Philippa Kaur
More stories
225 Shares189 Views
in EcologySubmicron polymer particles may mask the presence of toxicants in wastewater effluents probed by reporter gene containing bacteria
1.Pivokonsky, M. et al. Occurrence of microplastics in raw and treated drinking water. Sci. Total. Environ. 643, 1644–1651 (2018).ADS
CAS
PubMed
ArticleGoogle Scholar
2.Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).ADS
PubMed
PubMed Central
Article
CASGoogle Scholar
3.Courtene-Jones, W., Quinn, B., Gary, S. F., Mogg, A. O. & Narayanaswamy, B. E. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the rockall trough, North Atlantic Ocean. Environ. Pollut. 231, 271–280 (2017).CAS
PubMed
ArticleGoogle Scholar
4.Koongolla, J. B. et al. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environ. Pollut. 258, 113734 (2020).CAS
PubMed
ArticleGoogle Scholar
5.Qu, M. et al. Nanopolystyrene at predicted environmental concentration enhances microcystin-LR toxicity by inducing intestinal damage in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 183, 109568 (2019).CAS
PubMed
ArticleGoogle Scholar
6.Li, Y. et al. Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma). J. Hazard. Mater. 385, 121586 (2020).CAS
PubMed
ArticleGoogle Scholar
7.Shao, H. & Wang, D. Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans. Environ. Pollut. 258, 113649 (2020).CAS
PubMed
ArticleGoogle Scholar
8.Sørensen, L., Rogers, E., Altin, D., Salaberria, I. & Booth, A. M. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environ. Pollut. 258, 113844 (2020).PubMed
Article
CASGoogle Scholar
9.Lee, K.-W., Shim, W. J., Kwon, O. Y. & Kang, J.-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ. Sci. Technol. 47, 11278–11283 (2013).ADS
CAS
PubMed
ArticleGoogle Scholar
10.Sun, X. et al. Toxicities of polystyrene nano-and microplastics toward marine bacterium Halomonas alkaliphila. Sci. Total. Environ. 642, 1378–1385 (2018).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
11.Ivask, A. et al. Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial. Environ. Sci. Technol. 46, 2398–2405 (2012).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
12.Heinlaan, M. et al. Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total. Environ. 707, 136073 (2020).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
13.Miyazaki, J. et al. Bacterial toxicity of functionalized polystyrene latex nanoparticles toward Escherichia coli. Adv. Mat. Res. 699, 672–677 (2013).CASGoogle Scholar
14.Kwon, Y.-N. & Leckie, J. O. Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance. J. Membr. Sci. 282, 456–464 (2006).CAS
ArticleGoogle Scholar
15.Ateia, M., Kanan, A. & Karanfil, T. Microplastics release precursors of chlorinated and brominated disinfection byproducts in water. Chemosphere 251, 126452 (2020).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
16.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS
PubMed
Article
PubMed CentralGoogle Scholar
17.Mammo, F., Amoah, I., Gani, K., Pillay, L., Ratha, S., Bux, F. & Kumari, S. Microplastics in the environment: Interactions with microbes and chemical contaminants. Sci. Total. Environ. 743, 140518 (2020).18.Engler, R. E. The complex interaction between marine debris and toxic chemicals in the ocean. Environ. Sci. Technol. 46, 12302–12315 (2012).ADS
CAS
PubMed
ArticleGoogle Scholar
19.Mattsson, K., Jocic, S., Doverbratt, I. & Hansson, L.-A. An emerging matter of environmental urgency. In Microplastic contamination in aquatic environments (ed. Zeng, E.) 379–399 (Elsevier, 2018).
Google Scholar
20.Sumampouw, O. J. & Risjani, Y. Bacteria as indicators of environmental pollution. Environment 51, 52 (2014).
Google Scholar
21.Hassan, S. H. et al. Real-time monitoring of water quality of stream water using sulfur-oxidizing bacteria as bio-indicator. Chemosphere 223, 58–63 (2019).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
22.Bowdre, J. H. & Krieg, N. R. Water quality monitoring: bacteria as indicators (Virginia Water Resources Research Center, 1974).
Google Scholar
23.Leusch, F. D. et al. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res. 50, 420–431 (2014).CAS
PubMed
Article
PubMed CentralGoogle Scholar
24.Federation, Water Environmental and American Public Health Association (APHA). Standard methods for the examination of water and wastewater, Vol. 2 , Washington, DC, USA, (1915).25.Belkin, S. et al. A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Res. 31, 3009–3016 (1997).CAS
ArticleGoogle Scholar
26.Bhuvaneshwari, M. et al. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp. Water Res. 164, 114910 (2019).CAS
PubMed
Article
PubMed CentralGoogle Scholar
27.Bianchi, E. et al. Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil. Braz. J. Biol. 75, 68–74 (2015).CAS
PubMed
Article
PubMed CentralGoogle Scholar
28.Melamed, S. et al. A printed nanolitre-scale bacterial sensor array. Lab Chip 11, 139–146 (2011).CAS
PubMed
Article
PubMed CentralGoogle Scholar
29.Jia, K., Eltzov, E., Toury, T., Marks, R. S. & Ionescu, R. E, A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. Ecotoxicol. Environ. Saf. 84, 221–226 (2012).CAS
PubMed
Article
PubMed CentralGoogle Scholar
30.Kim, B. C. & Gu, M. B, A bioluminescent sensor for high throughput toxicity classification. Biosens. Bioelectron 18, 1015–1021 (2003).CAS
PubMed
ArticleGoogle Scholar
31.Gu, M. B., Min, J. & Kim, E. J, Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria. Chemosphere 46, 289–294 (2002).ADS
CAS
PubMed
ArticleGoogle Scholar
32.Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A. P. & Heringa, M. B, Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?. Anal Bioanal Chem 4, 915–929 (2011).Article
CASGoogle Scholar
33.Manivannan, B. et al. Water toxicity evaluations: comparing genetically modified bioluminescent bacteria and CHO cells as biomonitoring tools. Ecotoxicol. Environ. Saf. 203, 110984 (2020).CAS
PubMed
ArticleGoogle Scholar
34.Gambardella, C. et al. Microplastics do not affect standard ecotoxicological endpoints in marine unicellular organisms. Mar. Pollut. Bull. 143, 140–143 (2019).CAS
PubMed
ArticleGoogle Scholar
35.Magnusson, K. & Norén, F. Screening of microplastic particles in and down-stream a wastewater treatment plant (IVL Swedish Environmental Research Institute, 2014).
