The Asian plethodontid salamander preserves historical genetic imprints of recent northern expansion
1.Hewitt, G. M. Quaternary phylogeography: the roots of hybrid zones. Genetica 139, 617–638 (2011).PubMed
Article
Google Scholar
2.Gillespie, R. G. & Roderick, G. K. Evolution: geology and climate drive diversification. Nature 509, 297–298 (2014).ADS
CAS
PubMed
Article
Google Scholar
3.Hewitt, G. M. The genetic legacy of the quaternary ice ages. Nature 405, 907–913 (2000).ADS
CAS
PubMed
Article
Google Scholar
4.Gómez, A. & Lunt, D. H. Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2007).
Google Scholar
5.Abellán, P. & Svenning, J. C. Refugia within refugia—patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biol. J. Linn. Soc. 113, 13–28 (2014).Article
Google Scholar
6.Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).
Google Scholar
7.Juan, C., Emerson, B. C., Oromí, P. & Hewitt, G. M. Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol. Evol. 15, 104–109 (2000).CAS
PubMed
Article
Google Scholar
8.Chung, M. Y., López-Pujol, J. & Chung, M. G. The role of the Baekdudaegan (Korean Peninsula) as a major glacial refugium for plant species: a priority for conservation. Biol. Conserv. 206, 236–248 (2017).Article
Google Scholar
9.Chung, M. Y. et al. The Korean baekdudaegan mountains: a glacial refugium and a biodiversity hotspot that needs to be conserved. Front. Genet. 9, 489 (2018).PubMed
PubMed Central
Article
Google Scholar
10.AmphibiaWeb. https://amphibiaweb.org/. (Accessed: 15th July 2020).11.Borzée, A. & Min, M.-S. Disentangling the impacts of speciation, sympatry and the island effect on the morphology of seven Hynobius sp. salamanders. Animals 11, 187 (2021).PubMed
Article
Google Scholar
12.Baek, H.-J., Lee, M.-Y., Lee, H. & Min, M.-S. Mitochondrial DNA data unveil highly divergent populations within the Genus Hynobius (Caudata: Hynobiidae) in South Korea. Mol. Cells 31, 105–112 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
13.Suk, H. Y. et al. Phylogenetic structure and ancestry of Korean clawed salamander, Onychodactylus koreanus (Caudata: Hynobiidae). Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 29, 650–658 (2018).CAS
Article
Google Scholar
14.Min, M.-S. et al. Discovery of the first Asian plethodontid salamander. Nature 435, 87–90 (2005).ADS
CAS
PubMed
Article
Google Scholar
15.Wiens, J. J., Engstrom, T. N. & Chippindale, P. T. Rapid diversification, incomplete isolation, and the “speciation clock” in North American salamanders (genus Plethodon): testing the hybrid swarm hypothesis of rapid radiation. Evolution 60, 2585–2603 (2006).CAS
PubMed
Google Scholar
16.Kozak, K. H., Mendyk, R. W. & Wiens, J. J. Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders. Evolution 63, 1769–1784 (2009).PubMed
Article
Google Scholar
17.Zhang, P. & Wake, D. B. Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 53, 492–508 (2009).CAS
PubMed
Article
Google Scholar
18.Vieites, D. R., Román, S. N., Wake, M. H. & Wake, D. B. A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae. Mol. Phylogenet. Evol. 59, 623–635 (2011).PubMed
Article
Google Scholar
19.Shen, X. X. et al. Enlarged multilocus data set provides surprisingly younger time of origin for the Plethodontidae, the largest family of salamanders. Syst. Biol. 65, 66–81 (2016).PubMed
Article
Google Scholar
20.Wake, D. B. Persistent plethodontid themes: species, phylogenies, and biogeography. Herpetologica 73, 242–251 (2017).Article
Google Scholar
21.Wake, D. B. The enigmatic history of the European, Asian and American plethodontid salamanders. Amphib-reptil 34, 323–336 (2013).Article
Google Scholar
