1.Wong, M. K., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022. https://doi.org/10.1111/brv.12488 (2019).Article
PubMed
Google Scholar
2.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).Article
PubMed
Google Scholar
3.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x (2007).Article
Google Scholar
4.Forrest, J. R. K., Thorp, R. W., Kremen, C. & Williams, N. M. Contrasting patterns in species and functional-trait diversity of bees in an agricultural landscape. J. Appl. Ecol. 52, 706–715. https://doi.org/10.1111/1365-2664.12433 (2015).Article
Google Scholar
5.Williams, N. M. et al. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143, 2280–2291. https://doi.org/10.1016/j.biocon.2010.03.024 (2010).Article
Google Scholar
6.Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481. https://doi.org/10.1038/s41467-019-09393-6 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
7.Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B 282, 20142620. https://doi.org/10.1098/rspb.2014.2620 (2015).Article
PubMed
Google Scholar
8.Bartomeus, I., Cariveau, D. P., Harrison, T. & Winfree, R. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127, 306–315. https://doi.org/10.1111/oik.04507 (2018).Article
Google Scholar
9.Paull, S. H. et al. From superspreaders to disease hotspots: Linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82. https://doi.org/10.1890/110111 (2012).Article
PubMed
Google Scholar
10.Perkins, S. E., Cattadori, I. M., Tagliapietra, V., Rizzoli, A. P. & Hudson, P. J. Empirical evidence for key hosts in persistence of a tick-borne disease. Int. J. Parasitol. 33, 909–917. https://doi.org/10.1016/s0020-7519(03)00128-0 (2003).Article
PubMed
Google Scholar
11.Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).CAS
Article
PubMed
Google Scholar
12.Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58. https://doi.org/10.1016/j.jip.2014.08.007 (2014).Article
PubMed
Google Scholar
13.Evison, S. E. F. et al. Pervasiveness of parasites in pollinators. PLoS ONE 7, e30641. https://doi.org/10.1371/journal.pone.0030641 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
14.Dolezal, A. G. et al. Honey bee viruses in wild bees: viral prevalence, loads, and experimental inoculation. PLoS ONE 11, e0166190. https://doi.org/10.1371/journal.pone.0166190 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
15.Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240. https://doi.org/10.1016/j.virusres.2013.06.013 (2013).CAS
Article
PubMed
Google Scholar
16.Figueroa, L. L. et al. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecol. Lett. 23, 1212–1222. https://doi.org/10.1111/ele.13521 (2020).Article
PubMed
Google Scholar
17.Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367. https://doi.org/10.1038/s41559-020-1247-x (2020).Article
PubMed
PubMed Central
Google Scholar
18.Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596. https://doi.org/10.1007/s00442-007-0752-9 (2007).ADS
Article
PubMed
Google Scholar
19.Figueroa, L. L. et al. Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proc. R. Soc. B 286, 20190603. https://doi.org/10.1098/rspb.2019.0603 (2019).Article
PubMed
Google Scholar
20.Palmer-Young, E. C., Calhoun, A. C., Mirzayeva, A. & Sadd, B. M. Effects of the floral phytochemical eugenol on parasite evolution and bumble bee infection and preference. Sci. Rep. 8, 2074. https://doi.org/10.1038/s41598-018-20369-2 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
21.Manson, J. S., Otterstatter, M. C. & Thomson, J. D. Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162, 81–89. https://doi.org/10.1007/s00442-009-1431-9 (2010).ADS
Article
PubMed
Google Scholar
22.Otterstatter, M. C. & Thomson, J. D. Within-host dynamics of an intestinal pathogen of bumble bees. Parasitology 133, 749–761. https://doi.org/10.1017/S003118200600120X (2006).CAS
Article
PubMed
Google Scholar
23.Rutrecht, S. T. & Brown, M. J. F. Within colony dynamics of Nosema bombi infections: disease establishment, epidemiology and potential vertical transmission. Apidologie 39, 504–514. https://doi.org/10.1051/apido:2008031 (2008).Article
Google Scholar
24.Roberts, K. E., Evison, S. E. F., Baer, B. & Hughes, W. O. H. The cost of promiscuity: Sexual transmission of Nosema microsporidian parasites in polyandrous honey bees. Sci. Rep. 5, 10982. https://doi.org/10.1038/srep10982 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
25.Schmid-Hempel, P. Parasites in Social Insects (Princeton University Press, Princeton, 1998).
