Identifying unknown Indian wolves by their distinctive howls: its potential as a non-invasive survey method
1.Buckland, S. T., Anderson, D. R., Burnham, K. P. & Laake, J. L. Introductory concepts. In Distance Sampling. Estimating Abundance of Biological Populations 446 (1993). https://doi.org/10.1002/9780470752784.part1.2.Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed
Article
Google Scholar
3.Garland, L., Crosby, A., Hedley, R., Boutin, S. & Bayne, E. Acoustic vs. Photographic monitoring of gray wolves (Canis lupus): a methodological comparison of two passive monitoring techniques. Can. J. Zool. 98, 219–228 (2020).Article
Google Scholar
4.Crunchant, A. S., Borchers, D., Kühl, H. & Piel, A. Listening and watching: do camera traps or acoustic sensors more efficiently detect wild chimpanzees in an open habitat?. Methods Ecol. Evol. 11, 542–552 (2020).Article
Google Scholar
5.Wood, C. M. et al. Using the ecological significance of animal vocalizations to improve inference in acoustic monitoring programs. Conserv. Biol. https://doi.org/10.1111/cobi.13516 (2020).Article
PubMed
PubMed Central
Google Scholar
6.Rhinehart, T. A., Chronister, L. M., Devlin, T. & Kitzes, J. Acoustic localization of terrestrial wildlife: current practices and future opportunities. Ecol. Evol. 10, 6794–6818 (2020).PubMed
PubMed Central
Article
Google Scholar
7.Kidney, D. et al. An efficient acoustic density estimation method with human detectors applied to gibbons in Cambodia. PLoS ONE 11, 1–16 (2016).Article
CAS
Google Scholar
8.Thompson, M. E., Schwager, S. J., Payne, K. B. & Turkalo, A. K. Acoustic estimation of wildlife abundance: methodology for vocal mammals in forested habitats. Afr. J. Ecol. 48, 654–661 (2010).Article
Google Scholar
9.Parra, J. M. Passive acoustic aquatic animal finder apparatus and method. US patent 5,099,455 (1992).10.Riede, K. Acoustic monitoring of Orthoptera and its potential for conservation. J. Insect Conserv. 2, 217–223 (1998).Article
Google Scholar
11.Petrusková, T., Pišvejcová, I., Kinštová, A., Brinke, T. & Petrusek, A. Repertoire-based individual acoustic monitoring of a migratory passerine bird with complex song as an efficient tool for tracking territorial dynamics and annual return rates. Methods Ecol. Evol. 7, 274–284 (2016).Article
Google Scholar
12.Sanders, C. E. & Mennill, D. J. Acoustic monitoring of nocturnally migrating birds accurately assesses the timing and magnitude of migration through the Great Lakes. Condor 116, 371–383 (2014).Article
Google Scholar
13.Acevedo, M. A. & Villanueva-Rivera, L. J. From the field: Using automated digital recording systems as effective tools for the monitoring of birds and amphibians. Wildl. Soc. Bull. 34, 211–214 (2006).Article
Google Scholar
14.Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301 (2017).Article
Google Scholar
15.Pérez-Granados, C. et al. Vocal activity rate index: a useful method to infer terrestrial bird abundance with acoustic monitoring. Ibis (Lond. 1859) 161, 901–907 (2019).Article
Google Scholar
16.Kimura, S. et al. Comparison of stationary acoustic monitoring and visual observation of finless porpoises. J. Acoust. Soc. Am. 125, 547–553 (2009).ADS
PubMed
Article
PubMed Central
Google Scholar
17.Gibb, R., Browning, E., Glover-Kapfer, P. & Jones, K. E. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13101 (2018).Article
Google Scholar
18.Papin, M., Aznar, M., Germain, E., Guérold, F. & Pichenot, J. Using acoustic indices to estimate wolf pack size. Ecol. Indic. 103, 202–211 (2019).Article
Google Scholar
19.Depraetere, M. et al. Monitoring animal diversity using acoustic indices: implementation in a temperate woodland. Ecol. Indic. 13, 46–54 (2012).Article
Google Scholar
20.Wheeldon, A., Mossman, H. L., Mathenge, J. & De Kort, S. R. Comparison of acoustic and traditional point count methods to assess bird diversity and composition in the Aberdare National. Afr. J. Ecol. https://doi.org/10.1111/aje.12596 (2019).Article
Google Scholar
21.Wilson, S. J. & Bayne, E. M. Use of an acoustic location system to understand how presence of conspecifics and canopy cover influence Ovenbird (Seiurus aurocapilla) space use near reclaimed wellsites in the boreal forest of Alberta. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-01248-130204 (2018).Article
Google Scholar
22.Gable, T. D., Windels, S. K. & Bump, J. K. Finding wolf homesites: improving the efficacy of howl surveys to study wolves. PeerJ 6, e5629 (2018).PubMed
PubMed Central
Article
Google Scholar
23.O’Gara, J. R. et al. Efficacy of acoustic triangulation for gray wolves. Wildl. Soc. Bull. https://doi.org/10.1002/wsb.1089 (2020).Article
Google Scholar
24.Dawson, D. K. & Efford, M. G. Bird population density estimated from acoustic signals. J. Appl. Ecol. 46, 1201–1209 (2009).Article
Google Scholar
25.Stevenson, B. C. et al. A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6, 38–48 (2015).Article
Google Scholar
26.Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture (Academic Press, 2013).