22.Vieites, D. R., Min, M.-S. & Wake, D. B. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc. Natl. Acad. Sci. U.S.A. 104, 19903–19907 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
23.IUCN SSC Amphibian Specialist Group. Karsenia koreana. The IUCN Red List of Threatened Species 2019. (2019). https://www.iucnredlist.org/species/61903/110101886. (Accessed: 15th July 2020).24.Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 9, 1–9 (2019).Article
CAS
Google Scholar
25.Sessions, S. K. et al. Cytogenetic analysis of the Asian Plethodontid salamander, Karsenia koreana: evidence for karyotypic conservation, chromosome repatterning, and genome size evolution. Chromosom. Res. 16, 563–574 (2008).CAS
Article
Google Scholar
26.Buckley, D., Wake, M. H. & Wake, D. B. Comparative skull osteology of Karsenia koreana (Amphibia, Caudata, Plethodontidae). J. Morphol. 271, 533–558 (2010).PubMed
Article
Google Scholar
27.Sever, D. M., Pinsoneault, A. D., Mackenzie, B. W., Siegel, D. S. & Staub, N. L. A description of the skin glands and cloacal morphology of the plethodontid salamander Karsenia koreana. Copeia 104, 816–823 (2016).Article
Google Scholar
28.Moon, K. Y. & Park, D. Report of Karsenia koreana eggs oviposited within a semi-natural terrarium constructed at natural habitat. Korean J. Herpetol. 7, 1–5 (2016).
Google Scholar
29.Song, J.-Y. et al. Life history of a unique Asian plethodontid salamander, Karsenia koreana. Zool. Sci. 34, 122–128 (2017).Article
Google Scholar
30.Jung, J.-H., Lee, E.-J., Lee, W.-S. & Park, C.-D. Habitat suitability models of Korean crevice salamander (Karsenia koreana) at forested area in Daejeon metropolitan city, Republic of Korea. J. For. Res. 24, 349–355 (2019).CAS
Article
Google Scholar
31.Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology Vol. 132 (eds Misener, S. & Krawetz, S. A.) 365–386 (Humana Press, 2000).
Google Scholar
32.Su, X. Z., Wu, Y., Sifri, C. D. & Wellems, T. E. Reduced extension temperatures required for PCR amplification of extremely A+T-rich DNA. Nucleic Acids Res. 24, 1574–1575 (1996).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Smit, A. F. A., Hubley, R. & Green, P. RepeatModeler Open-1.0. 2008–2015. (2014). http://www.repeatmasker.org.34.Stieneke, D. L. & Eujayl, I. L. Imperfect SSR Finder Version 1.0. United States Department of Agriculture. (2019). https://data.nal.usda.gov/dataset/imperfect-ssr-finder.35.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS
Article
Google Scholar
38.Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Book
Google Scholar
39.Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Excoffier, L., Smouse, P. & Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS
PubMed
PubMed Central
Article
Google Scholar
41.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed
Article
Google Scholar
42.Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS
PubMed
Article
Google Scholar
43.Wake, D. B. Taxonomy of salamanders of the family Plethodontidae (Amphibia: Caudata). Zootaxa 3484, 75–82 (2012).Article
Google Scholar
44.Lanfear, R., Calcott, B., Ho, S. Y. & Guidon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).CAS
PubMed
Article
Google Scholar
45.Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).CAS
PubMed
Google Scholar
46.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
47.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environment Workshop (GCE) 1–8 (2010).48.Ronquist, F. & Huelsenbeck, J. P. Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
49.Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. In Some Mathematical Questions in Biology: DNA Sequence Analysis (ed. Miura, R. M.) 57–86 (American Mathematical Society, 1986).
