Long-term patterns of cave-exiting activity of hibernating bats in western North America
1.Hope, P. R. & Jones, G. Warming up for dinner: Torpor and arousal in hibernating Natterer’s bats (Myotis nattereri) studied by radio telemetry. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 182, 569–578. https://doi.org/10.1007/s00360-011-0631-x (2012).Article
Google Scholar
2.Czenze, Z. J., Jonasson, K. A. & Willis, C. K. R. Thrifty females, frisky males: Winter energetics of hibernating bats from a cold climate. Physiol. Biochem. Zool. 90, 502–511. https://doi.org/10.1086/692623 (2017).Article
PubMed
Google Scholar
3.Reynolds, D. S., Shoemaker, K., von Oettingen, S. & Najjar, S. High rates of winter activity and arousals in two New England bat species: Implications for a reduced white-nose syndrome impact?. Northeast. Nat. 24, B188–B208 (2017).Article
Google Scholar
4.Kunz, T. H. & Martin, R. A. Plecotus townsendii. Mamm. Species 175, 1–6 (1982).
Google Scholar
5.Twente, J. W. Aspects of a population study of cavern-dwelling bats. J. Mamm. 36, 379–390 (1955).Article
Google Scholar
6.Humphrey, S. R. & Kunz, T. H. Ecology of a Pleistocene relict, the western big-eared bat (Plecotus townsendii), in the southern Great Plains. J. Mamm. 57, 470–494. https://doi.org/10.2307/1379297 (1976).Article
Google Scholar
7.Czenze, Z. J., Park, A. D. & Willis, C. K. R. Staying cold through dinner: Cold-climate bats rewarm with conspecifics but not sunset during hibernation. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 183, 859–866. https://doi.org/10.1007/s00360-013-0753-4 (2013).Article
Google Scholar
8.Pearson, O. P., Koford, M. R. & Pearson, A. K. Reproduction of the lump-nosed bat (Corynorhinus rafinesquei) in California. J. Mamm. 33, 273–320 (1952).Article
Google Scholar
9.Johnson, J. S., Lacki, M. J., Thomas, S. C. & Grider, J. F. Frequent arousals from winter torpor in Rafinesque’s big-eared bat (Corynorhinus rafinesquii). PLoS ONE 7, e49754. https://doi.org/10.1371/journal.pone.0049754 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
10.Lausen, C. L. & Barclay, R. M. R. Winter bat activity in the Canadian prairies. Can. J. Zool.-Rev. Can. Zool. 84, 1079–1086. https://doi.org/10.1139/z06-093 (2006).Article
Google Scholar
11.Thomas, D. W. & Cloutier, D. Evaporative water-loss by hibernating little brown bats, Myotis lucifugus. Physiol. Zool. 65, 443–456 (1992).Article
Google Scholar
12.Ben-Hamo, M., Munoz-Garcia, A., Williams, J. B., Korine, C. & Pinshow, B. Waking to drink: Rates of evaporative water loss determine arousal frequency in hibernating bats. J. Exp. Biol. 216, 573–577. https://doi.org/10.1242/jeb.078790 (2013).Article
PubMed
Google Scholar
13.Czenze, Z. J. & Willis, C. K. R. Warming up and shipping out: Arousal and emergence timing in hibernating little brown bats (Myotis lucifugus). J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 185, 575–586. https://doi.org/10.1007/s00360-015-0900-1 (2015).Article
Google Scholar
14.Choate, J. R. & Anderson, J. M. Bats of jewel cave national monument, South Dakota. Prairie Nat. 29, 39–47 (1997).
Google Scholar
15.Klüg-Baerwald, B. J., Gower, L. E., Lausen, C. L. & Brigham, R. M. Environmental correlates and energetics of winter flight by bats in southern Alberta, Canada. Can. J. Zool. 94, 829–836. https://doi.org/10.1139/cjz-2016-0055 (2016).Article
Google Scholar
16.Johnson, J. S. et al. Migratory and winter activity of bats in Yellowstone National Park. J. Mamm. 98, 211–221. https://doi.org/10.1093/jmammal/gyw175 (2017).Article
Google Scholar
17.Norquay, K. & Willis, C. Hibernation phenology of Myotis lucifugus. J. Zool. 294, 85–92 (2014).Article
Google Scholar
18.Barclay, R. M. et al. Variation in the reproductive rate of bats. Can. J. Zool. 82, 688–693 (2004).Article
Google Scholar
19.Jonasson, K. A. & Willis, C. K. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS ONE 6, e21061. https://doi.org/10.1371/journal.pone.0021061 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
20.Speakman, J. R., Webb, P. I. & Racey, P. A. Effects of disturbance on the energy expenditure of hibernating bats. J. Appl. Ecol. 28, 1087–1104. https://doi.org/10.2307/2404227 (1991).Article
Google Scholar
21.Reeder, D. M., Field, K. A. & Slater, M. H. Balancing the costs of wildlife research with the benefits of understanding a panzootic disease, white-nose syndrome. ILAR J. 56, 275–282. https://doi.org/10.1093/ilar/ilv035 (2015).CAS
Article
Google Scholar
22.Boyles, J. G. Benefits of knowing the costs of disturbance to hibernating bats. Wildl. Soc. Bull. 41, 388–392. https://doi.org/10.1002/wsb.755 (2017).Article
Google Scholar
23.Thomas, D. W. Hibernating bats are sensitive to nontactile human disturbance. J. Mamm. 76, 940–946. https://doi.org/10.2307/1382764 (1995).Article
Google Scholar
24.Furey, N. M. & Racey, P. A. Bats in the Anthropocene: Conservation of Bats in a Changing World 463–500 (Springer, 2016).
