More stories

  • in

    Long-term patterns of cave-exiting activity of hibernating bats in western North America

    1.Hope, P. R. & Jones, G. Warming up for dinner: Torpor and arousal in hibernating Natterer’s bats (Myotis nattereri) studied by radio telemetry. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 182, 569–578. https://doi.org/10.1007/s00360-011-0631-x (2012).Article 

    Google Scholar 
    2.Czenze, Z. J., Jonasson, K. A. & Willis, C. K. R. Thrifty females, frisky males: Winter energetics of hibernating bats from a cold climate. Physiol. Biochem. Zool. 90, 502–511. https://doi.org/10.1086/692623 (2017).Article 
    PubMed 

    Google Scholar 
    3.Reynolds, D. S., Shoemaker, K., von Oettingen, S. & Najjar, S. High rates of winter activity and arousals in two New England bat species: Implications for a reduced white-nose syndrome impact?. Northeast. Nat. 24, B188–B208 (2017).Article 

    Google Scholar 
    4.Kunz, T. H. & Martin, R. A. Plecotus townsendii. Mamm. Species 175, 1–6 (1982).
    Google Scholar 
    5.Twente, J. W. Aspects of a population study of cavern-dwelling bats. J. Mamm. 36, 379–390 (1955).Article 

    Google Scholar 
    6.Humphrey, S. R. & Kunz, T. H. Ecology of a Pleistocene relict, the western big-eared bat (Plecotus townsendii), in the southern Great Plains. J. Mamm. 57, 470–494. https://doi.org/10.2307/1379297 (1976).Article 

    Google Scholar 
    7.Czenze, Z. J., Park, A. D. & Willis, C. K. R. Staying cold through dinner: Cold-climate bats rewarm with conspecifics but not sunset during hibernation. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 183, 859–866. https://doi.org/10.1007/s00360-013-0753-4 (2013).Article 

    Google Scholar 
    8.Pearson, O. P., Koford, M. R. & Pearson, A. K. Reproduction of the lump-nosed bat (Corynorhinus rafinesquei) in California. J. Mamm. 33, 273–320 (1952).Article 

    Google Scholar 
    9.Johnson, J. S., Lacki, M. J., Thomas, S. C. & Grider, J. F. Frequent arousals from winter torpor in Rafinesque’s big-eared bat (Corynorhinus rafinesquii). PLoS ONE 7, e49754. https://doi.org/10.1371/journal.pone.0049754 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lausen, C. L. & Barclay, R. M. R. Winter bat activity in the Canadian prairies. Can. J. Zool.-Rev. Can. Zool. 84, 1079–1086. https://doi.org/10.1139/z06-093 (2006).Article 

    Google Scholar 
    11.Thomas, D. W. & Cloutier, D. Evaporative water-loss by hibernating little brown bats, Myotis lucifugus. Physiol. Zool. 65, 443–456 (1992).Article 

    Google Scholar 
    12.Ben-Hamo, M., Munoz-Garcia, A., Williams, J. B., Korine, C. & Pinshow, B. Waking to drink: Rates of evaporative water loss determine arousal frequency in hibernating bats. J. Exp. Biol. 216, 573–577. https://doi.org/10.1242/jeb.078790 (2013).Article 
    PubMed 

    Google Scholar 
    13.Czenze, Z. J. & Willis, C. K. R. Warming up and shipping out: Arousal and emergence timing in hibernating little brown bats (Myotis lucifugus). J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 185, 575–586. https://doi.org/10.1007/s00360-015-0900-1 (2015).Article 

    Google Scholar 
    14.Choate, J. R. & Anderson, J. M. Bats of jewel cave national monument, South Dakota. Prairie Nat. 29, 39–47 (1997).
    Google Scholar 
    15.Klüg-Baerwald, B. J., Gower, L. E., Lausen, C. L. & Brigham, R. M. Environmental correlates and energetics of winter flight by bats in southern Alberta, Canada. Can. J. Zool. 94, 829–836. https://doi.org/10.1139/cjz-2016-0055 (2016).Article 

    Google Scholar 
    16.Johnson, J. S. et al. Migratory and winter activity of bats in Yellowstone National Park. J. Mamm. 98, 211–221. https://doi.org/10.1093/jmammal/gyw175 (2017).Article 

    Google Scholar 
    17.Norquay, K. & Willis, C. Hibernation phenology of Myotis lucifugus. J. Zool. 294, 85–92 (2014).Article 

    Google Scholar 
    18.Barclay, R. M. et al. Variation in the reproductive rate of bats. Can. J. Zool. 82, 688–693 (2004).Article 

    Google Scholar 
    19.Jonasson, K. A. & Willis, C. K. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS ONE 6, e21061. https://doi.org/10.1371/journal.pone.0021061 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Speakman, J. R., Webb, P. I. & Racey, P. A. Effects of disturbance on the energy expenditure of hibernating bats. J. Appl. Ecol. 28, 1087–1104. https://doi.org/10.2307/2404227 (1991).Article 

    Google Scholar 
    21.Reeder, D. M., Field, K. A. & Slater, M. H. Balancing the costs of wildlife research with the benefits of understanding a panzootic disease, white-nose syndrome. ILAR J. 56, 275–282. https://doi.org/10.1093/ilar/ilv035 (2015).CAS 
    Article 

    Google Scholar 
    22.Boyles, J. G. Benefits of knowing the costs of disturbance to hibernating bats. Wildl. Soc. Bull. 41, 388–392. https://doi.org/10.1002/wsb.755 (2017).Article 

    Google Scholar 
    23.Thomas, D. W. Hibernating bats are sensitive to nontactile human disturbance. J. Mamm. 76, 940–946. https://doi.org/10.2307/1382764 (1995).Article 

    Google Scholar 
    24.Furey, N. M. & Racey, P. A. Bats in the Anthropocene: Conservation of Bats in a Changing World 463–500 (Springer, 2016).
    Google Scholar 
    25.Sheffield, S. R., Shaw, J. H., Heidt, G. A. & McClenaghan, L. R. Guidelines for the protection of bat roosts. J. Mamm. 73, 707–710 (1992).
    Google Scholar 
    26.Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R. & Racey, P. A. Carpe noctem: The importance of bats as bioindicators. Endang. Species Res. 8, 93–115 (2009).Article 

    Google Scholar 
    27.Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227. https://doi.org/10.1126/science.1163874 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Foley, J., Clifford, D., Castle, K., Cryan, P. & Ostfeld, R. S. Investigating and managing the rapid emergence of white-nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv. Biol. 25, 223–231. https://doi.org/10.1111/j.1523-1739.2010.01638.x (2011).Article 
    PubMed 

    Google Scholar 
    29.Ingersoll, T. E., Sewall, B. J. & Amelon, S. K. Effects of white-nose syndrome on regional population patterns of 3 hibernating bat species. Conserv. Biol. 30, 1048–1059. https://doi.org/10.1111/cobi.12690 (2016).Article 
    PubMed 

    Google Scholar 
    30.Minnis, A. M. & Lindner, D. L. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol. 117, 638–649. https://doi.org/10.1016/j.funbio.2013.07.001 (2013).Article 
    PubMed 

    Google Scholar 
    31.Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Verant, M. L. et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14, 10 (2014).Article 

    Google Scholar 
    33.Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. U.S.A. 109, 6999–7003. https://doi.org/10.1073/pnas.1200374109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Lilley, T. M. et al. White-nose syndrome survivors do not exhibit frequent arousals associated with Pseudogymnoascus destructans infection. Front. Zool. https://doi.org/10.1186/s12983-016-0143-3 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.McGuire, L. P., Mayberry, H. W. & Willis, C. K. R. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats. Am. J. Physiol.-Regulat. Integr. Compar. Physiol. 313, R680–R686. https://doi.org/10.1152/ajpregu.00058.2017 (2017).CAS 
    Article 

    Google Scholar 
    36.Knudsen, G. R., Dixon, R. D. & Amelon, S. K. Potential spread of white-nose syndrome of bats to the Northwest: Epidemiological considerations. Northwest Sci. 87, 292–306. https://doi.org/10.3955/046.087.0401 (2013).Article 

    Google Scholar 
    37.Bernard, R. F. & McCracken, G. F. Winter behavior of bats and the progression of white-nose syndrome in the southeastern United States. Ecol. Evol. 7, 1487–1496. https://doi.org/10.1002/ece3.2772 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Cheng, T. L. et al. Higher fat stores contribute to persistence of little brown bat populations with white-nose syndrome. J. Anim. Ecol. 88, 591–600 (2019).Article 

    Google Scholar 
    39.Turner, J. M. et al. Conspecific disturbance contributes to altered hibernation patterns in bats with white-nose syndrome. Physiol. Behav. 140, 71–78 (2015).CAS 
    Article 

    Google Scholar 
    40.Blazek, J. et al. Numerous cold arousals and rare arousal cascades as a hibernation strategy in European Myotis bats. J. Therm. Biol 82, 150–156. https://doi.org/10.1016/j.jtherbio.2019.04.002 (2019).Article 
    PubMed 

    Google Scholar 
    41.Lorch, J. M. et al. First detection of bat white-nose syndrome in Western North America. mSphere 1(4), e00148. https://doi.org/10.1128/mSphere.00148-16 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Weller, T. J. et al. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS ONE https://doi.org/10.1371/journal.pone.0205647 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Whiting, J. C. et al. Bat hibernacula in caves of southern Idaho: Implications for monitoring and management. West. N. Am. Nat. 78, 165–173 (2018).Article 

    Google Scholar 
    44.Whiting, J. C. et al. Long-term bat abundance in sagebrush steppe. Sci. Rep. 8, 12288 (2018).ADS 
    Article 

    Google Scholar 
    45.Call, R. S. et al. Maternity roosts of Townsend’s big-eared bats in lava tube caves of southern Idaho. Northwest Sci. 92, 158–165 (2018).ADS 
    Article 

    Google Scholar 
    46.Clark, B. S., Clark, B. K. & Leslie, D. M. Seasonal variation in activity patterns of the endangered Ozark big-eared bat (Corynorhinus townsendii ingens). J. Mamm. 83, 590–598. https://doi.org/10.1644/1545-1542(2002)083%3c0590:sviapo%3e2.0.co;2 (2002).Article 

    Google Scholar 
    47.French, A. R. The patterns of mammalian hibernation. Am. Sci. 76, 568–575 (1988).ADS 

    Google Scholar 
    48.Reynolds, T. D., Connelly, J. W., Halford, D. K. & Arthur, W. J. Vertebrate fauna of the Idaho National Environmental Research Park. Gt. Basin Nat. 46, 513–527 (1986).
    Google Scholar 
    49.Genter, D. L. Wintering bats of the upper Snake River Plain: Occurrence in lava-tube caves. Gt. Basin Nat. 46, 241–244 (1986).
    Google Scholar 
    50.Gillies, K. E., Murphy, P. J. & Matocq, M. D. Hibernacula characteristics of Townsend’s big-eared bats in southeastern Idaho. Nat. Areas J. 34, 24–30 (2014).Article 

    Google Scholar 
    51.Sikes, R. S. et al. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mamm. 97(663–688), 2016. https://doi.org/10.1093/jmammal/gyw078 (2016).Article 

    Google Scholar 
    52.Schwab, N. A. & Mabee, T. J. Winter acoustic activity of bats in Montana. Northwest. Nat. 95, 13–27 (2014).Article 

    Google Scholar 
    53.Britzke, E. R., Slack, B. A., Armstrong, M. P. & Loeb, S. C. Effects of orientation and weatherproofing on the detection of bat echolocation calls. J. Fish Wildl. Manage. 1, 136–141. https://doi.org/10.3996/072010-jfwm-025 (2010).Article 

    Google Scholar 
    54.Skalak, S. L., Sherwin, R. E. & Brigham, R. M. Sampling period, size and duration influence measures of bat species richness from acoustic surveys. Methods Ecol. Evol. 3, 490–502. https://doi.org/10.1111/j.2041-210X.2011.00177.x (2012).Article 

    Google Scholar 
    55.Miller, B. W. A method for determining relative activity of free flying bats using a new activity index for acoustic monitoring. Acta Chiropt. 3, 93–105 (2001).
    Google Scholar 
    56.Nocera, T., Ford, W. M., Silvis, A. & Dobony, C. A. Patterns of acoustical activity of bats prior to and 10 years after WNS on Fort drum army installation, New York. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2019.e00633 (2019).Article 

    Google Scholar 
    57.Britzke, E. R., Gillam, E. H. & Murray, K. L. Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriol. 58, 109–117. https://doi.org/10.1007/s13364-013-0131-3 (2013).Article 

    Google Scholar 
    58.O’Farrell, M. J., Miller, B. W. & Gannon, W. L. Qualitative identification of free-flying bats using the Anabat detector. J. Mamm. 80, 11–23. https://doi.org/10.2307/1383203 (1999).Article 

    Google Scholar 
    59.Whiting, J. C., Doering, B. & Pennock, D. Acoustic surveys for local, free-flying bats in zoos: An engaging approach for bat education and conservation. J. Bat Res. Conserv. 12, 94–99. https://doi.org/10.14709/BarbJ.12.1.2019.12 (2019).Article 

    Google Scholar 
    60.O’Farrell, M. J. & Gannon, W. L. A comparison of acoustic versus capture techniques for the inventory of bats. J. Mamm. 80, 24–30. https://doi.org/10.2307/1383204 (1999).Article 

    Google Scholar 
    61.Stahlschmidt, P. & Bruhl, C. A. Bats as bioindicators—The need of a standardized method for acoustic bat activity surveys. Methods Ecol. Evol. 3, 503–508. https://doi.org/10.1111/j.2041-210X.2012.00188.x (2012).Article 

    Google Scholar 
    62.Avery, M. I. Winter activity of pipistrelle bats. J. Anim. Ecol. 54, 721–738. https://doi.org/10.2307/4374 (1985).Article 

    Google Scholar 
    63.McCulloch, C. E. & Neuhaus, J. M. Generalized linear mixed models. In Encyclopedia of Biostatistics (eds Armitage, P. & Colton, T.) (Wiley, 2005).
    Google Scholar 
    64.Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. A (Gen.) 135, 370–384 (1972).Article 

    Google Scholar 
    65.Hardin, J. W. & Hilbe, J. M. Generalized Linear Models and Extensions (Stata Press, 2007).
    Google Scholar 
    66.Consul, P. & Famoye, F. Generalized Poisson regression model. Commun. Stat. Theory Methods 21, 89–109 (1992).Article 

    Google Scholar 
    67.Aho, K. A. Foundational and Applied Statistics for Biologists using R (CRC Press, 2013).
    Google Scholar 
    68.Akaike, H. Selected Papers of Hirotugu Akaike 199–213 (Springer, 1998).
    Google Scholar 
    69.Burnham, K. P. & Anderson, D. A. Model Selection and Multimodel Inference: A practical Information-Theoretic Approach 2nd edn. (Springer, 2002).
    Google Scholar 
    70.RCoreTeam. R: A Language and Environment for Statistical Computing (2020).71.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-PLUS (Springer, 2013).
    Google Scholar 
    72.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    73.Perkins, J. M., Barss, J. M. & Peterson, J. Winter records of bats in Oregon and Washington. Northwest. Nat. 71, 59–62. https://doi.org/10.2307/3536594 (1990).Article 

    Google Scholar 
    74.Nagorsen, D. W. et al. Winter bat records for British Columbia. Northwest Nat. 74, 61–66 (1993).Article 

    Google Scholar 
    75.Hayman, D. T., Cryan, P. M., Fricker, P. D. & Dannemiller, N. G. Long-term video surveillance and automated analyses reveal arousal patterns in groups of hibernating bats. Methods Ecol. Evol. 8, 1813–1821 (2017).Article 

