More stories

  • in

    Global phylogeography of a pantropical mangrove genus Rhizophora

    1.Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves. (Earthscan, 2010).2.Duke, N. et al. A world without mangroves?. Science 317, 41–42 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Friess, D. et al. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Env. Resour. 44, 89–115 (2019).Article 

    Google Scholar 
    4.Wee, et al. The integration and application of genomic information in mangrove conservation. Conserv. Biol. 33, 206–209 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Duke, N., Lo, E. & Sun, M. Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees-Struct. Funct. 16, 65–79 (2002).Article 

    Google Scholar 
    6.Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecol. Biogeogr. 8, 95–115 (1999).
    Google Scholar 
    7.Plaziat, J.-C., Cavagnetto, C., Koeniguer, J.-C. & Baltzer, F. History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl. Ecol. Manag. 9, 161–180 (2001).Article 

    Google Scholar 
    8.Duke, N., Ball, M. & Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol. Biogeogr. Lett. 7, 27–47 (1998).Article 

    Google Scholar 
    9.Duke, N. Genetic diversity, distributional barriers and rafting continents—more thoughts on the evolution of mangroves. Hydrobiologia 295, 167–181 (1995).Article 

    Google Scholar 
    10.Tomlinson, P. B. The botany of mangroves. (Cambridge University press, 1986).11.Schwarzbach, A. E. & Ricklefs, R. E. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. Am. J. Bot. 87, 547–564 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Lo, E. Y. Y. Testing hybridization hypotheses and evaluating the evolutionary potential of hybrids in mangrove plant species. J. Evol. Biol. 23, 2249–2261 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Lo, E., Duke, N. & Sun, M. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol. Biol. 14, 83 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Chen, Y. et al. Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. PLoS ONE 10, e0145058 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Xu, S. H. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Tyagi, A. P. Cytogenetics and reproductive biology of mangroves in Rhizophoraceae. Aust. J. Bot. 50, 601–605 (2002).Article 

    Google Scholar 
    18.Tyagi, A. P. Chromosomal Pairing and Pollen Viability in Rhizophora mangle and Rhizophora stylosa Hybrids. S. Pac. J. Nat. Sci. 20, 1–3 (2002).Article 

    Google Scholar 
    19.Tyagi, A. P. & Singh, E. V. V. Pollen fertility and intraspecific and interspecific compatibility in mangroves of Fiji. Sex. Plant Reprod. 11, 60–63 (1998).Article 

    Google Scholar 
    20.Steininger, F. F. & Rögl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. Geol. Soc. Spec. Publ. 17, 659–668 (1984).ADS 
    Article 

    Google Scholar 
    21.Harzhauser, M. et al. Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoo. Anz. 246, 241–256 (2007).Article 

    Google Scholar 
    22.Vrielynck, B., Odin, G. & Dercourt, J. Miocene palaeogeography of the Tethys Ocean; potential global correlations in the Mediterranean. Miocene stratigraphy: an integrated approach. Elsevier Science, (1997).23.Harzhauser, M., Piller, W. E. & Steininger, F. F. Circum-Mediterranean Oligo-Miocene biogeographic evolution—the gastropods’ point of view. Palaeogeogr. Palaeoclimatol. Palaeoecol. 183, 103–133 (2002).Article 

    Google Scholar 
    24.Dercourt, J. et al. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics 123, 241–315 (1986).ADS 
    Article 

    Google Scholar 
    25.Marko, P. B. Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol. Biol. Evol. 19, 2005–2021 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Saenger, P. Mangrove vegetation: an evolutionary perspective. Mar. Freshw. Res. 49, 277–286 (1998).CAS 
    Article 

    Google Scholar 
    27.Muller, J. & Caratini, C. Pollen of Rhizophora (Rhizophoraceae) as a guide fossil. Pollen Spores 19, 361–390 (1977).
    Google Scholar 
    28.Muller, J. Fossil pollen records of extant angiosperms. Bot. Rev. 47, 1–142 (1981).Article 

    Google Scholar 
    29.Germeraad, J. H., Hopping, C. A. & Muller, J. Palynology of tertiary sediments from tropical areas. Rev. Palaeobot. Palyno. 6, 189–348 (1968).Article 

