
Article
PubMed
Google Scholar
5.Hernández, M. C., Navarro-Castilla, A., Piñeiro, A. & Barja, I. Wood mice agressiveness and flight response to human handling: Effect of individual and environmental factors. Ethology 124, 559–569. https://doi.org/10.1111/eth.12760 (2018).Article
Google Scholar
6.Sánchez-González, B., Planillo, A., Navarro-Castilla, Á. & Barja, I. The concentration of fear: mice’s behavioural and physiological stress responses to different degrees of predation risk. Sci. Nat. 105, 16. https://doi.org/10.1007/s00114-018-1540-6 (2018).CAS
Article
Google Scholar
7.Verdolin, J. L. Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav. Ecol. Sociobiol. 60, 457–464. https://doi.org/10.1007/s00265-006-0172-6 (2006).Article
Google Scholar
8.Barja, I., Silván, G., Martínez-Fernández, L. & Illera, J. C. Physiological stress responses, fecal marking behavior, and reproduction in wild European pine martens (Martes martes). J. Chem. Ecol. 37, 253–259. https://doi.org/10.1007/s10886-011-9928-1 (2011).CAS
Article
PubMed
Google Scholar
9.Barja, I., Silván, G. & Illera, J. C. Relationships between sex and stress hormone levels in feces and marking behavior in a wild population of Iberian wolves (Canis lupus signatus). J. Chem. Ecol. 34, 697–701. https://doi.org/10.1007/s10886-008-9460-0 (2008).CAS
Article
PubMed
Google Scholar
10.Barja, I. Decision making in plant selection during the faecal-marking behavior of wild wolves. Anim. Behav. 77, 489–493 (2009).Article
Google Scholar
11.Barja, I. Winter distribution of European pine marten (Martes martes) scats in a protected area of Galicia, Spain. Mammalia 69, 435–438 (2005).Article
Google Scholar
12.Berzins, R. & Helder, R. Olfactory communication and the importance of different odour sources in the ferret (Mustela putorius f. furo). Mamm. Biol. 73, 379–387. https://doi.org/10.1016/j.mambio.2007.12.002 (2008).Article
Google Scholar
13.Barja, I. & List, R. Faecal marking behavior in ringtails (Bassariscus astutus) during the non-breeding period: spatial characteristics of latrines and single faeces. Chemoecoly. 16, 2019–2222. https://doi.org/10.1007/s00049-006-0352-x (2006).Article
Google Scholar
14.Lowry, A. C., Frank, L. & Moore, L. F. Regulation of behavioral responses by corticotropin-releasing factor. Gen. Comp. Endocr. 146, 19–27. https://doi.org/10.1016/j.ygcen.2005.12.006 (2006).CAS
Article
PubMed
Google Scholar
15.Romero, L. M. & Gormally, B. M. G. How truly conserved is the “well-conserved” vertebrate stress response?. Integr. Comp. Biol. 59, 273–281. https://doi.org/10.1093/icb/icz011 (2019).CAS
Article
PubMed
Google Scholar
16.Réale, D. & Festa-Bianchet, M. Predator-induced natural selection on temperament in bighorn ewes. Anim. Behav. 65, 463–470. https://doi.org/10.1006/anbe.2003.2100 (2003).Article
Google Scholar
17.Hernández, M. C., Navarro-Castilla, Á. & Barja, I. Wood mouse feeding effort and decision-making when encountering a restricted unknown food source. PLoS ONE https://doi.org/10.1371/journal.pone.0212716 (2019).Article
PubMed
PubMed Central
Google Scholar
18.Creel, S., Christianson, D., Liley, S. & Winnie, J. A. Predation risk affects reproductive physiology and demography of elk. Science 315, 960. https://doi.org/10.1126/science.1135918 (2007).ADS
CAS
Article
PubMed
Google Scholar
19.Navarro-Castilla, Á. & Barja, I. Antipredatory response and food intake in wood mice (Apodemus sylvaticus) under simulated predation risk by resident and novel carnivorous predators. Ethology 120, 90–98. https://doi.org/10.1111/eth.12184 (2014).Article
Google Scholar
20.Navarro-Castilla, Á. & Barja, I. Does predation risk, through moon phase and predator cues, modulate food intake, antipredatory and physiological responses in wood mice (Apodemussylvaticus)?. Behav. Ecol. Sociobiol. 68, 1505–1512. https://doi.org/10.1007/s00265-014-1759-y (2014).Article
Google Scholar
21.Navarro-Castilla, Á., Díaz, D. M. & Barja, I. Does ungulate disturbance mediate behavioural and physiological stress responses in Algerian mice (Mus spretus)? a wild exclosure experiment. Hystrix. 28, 165–172 (2017).