    Google Scholar 
    76.Boyles, J. G., Dunbar, M. B. & Whitaker, J. O. Activity following arousal in winter in North American vespertilionid bats. Mamm. Rev. 36, 267–280. https://doi.org/10.1111/j.1365-2907.2006.00095.x (2006).Article 

    Google Scholar 
    77.Speakman, J. R. & Racey, P. A. Hibernal ecology of the pipistrelle bat: Energy expenditure, water requirements and mass-loss, implications for survial and the function of winter emergence flights. J. Anim. Ecol. 58, 797–813. https://doi.org/10.2307/5125 (1989).Article 

    Google Scholar 
    78.Lawrence, B. D. & Simmons, J. A. Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J. Acoust. Soc. Am. 71, 585–590 (1982).ADS 
    CAS 
    Article 

    Google Scholar 
    79.Dunbar, M. B. & Tomasi, T. E. Arousal patterns, metabolic rate, and an energy budget of eastern red bats (Lasiurus borealis) in winter. J. Mamm. 87, 1096–1102. https://doi.org/10.1644/05-mamm-a-254r3.1 (2006).Article 

    Google Scholar 
    80.Ford, W. M., Britzke, E. R., Dobony, C. A., Rodrigue, J. L. & Johnson, J. B. Patterns of acoustical activity of bats prior to and following white-nose syndrome occurrence. J. Fish Wildl. Manage. 2, 125–134. https://doi.org/10.3996/042011-jfwm-027 (2011).Article 

    Google Scholar 
    81.Bernard, R. F., Foster, J. T., Willcox, E. V., Parise, K. L. & McCracken, G. F. Molecular detection of the causative agent of white-nose syndrome on Rafinesque’s big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the southeastern USA. J. Wildl. Dis. 51, 519–522. https://doi.org/10.7589/2014-08-202 (2015).Article 
    PubMed 

    Google Scholar 
    82.Dzal, Y., McGuire, L. P., Veselka, N. & Fenton, M. B. Going, going, gone: the impact of white-nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). Biol. Lett. 7, 392–394 (2010).Article 

    Google Scholar 
    83.Brooks, R. T. Declines in summer bat activity in central New England 4 years following the initial detection of white-nose syndrome. Biodivers. Conserv. 20, 2537–2541. https://doi.org/10.1007/s10531-011-9996-0 (2011).Article 

    Google Scholar 
    84.Holloway, G. L. & Barclay, R. M. R. Myotis ciliolabrum. Mamm. Species 670, 1–5. https://doi.org/10.1644/1545-1410(2001)670%3c0001:mc%3e2.0.co;2 (2001).Article 

    Google Scholar 
    85.Halsall, A. L., Boyles, J. G. & Whitaker, J. O. Jr. Body temperature patterns of big brown bats during winter in a building hibernaculum. J. Mamm. 93, 497–503 (2012).Article 

    Google Scholar 
    86.Paige, K. N. Bats and barometric pressure: conserving limited energy and tracking insects from the roost. Funct. Ecol. 9, 463–467 (1995).Article 

    Google Scholar 
    87.Frick, W. F. Acoustic monitoring of bats, considerations of options for long-term monitoring. Therya 4, 69–78 (2013).ADS 
    Article 

    Google Scholar 
    88.Whitaker, J. O. & Rissler, L. J. Winter activity of bats at a mine entrance in Vermillion County, Indiana. Am. Midl. Nat. 127, 52–59. https://doi.org/10.2307/2426321 (1992).Article 

    Google Scholar  More

  • in

    Stock delineation of striped snakehead, Channa striata using multivariate generalised linear models with otolith shape and chemistry data

    1.Carlson, A. K., Phelps, Q. E. & Graeb, B. D. S. Chemistry to conservation: Using otoliths to advance recreational and commercial fisheries management. J. Fish Biol. 90, 505–527 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Ward, R. D. Genetics in fisheries management. Hydrobiologia 420, 191–201 (2000).CAS 
    Article 

    Google Scholar 
    3.Tracey, S. R., Lyle, J. M. & Duhamel, G. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res. 77, 138–147 (2006).Article 

    Google Scholar 
    4.Ferguson, G. J., Ward, T. M. & Gillanders, B. M. Otolith shape and elemental composition: Complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish. Res. 110, 75–83 (2011).Article 

    Google Scholar 
    5.Campana, S. E. & Casselman, J. M. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci. 50(5), 1062-1083 (1993).Article 

    Google Scholar 
    6.Begg, G. A., Overholtz, W. J. & Munroe, N. J. The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on Georges Bank. Fish. Bull. 99, 1–1 (2001).
    Google Scholar 
    7.Miyan, K., Khan, M. A., Patel, D. K., Khan, S. & Ansari, N. G. Truss morphometry and otolith microchemistry reveal stock discrimination in Clarias batrachus (Linnaeus, 1758) inhabiting the Gangetic river system. Fish. Res. 173, 294–302 (2016).Article 

    Google Scholar 
    8.Nazir, A. & Khan, M. A. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor. Ecol. Freshw. Fish 28, 499–511 (2019).Article 

    Google Scholar 
    9.Bird, J. L., Eppler, D. T. & Checkley, D. M. Jr. Comparisons of herring otoliths using Fourier series shape analysis. Can. J. Fish. Aquat. Sci. 43(6), 1228-1234 (1986).Article 

    Google Scholar 
    10.Castonguay, M., Simard, P. & Gagnon, P. Usefulness of Fourier analysis of otolith shape for Atlantic Mackerel (Scomber scombrus) stock discrimination. Can. J. Fish. Aquat. Sci. 48(2), 296-302 (1991).Article 

    Google Scholar 
    11.Friedland, K. D. & Reddin, D. G. Use of otolith morphology in stock discriminations of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 51(1), 91-98 (1994).Article 

    Google Scholar 
    12.Vignon, M. & Morat, F. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser. 411, 231–241 (2010).ADS 
    Article 

    Google Scholar 
    13.Campana, S. E., Chouinard, G. A., Hanson, J. M., Fréchet, A. & Brattey, J. Otolith elemental fingerprints as biological tracers of fish stocks. Fish. Res. 46, 343–357 (2000).Article 

    Google Scholar 
    14.Elsdon, T. S. & Gillanders, B. M. Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Rev. Fish Biol. Fish. 13, 217–235 (2003).Article 

    Google Scholar 
    15.Stransky, C. Geographic variation of golden redfish (Sebastes marinus) and deep-sea redfish (S. mentella) in the North Atlantic based on otolith shape analysis. ICES J. Mar. Sci. 62, 1691–1698 (2005).Article 

    Google Scholar 
    16.Grammer, G. L. et al. Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecol. Monogr. 87, 487–507 (2017).Article 

    Google Scholar 
    17.Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454 (2018).Article 

    Google Scholar 
    18.Elsdon, T. S. & Gillanders, B. M. Fish otolith chemistry influenced by exposure to multiple environmental variables. J. Exp. Mar. Biol. Ecol. 313, 269–284 (2004).CAS 
    Article 

    Google Scholar 
    19.Khan, M. A., Miyan, K., Khan, S., Patel, D. K. & Ansari, G. Studies on the elemental profile of otoliths and truss network analysis for stock discrimination of the threatened stinging catfish Heteropneustes fossilis (Bloch 1794) from the Ganga river and its tributaries. Zool. Stud. 51, 1195–1206 (2012).
    Google Scholar 
    20.Miyan, K., Khan, M. A. & Khan, S. Stock structure delineation using variation in otolith chemistry of snakehead, Channa punctata (Bloch, 1793), from three Indian rivers. J. Appl. Ichthyol. 30, 881–886 (2014).CAS 
    Article 

    Google Scholar 
    21.Miyan, K., Khan, M. A., Patel, D. K., Khan, S. & Prasad, S. Otolith fingerprints reveal stock discrimination of Sperata seenghala inhabiting the Gangetic river system. Ichthyol. Res. 63, 294–301 (2016).Article 

    Google Scholar 
    22.Fowler, A. M., Macreadie, P. I., Bishop, D. P. & Booth, D. J. Using otolith microchemistry and shape to assess the habitat value of oil structures for reef fish. Mar. Environ. Res. 106, 103–113 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Schilling, H. T. et al. Evaluating estuarine nursery use and life history patterns of Pomatomus saltatrix in eastern Australia. Mar. Ecol. Prog. Ser. 598, 187–199 (2018).ADS 
    Article 

    Google Scholar 
    24.Biolé, F. G. et al. Fish stocks of Urophycis brasiliensis revealed by otolith fingerprint and shape in the Southwestern Atlantic Ocean. Estuar. Coast. Shelf Sci. 229, 106406 (2019).Article 
    CAS 

    Google Scholar 
    25.Maguffee, A. C., Reilly, R., Clark, R. & Jones, M. L. Examining the potential of otolith chemistry to determine natal origins of wild Lake Michigan Chinook salmon. Can. J. Fish. Aquat. Sci. 76(11), 2035-2044 (2019).Article 

    Google Scholar 
    26.Tanner, S. E., Vasconcelos, R. P., Cabral, H. N. & Thorrold, S. R. Testing an otolith geochemistry approach to determine population structure and movements of European hake in the northeast Atlantic Ocean and Mediterranean Sea. Fish. Res. 125–126, 198–205 (2012).Article 

    Google Scholar 
    27.Andrade, H. et al. Ontogenetic movements of cod in Arctic fjords and the Barents Sea as revealed by otolith microchemistry. Polar Biol. 43, 409–421 (2020).Article 

    Google Scholar 
    28.Warton, D. I. Why you cannot transform your way out of trouble for small counts. Biometrics 74, 362–368 (2018).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    29.Foster, S. D. & Bravington, M. V. A Poisson-Gamma model for analysis of ecological non-negative continuous data. Environ. Ecol. Stat. 20, 533–552 (2013).MathSciNet 
    Article 

    Google Scholar 
    30.Taylor, L. R. Aggregation, variance and the mean. Nature 189, 732–735 (1961).ADS 
    Article 

    Google Scholar 
    31.Kendal, R. L., Coolen, I. & Laland, K. N. The role of conformity in foraging when personal and social information conflict. Behav. Ecol. 15, 269–277 (2004).Article 

    Google Scholar 
    32.Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).Article 

    Google Scholar 
    33.Warton, D. I., Foster, S. D., De’ath, G., Stoklosa, J. & Dunstan, P. K. Model-based thinking for community ecology. Plant Ecol. 216, 669–682 (2015).Article 

    Google Scholar 
    34.Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund– an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).Article 

    Google Scholar 
    35.Niku, J., Warton, D. I., Hui, F. K. C. & Taskinen, S. Generalized linear latent variable models for multivariate count and biomass data in ecology. J. Agric. Biol. Environ. Stat. 22, 498–522 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    36.Dunn, P. K. & Smyth, G. K. Randomized quantile residuals. J. Comput. Graph. Stat. 5, 236–244 (1996).
    Google Scholar 
    37.Dunn, P. K. & Smyth, G. K. Chapter 8: generalized linear models: Diagnostics. In Generalized Linear Models With Examples in R (eds. Dunn, P. K. & Smyth, G. K.) 297–331 (Springer, 2018). https://doi.org/10.1007/978-1-4419-0118-7_8.38.Hui, F. K. C., Taskinen, S., Pledger, S., Foster, S. D. & Warton, D. I. Model-based approaches to unconstrained ordination. Methods Ecol. Evol. 6, 399–411 (2015).Article 

    Google Scholar 
    39.Hui, F. K. C. Boral–Bayesian ordination and regression analysis of multivariate abundance Data in r. Methods Ecol. Evol. 7, 744–750 (2016).Article 

    Google Scholar 
    40.Popovic, G. C., Warton, D. I., Thomson, F. J., Hui, F. K. C. & Moles, A. T. Untangling direct species associations from indirect mediator species effects with graphical models. Methods Ecol. Evol. 10, 1571–1583 (2019).Article 

    Google Scholar 
    41.Jones, C. M., Palmer, M. & Schaffler, J. J. Beyond Zar: The use and abuse of classification statistics for otolith chemistry. J. Fish Biol. 90, 492–504 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Rahman, M. A. & Awal, S. Development of captive breeding, seed production and culture techniques of snakehead fish for species conservation and sustainable aquaculture. Int. J. Adv. Agric. Environ. Eng. 3, 117–120 (2016).
    Google Scholar 
    43.Khan, M. A., Khan, S. & Miyan, K. Stock identification of the Channa striata inhabiting the Gangetic River System using Truss Morphometry. Russ. J. Ecol. 50, 391–396 (2019).Article 

    Google Scholar 
    44.Phen, C., Thang, T. B., Baran, E. & Vann, L. S. Biological reviews of important Cambodian fish species, based on FishBase 2004. Volume 1: Channa striata; Channa micropeltes; Barbonymus altus; Barbonymus gonionotus; Cyclocheilichthys apogon; Cyclocheilichthys enoplos; Henicorhynchus lineatus; Henicorhynchus siamensis; Pangasius hypophthalmus; Pangasius djambal. (WorldFish Center and Inland Fisheries Research and Development Institute, 2005).45.War, M. & Haniffa, M. A. Growth and survival of larval snakehead Channa striatus (Bloch, 1793) fed different live feed organisms. Turk. J. Fish. Aquat. Sci. 11, 523–528 (2011).
    Google Scholar 
    46.Cagauan, A. G. Exotic aquatic species introduction in the Philippines for aquaculture—A threat to biodiversity or a boon to the economy?. J. Environ. Sci. Manag. 10, 48–62 (2007).
    Google Scholar 
    47.Jayaram, K. C. The Freshwater Fishes of the Indian Region (Narendra Publishing House, 1999).
    Google Scholar 
    48.Talwar, P. K. & Jhingran, A. G. Inland fishes of India and adjacent countries Vol. 2 (CRC Press, 1991).
    Google Scholar 
    49.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).50.Libungan, L. A. & Pálsson, S. ShapeR: An R package to study otolith shape variation among fish populations. PLoS ONE 10, e0121102 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Graps, A. An introduction to wavelets. IEEE Comput. Sci. Eng. 2, 50–61 (1995).Article 

    Google Scholar 
    52.Turan, C. The use of otolith shape and chemistry to determine stock structure of Mediterranean horse mackerel Trachurus mediterraneus (Steindachner). J. Fish Biol. 69, 165–180 (2006).CAS 
    Article 

    Google Scholar 
    53.Oksanen, J. vegan: Community Ecology Package. (2019).54.Venables, W. N. & Ripley, B. D. Modern applied statistics with S-PLUS (Springer Science & Business Media, 2013).
    Google Scholar 
    55.Warton, D. I. Raw data graphing: An informative but under-utilized tool for the analysis of multivariate abundances. Austral. Ecol. 33, 290–300 (2008).Article 

    Google Scholar 
    56.Begg, G. A., Friedland, K. D. & Pearce, J. B. Stock identification and its role in stock assessment and fisheries management: An overview. Fish. Res. 43, 1–8 (1999).Article 

    Google Scholar 
    57.Sengupta, B. Water Quality Status of Yamuna River (1999-2005), Assessment and Development of River Basin Series: ADSORBS/41/2006-07. Cent. Pollut. Control Board Delhi (2006).58.Bhardwaj, R., Gupta, A. & Garg, J. K. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci. 31, 52–66 (2017).Article 

    Google Scholar  More

  • in

    Phytoplankton community structuring and succession in a competition-neutral resource landscape