Google Scholar
36.Talvitie, J. et al. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci. Technol. 72, 1495–1504 (2015).CAS
PubMed
ArticleGoogle Scholar
37.Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 91, 174–182 (2016).CAS
PubMed
ArticleGoogle Scholar
38.Dris, R. et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 5, 592–599 (2015).Article
CASGoogle Scholar
39.HELCOM, 2014. Baltic Marine Environment Protection Commission, Preliminary study on Synthetic microfibers and particles at a municipal waste water treatment plant, BASE project 2012–2014.40.Lares, M., Ncibi, M. C., Sillanpää, M. & Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 133, 236–246 (2018).CAS
PubMed
ArticleGoogle Scholar
41.Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800–5808 (2016).ADS
CAS
PubMed
ArticleGoogle Scholar
42.Garside, M. Global plastic production from 1950 to 2018. Statista. Available online at: https://www.statista.com/statistics/282732/global-production-ofplastics-since-1950 (2019).43.Jang, M. et al. H, Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environ Pollut. 231, 785–794 (2017).CAS
PubMed
ArticleGoogle Scholar
44.De-la-Torre, G. E., Dioses-Salinas, D. C., Pizarro-Ortega, C. I. & Saldaña-Serran, M. Global distribution of two polystyrene-derived contaminants in the marine environment: A review. Mar. Pollut. Bull. 161, 111729 (2020).CAS
PubMed
ArticleGoogle Scholar
45.Zitko, V. Expanded polystyrene as a source of contaminants. Mar. Pollut. Bull 10, 584–585 (1993).ArticleGoogle Scholar
46.Hoerter, J. & Eisenstark, A. Synergistic killing of bacteria and phage by polystyrene and ultraviolet radiation. Environ. Mutagen. 12, 261–264 (1988).CAS
ArticleGoogle Scholar
47.Miao, L. et al. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environ. Pollut. 255, 113300 (2019).CAS
PubMed
ArticleGoogle Scholar
48.Rupe, L. A., Tuthill, L. B. & Leikhim, J. W. Thickened bleach compositions for treating hard-to-remove soils. U.S. Patent No. 4116851. (1978).49.Merritt, K., Hitchins, V. M. & Brown, S. A. Safety and cleaning of medical materials and devices. J. Biomed. Mater. Res. 53, 131–136 (2000).CAS
PubMed
ArticleGoogle Scholar
50.https://www.dutscher.com/data/pdf_guides/en/CCTPPA.pdf Material Pour Laboratories ET Industries, Dominique Dutscher.51.Messing, A. & Sela, Y. SHAFDAN (Greater Tel Aviv Wastewater Treatment Plant): recent upgrade and expansion. Water Pract. Technol 2, 288–297 (2016).ArticleGoogle Scholar
52.Eldad Spivak, Engineering Firm LTD., Raanana wastewater facility, Israel. http://www.spivak.co.il/en/projects/raanana-wastewater-facility.53.Balasha Jalon, Infrastructure systems LTD., Karmiel wastewater treatment plant- First stage- Israel. http://bj-is.com/karmiel-wwtp.54.Heinlaan, M. et al. & Kahru, A, Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total Environ. 707, 136073 (2020).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
55.Snead, M. C. Benefits of maintaining a chlorine residual in water supply systems, 600/2-80-0100 (US Environmental Protection Agency, 1980).56.Harp, D.L. Current technology for chlorine analysis in water and wastewater. Technical Information Series—Booklet No.17. Hach Company (2002).57.4500-Cl CHLORINE (RESIDUAL). Standard Methods For the Examination of Water and Wastewater, 23rd (2018).58.Engelhardt, T. & Malkov, V. B. Chlorination, chloramination and chlorine measurement 18–20 (HACH, 2015).
Google Scholar
59.https://www.polyfluor.nl/en/chemical-resistance/ptfe/. Specialist in PTFE, Engineering and Manufacturing Service, Polyfluor.60.Vollmer, A. C., Belkin, S., Smulski, D. R., Van Dyk, T. K. & LaRossa, R. A. Detection of DNA damage by use of Escherichia coli carrying recA’: lux, uvrA’: lux, or alkA’: lux reporter plasmids. Appl. Environ. Microbiol. 63, 2566–2571 (1997).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
61.Van Dyk, T. K. et al. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 60, 1414–1420 (1994).PubMed
PubMed Central
ArticleGoogle Scholar
62.Eltzov, E., Marks, R. S., Voost, S., Wullings, B. A. & Heringa, M. B. Flow-through real time bacterial biosensor for toxic compounds in water. Sensors Actuators B: Chem. 142, 11–18 (2009).CAS
ArticleGoogle Scholar
63.Harpaz, D. et al. Measuring artificial sweeteners toxicity using a bioluminescent bacterial panel. Molecules 23, 2454 (2018).PubMed Central
Article
CASGoogle Scholar
64.Thiagarajan, V., Iswarya, V., Seenivasan, R., Chandrasekaran, N. & Mukherjee, A. Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp. Aquat. Toxicol. 207, 208–216 (2019).CAS
PubMed
Article
PubMed CentralGoogle Scholar
65.Kelkar, V. P. et al. Chemical and physical changes of microplastics during sterilization by chlorination. Water Res. 163, 114871 (2019).CAS
PubMed
Article
PubMed CentralGoogle Scholar
66.Zhang, X. et al. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere 242, 125227 (2020).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
67.Yan, M., Roccaro, P., Fabbricino, M. & Korshin, G. V. Comparison of the effects of chloramine and chlorine on the aromaticity of dissolved organic matter and yields of disinfection by-products. Chemosphere 191, 477–484 (2018).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
68.Hüffer, T. & Hofmann, T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ. Pollut. 214, 194–201 (2016).PubMed
Article
CAS
PubMed CentralGoogle Scholar More
113 Shares189 Views
in EcologyReflections and projections on a decade of climate science
When I began my PhD a decade ago, climate change economics was an extremely niche area. Just a few topics dominated — especially discounting and the relative merits of different climate policy instruments — and the number of researchers was small, incommensurate with the scale of the environmental, economic or policy challenges that climate change presents. However, since then, the field has broadened, deepened and strengthened links to climate science.Notably, there has been an explosion of studies documenting the sensitivity of social and economic systems to temperature. This literature, using statistical approaches designed to identify causal relationships in non-experimental data, has uncovered the effects of temperature across a wide range of outcomes: conflict risk, pre-term birth, classroom learning as well as overall economic productivity across many sectors. This discovery of pervasive and, in some cases, large temperature impacts, even in wealthy countries, is a sharp break with previous work, which understood effects to be mostly limited to a few highly exposed sectors, such as agriculture and coastal infrastructure.Important