Google Scholar
50.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
51.Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Brown, R. P. & Yang, Z. Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol. Biol. 11, 271 (2011).PubMed
PubMed Central
Article
Google Scholar
53.Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–860 (2006).MathSciNet
MATH
Article
Google Scholar
54.Russel, P. M., Brewer, B. J., Klaere, S. & Bouckaert, R. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 68, 219–233 (2018).Article
Google Scholar
55.Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
56.Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).CAS
PubMed
Article
Google Scholar
57.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2013). http://www.r-project.org/.58.Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–9125 (1997).CAS
PubMed
PubMed Central
Article
Google Scholar
60.van Oosterhout, C., Hutchinson, B., Wills, D. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article
CAS
Google Scholar
61.Rousset, F. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed
Article
Google Scholar
62.Peakall, R. O. D. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article
Google Scholar
63.Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1997).Article
Google Scholar
64.Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).CAS
PubMed
Article
Google Scholar
65.Harley, E. H. AGARst: a programme for calculating allele frequencies, Gst and Rst from microsatellite data, version 2. University of Cape Town, Cape Town, South Africa. (2001).66.Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420 (1965).Article
Google Scholar
67.Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).CAS
PubMed
PubMed Central
Article
Google Scholar
68.Goudet, J. Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. (2003). https://www2.unil.ch/popgen/softwares/fstat.htm69.Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).CAS
PubMed
PubMed Central
Article
Google Scholar
70.Manni, F., Guérard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum. Biol. 76, 173–190 (2004).71.Monmonier, M. Maximum-difference barriers: an alternative numerical regionalization method. Geogr. Anal. 3, 245–261 (1973).
Google Scholar
72.Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).ADS
CAS
PubMed
Article
Google Scholar
73.Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).CAS
Article
Google Scholar
74.Kitada, S., Nakamichi, R. & Kishino, H. The empirical Bayes estimators of fine-scale population structure in high gene flow species. Mol. Ecol. Resour. 17, 1210–1222 (2017).CAS
PubMed
Article
Google Scholar
75.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
PubMed
PubMed Central
Google Scholar
76.Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article
Google Scholar
77.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS
PubMed
Article
Google Scholar
78.Cornuet, J.-M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).CAS
PubMed
Article
Google Scholar
79.Penny, D. Relativity for molecular clocks. Nature 436, 183–184 (2005).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
80.Dakin, E. E. & Avise, J. C. Microsatellite null alleles in parentage analysis. Heredity 93, 504–509 (2004).CAS
PubMed
Article
Google Scholar
81.Oromi, N. et al. Genetic structure of lake and stream populations in a Pyrenean amphibian (Calotriton asper) reveals evolutionary significant units associated with paedomorphosis. J. Zool. Syst. Evol. Res. 57, 418–430 (2019).Article
Google Scholar
82.Janes, J. K. et al. The K = 2 conundrum. Mol. Ecol. 26, 3594–3602 (2017).PubMed
Article
Google Scholar
83.Chiari, Y. et al. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology. PLoS ONE 7, e32332 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
84.Cimmaruta, R., Lucente, D. & Nascetti, G. Persistence, isolation and diversification of a naturally fragmented species in local refugia: the case of Hydromantes strinatii. PLoS ONE 10, e0131298 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
85.Kuchta, S. R., Haughey, M., Wynn, A. H., Jacobs, J. F. & Highton, R. Ancient river systems and phylogeographical structure in the spring salamander, Gyrinophilus porphyriticus. J. Biogeogr. 43, 639–652 (2016).Article