    1.MacArthur, R. H., Wilson, E. O. The theory of island biogeography. in Monographs in Population Biology (Princeton University Press, Princeton, NJ, 1967)2.Hubbell, S. P. The unified neutral theory of biodiversity and biogeography. in Monographs in Population Biology, Vol. 32 (Princeton University Press, Princeton, NJ, 2001).3.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    4.Ryther, J. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Cushing, D. A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J. Plankton Res. 11, 1–13 (1989).Article 

    Google Scholar 
    6.Barber, R. T. & Hiscock, M. R. A rising tide lifts all phytoplankton: growth response of other phytoplankton taxa in diatom‐dominated blooms. Glob. Biogeoch. Cycl. 20, GB4S03 (2006).
    Google Scholar 
    7.Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycl. 28, 181–196 (2014).CAS 
    Article 

    Google Scholar 
    8.Buesseler, K. O., Boyd, P. W., Black, E. E. & Siegel, D. A. Metrics that matter for assessing the ocean biological carbon pump. Proc. Natl Acad. Sci. USA 117, 9679–9687 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Irwin, A. J., Finkel, Z. V., Schofield, O. M. & Falkowski, P. G. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J. Plankt. Res. 28, 459–471 (2006).Article 

    Google Scholar 
    10.Litchman, E., Klausmeier, C. A. & Yoshiyama, K. Contrasting size evolution in marine and freshwater diatoms. Proc. Natl Acad. Sci. USA 106, 2665–2670 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Tozzi, S., Schofield, O. & Falkowski, P. Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups. Mar. Ecol. Prog. Ser. 274, 123–132 (2004).Article 

    Google Scholar 
    12.Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Gregg, W. W., Casey, N. W. & Rousseaux, C. S. Global surface ocean carbon estimates in a model forced by MERRA NASA Technical Report Series on Global Modeling and Data Assimilation. NASA TM-2013-104606, Vol. 31, 39 (2013).14.Hulburt, E. M. Competition for nutrients by marine phytoplankton in oceanic, coastal, and estuarine regions. Ecology 51, 475–484 (1970).Article 

    Google Scholar 
    15.Siegel, D. A. Resource competition in a discrete environment: why are plankton distributions paradoxical? Limnol. Oceanogr. 43, 1133–1146 (1998).Article 

    Google Scholar 
    16.Cyr, H., Peters, R. H. & Downing, J. A. Population density and community size structure: comparison of aquatic and terrestrial systems. Oikos 80, 139–149 (1997).Article 

    Google Scholar 
    17.White, E. P., Ernest, S. M., Kerkhoff, A. J. & Enquist, B. J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323–330 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.McCauley, D. J. et al. On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities. Ecol. Lett. 21, 439–454 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Sheldon, R. W., Prakash, A. & Sutcliffe, W. Jr The size distribution of particles in the Ocean 1. Limnol. Oceanogr. 17, 327–340 (1972).Article 

    Google Scholar 
    22.Jonasz, M. & Fournier, G. Light Scattering by Particles in Water: Theoretical and Experimental Foundations. (Elsevier, 2011).23.Huete-Ortega, M., Cermeno, P., Calvo-Díaz, A. & Maranon, E. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proc. Royal Soc. B 279, 1815–1823 (2012).Article 

    Google Scholar 
    24.Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 7, 241–264 (2015).Article 

    Google Scholar 
    25.Riley, G. A., Stommel, H. M., Bumpus, D. F. Quantitative ecology of the plankton of the western North Atlantic. Bulletin of the Bingham Oceanographic Collection 12 (Yale Univ., New Haven, CT, 1949)26.Evans, G. T. & Parslow, J. S. A model of annual plankton cycles. Biol. Oceanogr. 3, 327–347 (1985).
    Google Scholar 
    27.Margalef, R. Perspectives in Ecological Theory. 111 pp (Univ. Chicago Press, Chicago, Ill, 1968).28.Behrenfeld, M. J. & Boss, E. S. Resurrecting the ecological underpinnings of ocean plankton blooms. Ann. Rev. Mar. Sci. 6, 167–194 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Behrenfeld, M. J. & Boss, E. S. Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob. Change Biol. 24, 55–77 (2018).Article 

    Google Scholar 
    30.Strom, S. L. & Buskey, E. J. Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. Limnol. Oceanogr. 38, 965–977 (1993).Article 

    Google Scholar 
    31.Strom, S. L., Macri, E. L. & Olson, M. B. Microzooplankton grazing in the coastal Gulf of Alaska: Variations in top-down control of phytoplankton. Limnol. Oceanogr. 52, 1480–1494 (2007).Article 

    Google Scholar 
    32.Wirtz, K. W. Who is eating whom? Morphology and feeding type determine the size relation between planktonic predators and their ideal prey. Mar. Ecol. Progr. Ser. 445, 1–12 (2012).Article 

    Google Scholar 
    33.Kiørboe, T. How zooplankton feed: mechanisms, traits and trade-offs. Biol. Rev. 86, 311–339 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Hansen, B., Bjornsen, P. K. & Hansen, P. J. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39, 395–403 (1994).Article 

    Google Scholar 
    35.Sommer, U. & Sommer, F. Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147, 183–194 (2006).PubMed 
    Article 

    Google Scholar 
    36.Hébert, M.-P., Beisner, B. E. & Maranger, R. Linking zooplankton communities to ecosystem functioning: Toward an effect-trait framework. J. Plankton Res. 39, 3–12 (2017).Article 
    CAS 

    Google Scholar 
    37.Fuchs, H. L. & Franks, P. J. Plankton community properties determined by nutrients and size-selective feeding. Mar. Ecol. Progr. Ser. 413, 1–15 (2010).Article 

    Google Scholar 
    38.Sutherland, K. R., Madin, L. P. & Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl Acad. Sci. USA 107, 15129–15134 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Dadon-Pilosof, A., Lombard, F., Genin, A., Sutherland, K. R. & Yahel, G. Prey taxonomy rather than size determines salp diets. Limnol. Oceanogr. 64, 1996–2010 (2019).Article 

    Google Scholar 
    40.Antoine, D., Andre, J. M. & Morel, A. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem. Cycl. 10, 57–69 (1996).CAS 
    Article 

    Google Scholar 
    41.Brewin, R. J. W. et al. A three-component model of phytoplankton size class for the Atlantic Ocean. Ecol. Model. 221, 1472–1483 (2010).CAS 
    Article 

    Google Scholar 
    42.Marañón, E., Cermeño, P., Latasa, M. & Tadonléké, R. D. Temperature, resources, and phytoplankton size structure in the ocean. Limnol. Oceanogr. 5, 1266–1278 (2012).Article 

    Google Scholar 
    43.Kerr, S. R., Dickie, L. M. The Biomass Spectrum: a Predator-prey Theory of Aquatic Production (Columbia University Press, 2001).44.Behrenfeld, M. J., et al. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 2017; https://doi.org/10.1038/NGEO2861.45.Kiorboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food-webs. Adv. Mar. Biol. 29, 1–72 (1993).Article 

    Google Scholar 
    46.DeLong, J. P. & Vasseur, D. A. Size-density scaling in protists and the links between consumer–resource interaction parameters. J. Animal Ecol. 81, 1193–1201 (2012).Article 

    Google Scholar 
    47.Smetacek, V. Diatoms and the ocean carbon cycle. Protist 150, 25–32 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Smetacek, V., Assmy, P. & Henjes, J. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct. Sci. 16, 541–558 (2004).Article 

    Google Scholar 
    49.Behrenfeld, M. J., Halsey, K. H., Boss, E., Karp-Boss, L., Milligan, A. J. & Peers, G. Thoughts on the evolution and ecological niche of diatoms. Ecol. Monogr. 2021; in press.50.Glibert, P. M. Margalef revisited: a new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 55, 25–30 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanolog. Acta 1, 493–509 (1978).
    Google Scholar 
    52.Cullen, J. J. & MacIntyre, J. G. Behavior, physiology and the niche of depth-regulating phytoplankton. Nato ASI Ser. G Ecol. Sci. 41, 559–580 (1998).53.Kemp, A. E. & Villareal, T. A. The case of the diatoms and the muddled mandalas: Time to recognize diatom adaptations to stratified waters. Prog. Oceanogr. 167, 138–149 (2018).Article 

    Google Scholar 
    54.Kudela, R. M. Does horizontal mixing explain phytoplankton dynamics? Proc. Natl Acad. Sci. USA 107, 18235–18236 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Wyatt, T. Margalef’s mandala and phytoplankton bloom strategies. Deep Sea Res. II 101, 32–49 (2014).Article 

    Google Scholar 
    56.Waite, A., Fisher, A., Thompson, P. A. & Harrison, P. J. Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Mar. Ecol. Prog. Ser. 157, 97–108 (1997).Article 

    Google Scholar 
    57.Moore, J. K. & Villareal, T. A. Size-ascent rate relationships in positively buoyant marine diatoms. Limnol. Oceanogr. 41, 1514–1520 (1996).Article 

    Google Scholar 
    58.Bienfang, P. & Szyper, J. Effects of temperature and salinity on sinking rates of the centric diatom Ditylum brightwellii. Biol. Oceanogr. 1, 211–223 (1982).
    Google Scholar 
    59.Bienfang, P., Szyper, J. & Laws, E. Sinking rate and pigment responses to light-limitation of a marine diatom – implications to dynamics of chlorophyll maximum layers. Oceanolog. Acta 6, 55–62 (1983).CAS 

    Google Scholar 
    60.Villareal, T. A., Pilskaln, C. H., Montoya, J. P. & Dennett, M. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas. PeerJ 2, e302 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Irigoien, X., Flynn, K. J. & Harris, R. P. Phytoplankton blooms: a “loophole” in micozooplankton grazing impact? J. Plankton Res. 27, 313–321 (2005).Article 

    Google Scholar 
    62.Bolaños, L. M., et al. Small phytoplankton dominate western North Atlantic biomass. ISME J: 1–12, https://doi.org/10.1038/s41396-020-0636-0 (2020).63.Guillard, R., Kilham, P. The ecology of marine planktonic diatoms. in The Biology of Diatoms, Vol. 13, 372–469 (Blackwell Oxford, 1977).64.Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Barton, A. D., Finkel, Z. V., Ward, B. A., Johns, D. G. & Follows, M. J. On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities. Limnol. Oceanogr. 58, 254–266 (2013).Article 

    Google Scholar 
    66.Edwards, K. F. Mixotrophy in nanoflagellates across environmental gradients in the ocean. Proc. Natl Acad. Sci. USA 116, 6211–6220 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Boyd, P. W. Environmental factors controlling phytoplankton processes in the Southern Ocean. J. Phycol. 38, 844–861 (2002).Article 

    Google Scholar 
    68.Fauchereau, N., Tagliabue, A., Bopp, L. & Monteiro, P. M. The response of phytoplankton biomass to transient mixing events in the Southern Ocean. Geophys. Res. Lett. 38, L17601 (2011).Article 

    Google Scholar 
    69.Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).CAS 
    Article 

    Google Scholar 
    70.Colin, S. P. & Dam, H. G. Effects of the toxic dinoflagellate Alexandrium fundyense on the copepod Acartia hudsonica: a test of the mechanisms that reduce ingestion rates. Mar. Ecol. Prog. Ser. 248, 55–65 (2003).Article 

    Google Scholar 
    71.Van Donk, E., Ianora, A. & Vos, M. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiol. 668, 3–19 (2011).Article 
    CAS 

    Google Scholar 
    72.Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defense metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.DeMott, W. R. & Moxter, F. Foraging cyanobacteria by copepods: responses to chemical defense and resource abundance. Ecology 72, 1820–1834 (1991).Article 

    Google Scholar 
    74.Ger, K. A., Naus-Wiezer, S., De Meester, L. & Lürling, M. Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnol. Oceanogr. 64, 1214–1227 (2019).Article 

    Google Scholar 
    75.Smayda, T. J. & Reynolds, C. S. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J. Plankt. Res. 23, 447–461 (2001).Article 

    Google Scholar 
    76.Acevedo-Trejos, E., Brandt, G., Bruggeman, J. & Merico, A. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Sci. Rep 5, 8918 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Cuesta, J. A., Delius, G. W. & Law, R. Sheldon spectrum and the plankton paradox: two sides of the same coin—a trait-based plankton size-spectrum model. J. Math. Biol. 76, 67–96 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Hutchinson, G. E. Ecological aspects of succession in natural populations. Amer. Nat. 75, 406–418 (1941).Article 

    Google Scholar 
    79.Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).CAS 
    Article 

    Google Scholar 
    80.Tilman, D., Mattson, M. & Langer, S. Competition and nutrient kinetics along a temperature gradient: An experimental test of a mechanistic approach to niche theory 1. Limnol. Oceanogr. 26, 1020–1033 (1981).Article 

    Google Scholar 
    81.Sommer, U. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Archiv hydrobiol. 96, 399–416 (1983).
    Google Scholar 
    82.Sommer, U. Comparison between steady state and non-steady state competition: experiments with natural phytoplankton. Limnol. Oceanogr. 30, 335–346 (1985).CAS 
    Article 

    Google Scholar 
    83.Tilman, D. Resource Competition and Community Structure (Princeton University Press, 1982).84.Sommer, U. The role of competition for resources in phytoplankton succession. in Plankton Ecology. Berlin, Heidelberg: Springer. 1989, pp. 57-106.85.Burd, A. B. & Jackson, G. A. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90 (2009).Article 

    Google Scholar 
    86.Kahl, L. A., Vardi, A. & Schofield, O. Effects of phytoplankton physiology on export flux. Mar. Ecol. Prog. Ser. 354, 3–19 (2008).CAS 
    Article 

    Google Scholar 
    87.Guidi, L. et al. Effects of phytoplankton community on production, size and export of large aggregates: a world-ocean analysis. Limnol. Oceanogr. 54, 1951–1963 (2009).Article 

    Google Scholar 
    88.Kiørboe, T., Lundsgaard, C., Olesen, M. & Hansen, J. L. S. Aggregation and sedimentation processes during a spring phytoplankton bloom: a field experiment to test coagulation theory. J. Mar. Res. 52, 297–323 (1994).Article 

    Google Scholar 
    89.Prairie, J. C., Montgomery, Q. W., Proctor, K. W. & Ghiorso, K. S. Effects of phytoplankton growth phase on settling properties of marine aggregates. J. Mar. Sci. Engineer. 7, 265 (2019).Article 

    Google Scholar 
    90.Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 6237 (2015).Article 
    CAS 

    Google Scholar 
    91.Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. 6, 339–367 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Helliwell, K. E. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. New Phytol. 216, 62–68 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Chisholm, S. W. et al. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334, 340–343 (1988).Article 

    Google Scholar 
    94.Caputo, A., Nylander, J. A. & Foster, R. A. The genetic diversity and evolution of diatom-diazotroph associations highlights traits favoring symbiont integration. FEMS Microbiol. Lett. 366, fny297 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    95.Decelle, J. et al. An original mode of symbiosis in open ocean plankton. Proc. Natl Acad. Sci. USA 109, 18000–18005 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Decelle, J. et al. Algal remodeling in a ubiquitous planktonic photosymbiosis. Curr. Biol. 29, 968–978 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Behrenfeld, M. J. et al. The North Atlantic aerosol and marine ecosystem study (NAAMES): science motive and mission overview. Front. Mar. Sci. 6, 122 (2019).Article 

    Google Scholar 
    98.Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).CAS 
    Article 

    Google Scholar  More

  • in

    Host-specific symbioses and the microbial prey of a pelagic tunicate (Pyrosoma atlanticum)

    1.Perissinotto, R., Mayzaud, P., Nichols, P. D. & Labat, J. P. Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Mar. Ecol. Prog. Ser. 330, 1–11 (2007).CAS 
    Article 