advances have come from questioning assumptions underlying the cost–benefit assessment of climate policy. Ten years ago, conventional wisdom held that substantial emissions reductions by 2050, required to limit warming to less than 2 °C, could not be justified on a cost–benefit basis. Many studies now show that this finding is overturned under alternate but justifiable models of how climate change affects the economy and human welfare. Two prominent examples are the question of whether climate change affects the underlying growth rate of the economy, and disentangling risk and time preferences in the utility function.A welcome development has been growing interest across the entire economics discipline, with scholars from labour, development, macro, health and financial economics working on questions of weather and climate. Even more important has been recognition of systemic climate risk within major financial institutions. Central banks, institutional investors and credit rating agencies direct capital investment flows and manage economic risks, and will play a critical role in structuring future adaptive transitions. Markets, communities, households and businesses will have to adapt both to a continuously changing climate, and to a low-carbon economy. Forward-looking regulations and investments that anticipate these changes will lower the costs of these transitions.I see several important areas still in need of substantive work. Firstly, an assessment of alternative policy instruments that better incorporates the political and technological feedbacks that will accompany major climate policy. Economists tend to favour carbon pricing because of its cost-effectiveness. But how do pricing policies perform given a richer representation of other relevant market failures or real political constraints? Examples include subsidy-driven declines in technology costs or strategic interest group dynamics, where policies themselves create or undermine powerful interest groups and therefore alter the space of political possibility. Collaboration with engineers and political scientists can help address these questions. An expanded focus on desirable policies for low- and middle-income countries, essential to meet ambitious decarbonization goals and which present distinct challenges, is also critical.More work is needed on understanding climate damages, particularly those that fall outside of traditional market measures, such as losses of cultural heritage, conflict risk or biodiversity loss. These are extremely difficult to value and are not adequately incorporated into current estimates of aggregate climate damages, such as the social cost of carbon. Also critical is understanding the transition and adjustment costs associated with a continuously changing climate. Too many studies estimate equilibrium damages or assume costless adjustment. But infrastructure is long-lived, and natural hazards are already under-priced in many property markets. In this context, climate change risks creating stranded assets, price bubbles and unsustainable liabilities for local or even national governments, all of which could add substantially to climate change cost estimates.
Credit: Peter Cade/Stone/Getty More150 Shares179 Views
in EcologyImpaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions
1.Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Quéguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).
Google Scholar
2.Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012).
Google Scholar
3.Hutchins, D. A., DiTullio, G. R., Zhang, Y. & Bruland, K. W. An iron limitation mosaic in the California upwelling regime. Limnol. Oceanogr. 43, 1037–1054 (1998).
Google Scholar
4.Bruland, K. W., Rue, E. L. & Smith, G. J. Iron and macronutrients in California coastal upwelling regimes: implications for diatom blooms. Limnol. Oceanogr. 46, 1661–1674 (2001).
Google Scholar
5.Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).
Google Scholar
6.Brzezinski, M. A. et al. Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current. J. Geophys. Res. Oceans 120, 4654–4669 (2015).
Google Scholar
7.Arteaga, L. A., Pahlow, M., Bushinsky, S. M. & Sarmiento, J. L. Nutrient controls on export production in the Southern Ocean. Glob. Biogeochem. Cycles 33, 942–956 (2019).
Google Scholar
8.Stukel, M. R. & Barbeau, K. A. Investigating the nutrient landscape in a coastal upwelling region and its relationship to the biological carbon pump. Geophys. Res. Lett. 47, e2020GL087351 (2020).
Google Scholar
9.Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).
Google Scholar
10.Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).
Google Scholar
11.Pichevin, L. E., Ganeshram, R. S., Geibert, W., Thunell, R. & Hinton, R. Silica burial enhanced by iron limitation in oceanic upwelling margins. Nat. Geosci. 7, 541–546 (2014).
Google Scholar
12.Brzezinski, M. A. et al. A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean. Geophys. Res. Lett. 29, 1564 (2002).13.Matsumoto, K., Sarmiento, J. L. & Brzezinski, M. A. Silicic acid leakage from the Southern Ocean: a possible explanation for glacial atmospheric pCO2. Glob. Biogeochem. Cycles 16, 1031 (2002).
Google Scholar
14.Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).
Google Scholar
15.Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).
Google Scholar
16.Suttle, C. A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
Google Scholar
17.Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).
Google Scholar
18.Kranzler, C. F. et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat. Microbiol. 4, 1790–1797 (2019).19.Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
Google Scholar
20.Yamada, Y., Tomaru, Y., Fukuda, H. & Nagata, T. Aggregate formation during the viral lysis of a marine diatom. Front. Mar. Sci. 5, 167 (2018).
Google Scholar
21.Pelusi, A. et al. Virus-induced spore formation as a defense mechanism in marine diatoms. New Phytol. 229, 2251–2259 (2020).
Google Scholar
22.Johnson, K. S., Chavez, F. P. & Friederich, G. E. Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature 398, 697–700 (1999).
Google Scholar
23.Harrison, P. J. Station Papa time series: insights into ecosystem dynamics. J. Oceanogr. 58, 259–264 (2002).
Google Scholar
24.Marchetti, A. et al. Development of a molecular-based index for assessing iron status in bloom-forming pennate diatoms. J. Phycol. 53, 820–832 (2017).
Google Scholar
25.Cohen, N. R. et al. Diatom transcriptional and physiological responses to changes in iron bioavailability across ocean provinces. Front. Mar. Sci. 4, 360 (2017).