    Google Scholar 
    30.Zachos, J., Pagani, H., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Pole, M. S. & Macphail, M. K. Eocene Nypa from Regatta Point, Tasmania. Rev. Palaeobot. Palyno. 92, 55–67 (1996).Article 

    Google Scholar 
    32.Hornibrook, N. D. B. New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota. Pacific Neogene: environment, evolution, and events, 83–106 University of Tokyo Press, (1992).33.Hou, Z. & Li, S. Tethyan changes shaped aquatic diversification. Biol. Rev. 93, 874–896 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Wee, A. K. S. et al. Genetic differentiation and phylogeography of partially sympatric species complex Rhizophora mucronata Lam. and R. stylosa Griff. using SSR markers. BMC Evol. Biol. 15, 57 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Ng, W. L. et al. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conserv. Genet. 16, 137–150 (2015).Article 

    Google Scholar 
    36.Doyle, J. & Doyle, J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 9, 11–15 (1987).
    Google Scholar 
    37.Strand, A. E., Leebens-Mack, J. & Milligan, B. G. Nuclear DNA-based markers for plant evolutionary biology. Mol. Ecol. 6, 113–118 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Cronn, R. C., Small, R. L. & Wendel, J. F. Duplicated genes evolve independently after polyploid formation in cotton. Proc. Natl. Acad. Sci. USA 96, 14406–14411 (1999).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Hayashi, K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. Genome Res. 1, 34–38 (1991).CAS 
    Article 

    Google Scholar 
    40.Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003).CAS 
    Article 

    Google Scholar 
    41.Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts, (2002).42.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    44.Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, I37-48 (1999).Article 

    Google Scholar 
    45.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Graham, A. Paleobotanical evidence and molecular data in reconstructing the historical phytogeography of Rhizophoraceae. Ann. Mo. Bot. Gard. 93, 325–334 (2006).Article 

    Google Scholar 
    48.Rambaut, A. Fig Tree v1.4. (2012). Available at http://tree.bio.ed.ac.uk/software/figtree/49.Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).Article 

    Google Scholar 
    50.Blair, C. & He, X. J. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in a mangrove species, Rhizophora stylosa (Rhizophoraceae). Conserv. Genet. Resour. 1, 175–178 (2009).Article 

    Google Scholar 
    52.Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv. Genet. 9, 1323–1325 (2008).CAS 
    Article 

    Google Scholar 
    53.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes. 7, 574–578 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    Article 

    Google Scholar  More

  • in

    Insights into the role of deep-sea squids of the genus Histioteuthis (Histioteuthidae) in the life cycle of ascaridoid parasites in the Central Mediterranean Sea waters

    1.Voss, N. A., Nesis, K. N. & Rodhouse, P. G. The cephalopod family Histioteuthidae (Oegopsida): systematics, biology, and biogeography in Systematics and Biogeography of Cephalopods (eds. Voss, N. A., Vecchione, M., Toll, R. B. & Sweeney M. J.) 277–291 (Smithsonian Contributions to Zoology, 1998).2.Crocetta, F. et al. Biogeographical homogeneity in the eastern Mediterranean Sea – III: new records and a state of the art of Polyplacophora, Scaphopoda and Cephalopoda (Mollusca) from Lebanon. Spixiana 37(2), 183–206 (2014).
    Google Scholar 
    3.Guerra, A. Mollusca, cephalopoda in Fauna Iberica (eds. Ramos, M. A. et al.) 327 (Museo Nacional de Ciencias Naturales, 1992).4.Cuccu, D., Mereu, M., Loi, B., Sanna, I. & Cau, A. The squid family Histioteuthidae in the Sardinian waters. Biol. Mar. Mediterr. 13, 262–263 (2007).
    Google Scholar 
    5.Jereb, P. & Roper, C. F. E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Myopsid and Oegopsid Squids in FAO species catalogue for fishery purposes (ed. FAO) 649 (FAO, 2010).6.Quetglas, A., de Mesa, A., Ordines, F. & Grau, A. Life history of the deep-sea cephalopod family Histioteuthidae in the western Mediterranean. Deep Sea Res. Part I 57, 999–1008. https://doi.org/10.1016/j.dsr.2010.04.008 (2010).Article 