    Google Scholar 
    2.Drits, A. V., Arashkevich, E. G. & Semenova, T. N. Pyrosoma atlanticum (Tunicata, Thaliacea): grazing impact on phytoplankton standing stock and role in organic carbon flux. J. Plankton Res. 14, 799–809 (1992).Article 

    Google Scholar 
    3.Henschke, N. et al. Large vertical migrations of Pyrosoma atlanticum play an important role in active carbon transport. J. Geophys. Res. Biogeosci. 124, 1056–1070 (2019).Article 

    Google Scholar 
    4.Schram, J. B., Sorensen, H. L., Brodeur, R. D., Galloway, A. W. E. & Sutherland, K. R. Abundance, distribution, and feeding ecology of Pyrosoma atlanticum in the Northern California Current. Mar. Ecol. Prog. Ser. 651, 97–110 (2020).5.O’Loughlin, J. H. et al. Implications of Pyrosoma atlanticum range expansion on phytoplankton standing stocks in the Northern California Current. Prog. Oceanogr. 188, 102424 (2020).6.Hobson, E. S. & Chess, J. Trophic relations of the blue rockfish, Sebastes mystinus, in a coastal upwelling system off northern California. in Fishery Bulletin, Vol. 86, 715–743 (National Marine Fisheries Service, 1988).7.Bulman, C. M., He, X. & Koslow, J. A. Trophic ecology of the mid-slope demersal fish community off Southern Tasmania, Australia. Mar. Freshw. Res. 53, 59–72 (2002).Article 

    Google Scholar 
    8.Harbison, G. R. The parasites and predators of Thaliacea. in The Biology of Pelagic Tunicates (Oxford University Press, 1998).9.James, G. D. & Stahl, J. -C. Diet of southern Buller’s albatross (Diomedea bulleri bulleri) and the importance of fishery discards during chick rearing. N. Z. J. Mar. Freshw. Res. 34, 435–454 (2000).Article 

    Google Scholar 
    10.Hedd, A. & Gales, R. The diet of shy albatrosses (Thalassarche cauta) at Albatross Island, Tasmania. J. Zool. 253, 69–90 (2001).Article 

    Google Scholar 
    11.Childerhouse, S., Dix, B. & Gales, N. Diet of New Zealand sea lions (Phocarctos hookeri) at the Auckland Islands. Wildl. Res. 28, 291–298 (2001).Article 

    Google Scholar 
    12.Lindley, J. A., Hernández, F., Scatllar, J. & Docoito, J. Funchalia sp. (Crustacea: Penaeidae) associated with Pyrosoma atlanticum (Thaliacea: Pyrosomidae) off the Canary Islands. J. Mar. Biol. Assoc. UK 81, 173–174 (2001).Article 

    Google Scholar 
    13.Lebrato, M. & Jones, D. O. B. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol. Oceanogr. 54, 1197–1209 (2009).CAS 
    Article 

    Google Scholar 
    14.Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sherr E. & Sherr B. Understanding roles of microbes in marine pelagic food webs: a brief history. in Microbial Ecology of the Oceans 27–44 (John Wiley & Sons Ltd, 2008).17.Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Décima, M., Stukel, M. R., López-López, L. & Landry, M. R. The unique ecological role of pyrosomes in the Eastern Tropical Pacific. Limnol. Oceanogr. 64, 728–743 (2019).Article 

    Google Scholar 
    19.Gauns, M., Mochemadkar, S., Pratihary, A., Roy, R. & Naqvi, S. W. A. Biogeochemistry and ecology of Pyrosoma spinosum from the Central Arabian Sea. Zool. Stud. 54, 3 (2015).Article 
    CAS 

    Google Scholar 
    20.Bowlby, M. R., Widder, E. A. & Case, J. F. Patterns of stimulated bioluminescence in two pyrosomes (Tunicata: Pyrosomatidae). Biol. Bull. 179, 340–350 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493 (2010).Article 

    Google Scholar 
    22.Swift, E., Biggley, W. H. & Napora, T. A. The bioluminescence emission spectra of Pyrosoma atlanticum, P. spinosum (Tunicata), Euphausia tenera (Crustacea) and Gonostoma sp. (Pisces). J. Mar. Biol. Assoc. UK 57, 817–823 (1977).23.Martínez‐García, M. et al. Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian. Environ. Microbiol. 10, 2991–3001 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    24.Donia, M. S. et al. Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc. Natl Acad. Sci. 108, E1423–E1432 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Kwan, J. C. et al. Host control of symbiont natural product chemistry in cryptic populations of the tunicate Lissoclinum patella. PLoS ONE 9, e95850 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Purcell, J. E. & Arai, M. N. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia. 451, 27–44 (2001).Article 

    Google Scholar 
    27.Delannoy, C. M. J., Houghton, J. D. R., Fleming, N. E. C. & Ferguson, H. W. Mauve stingers (Pelagia noctiluca) as carriers of the bacterial fish pathogen Tenacibaculum maritimum. Aquaculture. 311, 255–257 (2011).Article 

    Google Scholar 
    28.Lee, M. D., Kling, J. D., Araya, R. & Ceh, J. Jellyfish life stages shape associated microbial communities, while a core microbiome is maintained across all. Front. Microbiol. 9, 1534 (2018).29.Troussellier, M., Escalas, A., Bouvier, T. & Mouillot, D. Sustaining rare marine microorganisms: macroorganisms as repositories and dispersal agents of microbial diversity. Front. Microbiol. 8 (2017).30.Brodeur, R. et al. An unusual gelatinous plankton event in the NE Pacific: the Great Pyrosome Bloom of 2017. PICES Press; Sidney Vol. 26, 22–27 (Winter, 2018).31.Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Miller, R. R. et al. Distribution of pelagic Thaliaceans, Thetys vagina and Pyrosoma Atlanticum, during a period of mass occurrence within the California current. CalCOFI Rep. 60, (2019).33.Guigand, C. M., Cowen, R. K., Llopiz, J. K. & Richardson, D. E. A coupled asymmetrical multiple opening closing net with environmental sampling system. Mar. Technol. Soc. J. 39, 22–24 (2005).34.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).CAS 
    Article 

    Google Scholar 
    37.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    39.Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–W9 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    42.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Duperron, S. Microbial Symbioses 168 p. (Elsevier, 2016).45.Schmitt, S. et al. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 6, 564–576 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8 (2017).47.Urbanczyk, H., Ast, J. C., Higgins, M. J., Carson, J. & Dunlap, P. V. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int. J. Syst. Evol. Microbiol. 57, 2823–2829 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Stecher, G., Tamura, K. & Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Booth, B. C. Marine phytoplankton. A guide to naked flagellates and coccolithophorids (C. R. Tomas [ed.]). Limnol. Oceanogr. 39, 982–983 (1994).Article 

    Google Scholar 
    51.Halse, G. R. & Syvertsen, E. E. Chapter 2—marine diatoms. in Identifying Marine Diatoms and Dinoflagellates (ed. Tomas C. R.) 5–385 (Academic Press, 1996).52.Steidinger, K. A. & Tangen, K. Chapter 3—dinoflagellates. in Identifying Marine Diatoms and Dinoflagellates (ed. Tomas C. R.) 387–584 (Academic Press, 1996).53.Daniels, C. & Breitbart, M. Bacterial communities associated with the ctenophores Mnemiopsis leidyi and Beroe ovata. FEMS Microbiol. Ecol. 82, 90–101 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Kramar, M. K., Tinta, T., Lučić, D., Malej, A. & Turk, V. Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS ONE 14, e0198056 (2019).Article 
    CAS 

    Google Scholar 
    55.Hernandez-Agreda, A., Leggat, W., Bongaerts, P., Herrera, C. & Ainsworth, T. D. Rethinking the coral microbiome: simplicity exists within a diverse microbial biosphere. mBio 9, e00812–18 (2018).56.Webster, N. S. & Bourne, D. Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol. Ecol. 59, 81–94 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Rodrigues, C. F., Hilário, A., Cunha, M. R., Weightman, A. J. & Webster, G. Microbial diversity in Frenulata (Siboglinidae, Polychaeta) species from mud volcanoes in the Gulf of Cadiz (NE Atlantic). Antonie Van Leeuwenhoek 100, 83–98 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.McCann, J., Stabb, E. V., Millikan, D. S. & Ruby, E. G. Population dynamics of Vibrio fischeri during Infection of Euprymna scolopes. Appl. Environ. Microbiol. 69, 5928–5934 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Hammann, S., Moss, A. & Zimmer, M. Sterile surfaces of Mnemiopsis leidyi; (Ctenophora) in bacterial suspension—a key to invasion success? Open J. Mar. Sci. 05, 237–246 (2015).Article 

    Google Scholar 
    60.Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 https://doi.org/10.1093/femsle/fnz117 (2019).61.Nedashkovskaya, O. I., Kukhlevskiy, A. D., Zhukova, N. V. & Kim, S. B. Amylibacter ulvae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Ulva fenestrata. Arch. Microbiol. 198, 251–256 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Burke, C., Thomas, T., Lewis, M., Steinberg, P. & Kjelleberg, S. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 5, 590–600 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Catão, E. C. P. et al. Shear stress as a major driver of marine biofilm communities in the NW Mediterranean Sea. Front. Microbiol. 10 (2019).64.Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Bondoso, J. et al. Roseimaritima ulvae gen. nov., sp. nov. and Rubripirellula obstinata gen. nov., sp. nov. two novel planctomycetes isolated from the epiphytic community of macroalgae. Syst. Appl. Microbiol. 38, 8–15 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Zhu, P., Li, Q. & Wang, G. Unique microbial signatures of the Alien Hawaiian marine sponge Suberites zeteki. Microb. Ecol. 55, 406–414 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Pimentel-Elardo, S., Wehrl, M., Friedrich, A. B., Jensen, P. R. & Hentschel, U. Isolation of planctomycetes from Aplysina sponges. Aquat. Microb. Ecol. 33, 239–245 (2003).Article 

    Google Scholar 
    68.da Silva Oliveira, F. A. et al. Microbial epibionts of the colonial ascidians Didemnum galacteum and Cystodytes sp. Symbiosis 59, 57–63 (2013).Article 

    Google Scholar 
    69.Yakimov, M. M. et al. Phylogenetic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, Central Mediterranean Sea. Deep Sea Res. A Oceanogr. Res. Pap. 53, 62–75 (2006).Article 

    Google Scholar 
    70.Duque-Alarcón, A., Santiago-Vázquez, L. Z. & Kerr, R. G. A microbial community analysis of the octocoral Eunicea fusca. Electron. J. Biotechnol. 15, 15–15 (2012).
    Google Scholar 
    71.Wiegand, S., Jogler, M. & Jogler, C. On the maverick Planctomycetes. FEMS Microbiol. Rev. 42, 739–760 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Lage, O. M. & Bondoso, J. Planctomycetes and macroalgae, a striking association. Front. Microbiol. 5 (2014).73.Ward, A. C. & Bora, N. Diversity and biogeography of marine Actinobacteria. Curr. Opin. Microbiol. 9, 279–286 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Hahn, M. W. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int. J. Syst. Evol. Microbiol. 59, 112–117 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Gandhimathi, R. et al. Antimicrobial potential of sponge associated marine actinomycetes. J. Mycol. Méd. 18, 16–22 (2008).Article 

    Google Scholar 
    76.Abdelmohsen, U. R., Bayer, K. & Hentschel, U. Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat. Prod. Rep. 31, 381–399 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Wu, Z. et al. A new tetrodotoxin-producing actinomycete, Nocardiopsis dassonvillei, isolated from the ovaries of puffer fish Fugu rubripes. Toxicon. 45, 851–859 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Reichenbach, H. The ecology of the myxobacteria. Environ. Microbiol. 1, 15–21 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Marshall, R. C. & Whitworth, D. E. Is “Wolf-Pack” predation by antimicrobial bacteria cooperative? Cell behaviour and predatory mechanisms indicate profound selfishness, even when working alongside Kin. BioEssays 41, 1800247 (2019).Article 

    Google Scholar 
    80.Welsh, R. M. et al. Bacterial predation in a marine host-associated microbiome. ISME J. 10, 1540–1544 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Wang, Z., Kadouri, D. E. & Wu, M. Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics 12, 453 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Garcia, G. D. et al. Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals. Microb. Ecol. 65, 1076–1086 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Rosales, S. M. et al. Microbiome differences in disease-resistant vs. susceptible Acropora corals subjected to disease challenge assays. Sci. Rep. 9, 18279 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Evans, A. G. L. et al. Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 158, 2742–2752 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Sudo, S. & Dworkin, M. Bacteriolytic enzymes produced by Myxococcus xanthus. J. Bacteriol. 110, 236–245 (1972).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Tessler, M. et al. A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. Sci. Rep. 10, 17724 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Berger, A. et al. Microscopic and Genetic Characterization of Bacterial Symbionts With Bioluminescent Potential in Pyrosoma Atlanticum. Frontiers in Marine Science. 8 https://doi.org/10.3389/fmars.2021.606818 (2021).88.Leisman, G., Cohn, D. H. & Nealson, K. H. Bacterial origin of luminescence in marine animals. Science 208, 1271–1273 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Mackie, G. O. & Bone, Q. Luminescence and associated effector activity in Pyrosoma (Tunicata: Pyrosomida). Proc. R. Soc. Lond. B Biol. Sci. 202, 483–495 (1978).Article 

    Google Scholar 
    90.Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid–vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Takemura, A. F., Chien, D. M. & Polz M. F. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 5 (2014).92.Barnes, E. M., Carter, E. L. & Lewis, J. D. Predicting microbiome function across space is confounded by strain-level differences and functional redundancy across taxa. Front. Microbiol. 11 (2020).93.Tian, L. et al. Deciphering functional redundancy in the human microbiome. bioRxiv 176313 https://doi.org/10.1101/176313 (2017).94.Kaeding, A. J. et al. Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of “Photobacterium mandapamensis”. Appl. Environ. Microbiol. 73, 3173–3182 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Baker, L. J. et al. Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. eLife 8 e47606 (2019).96.Godeaux, J. E. A., Bone, Q. & Braconnot, J. C. Anatomy of Thaliacea. in The Biology of Pelagic Tunicates (Oxford University Press, 1998).97.Alldredge, A. L. & Madin, L. P. Pelagic tunicates: unique herbivores in the marine plankton. BioScience. 32, 655–663 (1982).Article 

    Google Scholar 
    98.Bone, Q., Carre, C. & Ryan, K. P. The endostyle and the feeding filter in salps (Tunicata). J. Mar. Biol. Assoc. UK 80, 523–534 (2000).Article 

    Google Scholar 
    99.Sutherland, K. R., Madin, L. P. & Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl Acad. Sci. 107, 15129–15134 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Dadon-Pilosof, A. et al. Surface properties of SAR11 bacteria facilitate grazing avoidance. Nat. Microbiol. 2, 1608–1615 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Larson, R. J. Daily ration and predation by medusae and ctenophores in Saanich Inlet, B.C., Canada. Neth. J. Sea Res. 21, 35–44 (1987).Article 

    Google Scholar 
    102.Suchman, C. L., Daly, E. A., Keister, J. E., Peterson, W. T. & Brodeur, R. D. Feeding patterns and predation potential of scyphomedusae in a highly productive upwelling region. Mar. Ecol. Prog. Ser. 358, 161–172 (2008).Article 

    Google Scholar 
    103.Bennke, C. M. et al. The distribution of phytoplankton in the Baltic Sea assessed by a prokaryotic 16S rRNA gene primer system. J. Plankton Res. 40, 244–254 (2018).CAS 
    Article 

