Climate change and anthropogenic food manipulation interact in shifting the distribution of a large herbivore at its altitudinal range limit
1.Weiner, J. Physiological limits to sustainable energy budgets in birds and mammals: ecological implications. Trends Ecol. Evol. 7, 384–388 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Mcnab, B. K. Food habits, energetics, and the population biology of mammals. Am. Nat. 116, 106–124 (1980).Article
Google Scholar
3.Hovey, F. W. & Harestad, A. S. Estimating effects of snow on shrub availability for black-tailed deer in southwestern British Columbia. Wildl. Soc. Bull. 20, 308–313 (1992).
Google Scholar
4.Post, E. & Stenseth, N. Climatic variability, plant phenology, and northern ungulates. Ecology 80, 1322–1339 (1999).Article
Google Scholar
5.Moen, A. N. Seasonal changes in heart rates, activity, metabolism, and forage intake of white-tailed deer. J. Wildl. Manag. 42, 715–738 (1978).Article
Google Scholar
6.Holand, Ø., Mysterud, A., Wannag, A. & Linnell, J. D. C. Roe deer in northern environments: physiology and behaviour. In The European Roe Deer: Biology of Success (eds Andersen, R. et al.) 117–137 (Scandinavian University Press, 1998).
Google Scholar
7.Foromozov, A. N. Snow Cover as an Integral Factor of the Environment and Its Importance in the Ecology of Mammals and Birds (The University of Alberta, 1963).
Google Scholar
8.Cagnacci, F. et al. Partial migration in roe deer: migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos 120, 1790–1802 (2011).Article
Google Scholar
9.Dussault, C., Courtois, R., Ouellet, J.-P. & Girard, I. Space use of moose in relation to food availability. Can. J. Zool. 83, 1431–1437 (2005).Article
Google Scholar
10.Mysterud, A. & Sæther, B.-E. Climate change and implications for the future distribution and management of ungulates in Europe. In Ungulate Management in Europe: Problems and Practices (eds Putman, R. et al.) 349–375 (Cambridge University Press, 2011).
Google Scholar
11.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article
Google Scholar
12.Scherrer, S. C., Wüthrich, C., Croci-Maspoli, M., Weingartner, R. & Appenzeller, C. Snow variability in the Swiss Alps 1864–2009. Int. J. Climatol. 33, 3162–3173 (2013).Article
Google Scholar
13.Milner, J. M., van Beest, F. M., Schmidt, K. T., Brook, R. K. & Storaas, T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J. Wildl. Manag. 78, 1322–1334 (2014).Article
Google Scholar
14.Ossi, F. et al. Plastic response by a small cervid to supplemental feeding in winter across a wide environmental gradient. Ecosphere 8, e01629 (2017).Article
Google Scholar
15.Putman, R. & Staines, B. W. Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: justifications, feeding practice and effectiveness. Mamm. Rev. 34, 285–306 (2004).Article
Google Scholar
16.Cagnacci, F., Boitani, L., Powell, R. A. & Boyce, M. S. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos. Trans. R. Soc. B Biol. Sci. 365, 2157–2162 (2010).Article
Google Scholar
17.Peters, W. et al. Migration in geographic and ecological space by a large herbivore. Ecol. Monogr. 87, 297–320 (2017).Article
Google Scholar
18.Morellet, N. et al. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. J. Anim. Ecol. 82, 1326–1339 (2013).PubMed
Article
PubMed Central
Google Scholar
19.Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71 (1980).Article
Google Scholar
20.Ossi, F., Gaillard, J. M., Hebblewhite, M. & Cagnacci, F. Snow sinking depth and forest canopy drive winter resource selection more than supplemental feeding in an alpine population of roe deer. Eur. J. Wildl. Res. 61, 111–124 (2015).Article
Google Scholar
21.Mysterud, A. & Østbye, E. Bed-site selection by European roe deer (Capreolus capreolus) in southern Norway during winter. Can. J. Zool. 73, 924–932 (1995).Article
Google Scholar
22.Ramanzin, M., Sturaro, E. & Zanon, D. Seasonal migration and home range of roe deer (Capreolus capreolus) in the Italian eastern Alps. Can. J. Zool. 85, 280–289 (2007).Article
Google Scholar
23.Endrizzi, S., Gruber, S., Dall’Amico, M. & Rigon, R. GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geosci. Model. Dev. 7, 2831–2857 (2014).Article
ADS
Google Scholar
24.Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960).Article
Google Scholar