Google Scholar
26.Lampe, R. H. et al. Different iron storage strategies among bloom-forming diatoms. Proc. Natl Acad. Sci. USA 115, E12275–E12284 (2018).
Google Scholar
27.King, A. L. & Barbeau, K. Evidence for phytoplankton iron limitation in the southern California Current System. Mar. Ecol. Prog. Ser. 342, 91–103 (2007).
Google Scholar
28.Boyd, P. & Harrison, P. J. Phytoplankton dynamics in the NE subarctic Pacific. Deep Sea Res. II 46, 2405–2432 (1999).
Google Scholar
29.Till, C. P. et al. The iron limitation mosaic in the California Current System: factors governing Fe availability in the shelf/near-shelf region. Limnol. Oceanogr. 64, 109–123 (2019).
Google Scholar
30.Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).
Google Scholar
31.Richaud, C. & Zabulon, G. The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation. Proc. Natl Acad. Sci. USA 94, 11736–11741 (1997).
Google Scholar
32.Allen, A. E. et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA 105, 10438–10443 (2008).
Google Scholar
33.Thamatrakoln, K., Korenovska, O., Niheu, A. K. & Bidle, K. D. Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ. Microbiol. 14, 67–81 (2012).
Google Scholar
34.Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).
Google Scholar
35.De La Rocha, C. L., Hutchins, D. A., Brzezinski, M. A. & Zhang, Y. Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Mar. Ecol. Prog. Ser. 195, 71–79 (2000).
Google Scholar
36.Leynaert, A. et al. Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. Limnol. Oceanogr. 49, 1134–1143 (2004).
Google Scholar
37.van Creveld, S. G., Rosenwasser, S., Levin, Y. & Vardi, A. Chronic iron limitation confers transient resistance to oxidative stress in marine diatoms. Plant Physiol. 172, 968–979 (2016).
Google Scholar
38.Slagter, H. A., Gerringa, L. J. A. & Brussaard, C. P. D. Phytoplankton virus production negatively affected by iron limitation. Front. Mar. Sci. 3, 156 (2016).
Google Scholar
39.Drakesmith, H. & Prentice, A. Viral infection and iron metabolism. Nat. Rev. Microbiol. 6, 541–552 (2008).
Google Scholar
40.Weinbauer, M. G., Arrieta, J. M., Griebler, C. & Herndlb, G. J. Enhanced viral production and infection of bacterioplankton during an iron-induced phytoplankton bloom in the Southern Ocean. Limnol. Oceanogr. 54, 774–784 (2009).
Google Scholar
41.Torres, M. A., Jones, J. D. G. & Dangl, J. L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373–378 (2006).
Google Scholar
42.Sheyn, U., Rosenwasser, S., Ben-Dor, S., Porat, Z. & Vardi, A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 10, 1742–1754 (2016).
Google Scholar
43.Hyodo, K., Hashimoto, K., Kuchitsu, K., Suzuki, N. & Okuno, T. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus. Proc. Natl Acad. Sci. USA 114, E1282–E1290 (2017).
Google Scholar
44.Espinoza, J. A., Gonzalez, P. A. & Kalergis, A. M. Modulation of antiviral immunity by heme oxygenase-1. Am. J. Pathol. 187, 487–493 (2017).
Google Scholar
45.Durkin, C. A. et al. Frustule-related gene transcription and the influence of diatom community composition on silica precipitation in an iron-limited environment. Limnol. Oceanogr. 57, 1619–1633 (2012).
Google Scholar
46.Assmy, P. et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc. Natl Acad. Sci. USA 110, 20633–20638 (2013).
Google Scholar
47.Kimura, K. & Tomaru, Y. Effects of temperature and salinity on diatom cell lysis by DNA and RNA viruses. Aquat. Microb. Ecol. 79, 79–83 (2017).
Google Scholar
48.Thamatrakoln, K. et al. Light regulation of coccolithophore host–virus interactions. New Phytol. 221, 1289–1302 (2019).
Google Scholar
49.Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).
Google Scholar
50.Brzezinski, M. A. et al. Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific. Deep Sea Res. II 58, 493–511 (2011).
Google Scholar
51.Boyer, T. P. et al. World Ocean Database 2013 (NOAA Atlas, 2013).52.Krause, J. W. et al. The interaction of physical and biological factors drives phytoplankton spatial distribution in the northern California Current. Limnol. Oceanogr. 65, 1974–1989 (2020).
Google Scholar
53.Krause, J. W., Nelson, D. M. & Brzezinski, M. A. Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep Sea Res. II 58, 434–448 (2011).
Google Scholar
54.Brzezinski, M. A. & Phillips, D. R. Evaluation of 32Si as a tracer for measuring silica production rates in marine waters. Limnol. Oceanogr. 42, 856–865 (1997).
Google Scholar
55.Nelson, D. M., Brzezinski, M. A., Sigmon, D. E. & Franck, V. M. A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep Sea Res. II 48, 3973–3995 (2001).
Google Scholar
56.Krause, J. W., Brzezinski, M. A., Villareal, T. A. & Wilson, C. Increased kinetic efficiency for silicic acid uptake as a driver of summer diatom blooms in the North Pacific subtropical gyre. Limnol. Oceanogr. 57, 1084–1098 (2012).
Google Scholar
57.Birol, I. et al. De novo transcriptome assembly with ABySS. Bioinformatics 25, 2872–2877 (2009).
Google Scholar
58.Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods 7, 909–912 (2010).
Google Scholar
59.Gremme, G., Steinbiss, S. & Kurtz, S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 645–656 (2013).
Google Scholar
60.Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).
Google Scholar
61.Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
Google Scholar
62.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
Google Scholar
63.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).64.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
Google Scholar
65.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Google Scholar
66.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).67.Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).
Google Scholar
68.Alexander, H., Jenkins, B. D., Rynearson, T. A. & Dyhrman, S. T. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc. Natl Acad. Sci. USA 112, E2182–E2190 (2015).
Google Scholar
69.Lampe, R. H. et al. Divergent gene expression among phytoplankton taxa in response to upwelling. Environ. Microbiol. 20, 3069–3082 (2018).