    Google Scholar 
    104.Green, B. R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 66, 34–44 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Luo, J. Y. et al. Gelatinous zooplankton-mediated carbon flows in the global oceans: a data-driven modeling study. Glob. Biogeochem. Cycles. 34, e2020GB006704 (2020).106.Dadon‐Pilosof, A., Lombard, F., Genin, A., Sutherland, K. R. & Yahel, G. Prey taxonomy rather than size determines salp diets. Limnol. Oceanogr. 64, 1996–2010 (2019).Article 

    Google Scholar 
    107.Brand, A., Liz, A., Micah, A., Marjorie, H. & Jo, S. Beyond Authorship: Attribution, Contribution, Collaboration, and Credit. Learned Publishing. 28, 151–155 (2015).Article 

    Google Scholar  More

  • in

    Landscape structure affects the sunflower visiting frequency of insect pollinators

    1.Stanley, D. & Stout, J. Pollinator sharing between mass-flowering oilseed rape and co-flowering wild plants: implications for wild plant pollination. Plant Ecol. 215, 315–325. https://doi.org/10.1007/s11258-014-0301-7 (2014).Article 

    Google Scholar 
    2.Kovacs-Hostyanszki, A. et al. Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecol. Appl. 23, 1938–1946. https://doi.org/10.1890/12-2012.1 (2013).Article 
    PubMed 

    Google Scholar 
    3.Holzschuh, A. et al. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol. Lett. 19, 1228–1236. https://doi.org/10.1111/ele.12657 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).Article 
    PubMed 

    Google Scholar 
    5.Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci U S A 99, 16812–16816. https://doi.org/10.1073/pnas.262413599 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Pollinator declines: extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362. https://doi.org/10.1126/science.1257259 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Kovacs-Hostyanszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689. https://doi.org/10.1111/ele.12762 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).Article 

    Google Scholar 
    9.Holland, J. M. et al. Semi-natural habitats support biological control, pollination and soil conservation in Europe: a review. Agron. Sustain. Dev. https://doi.org/10.1007/s13593-017-0434-x (2017).Article 

    Google Scholar 
    10.Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14, 1062–1072. https://doi.org/10.1111/j.1461-0248.2011.01669.x (2011).Article 
    PubMed 

    Google Scholar 
    11.Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328. https://doi.org/10.7717/peerj.328 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Holzschuh, A., Dudenhoffer, J. H. & Tscharntke, T. Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol. Conserv. 153, 101–107. https://doi.org/10.1016/j.biocon.2012.04.032 (2012).Article 

    Google Scholar 
    13.Marini, L. et al. Crop management modifies the benefits of insect pollination in oilseed rape. Agric. Ecosyst. Environ. 207, 61–66. https://doi.org/10.1016/j.agee.2015.03.027 (2015).Article 

    Google Scholar 
    14.Persson, A. S. & Smith, H. G. Seasonal persistence of bumblebee populations is affected by landscape context. Agric. Ecosyst. Environ. 165, 201–209. https://doi.org/10.1016/j.agee.2012.12.008 (2013).Article 

    Google Scholar 
    15.Rundlof, M., Persson, A. S., Smith, H. G. & Bommarco, R. Late-season mass-flowering red clover increases bumble bee queen and male densities. Biol. Conserv. 172, 138–145. https://doi.org/10.1016/j.biocon.2014.02.027 (2014).Article 

    Google Scholar 
    16.Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. J. Appl. Ecol. 46, 187–193. https://doi.org/10.1111/j.1365-2664.2008.01580.x (2009).Article 

    Google Scholar 
    17.Williams, N. M., Regetz, J. & Kremen, C. Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93, 1049–1058. https://doi.org/10.1890/11-1006.1 (2012).Article 
    PubMed 

    Google Scholar 
    18.Steffan-Dewenter, I., Munzenberg, U., Burger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432. https://doi.org/10.2307/3071954 (2002).Article 

    Google Scholar 
    19.Steffan-Dewenter, I., Münzenberg, U. & Tscharntke, T. Pollination, seed set and seed predation on a landscape scale. Proc. Natl. Acad. Sci. USA 268, 1685–1690. https://doi.org/10.1098/rspb.2001.1737 (2001).CAS 
    Article 

    Google Scholar 
    20.Bartual, A. et al. The potential of different semi-natural habitats to sustain pollinators and natural enemies in European agricultural landscapes. Agric. Ecosyst. Environ. 279, 43–52. https://doi.org/10.1016/j.agee.2019.04.009 (2019).Article 

    Google Scholar 
    21.Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. Camb. Philos. Soc. 81, 117–142. https://doi.org/10.1017/s1464793105006949 (2006).Article 
    PubMed 

    Google Scholar 
    22.Blaauw, B. R. & Isaacs, R. Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wild flowers. Basic Appl. Ecol. 15, 701–711. https://doi.org/10.1016/j.baae.2014.10.001 (2014).Article 

    Google Scholar 
    23.Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094. https://doi.org/10.1111/ele.13265 (2019).Article 
    PubMed 

    Google Scholar 
    24.Bihaly, Á., Dóra, V., Lajos, K. & Sárospataki, M. Effect of semi-natural habitat patches on the pollinator assemblages of sunflower in an intensive agricultural landscape. Tájökológiai Lapok 16, 45–52 (2018).
    Google Scholar 
    25.Foldesi, R. et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 18, 68–75. https://doi.org/10.1111/afe.12135 (2016).Article 

    Google Scholar 
    26.Sárospataki, M. et al. The role of local and landscape level factors in determining bumblebee abundance and richness. Acta Zool. Acad. Sci. Hung. 62, 387–407. https://doi.org/10.17109/AZH.62.4.387.2016 (2016).Article 

    Google Scholar 
    27.Schellhorn, N. A., Gagic, V. & Bommarco, R. Time will tell: resource continuity bolsters ecosystem services. Trends Ecol. Evol. 30, 524–530. https://doi.org/10.1016/j.tree.2015.06.007 (2015).Article 
    PubMed 

    Google Scholar 
    28.Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol. Rev. Camb. Philos. Soc. 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).Article 
    PubMed 

    Google Scholar 
    29.Stephens, A. E. A. & Myers, J. H. Resource concentration by insects and implications for plant populations. J. Ecol. 100, 923–931. https://doi.org/10.1111/j.1365-2745.2012.01971.x (2012).Article 

    Google Scholar 
    30.Tscheulin, T., Neokosmidis, L., Petanidou, T. & Settele, J. Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves. Bull. Entomol. Res. 101, 557–564. https://doi.org/10.1017/S0007485311000149 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599. https://doi.org/10.1111/ele.12082 (2013).Article 
    PubMed 

    Google Scholar 
    32.Eurostat. Archive: Main annual crop statistics, https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Main_annual_crop_statistics&oldid=389868#Oilseeds (2018).33.KSH. STADAT tables – Agriculture. http://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_omn007b.html. (KSH, 2019).34.Hevia, V. et al. Bee diversity and abundance in a livestock drove road and its impact on pollination and seed set in adjacent sunflower fields. Agric. Ecosyst. Environ. 232, 336–344. https://doi.org/10.1016/j.agee.2016.08.021 (2016).Article 

    Google Scholar 
    35.Silva, C. et al. Bee pollination highly improves oil quality in sunflower. Sociobiology 65, 583–590. https://doi.org/10.13102/sociobiology.v65i4.3367 (2018).Article 

    Google Scholar 
    36.Terzić, S., Miklič, V. & Čanak, P. Review of 40 years of research carried out in Serbia on sunflower pollination. OCL 24, D608 (2017).Article 

    Google Scholar 
    37.Perrot, T. et al. Experimental quantification of insect pollination on sunflower yield, reconciling plant and field scale estimates. Basic Appl. Ecol. 34, 75–84. https://doi.org/10.1016/j.baae.2018.09.005 (2019).Article 

    Google Scholar 
    38.Martin, C. S. & Farina, W. M. Honeybee floral constancy and pollination efficiency in sunflower (Helianthus annuus) crops for hybrid seed production. Apidologie 47, 161–170 (2016).Article 

    Google Scholar 
    39.DeGrandi-Hoffman, G. & Watkins, J. C. The foraging activity of honey bees Apis mellifera and non—Apis bees on hybrid sunflowers (Helianthus annuus) and its influence on cross—pollination and seed set. J. Apic. Res. 39, 37–45. https://doi.org/10.1080/00218839.2000.11101019 (2000).Article 

    Google Scholar 
    40.Cerrutti, N. & Pontet, C. Differential attractiveness of sunflower cultivars to the honeybee Apis mellifera L. OCL 23, D204 (2016).Article 

    Google Scholar 
    41.Chambó, E. D., Garcia, R. C., Oliveira, N. T. E. D. & Duarte-Júnior, J. B. Honey bee visitation to sunflower: effects on pollination and plant genotype. Sci. Agric. 68, 647–651 (2011).Article 

    Google Scholar 
    42.Oz, M., Karasu, A., Cakmak, I., Goksoy, A. T. & Turan, Z. M. Effects of honeybee (Apis mellifera) pollination on seed set in hybrid sunflower (Helianthus annuus L.). Afr. J. Biotechnol. 8 (2009).43.Puškadija, Z. et al. Influence of weather conditions on honey bee visits (Apis mellifera carnica) during sunflower (Helianthus annuus L.) blooming period. Poljoprivreda 13, 230–233 (2007).
    Google Scholar 
    44.Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. USA 103, 13890–13895 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Nderitu, J., Nyamasyo, G., Kasina, M. & Oronje, M. Diversity of sunflower pollinators and their effect on seed yield in Makueni District, Eastern Kenya. Span. J. Agric. Res. 6, 271–278 (2008).Article 

    Google Scholar 
    46.Carvalheiro, L. G. et al. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 14, 251–259. https://doi.org/10.1111/j.1461-0248.2010.01579.x (2011).Article 
    PubMed 

    Google Scholar 
    47.Sardiñas, H. S. & Kremen, C. Pollination services from field-scale agricultural diversification may be context-dependent. Agric. Ecosyst. Environ. 207, 17–25 (2015).Article 

    Google Scholar 
    48.Riedinger, V., Renner, M., Rundlof, M., Steffan-Dewenter, I. & Holzschuh, A. Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landscape Ecol. 29, 425–435. https://doi.org/10.1007/s10980-013-9973-y (2014).Article 

    Google Scholar 
    49.Bennett, A. B. & Isaacs, R. Landscape composition influences pollinators and pollination services in perennial biofuel plantings. Agric. Ecosyst. Environ. 193, 1–8. https://doi.org/10.1016/j.agee.2014.04.016 (2014).Article 

    Google Scholar 
    50.Lowenstein, D. M., Huseth, A. S. & Groves, R. L. Response of wild bees (Hymenoptera: Apoidea: Anthophila) to surrounding land cover in Wisconsin pickling cucumber. Environ. Entomol. 41, 532–540. https://doi.org/10.1603/EN11241 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Pfister, S. C. et al. Dominance of cropland reduces the pollen deposition from bumble bees. Sci. Rep. 8, 13873. https://doi.org/10.1038/s41598-018-31826-3 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Gathmann, A. & Tscharntke, T. Foraging ranges of solitary bees. J. Anim. Ecol. 71, 757–764. https://doi.org/10.1046/j.1365-2656.2002.00641.x (2002).Article 

    Google Scholar 
    53.Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596. https://doi.org/10.1007/s00442-007-0752-9 (2007).ADS 
    Article 
    PubMed 

    Google Scholar 
    54.Lihoreau, M., Chittka, L., Le Comber, S. C. & Raine, N. E. Bees do not use nearest-neighbour rules for optimization of multi-location routes. Biol. Lett. 8, 13–16. https://doi.org/10.1098/rsbl.2011.0661 (2012).Article 
    PubMed 

    Google Scholar 
    55.Berger-Tal, O. & Bar-David, S. Recursive movement patterns: review and synthesis across species. Ecosphere 6, 149. https://doi.org/10.1890/es15-00106.1 (2015).Article 

    Google Scholar 
    56.Wesserling, J. Habitatwahl und Ausbreitungsverhalten von Stechimmen (Hymenoptera: Aculeata) in Sandgebieten unterschiedlicher Sukzessionsstadien, University of Karlsruhe, (1996).57.Hagler, J. R., Mueller, S., Teuber, L. R., Machtley, S. A. & Van Deynze, A. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields. J. Insect Sci. 11, 144 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    58.Couvillon, M. J. et al. Honey bee foraging distance depends on month and forage type. Apidologie 46, 61–70. https://doi.org/10.1007/s13592-014-0302-5 (2015).Article 

    Google Scholar 
    59.Beekman, M. & Ratnieks, F. L. W. Long-range foraging by the honey-bee, Apis mellifera L.. Funct. Ecol. 14, 490–496. https://doi.org/10.1046/j.1365-2435.2000.00443.x (2000).Article 

    Google Scholar 
    60.Gary, N. E., Witherell, P. C. & Lorenzen, K. Effect of age on honey bee foraging distance and pollen collection. Environ. Entomol. 10, 950–952 (1981).Article 

    Google Scholar 
    61.Walther-Hellwig, K. & Frankl, R. Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., Apidae), in an agricultural landscape. J. Appl. Entomol. 124, 299–306. https://doi.org/10.1046/j.1439-0418.2000.00484.x (2000).Article 

    Google Scholar 
    62.Dramstad, W. E. Do bumblebees (Hymenoptera: Apidae) really forage close to their nests?. J. Insect Behav. 9, 163–182. https://doi.org/10.1007/bf02213863 (1996).Article 

    Google Scholar 
    63.Knight, M. E. et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol. Ecol. 14, 1811–1820 (2005).CAS 
    Article 

    Google Scholar 
    64.Wolf, S. & Moritz, R. F. Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39, 419–427 (2008).Article 

    Google Scholar 
    65.Osborne, J. L. et al. Bumblebee flight distances in relation to the forage landscape. J. Anim. Ecol. 77, 406–415 (2008).Article 

    Google Scholar 
    66.Zurbuchen, A. et al. Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol. Conserv. 143, 669–676 (2010).Article 

    Google Scholar 
    67.Hopfenmuller, S., Steffan-Dewenter, I. & Holzschuh, A. Trait-specific responses of wild bee communities to landscape composition, configuration and local factors. PLoS ONE 9, e104439. https://doi.org/10.1371/journal.pone.0104439 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Hung, K. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc R Soc Biol Sci Ser B 285, 20172140. https://doi.org/10.1098/rspb.2017.2140 (2018).Article 

    Google Scholar 
    69.Requier, F. et al. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 25, 881–890. https://doi.org/10.1890/14-1011.1 (2015).Article 
    PubMed 

    Google Scholar 
    70.Bonoan, R. E., Gonzalez, J. & Starks, P. T. The perils of forcing a generalist to be a specialist: lack of dietary essential amino acids impacts honey bee pollen foraging and colony growth. J. Apic. Res. 59, 95–103. https://doi.org/10.1080/00218839.2019.1656702 (2020).Article 