Google Scholar
86.Pan, T. et al. Long-term sky islands generate highly divergent lineages of a narrowly distributed stream salamander (Pachyhynobius shangchengensis) in mid-latitude mountains of East Asia. BMC Evol. Biol. 19, 1–15 (2019).PubMed
PubMed Central
Article
Google Scholar
87.Suk, H. Y. et al. Genetic and phylogenetic structure of Hynobius quelpaertensis, an endangered endemic salamander species on the Korean Peninsula. Genes Genom. 42, 165–178 (2020).CAS
Article
Google Scholar
88.Cameron, A. C., Anderson, J. J. & Page, R. B. Assessment of intra and interregional genetic variation in the Eastern Red-backed Salamander, Plethodon cinereus, via analysis of novel microsatellite markers. PLoS ONE 12, e0186866 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
89.Yoshikawa, N. & Nagata, N. Eighteen SSR Markers for the Japanese clawed salamander, Onychodactylus japonicus, and cross-amplification in its congeners. Curr. Herpetol. 36, 153–158 (2017).90.Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3, 401–411 (1994).CAS
Article
Google Scholar
91.Estoup, A., Jarne, P. & Cornuet, J. M. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol. Ecol. 11, 1591–1604 (2002).CAS
PubMed
Article
Google Scholar
92.Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).CAS
PubMed
Article
Google Scholar
93.Karl, S. A., Toonen, R. J., Grant, W. S. & Bowen, B. W. Common misconceptions in molecular ecology: echoes of the modern synthesis. Mol. Ecol. 21, 4171–4189 (2012).CAS
PubMed
Article
Google Scholar
94.Cook, B. D., Bunn, S. E. & Hughes, J. M. Molecular genetic and stable isotope signatures reveal complementary patterns of population connectivity in the regionally vulnerable southern pygmy perch (Nannoperca australis). Biol. Conserv. 138, 60–72 (2007).Article
Google Scholar
95.Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).Article
Google Scholar
96.Avise, J. C., Walker, D. & Johns, G. C. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 1707–1712 (1998).CAS
Article
Google Scholar
97.Alexandrino, J., Froufe, E., Arntzen, J. W. & Ferrand, N. Genetic subdivision, glacial refugia and postglacial recolonization in the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Mol. Ecol. 9, 771–781 (2000).CAS
PubMed
Article
Google Scholar
98.Alexandrino, J., Arntzen, J. W. & Ferrand, N. Nested clade analysis and the genetic evidence for population expansion in the phylogeography of the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela). Heredity 88, 66–74 (2002).CAS
PubMed
Article
Google Scholar
99.Rovito, S. M. Lineage divergence and speciation in the Web-toed Salamanders (Plethodontidae: Hydromantes) of the Sierra Nevada, California . Mol. Ecol. 19, 4554–4571 (2010).PubMed
Article
Google Scholar
100.Shafer, A. B. A., Cullingham, C. I., Côté, S. D. & Coltman, D. W. Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol. Ecol. 19, 4589–4621 (2010).PubMed
Article
Google Scholar
101.Zhang, R.-Z. Geological events and mammalian distribution in China. Acta Zool. Sin. 48, 141–153 (2002).
Google Scholar
102.Matsui, M., Tominaga, A., Liu, W. Z. & Tanaka-Ueno, T. Reduced genetic variation in the Japanese giant salamander, Andrias japonicus (Amphibia: Caudata). Mol. Phylogenet. Evol. 49, 318–326 (2008).CAS
PubMed
Article
Google Scholar
103.Matsui, M. et al. Phylogenetic relationships of two Salamandrella species as revealed by mitochondrial DNA and allozyme variation (Amphibia: Caudata: Hynobiidae). Mol. Phylogenet. Evol. 48, 84–93 (2008).CAS
PubMed
Article
Google Scholar
104.Malyarchuk, B., Derenko, M. & Denisova, G. Phylogeny and genetic history of the Siberian salamander (Salamandrella keyserlingii, Dybowski, 1870) inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 67, 348–357 (2013).CAS
PubMed
Article
Google Scholar
105.Honda, A. et al. Late Pleistocene climate change and population dynamics of Japanese Myodes voles inferred from mitochondrial cytochrome b sequences. J. Mammal. 100, 1156–1168 (2019).PubMed
PubMed Central
Article
Google Scholar
106.Moritz, C. Defining “evolutionarily significant units” for conservation. Trends Ecol. Evol. 9, 373–375 (1994).CAS
PubMed
Article
Google Scholar More