Google Scholar
70.Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data https://cran.r-project.org/web/packages/gplots/index.html (2019).71.Oksanen, J. et al. vegan: Community Ecology Package https://cran.r-project.org/web/packages/vegan/index.html (2019).72.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
Google Scholar
73.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
Google Scholar
74.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Google Scholar
75.Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
Google Scholar
76.Shirai, Y. et al. Isolation and characterization of a single-stranded RNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus Meunier. Appl. Environ. Microbiol. 74, 4022–4027 (2008).
Google Scholar
77.Chen, L.-M., Edelstein, T. & McLachlan, J. Bonnemaisonia hamifera Hariot in nature and in culture. J. Phycol. 5, 211–220 (1969).
Google Scholar
78.Harrison, P. J., Waters, R. E. & Taylor, F. J. R. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. J. Phycol. 16, 28–35 (1980).
Google Scholar
79.Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).
Google Scholar
80.Sunda, W. G., Price, N. M. & Morel, F. M. M. Trace metal ion buffers and their use in culture studies. Algal Cult. Tech. 4, 35–63 (2005).
Google Scholar
81.Tomaru, Y., Shirai, Y., Toyoda, K. & Nagasaki, K. Isolation and characterization of a single-stranded DNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus. Aquat. Microb. Ecol. 64, 175–184 (2011).
Google Scholar
82.Parsons, T. R. A Manual of Chemical & Biological Methods for Seawater Analysis (Elsevier, 2013).83.Krause, J. W., Lomas, M. W. & Nelson, D. M. Biogenic silica at the Bermuda Atlantic time-series study site in the Sargasso Sea: temporal changes and their inferred controls based on a 15-year record. Glob. Biogeochem. Cycles 23, GB3004 (2009).84.Gorbunov, M. Y. & Falkowski, P. G. Fluorescence induction and relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. In Photosynthesis: Fundamental Aspects to Global Perspectives—Proc. 13th International Congress of Photosynthesis (eds Van der Est, A. & Bruce, D.) 1029–1031 (Allen and Unwin, 2004).85.Suttle, C. A. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 121–134 (CRC Press, 1993).86.Klee, A. J. A computer program for the determination of most probable number and its confidence limits. J. Microbiol. Methods 18, 91–98 (1993).
Google Scholar More125 Shares179 Views
in EcologyPollinator interaction flexibility across scales affects patch colonization and occupancy
1.Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).CAS
PubMed
Article
PubMed CentralGoogle Scholar
2.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS
PubMed
Article
PubMed CentralGoogle Scholar
3.Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).PubMed
Article
PubMed CentralGoogle Scholar
4.Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed
Article
PubMed CentralGoogle Scholar
5.Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant–pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).PubMed
Article
PubMed CentralGoogle Scholar
6.Spiesman, B. J. & Gratton, C. Flexible foraging shapes the topology of plant–pollinator interaction networks. Ecology 97, 1431–1441 (2016).PubMed
Article
PubMed CentralGoogle Scholar
7.CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).8.Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).PubMed
Article
PubMed CentralGoogle Scholar
9.Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl Acad. Sci. USA 111, 14472–14477 (2014).CAS
PubMed
Article
PubMed CentralGoogle Scholar
10.Burkle, L. A. & Alarcón, R. The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).PubMed
Article
PubMed CentralGoogle Scholar
11.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
12.Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Syst. 48, 24–48 (2017).13.Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2013).14.MacLeod, M., Genung, M. A., Ascher, J. S. & Winfree, R. Measuring partner choice in plant–pollinator networks: using null models to separate rewiring and fidelity from chance. Ecology 97, 2925–2931 (2016).PubMed
Article
PubMed CentralGoogle Scholar
15.Fortuna, M. A., Nagavci, A., Barbour, M. A. & Bascompte, J. Partner fidelity and asymmetric specialization in ecological networks. Am. Nat. 196, 382–389 (2020).16.Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. Philos. Trans. R. Soc. B 364, 1781 (2009).ArticleGoogle Scholar
17.Cirtwill, A. R., Roslin, T., Rasmussen, C., Olesen, J. M. & Stouffer, D. B. Between-year changes in community composition shape species’ roles in an Arctic plant–pollinator network. Oikos 127, 1163–1176 (2018).18.Mora, B. B., Shin, E., CaraDonna, P. J. & Stouffer, D. B. Untangling the seasonal dynamics of plant–pollinator communities. Nat. Commun. 11, 4086 (2020).19.Saavedra, S., Stouffer, D. B., Uzzi, B. & Bascompte, J. Strong contributors to network persistence are the most vulnerable to extinction. Nature 478, 233–235 (2011).CAS
PubMed
Article
PubMed CentralGoogle Scholar
20.Sebastián-González, E. Drivers of species role in avian seed-dispersal mutualistic networks. J. Anim. Ecol. 86, 878–887 (2017).PubMed
Article
PubMed CentralGoogle Scholar
21.Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).PubMed
Article
PubMed CentralGoogle Scholar
22.CaraDonna, P. J. et al. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 24, 149–161 (2020).23.Vázquez, D. P., Chacoff, N. P. & Cagnolo, L. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90, 2039–2046 (2009).PubMed
Article
PubMed CentralGoogle Scholar
24.Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).PubMed
PubMed Central
ArticleGoogle Scholar
25.Olesen, J. M., Bascompte, J., Dupont, Y. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).CAS
PubMed
Article
PubMed CentralGoogle Scholar
26.Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).CAS
PubMed
Article
PubMed CentralGoogle Scholar
27.Valdovinos, F. S. et al. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett. 19, 1277–1286 (2016).PubMed
Article
PubMed CentralGoogle Scholar
28.Rafferty, N. E., CaraDonna, P. J. & Bronstein, J. L. Phenological shifts and the fate of mutualisms. Oikos 124, 14–21 (2015).PubMed
Article