Google Scholar
26.Wuellner, C. T. Nest site preference and success in a gregarious, ground-nesting bee Dieunomia triangulifera. Ecol. Entomol. 24, 471–479. https://doi.org/10.1046/j.1365-2311.1999.00215.x (1999).Article
Google Scholar
27.Potts, S. & Willmer, P. Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecol. Entomol. 22, 319–328. https://doi.org/10.1046/j.1365-2311.1997.00071.x (1997).Article
Google Scholar
28.Cane, J. H. Soils of ground-nesting bees (Hymenoptera: Apoidea): texture, moisture, cell depth and climate. J. Kans. Entomol. Soc. 64, 406–413 (1991).
Google Scholar
29.Leonard, R. J. & Harmon-Threatt, A. N. Methods for rearing ground-nesting bees under laboratory conditions. Apidologie 50, 689–703. https://doi.org/10.1007/s13592-019-00679-8 (2019).CAS
Article
Google Scholar
30.Folly, A. J., Koch, H., Stevenson, P. C. & Brown, M. J. F. Larvae act as a transient transmission hub for the prevalent bumblebee parasite Crithidia bombi. J. Invertebr. Pathol. 148, 81–85. https://doi.org/10.1016/j.jip.2017.06.001 (2017).Article
PubMed
PubMed Central
Google Scholar
31.Kappeler, P. M., Cremer, S. & Nunn, C. L. Sociality and health: impacts of sociality on disease susceptibility and transmission in animal and human societies. Philos. T. R. Soc. B 370, 20140116. https://doi.org/10.1098/rstb.2014.0116 (2015).Article
Google Scholar
32.Stow, A. et al. Antimicrobial defences increase with sociality in bees. Biol. Lett. 3, 422–424. https://doi.org/10.1098/rsbl.2007.0178 (2007).Article
PubMed
PubMed Central
Google Scholar
33.Spivak, M. & Reuter, G. S. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32, 555–565. https://doi.org/10.1051/apido:2001103 (2001).Article
Google Scholar
34.Pinilla-Gallego, M. S. et al. Within-colony transmission of microsporidian and trypanosomatid parasites in honey bee and bumble bee colonies. Environ. Entomol. https://doi.org/10.1093/ee/nvaa112 (2020).Article
PubMed
Google Scholar
35.Nunn, C. L., Jordán, F., McCabe, C. M., Verdolin, J. L. & Fewell, J. H. Infectious disease and group size: more than just a numbers game. Philos. T. R. Soc. B 370, 20140111. https://doi.org/10.1098/rstb.2014.0111 (2015).Article
Google Scholar
36.Adler, L. S., Barber, N. A., Biller, O. M. & Irwin, R. E. Flowering plant composition shapes pathogen infection intensity and reproduction in bumble bee colonies. Proc. Natl. Acad. Sci. USA 117, 11559–11565. https://doi.org/10.1073/pnas.2000074117 (2020).CAS
Article
PubMed
Google Scholar
37.Adler, L. S. et al. Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545. https://doi.org/10.1002/ecy.2503 (2018).Article
PubMed
PubMed Central
Google Scholar
38.Koch, H., Brown, M. J. F. & Stevenson, P. C. The role of disease in bee foraging ecology. Curr. Opin. Insect Sci. 21, 60–67. https://doi.org/10.1016/j.cois.2017.05.008 (2017).Article
PubMed
Google Scholar
39.Giacomini, J. J. et al. Medicinal value of sunflower pollen against bee pathogens. Sci. Rep. 8, 14394. https://doi.org/10.1038/s41598-018-32681-y (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
40.LoCascio, G. M., Aguirre, L., Irwin, R. E. & Adler, L. S. Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. R. Soc. Open Sci. 6, 190279. https://doi.org/10.1098/rsos.190279 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
41.Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Does parasitic infection impair the ability of bumblebees to learn flower-handling techniques?. Anim. behav. 70, 209–215. https://doi.org/10.1016/j.anbehav.2004.09.025 (2005).Article