    Google Scholar 
    71.Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter?. PLoS ONE 8, e72016. https://doi.org/10.1371/journal.pone.0072016 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Di Pasquale, G. et al. Variations in the availability of pollen resources affect honey bee health. PLoS ONE 11, e0162818. https://doi.org/10.1371/journal.pone.0162818 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565. https://doi.org/10.1098/rsbl.2009.0986 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Colwell, M. J., Williams, G. R., Evans, R. C. & Shutler, D. Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecol. Evol. 7, 7243–7253. https://doi.org/10.1002/ece3.3178 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Zhang, G., St. Clair, A. L., Dolezal, A., Toth, A. L. & O’Neal, M. Honey Bee (Hymenoptera: Apidea) pollen forage in a highly cultivated agroecosystem: limited diet diversity and its relationship to virus resistance. J. Econ. Entomol. 113, 1062–1072 (2020).76.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org. (2009).77.FÖMI. MePAR, the Hungarian Agricultural Land Parcel Identification System, accessed 22 November 2019 http://www.mepar.hu/ (2016).78.McGarigal, K., Cushman, S. & Ene, E. Spatial Pattern Analysis Program for Categorical and Continuous Maps. available from http://www.umass.edu/landeco/research/fragstats/fragstats.html. (University of Massachusetts, 2012).79.McGarigal, K. FRAGSTATS help. Documentation for FRAGSTATS, 4. (2014).80.McGarigal, K. (2017). Landscape metrics for categorical map patterns. Lecture Notes. Available online: accessed 28 Feb 2021 http://www.umass.edu/landeco/teaching/landscape_ecology/schedule/chapter9_metrics.pdf.81.R Core Team. R: A Language and Environment for Statistical Computing. version 3.6.0. https://www.R-project.org. (R Foundation for Statistical Computing, 2020).82.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software 67, https://doi.org/10.18637/jss.v067.i01 (2015).84.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
    Google Scholar 
    85.DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. v. 0.3.3.0. (2020).86.Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. (2019). More

  • in

    Legacies of Indigenous land use shaped past wildfire regimes in the Basin-Plateau Region, USA

    1.Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).CAS 
    Article 

    Google Scholar 
    2.Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. BioScience 59, 593–601 (2009).Article 

    Google Scholar 
    3.Dennison, P. E., Brewer, S. C., Arnold, J. D. & Mortiz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).Article 

    Google Scholar 
    4.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 
    Article 

    Google Scholar 
    5.Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).CAS 
    Article 

    Google Scholar 
    6.Westerling, A. L. R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Phil. Trans. R. Soc. B Biol. Sci. 371, 1–10 (2016).
    Google Scholar 
    7.Schwartz, M. W. et al. Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere 6, 1–10 (2015).Article 

    Google Scholar 
    8.Trujillo, E., Molotch, N. P., Goulden, M. L., Kelly, A. E. & Bales, R. C. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 5, 705–709 (2012).CAS 
    Article 

    Google Scholar 
    9.Trouet, V., Taylor, A. H., Wahl, E. R., Skinner, C. N. & Stephens, S. L. Fire-climate interactions in the American West since 1400 CE. Geophys. Res. Lett. 37, 1–5 (2010).Article 

    Google Scholar 
    10.Kitchen, S. G. Climate and human influences on historical fire regimes (AD 1400–1900) in the eastern Great Basin (USA). Holocene 26, 397–407 (2016).Article 

    Google Scholar 
    11.Klimaszewski-Patterson, A., Weisberg, P. J., Mensing, S. A. & Scheller, R. M. Using paleolandscape modeling to investigate the impact of native American–set fires on pre-Columbian forests in the Southern Sierra Nevada, California, USA. Ann. Am. Assoc. Geographers 108, 1635–1654 (2018).
    Google Scholar 
    12.Taylor, A. H., Trouet, V., Skinner, C. N. & Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE. Proc. Natl Acad. Sci. USA 113, 13684–13689 (2016).CAS 
    Article 

    Google Scholar 
    13.Ryan, K. C., Knapp, E. E. & Varner, J. M. Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Front. Ecol. Environ. 11, e15–e24 (2013).14.Herring, E. M., Anderson, R. S. & San Miguel, G. L. Fire, vegetation, and Ancestral Puebloans: a sediment record from Prater Canyon in Mesa Verde National Park, Colorado, USA. Holocene 24, 853–863 (2014).Article 

    Google Scholar 
    15.Liebmann, M. J. et al. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492-1900 CE. Proc. Natl Acad. Sci. USA 113, E696–E704 (2016).CAS 
    Article 

    Google Scholar 
    16.Swetnam, T. W. et al. Multiscale perspectives of fire, climate and humans in Western North America and the Jemez Mountains, USA. Phil. Trans. R. Soc. B Biol. Sci. 371, (2016).17.Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 358, 925–931 (2017).Article 
    CAS 

    Google Scholar 
    18.Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).Article 

    Google Scholar 
    19.Vale, T. R. The Pre-European landscape of the United States: Pristine or Humanized? in Fire, Native Peoples, and the Natural Landscape 1–39 (Island Press, 2002).20.Lightfoot, K. G. & Lopez, V. The study of indigenous management practices in California: an introduction. California Archaeol. 5, 209–219 (2013).Article 

    Google Scholar 
    21.Oswald, W. W. et al. Conservation implications of limited Native American impacts in pre-contact New England. Nat. Sustain. 3, 241–246 (2020).Article 

    Google Scholar 
    22.Vachula, R. S., Russell, J. M. & Huang, Y. Climate exceeded human management as the dominant control of fire at the regional scale in California’s Sierra Nevada. Environ. Res. Lett. 14, 104011 (2019).CAS 
    Article 

    Google Scholar 
    23.Baker, W. L. Indians and Fire in the Rocky Mountains: The Wilderness Hypothesis Renewed. in Fire, Native Peoples, and the Natural Landscape 41–76 (2002).24.Kimmerer, R. W. & Lake, F. K. Maintaining the Mosaic: the role of indigenous burning in land management. J. Forestry 99, 36–41 (2001).
    Google Scholar 
    25.Power, M. J. et al. Human fire legacies on ecological landscapes. Front. Earth Sci. 6, 1–6 (2018).Article 

    Google Scholar 
    26.Keeley, J. E. Native American impacts on fire regimes of the California coastal ranges. J. Biogeogr. 29, 303–320 (2002).Article 

    Google Scholar 
    27.Lightfoot, K. G., Parrish, O., Panich, L. M. & Schneider, T. D. California Indians and Their Environment: An Introduction (Univ. California Press, 2009).28.Ryan, K. C., Jones, A. T., Koerner, C. L. & Lee, K. M. Wildland Fire in Ecosystems: Effects of Fire on Cultural Resources and Archaeology. Vol. 3., 224. Rocky Mountain Research Station General Technical Report RMRS-GTR-42 (US Department of Agriculture, Forest Service, 2012).29.Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl Acad. Sci. USA 115, 8143–8148 (2018).CAS 
    Article 

    Google Scholar 
    30.Thomas, D. H. The 1981 Alta Toquima Village project: A Preliminary Report. Desert Research Institute Social Sciences and Humanities Publications Technical Report 27, 1–202 (Desert Research Institute Social Sciences and Humanities Publications, 1982).31.Benedict, J. B. Footprints in the snow: high-altitude cultural ecology of the Colorado Front Range, USA. Arctic Alpine Res. 24, 1–16 (1992).Article 

    Google Scholar 
    32.Stevens, N. E. Changes in prehistoric land use in the Alpine Sierra Nevada: a regional exploration using temperature-adjusted obsidian hydration rates. J. California Great Basin Anthropol. 25, 187–205 (2005).
    Google Scholar 
    33.Klimaszewski-Patterson, A. & Mensing, S. Paleoecological and paleolandscape modeling support for pre-Columbian burning by Native Americans in the Golden Trout Wilderness Area, California, USA. Landscape Ecol. https://doi.org/10.1007/s10980-020-01081-x (2020).34.Swetnam, T. W., Allen, C. D. & Betancourt, J. L. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).Article 

    Google Scholar 
    35.Roos, C. I., Williamson, G. J. & Bowman, D. M. Is anthropogenic pyrodiversity invisible in paleofire records? Fire 2, 42 (2019).Article 

    Google Scholar 
    36.Marlon, J. R. et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 65, 5–25 (2013).Article 

    Google Scholar 
    37.Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).Article 

    Google Scholar 
    38.Adolf, C. et al. The sedimentary and remote-sensing reflection of biomass burning in Europe. Global Ecol. Biogeogr. 27, 199–212 (2018).Article 

    Google Scholar 
    39.Vachula, R. S. A meta-analytical approach to understanding the charcoal source area problem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110111 https://doi.org/10.1016/j.palaeo.2020.110111 (2021).40.Munoz, S. E., Gajewski, K. & Peros, M. C. Synchronous environmental and cultural change in the prehistory of the northeastern United States. Proc. Natl Acad. Sci. USA 107, 22008–22013 (2010).CAS 
    Article 

    Google Scholar 
    41.Peros, M. C., Munoz, S. E., Gajewski, K. & Viau, A. E. Prehistoric demography of North America inferred from radiocarbon data. J. Archaeol. Sci. 37, 656–664 (2010).Article 

    Google Scholar 
    42.Brown, P. M., Heyerdahl, E. K., Kitchen, S. G. & Weber, M. H. Climate effects on historical fires (1630-1900) in Utah. Int. J. Wildland Fire 17, 28–39 (2008).Article 

    Google Scholar 
    43.Li, J. et al. Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Change 1, 114–118 (2011).CAS 
    Article 

    Google Scholar 
    44.Gedalof, Z. & Peterson, D. L. & Mantua, N. J. Atmospheric, climatic, and ecological controls on extreme wildfire years in the Northwestern United States. Ecol. Appl. 15, 154–174 (2005).45.Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G. & Long, D. G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 10, 329–342 (2001).Article 

    Google Scholar 
    46.Marchetti, D. W., Harris, M. S., Bailey, C. M., Cerling, T. E. & Bergman, S. Timing of glaciation and last glacial maximum paleoclimate estimates from the Fish Lake Plateau, Utah. Quat. Res. 75, 183–195 (2011).CAS 
    Article 

    Google Scholar 
    47.Kemperman, J. A. & Barnes, B. V. Clone size in American aspens. Can. J. Botany 54, 2603–2607 (1976).Article 

    Google Scholar 
    48.Mitton, J. B. & Grant, M. C. Genetic variation and the natural history of quaking Aspen. BioScience 46, 25–31 (1996).Article 

    Google Scholar 
    49.Wood, S. N. Generalized Additive Models: an Introduction with R (Chapman and Hall, 2006).50.Hastie, T. & Tibshirani, R. Generalized additive models. Stat. Sci. 1, 297–318 (1992).
    Google Scholar 
    51.Madsen, D. B. & Simms, S. R. The Fremont complex: a behavioral perspective. J. World Prehistory 12, 255–336 (1998).Article 

    Google Scholar 
    52.Massimino, J. & Metcalfe, D. New form for the formative. Utah Archaeol. 12, 1–16 (1999).
    Google Scholar 
    53.Coltrain, J. B. & Leavitt, S. W. Climate and diet in Fremont prehistory: economic variability and abandonment of maize agriculture in the Great Salt Lake Basin. Am. Antiquity 67, 453–485 (2002).Article 

    Google Scholar 
    54.Magargal, K. E., Parker, A. K., Vernon, K. B., Rath, W. & Codding, B. F. The ecology of population dispersal: modeling alternative basin-plateau foraging strategies to explain the Numic expansion. Am. J. Hum. Biol. 29, 1–14 (2017).
    Google Scholar 
    55.Thomson, M. J., Balkovič, J., Krisztin, T. & MacDonald, G. M. Simulated impact of paleoclimate change on Fremont Native American maize farming in Utah, 850–1449 CE, using crop and climate models. Quat. Int. 507, 95–107 (2019).Article 

    Google Scholar 
    56.Finley, J. B., Robinson, E., Derose, R. J. & Hora, E. Multidecadal climate variability and the florescence of Fremont societies in Eastern Utah. American Antiquity 85, 93–112 (2020).Article 

    Google Scholar 
    57.Janetski, J. C. Archaeology and Native American history at Fish Lake, Central Utah. vol. 16 (Museum of Peoples and Cultures, Brigham Young University, 2010).58.Fowler, C. S. in Handbook of North American Indians (eds. Sturtevant, W. C. & D’Azevedo, W. L.) vol. 11, 64–97 (Smithsonian Institution, 1986).59.Sullivan, A. P. & Mink, P. B. Theoretical and socioecological consequences of fire foodways. Am. Antiquity 83, 619–638 (2018).Article 

    Google Scholar 
    60.Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).CAS 
    Article 

    Google Scholar 
    61.Woodhouse, C. A., Meko, D. M., MacDonald, G. M., Stahle, D. W. & Cook, E. R. A 1,200-year perspective of 21st century drought in southwestern North America. Proc. Natl Acad. Sci. USA 107, 21283–21288 (2010).CAS 
    Article 

    Google Scholar 
    62.Meko, D. M. et al. Medieval drought in the upper Colorado River Basin. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    63.Salzer, M. W. & Kipfmueller, K. F. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau, U.S.A. Clim. Change 70, 465–487 (2005).CAS 
    Article 

    Google Scholar 
    64.Knight, T. A., Meko, D. M. & Baisan, C. H. A bimillennial-length tree-ring reconstruction of precipitation for the Tavaputs Plateau, Northeastern Utah. Quat. Res. 73, 107–117 (2010).Article 

    Google Scholar 
    65.Margolis, E. Q. & Swetnam, T. W. Historical fire-climate relationships of upper elevation fire regimes in the south-western United States. Int. J. Wildland Fire 22, 588–598 (2013).Article 

    Google Scholar 
    66.Calder, W. J., Parker, D., Stopka, C. J., Jiménez-Moreno, G. & Shuman, B. N. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc. Natl Acad. Sci. USA 112, 13261–13266 (2015).CAS 
    Article 

    Google Scholar 
    67.Bliege, R. B., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).Article 

    Google Scholar 
    68.Parisien, M. A. et al. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 11, 075005 (2016).Article 

    Google Scholar 
    69.Codding, B. F. et al. Socioecological dynamics structuring the spread of farming in the North American Basin-Plateau Region. Environ. Archaeol. (in review).70.Robinson, E., Nicholson, C. & Kelly, R. L. The importance of spatial data to open-access national archaeological databases and the development of paleodemography research. Adv. Archaeol. Pract. 7, 395–408 (2019).Article 

    Google Scholar 
    71.Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, 535–543 (2012).Article 

    Google Scholar 
    72.Kent McAdoo, J., Schultz, B. W. & Swanson, S. R. Aboriginal precedent for active management of sagebrush-perennial grass communities in the Great Basin. Rangeland Ecol. Manag. 66, 241–253 (2013).Article 

    Google Scholar 
    73.Heyerdahl, E. K., Brown, P. M., Kitchen, S. G. & Weber, M. H. Multicentury Fire and Forest Histories at 19 sites in Utah and Eastern Nevada. Rocky Mountain Research Station General Technical Report RMRS-GTR-261WWW, 192 (US Department of Agriculture, Forest Service, 2011).74.Charles, K. Long-term Vegetation Change on Utah’s Fishlake National Forest: A Study in Repeat Photography (Utah State Univ., 2003).75.USDA Forest Service. Fishlake National Forest (N.F.), Salina Planning Unit: Environmental Impact Statement. 1–125 (USDA Forest Service, 1976).76.Morris, J. L., Brunelle, A., Munson, A. S., Spencer, J. & Power, M. J. Holocene vegetation and fire reconstructions from the Aquarius Plateau, Utah, USA. Quat. Int. 310, 111–123 (2013).Article 

    Google Scholar 
    77.MTBS Data Access: Fire Level Geospatial Data. (2020, November – last revised). MTBS Project (USDA Forest Service/U.S. Geological Survey). Available online: http://mtbs.gov/direct-download [2020, December 15].78.Kitzberger, T., Falk, D. A., Westerling, A. L. & Swetnam, T. W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12, e0188486 (2017).Article 
    CAS 

    Google Scholar 
    79.Dean, W. E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparision with other methods. J. Sediment. Petrol. 44, 242–248 (1974).CAS 

    Google Scholar 
    80.Reimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal Bp. Radiocarbon 55, 1869–1887 (2013).CAS 
    Article 