PubMed CentralGoogle Scholar
29.Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Species abundance, not diet breadth, drives the persistence of the most linked pollinators as plant–pollinator networks disassemble. Am. Nat. 183, 600–611 (2014).PubMed
Article
PubMed CentralGoogle Scholar
30.Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).ArticleGoogle Scholar
31.Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154 (2019).ArticleGoogle Scholar
32.Fontaine, C., Collin, C. L. & Dajoz, I. Generalist foraging of pollinators: diet expansion at high density. J. Ecol. 96, 1002–1010 (2008).ArticleGoogle Scholar
33.Stouffer, D. B., Sales-Pardo, M., Sirer, M. I. & Bascompte, J. Evolutionary conservation of species’ roles in food webs. Science 335, 1489–1492 (2012).CAS
PubMed
Article
PubMed CentralGoogle Scholar
34.Simmons, B. I. et al. Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos 128, 154–170 (2019).ArticleGoogle Scholar
35.Ponisio, L. C. Pyrodiversity promotes interaction complementarity and population resistance. Ecol. Evol. 10, 4431–4447 (2020).PubMed
PubMed Central
ArticleGoogle Scholar
36.Grab, H., Blitzer, E. J., Danforth, B., Loeb, G. & Poveda, K. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Sci. Rep. 7, 45296 (2017).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
37.MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).ArticleGoogle Scholar
38.Mitchell, W. A. An optimal control theory of diet selection: the effects of resource depletion and exploitative competition. Oikos 58, 16–24 (1990).39.Robinson, B. W. & Wilson, D. S. Optimal foraging, specialization, and a solution to Liem’s paradox. Am. Nat. 151, 223–235 (1998).CAS
PubMed
Article
PubMed CentralGoogle Scholar
40.Valdovinos, F. S., Moisset de Espanés, P., Flores, J. D. & Ramos-Jiliberto, R. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos 122, 907–917 (2013).ArticleGoogle Scholar
41.Ponisio, L. C. et al. A network perspective for community assembly. Front. Ecol. Environ. 7, 103 (2019).ArticleGoogle Scholar
42.Benadi, G. & Gegear, R. J. Adaptive foraging of pollinators can promote pollination of a rare plant species. Am. Nat. 192, E81–E92 (2018).PubMed
Article
PubMed CentralGoogle Scholar
43.Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).CAS
PubMed
Article
PubMed CentralGoogle Scholar
44.Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).ArticleGoogle Scholar
45.Fort, H., Vázquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19, 4–11 (2016).PubMed
Article
PubMed CentralGoogle Scholar
46.Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
47.Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed
Article
PubMed CentralGoogle Scholar
48.Bascompte, J. & Ferrera, A. in Theoretical Ecology: Concepts and Applications (eds McCann, A. S. & Gellner, G.) 93–115 (Oxford Univ. Press, 2020).49.Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).CAS
PubMed
Article
PubMed CentralGoogle Scholar
50.Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
51.Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS
ArticleGoogle Scholar
52.Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).CAS
PubMed
Article
PubMed CentralGoogle Scholar
53.Kremen, C. & M’Gonigle, L. K. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J. Appl. Ecol. 52, 602–610 (2015).ArticleGoogle Scholar
54.Kremen, C., Williams, N. & Thorp, R. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).55.Morandin, L., Long, R. & Kremen, C. Pest control and pollination cost–benefit analysis of hedgerow restoration in a simplified agricultural landscape. J. Econ. Entomol. 109, 1020–1027 (2016).CAS
PubMed
Article
PubMed CentralGoogle Scholar
56.Brittain, C., Williams, N., Kremen, C. & Klein, A. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 280, 1471–2954 (2013).ArticleGoogle Scholar
57.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).ArticleGoogle Scholar
58.Oksanen, J. et al. vegan: Community Ecology Package (2019); https://CRAN.R-project.org/package=vegan59.Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).PubMed
Article
PubMed CentralGoogle Scholar
60.Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).PubMed
Article
PubMed CentralGoogle Scholar
61.Mora, B. B., Cirtwill, A. R. & Stouffer, D. B. pymfinder: a tool for the motif analysis of binary and quantitative complex networks (2018); https://doi.org/10.1101/36470362.Simmons, B. I. et al. bmotif: a package for motif analyses of bipartite networks. Methods Ecol. Evol. 10, 695–701 (2019).ArticleGoogle Scholar
63.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Google Scholar
64.Baker, N. J., Kaartinen, R., Roslin, T. & Stouffer, D. B. Species’ roles in food webs show fidelity across a highly variable oak forest. Ecography 38, 130–139 (2015).ArticleGoogle Scholar
65.Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
66.Dormann, C., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8 (2008).
Google Scholar
67.Dorazio, R. M., Kery, M., Royle, J. A. & Plattner, M. Models for inference in dynamic metacommunity systems. Ecology 91, 2466–2475 (2010).PubMed
Article
PubMed CentralGoogle Scholar
68.Ponisio, L. C., de Valpine, P., M’Gonigle, L. K. & Kremen, C. Proximity of restored hedgerows interacts with local floral diversity and species’ traits to shape long-term pollinator metacommunity dynamics. Ecol. Lett. 22, 1048–1060 (2019).PubMed
Article
PubMed CentralGoogle Scholar
69.Royle, J. A. & Kéry, M. A Bayesian state–space formulation of dynamic occupancy models. Ecology 88, 1813–1823 (2007).PubMed
Article
PubMed CentralGoogle Scholar
70.Ponisio, L. C., de Valpine, P., Michaud, N. & Turek, D. One size does not fit all: customizing MCMC methods for hierarchical models using NIMBLE. Ecol. Evol. 10, 2385–2416 (2020).PubMed
PubMed Central
ArticleGoogle Scholar
71.de Valpine, P. et al. Programming with models: writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).ArticleGoogle Scholar
72.Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference (Cambridge Univ. Press, 2004).73.Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170 (2018).ArticleGoogle Scholar
74.Ponisio, L. C., M’gonigle, L. K. & Kremen, C. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob. Change Biol. 22, 704–715 (2016).ArticleGoogle Scholar