Google Scholar
42.Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B 273, 1073–1078. https://doi.org/10.1098/rspb.2005.3423 (2006).Article
PubMed
Google Scholar
43.Goulson, D., O’Connor, S. & Park, K. J. The impacts of predators and parasites on wild bumblebee colonies. Ecol. Entomol. 43, 168–181. https://doi.org/10.1111/een.12482 (2018).Article
Google Scholar
44.Graystock, P., Meeus, I., Smagghe, G., Goulson, D. & Hughes, W. O. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 143, 358–365. https://doi.org/10.1017/S0031182015001614 (2016).Article
PubMed
Google Scholar
45.Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119. https://doi.org/10.1016/j.jip2013.06.005 (2013).Article
PubMed
Google Scholar
46.Otti, O. & Schmid-Hempel, P. Nosema bombi: a pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96, 118–124. https://doi.org/10.1016/j.jip.2007.03.016 (2007).Article
PubMed
Google Scholar
47.Bramke, K., Müller, U., McMahon, D. P. & Rolff, J. Exposure of larvae of the solitary bee Osmia bicornis to the honey bee pathogen Nosema ceranae affects life history. Insects 10, 380. https://doi.org/10.3390/insects10110380 (2019).Article
PubMed Central
Google Scholar
48.Eiri, D. M., Suwannapong, G., Endler, M. & Nieh, J. C. Nosema ceranae can infect honey bee larvae and reduces subsequent adult longevity. PLoS ONE 10, e0126330. https://doi.org/10.1371/journal.pone.0126330 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
49.Mitchell, T. B. Bees of the Eastern United States: volume I. N. C. Agric. Exp. Sta. Tech. Bull 1, 1–538 (1960).
Google Scholar
50.Mitchell, T. B. Bees of the Eastern United States: volume II. N. C. Agric. Exp. Sta. Tech. Bull II, 1–557 (1962).
Google Scholar
51.LaBerge, W. E. A revision of the bees of the genus Andrena of the Western Hemisphere. Part XII. Subgenera Leucandrena, Ptilandrena, Scoliandrena and Melandrena. Trans. Am. Entomol. Soc. 112, 191–248 (1986).
Google Scholar
52.Gibbs, J. Revision of the metallic Lasioglossum (Dialictus) of Eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 3073, 1–216 (2011).Article
Google Scholar
53.Rehan, S. M. & Sheffield, C. S. Morphological and molecular delineation of a new species in the Ceratina dupla species-group (Hymenoptera: Apidae: Xylocopinae) of Eastern North America. Zootaxa 2873, 35–50 (2011).Article
Google Scholar
54.Gibbs, J., Packer, L., Dumesh, S. & Danforth, B. N. Revision and reclassification of Lasioglossum (Evylaeus), L. (Hemihalictus) and L. (Sphecodogastra) in Eastern North America (Hymenoptera: Apoidea: Halictidae). Zootaxa 3672, 1–117 (2013).Article
Google Scholar
55.Coutinho, J. G. D. E., Garibaldi, L. A. & Viana, B. F. The influence of local and landscape scale on single response traits in bees: A meta-analysis. Agr. Ecosyst. Environ. 256, 61–73. https://doi.org/10.1016/j.agee.2017.12.025 (2018).Article
Google Scholar
56.Bartomeus, I. et al. Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. USA 110, 4656–4660. https://doi.org/10.1073/pnas.1218503110 (2013).ADS
Article
PubMed
Google Scholar
57.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
58.Stevenson, M. et al. epiR: Tools for the analysis of epidemiological data. R package version 0.9–62 (2015).59.Teder, T. & Tammaru, T. Sexual size dimorphism within species increases with body size in insects. Oikos 108, 321–334. https://doi.org/10.1111/j.0030-1299.2005.13609.x (2005).Article
Google Scholar