Google Scholar
25.Sheffield, S. R., Shaw, J. H., Heidt, G. A. & McClenaghan, L. R. Guidelines for the protection of bat roosts. J. Mamm. 73, 707–710 (1992).
Google Scholar
26.Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R. & Racey, P. A. Carpe noctem: The importance of bats as bioindicators. Endang. Species Res. 8, 93–115 (2009).Article
Google Scholar
27.Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227. https://doi.org/10.1126/science.1163874 (2009).CAS
Article
PubMed
Google Scholar
28.Foley, J., Clifford, D., Castle, K., Cryan, P. & Ostfeld, R. S. Investigating and managing the rapid emergence of white-nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv. Biol. 25, 223–231. https://doi.org/10.1111/j.1523-1739.2010.01638.x (2011).Article
PubMed
Google Scholar
29.Ingersoll, T. E., Sewall, B. J. & Amelon, S. K. Effects of white-nose syndrome on regional population patterns of 3 hibernating bat species. Conserv. Biol. 30, 1048–1059. https://doi.org/10.1111/cobi.12690 (2016).Article
PubMed
Google Scholar
30.Minnis, A. M. & Lindner, D. L. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol. 117, 638–649. https://doi.org/10.1016/j.funbio.2013.07.001 (2013).Article
PubMed
Google Scholar
31.Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).ADS
CAS
Article
Google Scholar
32.Verant, M. L. et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14, 10 (2014).Article
Google Scholar
33.Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. U.S.A. 109, 6999–7003. https://doi.org/10.1073/pnas.1200374109 (2012).ADS
Article
PubMed
PubMed Central
Google Scholar
34.Lilley, T. M. et al. White-nose syndrome survivors do not exhibit frequent arousals associated with Pseudogymnoascus destructans infection. Front. Zool. https://doi.org/10.1186/s12983-016-0143-3 (2016).Article
PubMed
PubMed Central
Google Scholar
35.McGuire, L. P., Mayberry, H. W. & Willis, C. K. R. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats. Am. J. Physiol.-Regulat. Integr. Compar. Physiol. 313, R680–R686. https://doi.org/10.1152/ajpregu.00058.2017 (2017).CAS
Article
Google Scholar
36.Knudsen, G. R., Dixon, R. D. & Amelon, S. K. Potential spread of white-nose syndrome of bats to the Northwest: Epidemiological considerations. Northwest Sci. 87, 292–306. https://doi.org/10.3955/046.087.0401 (2013).Article
Google Scholar
37.Bernard, R. F. & McCracken, G. F. Winter behavior of bats and the progression of white-nose syndrome in the southeastern United States. Ecol. Evol. 7, 1487–1496. https://doi.org/10.1002/ece3.2772 (2017).Article
PubMed
PubMed Central
Google Scholar
38.Cheng, T. L. et al. Higher fat stores contribute to persistence of little brown bat populations with white-nose syndrome. J. Anim. Ecol. 88, 591–600 (2019).Article
Google Scholar
39.Turner, J. M. et al. Conspecific disturbance contributes to altered hibernation patterns in bats with white-nose syndrome. Physiol. Behav. 140, 71–78 (2015).CAS
Article
Google Scholar
40.Blazek, J. et al. Numerous cold arousals and rare arousal cascades as a hibernation strategy in European Myotis bats. J. Therm. Biol 82, 150–156. https://doi.org/10.1016/j.jtherbio.2019.04.002 (2019).Article
PubMed
Google Scholar
41.Lorch, J. M. et al. First detection of bat white-nose syndrome in Western North America. mSphere 1(4), e00148. https://doi.org/10.1128/mSphere.00148-16 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
42.Weller, T. J. et al. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS ONE https://doi.org/10.1371/journal.pone.0205647 (2018).Article
PubMed
PubMed Central
Google Scholar
43.Whiting, J. C. et al. Bat hibernacula in caves of southern Idaho: Implications for monitoring and management. West. N. Am. Nat. 78, 165–173 (2018).Article
Google Scholar
44.Whiting, J. C. et al. Long-term bat abundance in sagebrush steppe. Sci. Rep. 8, 12288 (2018).ADS
Article
Google Scholar
45.Call, R. S. et al. Maternity roosts of Townsend’s big-eared bats in lava tube caves of southern Idaho. Northwest Sci. 92, 158–165 (2018).ADS
Article
Google Scholar
46.Clark, B. S., Clark, B. K. & Leslie, D. M. Seasonal variation in activity patterns of the endangered Ozark big-eared bat (Corynorhinus townsendii ingens). J. Mamm. 83, 590–598. https://doi.org/10.1644/1545-1542(2002)083%3c0590:sviapo%3e2.0.co;2 (2002).Article
Google Scholar
47.French, A. R. The patterns of mammalian hibernation. Am. Sci. 76, 568–575 (1988).ADS
Google Scholar
48.Reynolds, T. D., Connelly, J. W., Halford, D. K. & Arthur, W. J. Vertebrate fauna of the Idaho National Environmental Research Park. Gt. Basin Nat. 46, 513–527 (1986).