75.Lefcheck, J. S. PiecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).ArticleGoogle Scholar
76.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/ More75 Shares159 Views
in EcologyAmazon tree dominance across forest strata
Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USAFrederick C. Draper & Christopher BaralotoSchool of Geography, University of Leeds, Leeds, UKFrederick C. Draper, Oliver L. Phillips, Timothy R. Baker, Roel J. W. Brienen & David R. GalbraithCenter for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USAFrederick C. Draper, Gregory P. Asner, Jason Vleminckx & Oscar J. Valverde BarrantesInstituto Nacional de Pesquisas da Amazônia (INPA), Manaus, BrazilFlavia R. C. Costa, Juliana Schietti, Fernanda Coelho de Souza, William E. Magnusson, Karina Melgaço, André B. Junqueira, Ana C. Andrade, José Luís Camargo, Flávia D. Santana, Ricardo O. Perdiz, Jessica Soares Cravo, Alberto Vicentini, Henrique Nascimento, Niro Higuchi & Thaiane Rodrigues de SousaEcology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USAGabriel Arellano & Paul E. BerryDepartamento de Ciencias Forestales, Universidad Nacional de Colombia, Medellín, ColombiaAlvaro Duque & Mauricio Sánchez SáenzDepartamento de Biología, Universidad Autónoma de Madrid, Madrid, SpainManuel J. MacíaCentro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, SpainManuel J. MacíaNaturalis Biodiversity Center, Leiden, The NetherlandsHans ter Steege & Tinde Van AndelSystems Ecology, Vrije Universiteit, Amsterdam, The NetherlandsHans ter SteegeLancaster Environment Centre, Lancaster University, Lancaster, UKErika BerenguerEnvironmental Change Institute, University of Oxford, Oxford, UKErika Berenguer & Yadvinder MalhiFaculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, NorwayJacob B. SocolarSchool of Geosciences, University of Edinburgh, Edinburgh, UKKyle G. DexterMissouri Botanical Garden, St Louis, MO, USAPeter M. Jørgensen & J. Sebastian TelloBrazilian Agricultural Research Corporation (Embrapa), Roraima, BrazilCarolina V. CastilhoUniversidad Nacional de San Antonio Abad del Cusco, Cusco, PeruAbel Monteagudo-Mendoza, Victor Chama Moscoso, Darcy Galiano Cabrera & Percy Núñez VargasDepartment of Intergrative Biology, University of California Berkeley, Berkeley, CA, USAPaul V. A. Fine & Italo MesonesDepartment of Biology, University of Turku, Turku, FinlandKalle RuokolainenInstituto de Investigaciones de la Amazonía Peruana, Iquitos, PeruEuridice N. Honorio Coronado, Nállarett Dávila, Marcos A. Rios Paredes, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Ricardo Zarate Gomez, José Reyna Huaymacari, Julio M. Grandez Rios & Cesar J. Cordova OrocheUNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Mesa de Cavacas, VenezuelaGerardo AymardCompensation International Progress S. A.—Ciprogress Greenlife, Bogotá, ColombiaGerardo AymardAMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FranceJulien Engel, Claire Fortunel, Jean-François Molino, Daniel Sabatier & Maxime Réjou-MéchainEnvironmental and Rural Science, University of New England, Armidale, New South Wales, AustraliaC. E. Timothy PaineINRA, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane, Kourou, French GuianaJean-Yves Goret & Elodie AllieCIRAD, UMR EcoFoG, Kourou, French GuianaAurelie Dourdain & Pascal PetronelliBIOMAS, Universidad de Las Américas, Quito, EcuadorJuan E. Guevara AndinoInstituto de Ecología, Herbario Nacional de Bolivia, La Paz, BoliviaLeslie Cayola Pérez, Narel Y. Paniagua Zambrana & Alfredo F. FuentesDepartamento de Biologia, Universidade Federal de Rondônia, Porto Velho, BrazilÂngelo G. ManzattoLaboratoire Evolution et Diversité Biologique (EDB) CNRS/UPS, Toulouse, FranceJerôme ChaveSchool of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UKSophie FausetDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USARoosevelt Garcia VillacortaDepartment of Geography, University of Exeter, Exeter, UKTed R. FeldpauschFacultad de Ciencias Biológicas, Universidad Nacional de la Amazonía Peruana, Iquito, PeruElvis Valderamma Sandoval, Gilberto E. Navarro Aguilar, Jim Vega Arenas & Manuel FloresEstación Biológica del Jardín Botánico de Missouri, Oxapampa, PeruRodolfo Vasquez Martinez, Victor Chama Moscoso & Luis Valenzuela GamarraInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Barcelona, SpainAndré B. JunqueiraSchool of Geography & Sustainable Development, University of St Andrews, St Andrews, UKKatherine H. RoucouxDepartment of Environment and Development, Federal University of Amapá, Macapa, BrazilJosé J. de Toledo & Renato R. HilárioCentre for Tropical Environmental and Sustainability Science (TESS) and College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, AustraliaWilliam F. Laurance & Susan G. LauranceDepartment of Environmental Science and Policy, George Mason University, Fairfax, VA, USAThomas E. LovejoyInventory and Monitoring Program, National Park Service, Fredericksburg, VA, USAJames A. ComiskeySmithsonian Institution, Washington DC, USAJames A. ComiskeyDepartment of Plant Sciences, University of Cambridge, Cambridge, UKMichelle KalamandeenLiving with Lakes Centre, Laurentian University, Greater Sudbury, Ontario, CanadaMichelle KalamandeenDRGB, Instituto Nacional de Innovación Agraria (INIA), Lima, PeruCarlos A. Amasifuen GuerraHerbarium Amazonense (AMAZ), Universidad Nacional de la Amazonia Peruana, Loreto, PerúLuis A. Torres MontenegroDepartment of Ecology, Universidade de São Paulo, São Paulo, BrazilMarcelo P. PansonatoInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The NetherlandsJoost F. DuivenvoordenCentro de Estudos da Biodiversidade, Universidade Federal de Roraima, Boa Vista, BrazilSidney Araújo de Sousa & Marcos Salgado VitalMuseo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Santa Cruz, BoliviaLuzmila Arroyo, Alejandro Araujo-Murakami & Germaine A. Parada GutierrezFaculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidad do Estado de Mato Grosso, Nova Xavantina, BrazilBeatriz S. Marimon, Ben Hur Marimon Junior, Ricardo Keichi Umetsu & Nayane C. C. S. PrestesCentro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, BrazilFernanda Antunes CarvalhoDepartment