Google Scholar
22.Brown, J. S. & Kotler, B. P. Hazardous duty pay and the foraging cost of predation. Ecol. Lett. 7, 999–1014. https://doi.org/10.1111/j.1461-0248.2004.00661.x (2004).Article
Google Scholar
23.Navarro-Castilla, Á. & Barja, I. Stressful living in lower-quality habitats? Body mass, feeding behaviour and physiological stress responses in wild wood mouse populations. Integr. Zool. 4, 114–126. https://doi.org/10.1111/1749-4877.12351 (2018).Article
Google Scholar
24.Navarro-Castilla, Á., Sánchez-González, B. & Barja, I. Latrine behaviour and faecal corticosterone metabolites as indicators of habitat-related responses of wild rabbits to predation risk. Ecol. Indic. 97, 175–182. https://doi.org/10.1016/j.ecolind.2018.10.016 (2019).Article
Google Scholar
25.Clarke, E., Reichard, H. U. & Zuberbühle, K. The anti-predator behavior of wild white-handed gibbons (Hylobates bar). Behav. Ecol. Sociobiol. 66, 85–96 (2012).Article
Google Scholar
26.Hughes, K. K., Kelley, J. L. & Banks, P. B. Dangerous liaisons: the predation risks of receiving social signals. Ecol. Lett. 15, 11326–11339. https://doi.org/10.1111/j.1461-0248.2012.01856.x (2012).Article
Google Scholar
27.MacLean, S. A. & Bonter, D. N. The sound of danger: Threat sensitivity to predator vocalizations, alarm calls, and novelty in gulls. PLoS ONE 8, e82384. https://doi.org/10.1371/journal.pone.0082384 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
28.Barber, J. R., Crooks, K. R. & Fristrup, K. M. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. Evol. 25, 180–189. https://doi.org/10.1016/j.tree.2009.08.002 (2010).Article
PubMed
Google Scholar
29.Sillero, N. Amphibian mortality levels on Spanish country roads: Descriptive and spatial analysis. Amphibia-Reptilia 29, 337–347. https://doi.org/10.1163/156853808785112066 (2008).Article
Google Scholar
30.Taylor, B. D. & Goldingay, R. L. Roads and wildlife: Impacts, mitigation and implications for wildlife management in Australia. Wildl. Res. 37, 320–331. https://doi.org/10.1071/WR09171 (2010).Article
Google Scholar
31.Iglesias-Merchán, C., Diaz-Balteiro, L. & de la Puente, J. Road traffic noise impact assessment in a breeding colony of cinereous vultures (Aegypius monachus) in Spain. J. Acoust. Soc. Am. or JASA. 139, 1124. https://doi.org/10.1121/1.4943553 (2016).ADS
Article
PubMed
Google Scholar
32.Iglesias-Merchan, C. et al. A new large-scale index (AcED) for assessing traffic noise disturbance on wildlife: Stress response in a roe deer (Capreolus capreolus) population. Environ. Monit. Assess. 190, 185. https://doi.org/10.1007/s10661-018-6573-y (2018).Article
PubMed
Google Scholar
33.Ortiz-Urbina, E., Diaz-Balteiro, L. & Iglesias-Merchan, C. Influence of anthropogenic noise for predicting cinereous vulture nest distribution. Sustainability. 12, 503. https://doi.org/10.3390/su12020503 (2020).Article
Google Scholar
34.Bamford, A. J., Monadjem, A. & Hardy, I. C. W. Nesting habitat preference of the African White-backed Vulture Gyps africanus and the effects of anthropogenic disturbance. Ibis 151, 51–62. https://doi.org/10.1111/j.1474-919X.2008.00878.x (2009).Article
Google Scholar
35.Zwijacz-Kozica, T. et al. Concentration of fecal cortisol metabolites in chamois in relation to tourist pressure in Tatra National Park (South Poland). Acta Theriol. 58, 215–222. https://doi.org/10.1007/s13364-012-0108-7 (2013).Article