Google Scholar
27.Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).PubMed
Article
PubMed Central
Google Scholar
28.Adi, K., Johnson, M. T. & Osiejuk, T. S. Acoustic censusing using automatic vocalization classification and identity recognition. J. Acoust. Soc. Am. 127, 874–883 (2010).ADS
PubMed
Article
PubMed Central
Google Scholar
29.Lettink, M. & Armstrong, D. P. An introduction to using mark-recapture analysis for monitoring threatened species. Dep. Conserv. Tech. Ser. 28A, 5–32 (2003).
Google Scholar
30.Clink, D. J. & Klinck, H. Unsupervised acoustic classification of individual gibbon females and the implications for passive acoustic monitoring. Methods Ecol. Evol. 1, 1–2 (2020).
Google Scholar
31.Theberge, J. B. & Falls, J. B. Howling as a means of communication in timber wolves. Am. Zool. 7, 331–338 (1967).Article
Google Scholar
32.Kershenbaum, A. et al. Disentangling canid howls across multiple species and subspecies: structure in a complex communication channel. Behav. Process. 124, 149–157 (2016).Article
Google Scholar
33.Harrington, F. H. & Mech, D. L. Wolf howling and its role in territory maintenance. Behaviour 68, 207–249 (1978).Article
Google Scholar
34.Joslin, P. Summer Activities of Two Timber Wolf (Canis lupus) Packs in Algonquin Park (University of Toronto, 1966).35.Suter, S. M., Giordano, M., Nietlispach, S., Apollonio, M. & Passilongo, D. Non-invasive acoustic detection of wolves. Bioacoustics 4622, 1–12 (2016).
Google Scholar
36.Harrington, F. H. & Mech, D. L. Wolf vocalization. In Wolf and man, 109–132 (Elsevier, 1978). https://doi.org/10.1016/B978-0-12-319250-9.50014-1.37.Blanco, J. C. & Cortés, Y. Surveying wolves without snow: a critical review of the methods used in Spain. Hystrix 23, 35–48 (2012).
Google Scholar
38.Tooze, Z. J., Harrington, F. H. & Fentress, J. C. Individually distinct vocalizations in timber wolves, Canis lupus. Anim. Behav. 40, 723–730 (1990).Article
Google Scholar
39.Root-Gutteridge, H. et al. Improving individual identification in captive Eastern grey wolves (Canis lupus lycaon) using the time course of howl amplitudes. Bioacoust. Int. J. Anim. Sound Rec. 23, 39–53 (2014).
Google Scholar
40.Hull, C., McCombe, C. & Dassow, A. Acoustic identification of wild gray wolves, Canis lupus, using low quality recordings. Am. J. Undergrad. Res. 16, 41–49 (2020).Article
Google Scholar
41.Wasser, S. K., Smith, H., Madden, L., Marks, N. & Vynne, C. Scent-matching dogs determine number of unique individuals from scat. J. Wildl. Manag. 73, 1233–1240 (2009).Article
Google Scholar
42.Brennan, A., Cross, P. C., Ausband, D. E., Barbknecht, A. & Creel, S. Testing automated howling devices in a wintertime wolf survey. Wildl. Soc. Bull. 37, 389–393 (2013).Article
Google Scholar
43.Ausband, D. E., Skrivseth, J. & Mitchell, M. S. An automated device for provoking and capturing wildlife calls. Wildl. Soc. Bull. 35, 498–503 (2011).Article
Google Scholar
44.Papin, M., Pichenot, J., Guérold, F. & Germain, E. Acoustic localization at large scales: a promising method for grey wolf monitoring. Front. Zool. 15, 1–10 (2018).Article
Google Scholar
45.Root-Gutteridge, H. et al. Identifying individual wild Eastern grey wolves (Canis lupus lycaon) using fundamental frequency and amplitude of howls. Bioacoust. Int. J. Anim. Sound Rec. 23, 55–66 (2014).
Google Scholar
46.Singh, M. & Kumara, H. N. Distribution, status and conservation of Indian gray wolf (Canis lupus pallipes) in Karnataka, India. J. Zool. 270, 164–169 (2006).