25.Thomson, A. M. et al. RCP 4.5: a pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).CAS
Article
ADS
Google Scholar
26.Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).CAS
Article
ADS
Google Scholar
27.Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).Article
Google Scholar
28.Penteriani, V. et al. Evolutionary and ecological traps for brown bears Ursus arctos in human-modified landscapes. Mamm. Rev. 48, 180–193 (2018).Article
Google Scholar
29.Sorensen, A., van Beest, F. M. & Brook, R. K. Impacts of wildlife baiting and supplemental feeding on infectious disease transmission risk: a synthesis of knowledge. Prev. Vet. Med. 113, 356–363 (2014).PubMed
Article
PubMed Central
Google Scholar
30.Mysterud, A., Viljugrein, H., Solberg, E. J. & Rolandsen, C. M. Legal regulation of supplementary cervid feeding facing chronic wasting disease. J. Wildl. Manag. 83, 1667–1675 (2019).Article
Google Scholar
31.Ceacero, F. et al. Benefits for dominant red deer hinds under a competitive feeding system: food access behavior, diet and nutrient selection. PLoS ONE 7, e32780 (2012).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
32.Beever, E. A. et al. Behavioral flexibility as a mechanism for coping with climate change. Front. Ecol. Environ. 15, 299–308 (2017).Article
Google Scholar
33.Loe, L. E. et al. Behavioral buffering of extreme weather events in a high-Arctic herbivore. Ecosphere 7, e01374 (2016).Article
Google Scholar
34.Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387 (2011).PubMed
PubMed Central
Article
Google Scholar
35.Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
36.Mysterud, A. Still walking on the wild side? Management actions as steps towards ‘semi-domestication’ of hunted ungulates. J. Appl. Ecol. 47, 920–925 (2010).Article
Google Scholar
37.Felton, A. M. et al. Interactions between ungulates, forests, and supplementary feeding: the role of nutritional balancing in determining outcomes. Mamm. Res. 62, 1–7 (2017).Article
Google Scholar
38.Ricci, S. et al. Impact of supplemental winter feeding on ruminal microbiota of roe deer Capreolus capreolus. Wildl. Biol. 2019, wlb.00572 (2019).Article
Google Scholar
39.Lone, K. et al. Living and dying in a multi-predator landscape of fear: roe deer are squeezed by contrasting pattern of predation risk imposed by lynx and humans. Oikos 123, 641–651 (2014).Article
Google Scholar
40.Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science (80-) 346, 1517–1519 (2014).CAS
Article
ADS
Google Scholar
41.Milanesi, P., Breiner, F. T., Puopolo, F. & Holderegger, R. European human-dominated landscapes provide ample space for the recolonization of large carnivore populations under future land change scenarios. Ecography (Cop.) 40, 1359–1368 (2017).Article
Google Scholar
42.Pascual-Rico, R. et al. Is diversionary feeding a useful tool to avoid human-ungulate conflicts? A case study with the aoudad. Eur. J. Wildl. Res. 64, 1–7 (2018).Article
Google Scholar
43.van Beest, F. M., Loe, L. E., Mysterud, A. & Milner, J. M. Comparative space use and habitat selection of moose around feeding stations. J. Wildl. Manag. 74, 219–227 (2010).Article
Google Scholar
44.Jerina, K. Roads and supplemental feeding affect home-range size of Slovenian red deer more than natural factors. J. Mamm. 93, 1139–1148 (2012).Article
Google Scholar
45.Ranc, N. et al. Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability. Scientific Reports 10, 11946 (2020). 46.Brown, R. D. & Robinson, D. A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 5, 219–229 (2011).Article
ADS
Google Scholar
47.Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl. Acad. Sci. U. S. A. 109, 8606–8611 (2012).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
48.Gurarie, E. et al. A framework for modelling range shifts and migrations: asking when, whither, whether and will it return. J. Anim. Ecol. 86, 943–959 (2017).PubMed
Article
Google Scholar
49.Rivrud, I. M. et al. Leave before it’s too late: anthropogenic and environmental triggers of autumn migration in a hunted ungulate population. Ecology 97, 1058–1065 (2016).PubMed
Article
PubMed Central
Google Scholar
50.Courtois, R., Dussault, C., Potvin, F. & Daigle, G. Habitat selection by moose (Alces alces) in clear-cut landscapes. Alces 38, 177–192 (2002).