Google Scholar
36.Barja, I. et al. Stress physiological responses to tourist pressure in a wild population of European pine marten. J. Steroid Biochem. 104, 136–142. https://doi.org/10.1016/j.jsbmb.2007.03.008 (2007).CAS
Article
Google Scholar
37.Piñeiro, A., Barja, I., Silván, G. & Illera, J. C. Effects of tourist pressure and reproduction on physiological stress response in wildcats: Management implications for species conservation. Wildl. Res. 39, 532–539. https://doi.org/10.1071/WR10218 (2012).Article
Google Scholar
38.Tarjuelo, R. et al. Effects of human activity on physiological and behavioral responses of an endangered steppe bird. Behav. Ecol. 26, 828–838. https://doi.org/10.1093/beheco/arv016 (2015).Article
Google Scholar
39.Beale, C. M. & Monaghan, P. Behavioural responses to human disturbance: A matter of choice?. Anim. Behav. 68, 1065–1069 (2004).Article
Google Scholar
40.Thiel, D., Jenni-Eiermann, S., Braunisch, V., Palme, R. & Jenni, L. Ski tourism affects habitat use and evokes a physiological stress response in capercaillie Tetrao urogallus: A new methodological approach. J. Appl. Ecol. 45, 845–853 (2008).Article
Google Scholar
41.Casas, F., Mougeot, F., Viñuela, J. & Bretagnolle,. Effects of hunting on the behaviour and spatial distribution of farmland birds: Importance of hunting-free refuges in agricultural areas. Anim. Conserv. 12, 346–354. https://doi.org/10.1111/j.1469-1795.2009.00259.x (2009).Article
Google Scholar
42.Wang, Z., Li, Z., Beuchamp, G. & Jiang, Z. Flock size and human disturbance affect vigilance of endangered red-crowned cranes (Grus japonensis). Biol. Conserv. 144, 101–105. https://doi.org/10.1016/j.biocon.2010.06.025 (2011).Article
Google Scholar
43.Maran, T. et al. Mustela lutreola. IUCN. (2010). e.T14018A4381596.44.Gómez, A., Oreca, S., Podra, M., Sanz, B. & Palazón, S. Expansión del visón europeo Mustela lutreola (Linnaeus, 1761) hacia el este de su área de distribución en España: primeros datos en Aragón. Galemys. 23, 37–45 (2011).
Google Scholar
45.Amstislavsky, S. & Ternovskaya, Y. Reproduction in mustelids. Anim. Reprod. Sci. 60–61, 571–581 (2000).Article
Google Scholar
46.Harrington, L. A., Harrigton, A. L. & Macdonald, D. W. The smell of new competitors: the response of American mink Mustela vison, to the odours of otter, Lutra lutra and polecat, Mustela putorius. Ethology 115, 421–428. https://doi.org/10.1111/j.1439-0310.2008.01593.x (2008).Article
Google Scholar
47.Caro, T. M. & Stoner, C. J. The potential for interspecific competition among African carnivores. Biol. Conserv. 110, 67–75 (2003).Article
Google Scholar
48.Maran, T., Põdra, M., Põlma, M. & Macdonald, D. W. The survival of captive-born animals in restoration programmes—Case study of the endangered European mink Mustela lutreola. Biol. Conserv. 142, 1685–1692. https://doi.org/10.1016/j.biocon.2009.03.003 (2009).Article
Google Scholar
49.Palazón, S. (2017). Visón europeo – Mustela lutreola. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Barja, I. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/50.Gorman, M. L. & Trowbridge, B. J. The role of odor in the social lives of carnivores. In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman, J. L.) (Springer, 1989). https://doi.org/10.1007/978-1-4757-4716-4_3.