Google Scholar
49.Genter, D. L. Wintering bats of the upper Snake River Plain: Occurrence in lava-tube caves. Gt. Basin Nat. 46, 241–244 (1986).
Google Scholar
50.Gillies, K. E., Murphy, P. J. & Matocq, M. D. Hibernacula characteristics of Townsend’s big-eared bats in southeastern Idaho. Nat. Areas J. 34, 24–30 (2014).Article
Google Scholar
51.Sikes, R. S. et al. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mamm. 97(663–688), 2016. https://doi.org/10.1093/jmammal/gyw078 (2016).Article
Google Scholar
52.Schwab, N. A. & Mabee, T. J. Winter acoustic activity of bats in Montana. Northwest. Nat. 95, 13–27 (2014).Article
Google Scholar
53.Britzke, E. R., Slack, B. A., Armstrong, M. P. & Loeb, S. C. Effects of orientation and weatherproofing on the detection of bat echolocation calls. J. Fish Wildl. Manage. 1, 136–141. https://doi.org/10.3996/072010-jfwm-025 (2010).Article
Google Scholar
54.Skalak, S. L., Sherwin, R. E. & Brigham, R. M. Sampling period, size and duration influence measures of bat species richness from acoustic surveys. Methods Ecol. Evol. 3, 490–502. https://doi.org/10.1111/j.2041-210X.2011.00177.x (2012).Article
Google Scholar
55.Miller, B. W. A method for determining relative activity of free flying bats using a new activity index for acoustic monitoring. Acta Chiropt. 3, 93–105 (2001).
Google Scholar
56.Nocera, T., Ford, W. M., Silvis, A. & Dobony, C. A. Patterns of acoustical activity of bats prior to and 10 years after WNS on Fort drum army installation, New York. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2019.e00633 (2019).Article
Google Scholar
57.Britzke, E. R., Gillam, E. H. & Murray, K. L. Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriol. 58, 109–117. https://doi.org/10.1007/s13364-013-0131-3 (2013).Article
Google Scholar
58.O’Farrell, M. J., Miller, B. W. & Gannon, W. L. Qualitative identification of free-flying bats using the Anabat detector. J. Mamm. 80, 11–23. https://doi.org/10.2307/1383203 (1999).Article
Google Scholar
59.Whiting, J. C., Doering, B. & Pennock, D. Acoustic surveys for local, free-flying bats in zoos: An engaging approach for bat education and conservation. J. Bat Res. Conserv. 12, 94–99. https://doi.org/10.14709/BarbJ.12.1.2019.12 (2019).Article
Google Scholar
60.O’Farrell, M. J. & Gannon, W. L. A comparison of acoustic versus capture techniques for the inventory of bats. J. Mamm. 80, 24–30. https://doi.org/10.2307/1383204 (1999).Article
Google Scholar
61.Stahlschmidt, P. & Bruhl, C. A. Bats as bioindicators—The need of a standardized method for acoustic bat activity surveys. Methods Ecol. Evol. 3, 503–508. https://doi.org/10.1111/j.2041-210X.2012.00188.x (2012).Article
Google Scholar
62.Avery, M. I. Winter activity of pipistrelle bats. J. Anim. Ecol. 54, 721–738. https://doi.org/10.2307/4374 (1985).Article
Google Scholar
63.McCulloch, C. E. & Neuhaus, J. M. Generalized linear mixed models. In Encyclopedia of Biostatistics (eds Armitage, P. & Colton, T.) (Wiley, 2005).
Google Scholar
64.Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. A (Gen.) 135, 370–384 (1972).Article
Google Scholar
65.Hardin, J. W. & Hilbe, J. M. Generalized Linear Models and Extensions (Stata Press, 2007).