Google Scholar
51.Gilbert, S. L., Hundertmark, K. J., Person, D. K., Lindberg, M. S. & Boyce, M. S. Behavioral plasticity in a variable environment: snow depth and habitat interactions drive deer movement in winter. J. Mamm. 98, 246–259 (2017).Article
Google Scholar
52.Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
53.Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science (80-) 344, 1242552 (2014).CAS
Article
Google Scholar
54.Mason, T. H. E., Stephens, P. A., Apollonio, M. & Willis, S. G. Predicting potential responses to future climate in an alpine ungulate: Interspecific interactions exceed climate effects. Glob. Change Biol. 20, 3872–3882 (2014).Article
ADS
Google Scholar
55.Carnevali, L., Pedrotti, L., Riga, F. & Toso, S. Banca dati ungulati: Status, distribuzione, consistenza, gestione e prelievo venatorio delle popolazioni di ungulati in Italia. Rapporto 2001–2005 Vol. 117 (Biologia e Conservazione della Fauna, 2009).
Google Scholar
56.Provincia Autonoma di Trento. Analisi delle consistenze e dei prelievi di ungulati, tetraonidi e coturnice. Stagione Venatoria 2018 (Provincia Autonoma di Trento, 2018).
Google Scholar
57.Rockel, B., Will, A. & Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 17, 347–348 (2008).Article
Google Scholar
58.Boyce, M. S. & McDonald, L. L. Relating populations to habitats using resource selection functions. Trends Ecol. Evol. 14, 268–272 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Modell. 157, 281–300 (2002).Article
Google Scholar
60.Benoit, T. & Achraf, E. suncalc: compute sun position, sunlight phases, moon position and lunar phase. R package version 0.5.0. https://cran.r-project.org/package=suncalc (2019).61.DeCesare, N. J. et al. Transcending scale dependece in identifying habitat with resource selection functions. Ecol. Appl. 22, 1068–1083 (2012).PubMed
Article
PubMed Central
Google Scholar
62.Kendall, M. A new measure of rank correlation. Biometrika 30, 81–89 (1938).MATH
Article
Google Scholar
63.Cohen, J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol. Bull. 70, 213–220 (1968).CAS
PubMed
Article
PubMed Central
Google Scholar
64.Gamer, M., Lemon, J., Fellows, I. & Singh, P. irr: various coefficients of interrater reliability and agreement. R package version 0.84.1. https://cran.r-project.org/package=irr (2019).65.Lele, S. R., Keim, J. L. & Solymos, P. ResourceSelection: resource selection (probability) functions for use-availability data. R package version 0.3-5. https://cran.r-project.org/package=ResourceSelection (2019).66.Bivand, R., Keitt, T. & Rowlingson, B. rgdal: bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.4-8. https://cran.r-project.org/package=rgdal (2019).67.McLeod, A. I. Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 2.2. https://cran.r-project.org/package=Kendall (2011).68.Bright Ross, J. G., Peters, W., Ossi, F., Moorcroft P. R., Cordano, E., Eccel, E., Bianchini, F., Ramanzin, M., and Cagnacci, F. Datasets for “Climate change and anthropogenic food manipulation interact in shifting the distribution of a large herbivore at its altitudinal range limit.” https://doi.org/10.5281/zenodo.4637674 (2021). More