Google Scholar
51.Pruitt, C. H. & Burghardt, G. M. Communicationin terrestrial carnivores: Mustelidae, Procyonidae, and Ursidae. In How Animals Communicate (ed. Seboek, T. A.) 767–793 (Indiana University Press, 1977).
Google Scholar
52.Zschille, J., Stier, N. & Roth, M. Gender differences in activity patterns of American mink Neovison vison in Germany. Eur. J. Wildl. Res. 56, 187–194. https://doi.org/10.1007/s10344-009-0303-2 (2010).Article
Google Scholar
53.Hall, K. L. et al. Vigilance of kit foxes at water sources: A test of competing hypotheses for a solitary carnivore subject to predation. Behav. Process. 94, 76–82. https://doi.org/10.1016/j.beproc.2012.12.007 (2013).Article
Google Scholar
54.Maji, C. Dynamical analysis of a fractional-order predator–prey model incorporating a constant prey refuge and nonlinear incident rate. Model. Earth Syst. Environ. https://doi.org/10.1007/s40808-020-01061-9 (2021).Article
Google Scholar
55.Li, D., Zhou, Q., Tang, X., Huang, H. & Huang, C. Sleeping site use of the white-headed langur Trachypithecus leucocephalus: The role of predation risk, territorial defense, and proximity to feeding sites. Curr. Zool. 57, 260–268. https://doi.org/10.1093/czoolo/57.3.260 (2011).Article
Google Scholar
56.Kats, B. L. & Dill, M. L. The scent of death: Chemosensory assessment of predation risk by prey animals. Écoscience. 5, 361–394. https://doi.org/10.1080/11956860.1998.11682468 (1998).Article
Google Scholar
57.Šlipogor, V., Gunhold-de Oliveira, T., Tadić, Z., Massen, J. J. & Bugnyar, T. Consistent inter-individual differences in common marmosets (Callithrix jacchus) in boldness-shyness, stress-activity, and exploration-avoidance. Am. J. Primatol. 78, 961–973. https://doi.org/10.1002/ajp.22566 (2016).Article
PubMed
PubMed Central
Google Scholar
58.Hall, B. A., Melfi, V., Burns, A., McGill, D. M. & Doyle, R. E. Curious creatures: A multi-taxa investigation of responses to novelty in a zoo environment. Peer J. 6, e4454. https://doi.org/10.7717/peerj.4454 (2018).Article
PubMed
Google Scholar
59.Fernández-Lázaro, G., Latorre, R., Alonso-García, E. & Barja, I. Nonhuman primate welfare: Can there be arelationship between personality, lateralization and physiological indicators?. Behav. Proc. 166, 103897 (2019).Article
Google Scholar
60.de Miguel, J & Barja, I. Manual de métodos de estudio del comportamiento en carnívoros. Técnicas de Biología de la Conservación – Nº5. (ed. Tundra Ediciones) (2015).61.le Roux, A., Cherry, M. I., Gygax, L. & Manser, M. B. Vigilance behaviour and fitness consequences: Comparing a solitary foraging and an obligate group-foraging mammal. Behav. Ecol. Sociobiol. 63, 1097–1107. https://doi.org/10.1007/s00265-009-0762-1 (2009).Article
Google Scholar
62.Hayes, R. A., Morelli, T. L. & Wright, P. C. Volatile components of lemur scent secretions vary throughout the year. Am. J. Primatol. 68, 1202–1207. https://doi.org/10.1002/ajp.20319 (2006).CAS
Article
PubMed
Google Scholar
63.Scordato, S. E. & Drea, M. C. Scents and sensibility: Information content of olfactory signals in the ringtailed lemur, Lemur catta. Anim. Behav. 7, 301–314. https://doi.org/10.1016/j.anbehav.2006.08.006 (2007).Article