Google Scholar
66.Consul, P. & Famoye, F. Generalized Poisson regression model. Commun. Stat. Theory Methods 21, 89–109 (1992).Article
Google Scholar
67.Aho, K. A. Foundational and Applied Statistics for Biologists using R (CRC Press, 2013).
Google Scholar
68.Akaike, H. Selected Papers of Hirotugu Akaike 199–213 (Springer, 1998).
Google Scholar
69.Burnham, K. P. & Anderson, D. A. Model Selection and Multimodel Inference: A practical Information-Theoretic Approach 2nd edn. (Springer, 2002).
Google Scholar
70.RCoreTeam. R: A Language and Environment for Statistical Computing (2020).71.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-PLUS (Springer, 2013).
Google Scholar
72.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article
Google Scholar
73.Perkins, J. M., Barss, J. M. & Peterson, J. Winter records of bats in Oregon and Washington. Northwest. Nat. 71, 59–62. https://doi.org/10.2307/3536594 (1990).Article
Google Scholar
74.Nagorsen, D. W. et al. Winter bat records for British Columbia. Northwest Nat. 74, 61–66 (1993).Article
Google Scholar
75.Hayman, D. T., Cryan, P. M., Fricker, P. D. & Dannemiller, N. G. Long-term video surveillance and automated analyses reveal arousal patterns in groups of hibernating bats. Methods Ecol. Evol. 8, 1813–1821 (2017).Article
Google Scholar
76.Boyles, J. G., Dunbar, M. B. & Whitaker, J. O. Activity following arousal in winter in North American vespertilionid bats. Mamm. Rev. 36, 267–280. https://doi.org/10.1111/j.1365-2907.2006.00095.x (2006).Article
Google Scholar
77.Speakman, J. R. & Racey, P. A. Hibernal ecology of the pipistrelle bat: Energy expenditure, water requirements and mass-loss, implications for survial and the function of winter emergence flights. J. Anim. Ecol. 58, 797–813. https://doi.org/10.2307/5125 (1989).Article
Google Scholar
78.Lawrence, B. D. & Simmons, J. A. Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J. Acoust. Soc. Am. 71, 585–590 (1982).ADS
CAS
Article
Google Scholar
79.Dunbar, M. B. & Tomasi, T. E. Arousal patterns, metabolic rate, and an energy budget of eastern red bats (Lasiurus borealis) in winter. J. Mamm. 87, 1096–1102. https://doi.org/10.1644/05-mamm-a-254r3.1 (2006).Article
Google Scholar
80.Ford, W. M., Britzke, E. R., Dobony, C. A., Rodrigue, J. L. & Johnson, J. B. Patterns of acoustical activity of bats prior to and following white-nose syndrome occurrence. J. Fish Wildl. Manage. 2, 125–134. https://doi.org/10.3996/042011-jfwm-027 (2011).Article
Google Scholar
81.Bernard, R. F., Foster, J. T., Willcox, E. V., Parise, K. L. & McCracken, G. F. Molecular detection of the causative agent of white-nose syndrome on Rafinesque’s big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the southeastern USA. J. Wildl. Dis. 51, 519–522. https://doi.org/10.7589/2014-08-202 (2015).Article
PubMed
Google Scholar
82.Dzal, Y., McGuire, L. P., Veselka, N. & Fenton, M. B. Going, going, gone: the impact of white-nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). Biol. Lett. 7, 392–394 (2010).Article
Google Scholar
83.Brooks, R. T. Declines in summer bat activity in central New England 4 years following the initial detection of white-nose syndrome. Biodivers. Conserv. 20, 2537–2541. https://doi.org/10.1007/s10531-011-9996-0 (2011).Article
Google Scholar
84.Holloway, G. L. & Barclay, R. M. R. Myotis ciliolabrum. Mamm. Species 670, 1–5. https://doi.org/10.1644/1545-1410(2001)670%3c0001:mc%3e2.0.co;2 (2001).Article
Google Scholar
85.Halsall, A. L., Boyles, J. G. & Whitaker, J. O. Jr. Body temperature patterns of big brown bats during winter in a building hibernaculum. J. Mamm. 93, 497–503 (2012).Article
Google Scholar
86.Paige, K. N. Bats and barometric pressure: conserving limited energy and tracking insects from the roost. Funct. Ecol. 9, 463–467 (1995).Article
Google Scholar
87.Frick, W. F. Acoustic monitoring of bats, considerations of options for long-term monitoring. Therya 4, 69–78 (2013).ADS
Article
Google Scholar
88.Whitaker, J. O. & Rissler, L. J. Winter activity of bats at a mine entrance in Vermillion County, Indiana. Am. Midl. Nat. 127, 52–59. https://doi.org/10.2307/2426321 (1992).Article
Google Scholar More