of Ecology, Evolution and Behaviour, University of Minnesota, Minneapolis, MN, USAGabriel DamascoDepartment of Geography, University College London, London, UKMathias DisneyDepartamento de Ciencias Biológicas, Universidad de Los Andes (Colombia), Bogotá, ColombiaPablo R. Stevenson Diaz & Ana M. AldanaCentro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, BrazilSabina Cerruto Ribeiro, Richarlly da Costa Silva & Wenderson CastroNicholas School of the Environment, Duke University, Durham, NC, USAJohn W. TerborghIwokrama International Centre for Rainforest Conservation and Development, Georgetown, GuyanaRaquel S. ThomasSmithsonian’s National Zoo & Conservation Biology Institute, Washington DC, USAFrancisco DallmeierInstituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, ColombiaAdriana PrietoUniversidade Federal Rural da Amazônia—UFRA/CAPES, Belém, BrazilRafael P. SalomãoMuseu Paraense Emílio Goeldi, Belém, BrasilRafael P. Salomão, Ima C. Guimarães Vieira & Antonio S. LimaLaboratorio de Ecología de Bosques Tropicales y Primatología, Fundación Natura Colombia, Universidad de Los Andes, Bogotá, ColombiaLuisa F. CasasFacultad de Forestales, Universidad Nacional de la Amazonía Peruana, Iquito, PeruFredy Ramirez ArevaloInstitute of Research for Forestry Development, Universidad de los Andes, Merida, VenezuelaHirma Ramírez-Angulo, Emilio Vilanova Torre & Armando Torres-LezamaSchool of Environmental and Forest Sciences (SEFS), University of Washington, Seattle, WA, USAEmilio Vilanova TorreUniversidad Regional Amazónica Ikiam, Tena, EcuadorMaria C. PeñuelaAgteca-Amazonica, Santa Cruz, BoliviaTimothy J. KilleenUniversidad Autónoma del Beni, Riberalta, BoliviaGuido Pardo & Vincent VosInstituto Amazónico de Investigaciones (IMANI), Universidad Nacional de Colombia, Sede Amazonia, BrazilEliana Jimenez-RojasBroward County Parks and Recreation, Miami, FL, USAJohn PipolyBiological Sciences, Florida Atlantic University-Davie, Miami, FL, USAJohn PipolyMuseu Universitário, Universidade Federal do Acre, Rio Branco, BrazilMarcos SilveraFacultad de Ingeniería Ambiental, Universidad Estatal Amazónica, Puyo, EcuadorDavid NeillDepartment of Biology, Washington University in St Louis, St Louis, MO, USADilys M. VelaNational Institute for Space Research (INPE), São José dos Campos, BrazilLuiz E. O. C. AragãoGeoinformática & Sistemas (GeoIS), Quito, EcuadorRodrigo SierraSchool of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USAOphelia WangDepartment of Geography and the Environment, University of Texas at Austin, Austin, TX, USAKenneth R. YoungInstituto de Ciência e Tecnologia, São Paulo State University (UNESP), São José dos Campos, BrazilKlécia G. MassiSchool of Anthropology and Conservation, University of Kent, Canterbury, UKMiguel N. AlexiadesUniversidade Federal do Amazonas, Manaus, BrazilFabrício BaccaroHerbario Alfredo Paredes (QAP), Universidad Central del Ecuador, Quito, EcuadorCarlos CéronSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UKAdriane Esquivel MuelbertDepartment of Life Sciences, Imperial College London, London, UKJonathan L. LloydScience and Education, The Field Museum, Chicago, IL, USANigel C. A. PitmanUniversidad Tecnica del Norte, Herbario Nacional del Ecuador, Quito, EcuadorWalter PalaciosResearch Institute Alexander von Humboldt, Bogotá, ColombiaSandra PatiñoF.C.D. and C.B. conceived the study. F.C.D., G.P.A. and C.B. designed the study with input from F.R.C.C., G. Arellano, O.L.P. and H.t.S. F.C.D. and J.B.S. performed the analysis with input from C.B., G.P.A., G. Arellano, O.L.P., A. Duque, F.C.d.S. and K.D. F.C.D. wrote the manuscript with input from C.B., F.R.C.C., G. Arellano, O.L.P., A. Duque, M.J.M., G.P.A. and H.t.S. All other coauthors contributed data and had the opportunity to comment on the manuscript. More
250 Shares179 Views
in EcologyMethane mitigation is associated with reduced abundance of methanogenic and methanotrophic communities in paddy soils continuously sub-irrigated with treated wastewater
Experimental design and crop establishmentA microcosm experiment was conducted at Yamagata University, Tsuruoka City, Japan, from May to October 2019, with six growth containers (36 cm in height, 30 cm in width, 60 cm in length) to simulate paddy fields of 0.18 m2 in area (see Supplementary Fig. S1). The experiment was laid out in a completely randomized design with three replications of two treatments: (1) rice cropping under CSI and (2) conventional rice cultivation fertilized with mineral fertilisers and irrigated with tap water (Control).Each container was filled with 32 kg of a paddy soil collected from an experimental field in the university farm and transplanted with four hills of 30-day-old seedlings (Oryza sativa L., cv. Bekoaoba) on 27th May 2019. The experiment was performed in accordance with relevant guidelines and regulations for research involving plants. The experimental soil was classified as loamy soil (air-dried, 20% moisture) with the following basic properties: pH (H2O) of 5.78, electrical conductivity (EC) of 0.09 dS m−1, SOM of 4.9%, and a total N, P, and K of 1.46, 0.88, and 3.17 g kg−1, respectively. The TWW used in the CSI system was collected from a local WWTP and monitored weekly for its basic properties (Table 2) following our previous studies6,7. In brief, pH, EC, and DO of water samples were measured on-site using pH/conductivity and DO portable meters (D-54 and OM-51, HORIBA, Ltd., Kyoto, Japan), whereas TOC and total N were analyzed using a TOC analyzer (TOC-VCSV, Shimadzu Corp., Kyoto, Japan) attached to a total N measuring unit (TNM-1, Shimadzu Corp., Kyoto, Japan). After a standard acid-digestion of water samples6, the concentration of P was measured using a portable colorimeter (DR/890, HATCH, USA), and the concentration of K was measured using an inductively coupled plasma mass spectrometry (ICP-MS ELAN DRCII, PerkinElmer Japan Co., Ltd.). The tap water used in this study was also tested on a regular basis and found to be stable throughout the crop season, with the following properties: pH of 7.8, EC of 0.095 dS m−1, DO, TOC, N, and P of 6.85, 0.49, 0.06, and 0.07 mg L−1, respectively, with K being below the ICP-MS detection limit ( More