Google Scholar
47.Jhala, Y. V. & Giles, R. H. The status and conservation of the wolf in Gujarat and Rajasthan, India. Conserv. Biol. 5, 476–483 (1991).Article
Google Scholar
48.Habib, B. Ecology of Indian wolf [Canis lupus pallipes sykes. 1831), and modeling its potential habitat in the great Indian bustard sanctuary, Maharashtra, India (Aligarh Muslim University, Aligarh, India, 2007).49.Dey, S., Sagar, V., Dey, S. & Choudhary, S. K. 2 Sight record of the Indian wolf Canis lupus pallipes in the river Gandak floodplains. J. Bombay Nat. Hist. Soc. 107, 51 (2010).
Google Scholar
50.Jethva, B. D. & Jhala, Y. V. Foraging ecology, economics and conservation of Indian wolves in the Bhal region of Gujarat, Western India. Biol. Conserv. 116, 351–357 (2004).Article
Google Scholar
51.Jethva, B. D. & Jhala, Y. V. Computing biomass consumption from prey occurrences in Indian wolf scats. Zoo Biol. 23, 513–520 (2004).Article
Google Scholar
52.Jhala YV. Human conflict in India. In “Beyond: Realties of Global Wolf Restoration” Symposium February, 23–26 (2020).53.Habib, B. & Kumar, S. D. shifting by wolves in semi-wild landscapes in the Deccan Plateau, Maharashtra, India. J. Zool. 272, 259–265 (2007).Article
Google Scholar
54.Meek, P. D. et al. Camera traps can be heard and seen by animals. PLoS ONE 9, e110832 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
55.Sadhukhan, S., Hennelly, L. & Habib, B. Characterising the harmonic vocal repertoire of the Indian wolf (Canis lupus pallipes). PLoS ONE 14, e0216186 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
56.Rodgers, W. A. & Panwar, S. H. Biogeographical classification of India. New For. Dehra Dun, India (1988).57.Reddy, C. S., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Nationwide classification of forest types of India using remote sensing and GIS. Environ. Monit. Assess. 187, 777 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
58.Majgaonkar, I. et al. Land-sharing potential of large carnivores in human-modified landscapes of western India. Conserv. Sci. Pract. 1, e34 (2019).Article
Google Scholar
59.Morin, D. J., Kelly, M. J. & Waits, L. P. Monitoring coyote population dynamics with fecal DNA and spatial capture-recapture. J. Wildl. Manag. 80, 824–836 (2016).Article
Google Scholar
60.Harrington, F. H. & Mech, D. L. An analysis of howling response parameters useful for wolf pack censusing. J. Wildl. Manag. 46, 686–693 (1982).Article
Google Scholar
61.Bioacoustics Research Program. Raven Pro: interactive sound analysis software. The Cornell Lab of Ornithology (2014).62.Rader, C. M. Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 56, 1107–1108 (1968).Article
Google Scholar
63.Rohatgi, A. WebPlotDigitizer. (2017).64.Kuhn, M. et al. Applied Predictive Modeling Vol. 26 (Springer, 2013).
Google Scholar
65.Kaufman, L. & Rousseeuw, P. J. Agglomerative nesting (Program AGNES). In Finding Groups in Data 199–252 (Wiley, 2009).66.Galili, T. dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics https://doi.org/10.1093/bioinformatics/btv428 (2015).Article
PubMed
PubMed Central
Google Scholar
67.Galaverni, M. et al. Monitoring wolves (Canis lupus) by non-invasive genetics and camera trapping: a small-scale pilot study. Eur. J. Wildl. Res. 58, 47–58 (2012).Article
Google Scholar
68.Jhala, Y. V, Qureshi, Q. & Nayak, A. K. Status of tigers, co-predators and prey in India 2018: summary report. (2019).69.López-Bao, J. V. et al. Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring. Sci. Rep. 8, 1–8 (2018).Article
CAS
Google Scholar
70.Laake, J. L. & Borchers, D. L. Methods for incomplete detection at distance zero. Advance in Distance Sampling (eds Buckland, S. T., Andersen, D. R., Burn, K. P., Laake, J. L. & Thomas, L.) 108–189 (2004).71.Palacios, V., Font, E. & Márquez, R. Iberian wolf howls: acoustic structure, individual variation, and a comparison with North American populations. J. Mammal. 88, 606–613 (2007).Article
Google Scholar
72.Passilongo, D., Mattioli, L., Bassi, E., Szabó, L. & Apollonio, M. Visualizing sound: counting wolves by using a spectral view of the chorus howling. Front. Zool. 12, 12–22 (2015).Article
Google Scholar
73.Fernández-Juricic, E., del Nevo, A. J. & Poston, R. Identification of individual and population-level variation in vocalizations of the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus). Auk 126, 89–99 (2009).Article
Google Scholar More