Google Scholar
64.Martín, J., Barja, I. & López, P. Chemical scent constituents in feces of wild Iberian wolves (Canis lupus signatus). Biochem. Syst. Ecol. 38, 1096–1102. https://doi.org/10.1016/j.bse.2010.10.014 (2010).CAS
Article
Google Scholar
65.Sánchez-González, B., Planillo, A., Navarro-Castilla, Á. & Barja, I. The concentration of fear: Mice’s behavioural and physiological stress responses to different degrees of predation risk. Sci Nat. 105, 16. https://doi.org/10.1007/s00114-018-1540-6 (2018).CAS
Article
Google Scholar
66.Brawata, L. R. & Neeman, T. Is water the key? Dingo management, intraguild interactions and predator distribution around water points in arid Australia. Wildl. Res. 38, 426–436. https://doi.org/10.1071/WR10169 (2011).Article
Google Scholar
67.Erlinge, S., Sandell, M. & Brinck, C. Scent-marking and its territorial significance in stoats, Mustela erminea. Anim. Behav. 30, 811–818. https://doi.org/10.1016/S0003-3472(82)80154-1 (1982).Article
Google Scholar
68.Brown, J. A., Harris, S. & Cheeseman, C. L. The development of field techniques for studying potential modes of transmission of bovine tuberculosis from badgers to cattle. (ed. Hayden, T. J,) Royal Irish Academy (1993).69.Roper, T. J. et al. Territorial marking with faeces in badgers (Meles meles): A comparison of boundary and hinterland use. Behaviour 127, 289–307 (1993).Article
Google Scholar
70.Hutchings, M. R. & White, P. C. L. Mustelid scent-marking in managed ecosystems: Implications for population management. Mammal Rev. 30, 157–169. https://doi.org/10.1046/j.1365-2907.2000.00065.x (2000).Article
Google Scholar
71.McCormick, M. I. & Manassa, R. Predation risk assessment by olfactory and visual cues in a coral reef fish. Coral Reefs 27, 105–113. https://doi.org/10.1007/s00338-007-0296-9 (2008).ADS
Article
Google Scholar
72.Palazón, S. & Gómez, A. (2007). Mustela lutreola (Linnaeus, 1761). Atlas y libro rojo de los mamíferos terrestres de España. Chapter: Mustela lutreola: ficha roja. (ed. Palomo J., Gisbert, J. & Blanco, J. C.) (Dirección General para la Biodiversidad-SECEM-SECEMU 2007).73.Laundre, W. J., Hernandez, L. & Ripple, J. W. The landscape of fear: Ecological implications of being afraid. Open J. Ecol. 3, 1–7 (2010).Article
Google Scholar
74.Steven, R., Pickering, C. & Castley, J. G. A review of the impacts of nature based recreation on birds. J. Environ. Manag. 92, 2287–2294. https://doi.org/10.1016/j.jenvman.2011.05.005 (2011).Article
Google Scholar
75.Lima, L. S. & Dill, M. L. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640. https://doi.org/10.1139/z90-092 (1990).Article
Google Scholar
76.Lima, L. S., Blackwell, F. B., DeVault, L. T. & Fernández-Juricic, E. Animal reactions to oncoming vehicles: A conceptual review. Biol. Rev. 90, 60–76. https://doi.org/10.1111/brv.12093 (2015).Article
PubMed
Google Scholar
77.Kotler, B. P. et al. Forag-ing games between gerbils and their predators: Temporal dynamics of resource depletion and apprehension in gerbils. Evol. Ecol. Res. 4, 495–518 (2002).ADS
Google Scholar