    Google Scholar 
    81.Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).Article 

    Google Scholar 
    82.Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S. & Brown, T. A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monographs 79, 201–219 (2009).Article 

    Google Scholar 
    83.Crema, E. R., Bevan, A. & Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 87, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    84.Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. Proc. Natl Ac. Sci. USA 110, 443–447 (2013).CAS 
    Article 

    Google Scholar 
    85.Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat Commun. 4, 31–34 (2013).Article 
    CAS 

    Google Scholar 
    86.Bevan, A. & Crema, E. rcarbon v1. 2.0: Methods for calibrating and analysing radiocarbon dates, https://cran.r-project.org/web/packages/rcarbon/index.html (2018).87.Contreras, D. A. & Meadows, J. Summed radiocarbon calibrations as a population proxy: A critical evaluation using a realistic simulation approach. J. Archaeol. Sci. 52, 591–608 (2014).Article 

    Google Scholar 
    88.Wood, S. N. Package ‘mgvc,’ https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (2017). More

  • in

    The first record of exceptionally-preserved spiral coprolites from the Tsagan-Tsab formation (lower cretaceous), Tatal, western Mongolia

    SizesAs from the measurements, all collected coprolites vary in sizes (Table 1). The smallest and complete specimen is IVPP V 27,545 (Fig. 2D–G), and while IVPP V 27,550 (2 V-Z) is multiple time larger. The maximum length for specimen IVPP V 27,544, IVPP V 27,546, IVPP V 27,547 and IVPP V 27,549 have not been determined due to their incompleteness.Table 1 Biometrical and morphological features of spiral coprolites from Tsagan-Tsab Formation (Lower Cretaceous), Tatal, western Mongolia. Paul Rummy, Kazim Halaclar & He Chen.Full size tableSurface adhesion and marksAll specimens contained some degree of bone fragments and rhomboidal-shaped ganoid scales adhered to the coprolite surfaces (Fig. 3). Additionally, all specimens have smooth surfaces with little abrasion. The inner coil lines of specimen IVPP V 27,549 adhered with a matrix of red clay with silt (Fig. 2S–U). Only specimen IVPP V 27,550 has been seen with concentric cracks (Fig. 2V–Z). Bite marks have also been found on specimen IVPP V 27,545, in which these traces were short, parallel, shallow and isolated. They have been formed from 3 furrows of roughly 3.8 mm long and 0.3 mm deep (Fig. 4).InclusionsThrough CT scans and surface observation, we noticed that all specimens contained bone fragments and scales of varying degrees (Fig. 5). We were unable to identify the bones in detail for specimen IVPP V 27,544, IVPP V 27,546, IVPP V 27,547, IVPP V 27,548, IVPP V 27,549 and IVPP V 27,550, as they were excessive in amount and extremely fragmentary. On the contrary, for specimen IVPP V 27,545, we noticed a rather complete bone structure, such as the ribs and a segment of an infraorbital (Fig. 5H–N). SEM photograph from one random point of specimen IVPP V 27,545 yielded results of the existents of pollen grain (Fig. 6C).BoringsSurface borings of invertebrate burrowing can be seen in 2 spiral coprolites, namely IVPP V 27,547 (Fig. 2D–G) and IVPP V 27,550 (Fig. 2V–Z). CT scans revealed that the borings of specimen IVPP V 27,550 did not intrude internally, and it was the same for some of IVPP V 27,547 as well (Fig. 7). Specimens IVPP V 27,546, IVPP V 27,547, IVPP V 27,548 and IVPP V 27,549 are shown to have traces of internal borings (Fig. 5C–F).EDS analysesIn this work, in regards to Tatal’s coprolites, the mineral elements were examined by using EDS and the photos were taken with SEM. Analyses was conducted on 2 specimens (IVPP V 27,546 and IVPP V 27,545) with two sample points for each. All 4 samples showed high peaks of calcium and phosphorus. EDS results of specimen IVPP V 27,546 (Fig. 6A–B) and specimen IVPP V 27,545 (Fig. 6C–D) gave similar atomic compositions. They were mainly composed of Ca, P and O and small peaks that belong to Nb, Si, C, K, Fe and Al. We have also described a potential pollen structure under SEM image (Fig. 6C). This possible pollen structure in specimen IVPP V 27,545 (Fig. 6C) showed different atomic elements from the other EDS results, where it contained high peaks of Na and Cl.Taphonomy inferencesNo signs of abrasion were found on all of the coprolites. Coloration of the coprolites varied, thus, indicating they were buried in different sedimentary conditions. Through the shape of the coprolites, we can deduce that they have indeed spent different amounts of time or phases in water bodies before burial (see above description/discussion). Meanwhile, specimen IVPP V 27,550 showed shallow coil deepness, therefore, this indicates that it was buried rapidly after excretion.Discussion and interpretationThere are several pivotal evidences that corroborate to fecal origins of the Tsagan-Tsab Formation material: (1) basic morphology; (2) general shape and size (3) inclusions of the fecal matter; (4) high calcium and phosphorus content; (5) bioerosional scars; (6) borings and cavities; (7) concentric cracks.The fundamental puzzle in the studies of coprolite is the difficulty in identifying the potential producer, which can be due to their nature and preservation. Also, that includes the methods used to deduce them with their producer, which were done by inferring with various forms of relationship based on stratigraphy and geographical relationships, as well as on neoichnology studies7,23,54,55. Such problems similarly arose in our context as well, and the materials were collected from a stratum that were interpreted as lake deposit margins, thus, suggesting an amphibious or aquatic producer. The paleoenvironment correlates with the findings of pterosaur fossils such as the Noripterus44 or argued as ‘Phobetor’56, and the diets of these pterosaurs were dependable on the lake environment57,58,59,60. Above all, and more importantly, that the shape of the coprolite has to be intact in order to represent the shape of the internal intestine of the producer, whereby, anatomically it can lead to a certain biological aspect and digestive system of the organism. Despite these, there are on-going controversies on the origin of the spiral shaped bromalites in regards to whether or not they signify fossilized feces, or they are the cololite that was formed within the colon6,21,23,61,62.Spiral coprolites are producer of an animal with spiral intestine valves to increase the surface area of absorption, to slow down food movement in the bowel to maximise nutrient absorption, which has a significant strategy in surviving uncertain and harsh environment conditions28,63,64. Referring to past literature, it is generally agreed upon that the spiral shape is the only distinctively coprolite morphology, whereby it has been regarded as a true coprolite and can be correctly associated to the source animal, such as a range of fishes in particular6,22,52. Many primitive bony fishes (except those of teleosts), fresh water sharks (elasmobranches), coelacanths, Saurichthys, sturgeons and lungfishes are known to have the spiral valve intestine51,64,65,66. Also, Price67 suggested that the amphipolar form could have been derived from palaeoniscoids. Additionally, Romer & Parsons68 noted that the spiral valves are secondarily lost in teleost and tetrapods, while Chin69 noted a few teleosteans still possessing them.The spiral coprolites collected for this study are mainly amphipolar in shape and one in scroll. As we know, generally heteropolar spiral coprolite are produced by sharks, which have complex spiral valves62. Therefore, we can exclude those in the family of elasmobranches as the potential producers and this can also be supported by the non-marine geological settings of Tsagan-Tsab Formation. But it is also noteworthy to mention that in previous studies, some workers have conducted observations on sharks that were kept in tanks, and were not been able to find any spiral fecal pellets. The reasons given were that the sharks’ eating habits could have changed due to the tank environment, which would have differed from the natural marine environment. Also, modern day sharks are totally unrelated to the ancient Permian pleuracanth sharks6. Despite these, evidence of spiral fecal pellet can still be observed in some of the present-day fishes, such as the African lungfish Protopterus annectans, the Australian lungfish Neoceratodus forsteri, the long-nosed gar Lepisosteus osseus and the spotted gar Lepisosteus oculatus6,70,71,72. As for scroll coprolites, it is generally known to be produced by animal with longitudinal valves (valvular voluta), whereby the valves naturally rolls in upon itself , in a way that it maximises nutrient absorption8,9,17,18. Gilmore17 in his work mentioned that this type of valve must be primitive than the transverse valve (valvular spiralis), which could be a modification of the previous ones. This form is especially known to sharks of carcharhiniforms73, and it is evident that it could have been associated with sarcopterygian53, as well as anaspid and thelodont agnathans17.In this study, we recognised four new ichnotaxa for all the seven coprolite specimens. Assigning four new ichnotaxa does not conclude that the coprofauna are of four different types of animals. Considering there are two distinct morphologies, which are the amphipolar spiral and scroll, we can deduce that at least two animals can produce these coprolites. But we have to carefully consider that diverse diets at different times for the same animal can often be variable, and soft fecal materials can range disparately after defecation, as well as taphonomy influence74,75. Specimen IVPP V 27,550 is remarkably huge and its producer should be a massive animal since large animals could produce small excrement, but small animals would not be able to produce big excrement52,54. Moreover, since there are no relevant fossils fauna found in the locality, we were unable to exactly identify the specific producer, rather, we deduced with relevant sources. However, we do know that both amphipolar spiral and scroll coprolites can be attributed to certain types of fishes. As of these, we can conclude that the coprolites were produced by fishes in different sizes. Specimen IVPP V 27,545 differs from the rest by its shape and size, which makes prediction even harder, because it could be produced by either large or smaller animals.CT scans revealed that bony inclusions are evident in all of the coprolites (Fig. 5). However, except in specimen IVPP V 27,545, the bones in the rest of the coprolites are fragmentary. Specifically, bones in specimen IVPP V 27,545 are rather unaffected by the acidity of the digestive enzyme and these were evident by the presence of clusters of entire bones in the coprolite (Fig. 3A–C), as contrast to the fragmentary bones in the rests of the coprolites. Furthermore, we identified an infraorbital bone of a fish. CT scans revealed that the infraorbital bone has a sensory canal where it branches off at both ends (Fig. 5M–N). With these, we can indicate that the producer of specimen IVPP V 27,545 poorly masticated the prey and also had a rather low gut digestion for food28,55,76,77,78. Through these results, we can infer the digestive strategies of the producers were in correlation with food intake and digestion process, as discussed in Barrios-de Pedro & Buscalioni77. Specimen IVPP V 27,545 might belong to the first type of digestive strategy, whereby the producer has limited food processing in the mouth and the food stays in the digestive system for a short period of time. This strategy is regarded to be efficient in conditions where food sources are abundant and the nourishment levels are sufficient79. The rest of the coprolites possibly belong to the second digestive strategy, as the bone content is fragmentary. This suggest the producer might have limited mastication with improved digestive assimilation and longer gut time to favour better absorptions of nutrients55,80,81,82,83. The third type of digestive strategy does not imply in our study. It is also noteworthy to mention that the quantity of the inclusions is not correlated to the size of the coprolite, rather, it is dependable on the above-mentioned biological variables28,84.Carnivorous coprolites are normally composed of calcium phosphate and other organic matter, but it is important to be aware that the initial compositions are usually altered during fossilization processes33. Meanwhile, the excretion of herbivores is generally lacking in phosphates and their fossilization are mostly dependable of the mineral enrichment85. Through the morphological shape, the density of bone and scale inclusions on the surface from the CT scans, we can directly assume that these coprolites are inevitably produced by carnivorous organisms. Despite that, we still conducted SEM–EDS tests on two specimens, IVPP V 27,546 and specimen IVPP V 27,545 (Fig. 6), in order to determine its mineral content, and to prove them as a valid coprolite material because we were not able to compare these materials to any attached locality matrix at the time the study. The reason for that was because the specimens were collected almost two decades ago and they were very well-kept in the archives throughout these years. As predicted, all 4 samples gave higher content of Ca and P, thus, there is no doubt that they are indeed fossilized fecal materials. Also, in regards to the SEM–EDS on specimen IVPP V 27,545 (Fig. 6C–D), when randomly pointed to a particular structure, it yielded unusual results from the rest, in which the EDS peaks are composed of Na and Cl. At the same time, the SEM image potentially showed a pollen grain like structure. Hollocher and Hollocher86 documented a pollen image by using SEM, which brings our potential pollen image (Fig. 6C) dimensionally compatible with their sample. Although specimen IVPP V 27,545 is produced by an unidentified carnivorous vertebrate, it is common for carnivore coprolites to have plant remains within them. Also, it is known that spores and pollens are exceptionally well preserved within the encasement of calcium phosphate, which inhibits sporopollenin degradation87. Various reasons can be inferred for the presence of the pollen in specimen IVPP V 27,545, to which it could either be by accident or by preying on an herbivorous animal. Furthermore, it could also be through the adhesion on the excrement when the fecal is still fresh88. Pollens are in fact valuable information provider for paleoenvironment reconstruction, as well as for understanding the vegetation state of a particular era87,89,90,91,92. Hence, further palynology analyses are needed for future work.EDS mineral composition and coprolite coloration can be correlated to a certain degree, in which it could also explain depositional origin27. Most of the Tatal’s coprolites are pink-whitish in color, which is highly associated with the presence of calcium through its carnivorous diets93,94,95,96. The dark colors can also be due to the presence of iron or it could also be due to complete phosphatisation23,27. However, a large part of the colorations was influenced by diagenesis27,28.Traces of burrows are evident on the surface of specimen IVPP V 27,547 and IVPP V 27,550, but CT scans revealed internal traces burrowing did occur in specimen IVPP V 27,546, IVPP V 27,547, IVPP V 27,548 and IVPP V 27,549 (Fig. 5). Since not all possible burrows were dug-in, we gave the term ‘pseudo-burrow’ on those burrows that were abandoned in the early stages. For example, on all of the burrow traces in specimen IVPP V 27,547, only one traces showed burrowing holes, while the rest did not form a hole. While those specimens with internals, but without any traces on the outer surface, this can be explained by taphonomy processes, whereby the outer surface is covered with sedimentary and non-differentiable. It was reported in Tapanila et al.97, that marine bivalves are potential makers of the burrows in coprolites by expanding the diameter of the hole as they dig in, although Milàn, Rasmussen & Bonde98, reported a contradictory example, where the holes were indeed constant in diameter. In our study, we couldn’t determine if the holes were constantly in diameter or not. Numerous tiny holes were visible on all of the coprolites surface, as well as within it, and these were most probably caused by gases within the fecal matters. These holes can be called as microvoids or ‘degassing holes’, which contain gases trapped during digestion74,99,100. Microvoids are quickly filled with water when fecal matter is excreted from the animal body, thus making the fecal becoming heavy and sinking to the lake floor74.A series of three parallel furrows or bioerosional scars were evident on the surface of specimen IVPP V 27,545 (Fig. 3). Those lines only occurred once without any repetition on the rest of the surface. The information from these furrows were insufficient to deduce any potential biters, as widely discussed in the work of Godfrey & Palmer101, Godfrey & Smith102, Dentzien-Dias et al.103, and Collareta et al.104. On the other hand, deducing from the dented surface on the bitten marks, we predicted that the marks were most probably made by the biting pressures from the fish mandibles, which may indicate coprophagous behavior. The biting could have happened on the lake floor just before sedimentary deposition. Since the bitten marks are on the surface, this probably suggests unintentional scavenging and was eventually aborted during food search.In general, coprolites can be transported from the original place through various modes25 and this can be evident by the traces of abrasion51,65. However, in Tatal’s coprolites, there were little or almost no marks of abrasion. Yet again, this supports our hypothesis that these coprolites were excrements in shallow waters, such as in the lake banks with little turbulence and current, where the fecal matter was dropped in-situ after excrement. As stated in previous literature105,106, radial and concentric cracks are also evident on the surface of specimen IVPP V 27,550, therefore, these indicate that the coprolite was excreted on a very shallow environment where the water body was vastly evaporated and left for subaerial exposure before embedment. This phenomenon caused the coprolite to dehydrate through the cracking, and shrinking occurred in a low magnitude process while retaining its overall shape27,54,107. Previous authors have also discussed that the cracks could possibly be due to synaeresis under certain conditions27,54,108.It has been frequently reported in records that almost all spiral coprolite fossilization from various Phenerozoic ages have occurred in low-energy shallow marine environments54. Feces that are being excreted in this humid environment have a higher chance of preservation due to the rapid burial, as well as on the acidity level of the water bodies5,7,109,110,111. There are also several crucial factors that are involved in fecal fossilization. Among them, one of the most important criteria includes the content and composition of the fecal matter, and those of carnivorous diets tend to form coprolites than those who consumed an herbivorous diet75. As mentioned in Dentzien-Dias et al.111, there are three main stages involved in a coprolite taphonomy history, which include stages before final burial, after the final burial and after exposure. In accordance to this, we introduced the usage of phases to discuss the spiral coprolites morphologies in this study (see material and methods). The phase concept of spiral coprolites disentanglement has been widely discussed in early days by various workers6,22,70. Coprolite specimen IVPP V 27,544 and IVPP V 27,547 are considered as Phase 1, as the coils are not deep, and this can be explained as during excrement, there’s a mucosal membrane covering the surface of the fecal matter and embedment occurring rapidly, thus retaining most of its surface structure. Although there are signs of disentanglement, we predict that the uncoiling on the surface was not by natural processes, but has been caused by a breakage after on. Both of these two coprolites could have been large in actual size. Similar explanations can be given to specimens IVPP V 27,548 and IVPP V 27,550, whereby the coils are shallow, thus, classifying them as to had occurred in Phase 1. We classify specimen IVPP V 27,546 and IVPP V 27,549 as Phase 2, in which the spaces between the coils of IVPP V 27,546 were slightly separated and in IVPP V 27,549, they were strongly separated. Both of these specimens could have spent more time in water bodies before burial. Specimen IVPP V 27,545 does not provide any external information in regards of phases approach because of its non-spiral morphology. While it is also worthwhile to mention that none of them have spent sufficient time in the water bodies in order to possess the Phase 3 structure. Through these, we can also conclude that smaller coprolites are much complete while bigger coprolites tend to easily break-off. However, having mentioned that, the preservation of specimen IVPP V 27,550 is indeed valuable.Through the above morphological points, we predict that the amphipolar spiral coprolites could have belonged to groups of either prehistoric lungfishes or Acipenseriformes (sturgeon and paddlefish). Another aim of this work is to portray the existence of possible prey-predation relationships from the collected coprolites. In order to narrow down the identity of the potential producer and possibly the prey, we looked into some related fauna list from past literature. Geological settings have indicated that the Lower Cretaceous Tsagan-Tsab formation is not only recorded in the area of Tatal, but also in other regions of Mongolia as well36. There are two possibilities on the deduced prey and predator, they are either of Asipenceriformes—Lycopteriformes relationship or Asipenceriformes—Pholidophoriformes relationship. We suggest Pholidophoriformes as a much potential prey than the Lycopteriformes in the Tsagan-Tsab Formation, and the reasons will be explained thoroughly. As for the producer, we knew that Asipenceriformes are largely known from the Lycoptera-Peipiaosteus (Asipenceriformes) Fauna or the “Jehol Fauna”, as these assemblages of fishes were not only abundant in the Lower Cretaceous Yixian Formation of northeastern China, but also widely distributed over the region of eastern Siberia, Mongolia, northern China and northern Korea112. It is also noteworthy to mention that the Tsagan-Tsab formations and the Yixian formation were similar in geological age. In the same context, Jakolev35 described Stichopterus popovi (Asipenceriformes) and recorded amphipolar spiral coprolites from the Aptian lacustrine of Gurvan-Eren Formation of Mongolia , a locality that is close to Tatal. Although there are differences in the geological period of Tsagan-Tsab and Gurvan-Eren Formation, it is highly possible that Asipenceriformes existed in these areas. Furthermore, Asipenceriformes are shown to have spiral valves113, and this can be further proven with the work of Capasso64 on Peipiaosteus pani, thus, contributing to the morphology of the spiral coprolites. With these, we strongly suggest that the amphipolar spiral coprolites of Tsagan-Tsab Formation and for Gurvan-Eren Formation to belong to Asipenceriformes. As for prey, we know from existing literature that there is a close relationship between Asipenceriformes and Lycoptera, as evident in the name Lycoptera-Peipiaosteus Fauna. Yondon et al.36 reported Lycoptera middendorfii, a form of small freshwater Teleost fish from the Eastern Gobi—Tsagan-Tsab formation. But, it was clearly mentioned that Bon-Tsagan/Bon-Chagan (Fig. 1) is the westernmost locality of Lycoptera in Mongolia114. Another fact that was taken into account for the possible prey is the shape of the scales found in the inclusions, whereby Lycoptera are known for their cycloid shaped scales, while the ones in our specimens are more towards rhomboidal-shaped ganoid scales. These facts crucially eliminate the possibilities of Lycoptera for the Tsagan-Tsab fauna. With this, we further examined Jakolev35′s works and discovered the species that he described, Gurvanichthys mongoliensis (Pholidophoriformes) from the Gurvan-Eren Formation has rhomboidal-shaped ganoid scales. The size, shape of the scale and the nature of this fish fits well as a prey for the Stichopterus popovi (Asipenceriformes). Through these interpretations, we can possibly infer that the spiral coprolites in our study might have belonged to Asipenceriformes and Pholidophoriformes as the prey, which could further affirm the occurrence of prey-predator inter-relationship in the Lower Cretaceous of Tsagan-Tsab Formation.As for the sole scroll coprolite in this study, we do not intend to further deduce any detailed possibilities. Based on other works, chondricthyans origins or a sarcopterygian for scroll coprolites were suggested18,53,but such deduction is difficult to be purported in our studies as there is a lack of such fossil materials in the locality and surrounding localities. The chances of the underived producer to be a sarcopterygian is much higher than to be a chondricthyan, mainly due to its geological settings. The discovery of the single scroll coprolite can be a window opening to many paleontological questions for Tsagan-Tsab Formation. More