60.Müller, U., McMahon, D. P. & Rolff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agric. For. Entomol. 65, 191–199. https://doi.org/10.1111/afe.12338 (2019).Article
Google Scholar
61.Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int. J. Parasitol. 49, 605–613. https://doi.org/10.1016/j.ijpara.2019.03.006 (2019).Article
PubMed
Google Scholar
62.Ngor, L. et al. Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology 147, 1–62. https://doi.org/10.1017/S0031182020001018 (2020).Article
Google Scholar
63.Figueroa, L. L., Grincavitch, C. & McArt, S. H. Crithidia bombi can infect two solitary bee species while host survivorship depends on diet. Parasitology 148, 435–442. https://doi.org/10.1017/S0031182020002218 (2021).Article
PubMed
Google Scholar
64.Rhodes, J. R., McAlpine, C. A., Zuur, A., Smith, G. & Ieno, E. Mixed Effects Models and Extensions in Ecology with R Statistics for Biology and Health 469–492 (Springer, New York, 2009).
Google Scholar
65.Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).MathSciNet
Article
Google Scholar
66.Ruiz-González, M. X. et al. Dynamic transmission, host quality, and population structure in a multi-host parasite of bumblebees. Evolution 66, 3053–3066. https://doi.org/10.1111/j.1558-5646.2012.01655.x (2012).Article
PubMed
Google Scholar
67.Cook-Patton, S. C., McArt, S. H., Parachnowitsch, A. L., Thaler, J. S. & Agrawal, A. A. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92, 915–923. https://doi.org/10.1890/10-0999.1 (2011).Article
PubMed
Google Scholar
68.Goulson, D. & Sparrow, K. R. Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J. Insect Conserv. 13, 177–181. https://doi.org/10.1007/s10841-008-9140-y (2009).Article
Google Scholar
69.Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154. https://doi.org/10.1111/1365-2664.13456 (2019).Article
Google Scholar
70.Renauld, M., Hutchinson, A., Loeb, G., Poveda, K. & Connelly, H. Landscape smplification constrains adult size in a native ground-nesting bee. PLoS ONE 11, e0150946. https://doi.org/10.1371/journal.pone.0150946 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
71.Persson, A. S. & Smith, H. G. Bumblebee colonies produce larger foragers in complex landscapes. Basic Appl. Ecol. 12, 695–702. https://doi.org/10.1016/j.baae.2011.10.002 (2011).Article
Google Scholar
72.Bommarco, R. et al. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. R. Soc. B 277, 2075–2082. https://doi.org/10.1098/rspb.2009.2221 (2010).Article
PubMed
Google Scholar
73.Yerushalmi, S., Bodenhaimer, S. & Bloch, G. Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. J. Exp. Biol. 209, 1044–1051. https://doi.org/10.1242/jeb.02125 (2006).Article
PubMed
Google Scholar
74.McNeil, D. J. et al. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci. Rep. 10, 22306. https://doi.org/10.1038/s41598-020-78119-2 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
75.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568. https://doi.org/10.1038/ncomms9568 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
76.Williams, N. M., Minckley, R. L. & Silveira, F. A. Variation in native bee faunas and its implications for detecting community changes. Conserv. Ecol. 5, 7 (2001).
Google Scholar
77.Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl. Acad. Sci. USA 108, 20645–20649. https://doi.org/10.1073/pnas.1115559108 (2011).ADS
Article
PubMed
Google Scholar
78.Stemkovski, M. et al. Bee phenology is predicted by climatic variation and functional traits. Ecol. Lett. 23, 1589–1598. https://doi.org/10.1111/ele.13583 (2020).Article
PubMed
Google Scholar More