78.Palazón, S. et al. Causes and patterns of human-induced mortality in the critically endangered European mink Mustela lutreola in Spain. Oryx 46, 614–616. https://doi.org/10.1017/S0030605312000920 (2012).Article
Google Scholar
79.De Bellefroid, M.D.N. & Rosoux, R. (2005) Le Vison d’Europe. BELIN Eveil Nature Collection (2005).80.Griffin, A. S., Blumstein, D. T. & Evans, C. S. Training captive-bred or translocated animals to avoid predators. Conserv. Biol. 14, 1317–1326 (2000).Article
Google Scholar
81.Palazón, S. Distribución, morfología y ecología del visón europeo (Mustela lutreola L. 1761) en la Península Ibérica. Tesis Doctoral. Universidad de Barcelona, Barcelona (1998).82.Palazón, S.; Ruíz-Olmo, J. (1998). A preliminary study of behaviour of the European mink (Mustela lutreola), by means of radio-tracking. In: Dustone, N.; Gorman, M. L. (eds). Behaviour and ecology of riparian mammals: 93–105. Cambridge University Press.83.Garin, I. et al. Home ranges of European mink Mustela lutreola in southwestern Europe. Acta Theriol. 47, 55–62. https://doi.org/10.1007/BF03193566 (2002).Article
Google Scholar
84.Iglesias, C., Mata, C. & Malo, J. E. The influence of traffic noise on vertebrate road crossing through underpasses. Ambio 41, 193–201. https://doi.org/10.1007/s13280-011-0145-5 (2012).Article
PubMed
Google Scholar
85.Palazón, S., Ruiz-Olmo, J. & Gosàlbez, J. Diet of European mink (Mustela lutreola) in Northern Spain. Mammalia 68, 159–165. https://doi.org/10.1515/mamm.2004.016 (2004).Article
Google Scholar
86.Fey, K., Banks, P. B., Ylönen, H. & Korpimäki, E. Behavioural responses of voles to simulated risk of predation by a native and an alien mustelid: An odour manipulation experiment. Wild. Res. 37, 273–282 (2010).Article
Google Scholar
87.Foster, S. A. The geography of behaviour: An evolutionary perspective. Trends Evol. Ecol. 14, 190–195 (1999).CAS
Article
Google Scholar
88.Ellis, R. & Heimbach, R. Bugs and birds: Children’s acquisition of second language vocabulary through interaction. System 25, 247–259. https://doi.org/10.1016/S0346-251X(97)00012-2 (1997).Article
Google Scholar
89.Miller, B. et al. Development of survival skills in captive-raised Siberian polecats (Mustela eversmanni) II: Predator avoidance. J. Ethol. 8, 95–104. https://doi.org/10.1007/BF02350280 (1990).CAS
Article
Google Scholar
90.McLean, I. G., Lundie-Jenkins, G. & Jarman, P. J. Teaching an endangered mammal to recognise predators. Biol. Conserv. 75, 51–62. https://doi.org/10.1016/0006-3207(95)00038-0 (1996).Article
Google Scholar
91.Rhoznov V. & Petrin, A. New hypothesis on the reasons of disappearance of European mink based on the study of behavioral interactions. International Conference on Conservation of European mink (2003). Logroño, Spain, Proceedings Book 209–221 (2006).92.Cole, D. N. & Landres, P. B. Threats to wilderness ecosystems: Impacts and research needs. Ecol. Appl. 6, 168–184. https://doi.org/10.2307/2269562 (1996).Article
Google Scholar
93.Juutinen, A. et al. Combining ecological and recreational aspects in national park management: A choice experiment application. Ecol. econ. 70, 1231–1239. https://doi.org/10.1016/j.ecolecon.2011.02 (2011).Article
Google Scholar More