  • in

    Angiosperm pollinivory in a Cretaceous beetle

    1.Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B 365, 2959–2971 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Huang, D.-Y. et al. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci. Rep. 6, 23004 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun. Biol. 2, 408 (2019).4.Bao, T., Wang, B., Li, J. & Dilcher, D. Pollination of Cretaceous flowers. Proc. Natl Acad. Sci. USA 116, 24707–24711 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Peris, D. et al. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience 23, 100913 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Ahrens, D., Schwarzer, J. & Vogler, A. P. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B 281, 20141470 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Farrell, B. D. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555–559 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon, 1979).9.Poinar, G., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex. 1, 449–455 (2007).
    Google Scholar 
    10.Davies, E. H. Palynological Analysis and Age Assignments of Two Burmese Amber Sample Sets (Branta Biostratigraphy for Leeward Capital, 2001).11.Barrón, E. et al. Palynology of Aptian and upper Albian (lower Cretaceous) amber-bearing outcrops of the southern margin of the Basque-Cantabrian basin (northern Spain). Cretac. Res. 52, 292–312 (2015).Article 

    Google Scholar 
    12.Azar, D., Dejax, J. & Masure, E. Palynological analysis of amber-bearing clay from the lower Cretaceous of central Lebanon. Acta Geol. Sin. Engl. Ed. 85, 942–949 (2011).Article 

    Google Scholar 
    13.Barrón, E., Comas-Rengifo, M. J. & Elorza, L. Contribuciones al estudio palinológico del Cretácico Inferior de la Cuenca Vasco-Cantábrica: los afloramientos ambarigenos de Peñacerrada (España). Coloq. Paleontol. 52, 135–156 (2001).
    Google Scholar 
    14.Cai, C. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 20182175 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Mao, Y. Y. et al. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103 (2018).Article 

    Google Scholar 
    16.Shi, G. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).Article 

    Google Scholar 
    17.Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 116, 11345–11350 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Jelínek, J. & Cline, A. R. in Handbook of Zoology, Arthropoda: Insecta, Coleoptera, Beetles Morphology and Systematics (eds Leschen, R. A. B. et al.) Vol. 2 386–390 (Walter De Gruyter, 2010).19.Hisamatsu, S. A review of the Japanese Kateretidae fauna (Coleoptera: Cucujoidea). Acta Entomol. Musei Natl Pragae 36, 551–585 (2011).
    Google Scholar 
    20.Peris, D. & Jelínek, J. Atypical short elytra in Cretaceous short-winged flower beetles (Coleoptera: Kateretidae). Palaeoentomology 2, 505–514 (2019).Article 

    Google Scholar 
    21.Peris, D. & Jelínek, J. Syninclusions of two new species of short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Kachin amber (Myanmar). Cretac. Res. 106, 104264 (2020).Article 

    Google Scholar 
    22.Poinar, G. & Brown, A. E. Furcalabratum burmanicum gen. et sp. nov., a short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Myanmar amber. Cretac. Res. 84, 240–244 (2018).Article 

    Google Scholar 
    23.Kirejtshuk, A. G. New species of nitidulid beetles (Coleoptera, Nitidulidae) of the Australian region. Entomol. Obozr. 65, 559–573 (1986).
    Google Scholar 
    24.Timerman, D., Greene, D. F., Ackerman, J. D., Kevan, P. G. & Nardone, E. Pollen aggregation in relation to pollination vector. Int. J. Plant Sci. 175, 681–687 (2014).Article 

    Google Scholar 
    25.Thomson, P. W. & Pflug, H. D. Pollen und sporen des mitteleuropäischen Tertiärs. Palaeontogr. Abt. B 94, 1–138 (1953).
    Google Scholar 
    26.Tekleva, M. V. & Maslova, N. P. A diverse pollen assemblage found on Friisicarpus infructescences (Platanaceae) from the Cenomanian–Turonian of Kazakhstan. Cretac. Res. 57, 131–141 (2016).Article 

    Google Scholar 
    27.Takahashi, K. Upper Cretaceous and lower Paleogene microfloras of Japan. Rev. Palaeobot. Palynol. 5, 227–234 (1967).Article 

    Google Scholar 
    28.Nadel, H., Peña, J. E. & Peña, J. E. Identity, behavior, and efficacy of nitidulid beetles (Coleoptera: Nitidulidae) pollinating commercial Annona species in Florida. Environ. Entomol. 23, 878–886 (1994).Article 

    Google Scholar 
    29.Sakai, S. A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J. Plant Res. 115, 0161–0168 (2002).Article 

    Google Scholar 
    30.Williams, G. & Adam, P. A review of rainforest pollination and plant–pollinator interactions with particular reference to Australian subtropical rainforests. Aust. Zool. 29, 177–212 (1994).Article 

    Google Scholar 
    31.Klavins, S. D., Kellogg, D. W., Krings, M., Taylor, E. L. & Taylor, T. N. Coprolites in a Middle Triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol. Ecol. Res. 7, 479–488 (2005).
    Google Scholar 
    32.Chadwick, C. E., Stevenson, D. W. & Norstog, K. J. The roles of Tranes lyterioides and T. sparsus Boh. (Col., Curculiodidae) in the pollination of Macrozamia communis (Zamiaceae). In The Biology, Structure, and Systematics of the Cycadales: Proc. CYCAD 90, the 2nd International Conference on Cycad Biology (eds. Stevenson, D. W. & Norstog, K. J.) 77–88 (Palm & Cycad Societies of Australia, 1993).33.Post, D. C., Page, R. E. & Erickson, E. H. Honeybee (Apis mellifera L.) queen feces: source of a pheromone that repels worker bees. J. Chem. Ecol. 13, 583–591 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Weiss, H. B. & Boyd, W. M. Insect feculæ. J. N. Y. Entomol. Soc. 58, 154–168 (1950).
    Google Scholar 
    35.Lancucka-Srodoniowa, M. Tertiary coprolites imitating fruits of the Araliaceae. Acta Soc. Bot. Pol. 33, 469–473 (1964).Article 

    Google Scholar 
    36.Scott, A. C. Trace fossils of plant–arthropod interactions. Short Courses Paleontol. 5, 197–223 (1992).Article 

    Google Scholar 
    37.Weiss, H. B. & Boyd, W. M. Insect feculæ, II. J. N. Y. Entomol. Soc. 60, 25–30 (1952).
    Google Scholar 
    38.Parker, F. D., Tepedino, V. J. & Bohart, G. E. Notes on the biology of a common sunflower bee, Melissodes (Eumelissodes) agilis Cresson. J. N. Y. Entomol. Soc. 89, 43–52 (1981).
    Google Scholar 
    39.Sarzetti, L. C., Labandeira, C. C. & Genise, J. F. Reply to: Melittosphex (Hymenoptera: Melittosphecidae), a primitive bee and not a wasp. Palaeontology 52, 484 (2008).
    Google Scholar 
    40.Ohl, M. & Engel, M. S. Die Fossilgeschichte der Bienen und ihrer nächsten Verwandten (Hymenoptera: Apoidea). Denisia 20, 687–700 (2007).
    Google Scholar 
    41.Pant, D. D. & Singh, R. Preliminary observations on insect–plant relationships in Allahabad plants of Cycas. Palms Cycads 32, 10–14 (1990).
    Google Scholar 
    42.Labandeira, C. C. The paleobiology of pollination and its precursors. Paleontol. Soc. Pap. 6, 233–270 (2000).Article 

    Google Scholar 
    43.Procheş, Ş. & Johnson, S. D. Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am. J. Bot. 96, 1722–1730 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Tarno, H. et al. Types of frass produced by the ambrosia beetle Platypus quercivorus during gallery construction, and host suitability of five tree species for the beetle. J. For. Res. 16, 68–75 (2011).Article 

    Google Scholar 
    45.Friis, E. M., Pedersen, K. R. & Crane, P. R. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39, 226–239 (2000).Article 

    Google Scholar 
    46.Nambudiri, E. M. V. & Binda, P. L. Dicotyledonous fruits associated with coprolites from the upper Cretaceous (Maastrichtian) Whitemud Formation, southern Saskatchewan, Canada. Rev. Palaeobot. Palynol. 59, 57–66 (1989).Article 

    Google Scholar 
    47.Lupia, R., Herendeen, P. S. & Keller, J. A. A new fossil flower and associated coprolites: evidence for angiosperm–insect interactions in the Santonian (Late Cretaceous) of Georgia, U.S.A. Int. J. Plant Sci. 163, 675–686 (2002).Article 

    Google Scholar 
    48.Zhang, L. et al. The water lily genome and the early evolution of flowering plants. Nature 577, 79–84 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Coiro, M., Doyle, J. A. & Hilton, J. How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol. 223, 83–99 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Liu, Z.-J., Huang, D., Cai, C. & Wang, X. The core eudicot boom registered in Myanmar amber. Sci. Rep. 8, 16765 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Friis, E. M. & Pedersen, K. R. in Palynology: Principles and Applications (ed. Jansonius, J.) 409–426 (American Association of Stratigraphic Palynologists Foundation, 1996).52.Schönenberger, J. & Friis, E. M. Fossil flowers of ericalean affinity from the Late Cretaceous of southern Sweden. Am. J. Bot. 88, 467–480 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.The Angiosperm Phylogeny Group et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).54.Peris, D. et al. False blister beetles and the expansion of gymnosperm–insect pollination modes before angiosperm dominance. Curr. Biol. 27, 897–904 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Cai, C. et al. Beetle pollination of cycads in the Mesozoic. Curr. Biol. 28, 2806–2812 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More