    Google Scholar 
    7.Oshima, T., Shimazu, T., Koyama, H. & Akahane, H. J. J. On the larvae of the genus Anisakis (Nematoda: Anisakidaae) from euphausiids. Jpn. J. Parasitol. 18, 241–248 (1969).
    Google Scholar 
    8.Hochberg, F. G. The parasites of cephalopods: a review. Mem. Nat. Mus. Vict. 44, 109–145. https://doi.org/10.24199/j.mmv.1983.44.10 (1983).Article 

    Google Scholar 
    9.Bello, G. Role of cephalopods in the diet of the swordfish, Xiphias gladius, from the eastern Mediterranean Sea. Bull. Mar. Sci. 49, 312–324 (1991).
    Google Scholar 
    10.Bello, G. Teuthophagous predators as collectors of oceanic cephalopods: the case of the Adriatic Sea. Boll. Malacol. 32, 71–78 (1996).
    Google Scholar 
    11.Santos, M. et al. Stomach contents of sperm whales Physeter macrocephalus stranded in the North Sea 1990–1996. Mar. Ecol. Prog. Ser. 183, 281–294 (1999).ADS 
    Article 

    Google Scholar 
    12.Xavier, J. et al. Current status of using beaks to identify cephalopods: III International Workshop and training course on Cephalopod beaks, Faial island, Azores, April 2007. Arquipélago-Life Mar. Sci. 24, 41–48 (2007).
    Google Scholar 
    13.Marcogliese, D. J. & Cone, D. K. Food webs: a plea for parasites. Trends Ecol. Evol. 12, 320–325. https://doi.org/10.1016/S0169-5347(97)01080-X (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Abollo, E. et al. Squid as trophic bridges for parasite flow within marine ecosystems: the case of Anisakis simplex (Nematoda: Anisakidae), or when the wrong way can be right. Afr. J. Mar. Sci. 20, 223–232. https://doi.org/10.2989/025776198784126575 (1998).Article 

    Google Scholar 
    15.Klimpel, S., Seehagen, A., Palm, H. W. & Rosenthal, H. Deep-water metazoan fish parasites of the world. (eds. Klimpel, S., Seehagen, A., Palm, H. W. & Rosenthal, H.) (Logos Verlag, 2001).16.Parker, G. A., Chubb, J. C., Ball, M. A. & Roberts, G. N. Evolution of complex life cycles in helminth parasites. Nature 425, 480–484 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Santoro, M., Iaccarino, D. & Bellisario, B. Host biological factors and geographic locality influence predictors of parasite communities in sympatric sparid fishes off the southern Italian coast. Sci. Rep. 10(1), 13283. https://doi.org/10.1038/s41598-020-69628-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Pascual, S., González, A., Arias, C. & Guerra, A. Helminth infection in the short-finned squid Illex coindetii (Cephalopoda, Ommastrephidae) off NW Spain. Dis. Aquat. Org. 23, 71–75. https://doi.org/10.3354/dao023071 (1995).Article 

    Google Scholar 
    19.Petrić, M., Mladineo, I. & Šifner, S. Insight into the short-finned squid Illex coindetii (Cephalopoda: Ommastrephidae) feeding ecology: is there a link between helminth parasites and food composition? J. Parasitol. 97, 55–62. https://doi.org/10.1645/GE-2562.1 (2011).Article 
    PubMed 

    Google Scholar 
    20.Klimpel, S. & Rückert, S. Life cycle strategy of Hysterothylacium aduncum to become the most abundant anisakid fish nematode in the North Sea. Parasitol. Res. 97, 141–149. https://doi.org/10.1007/s00436-005-1407-6 (2005).Article 
    PubMed 

    Google Scholar 
    21.Tursi, A., D’Onghia, A., Matarrese, A., Panetta, P. & Maiorano, P. Finding of uncommon cephalopods (Ancistroteuthis lichtensteinii, Histioteuthis bonnellii, Histioteuthis reversa) and first record of Chiroteuthis veranyi in the Ionian Sea. Cah. Biol. Mar. 35, 339–346 (1994).
    Google Scholar 
    22.Koutsoubas, D. & Boyle, P. Histioteuthis bonnelli (Férussac, 1835) (Cephalopoda) in the Eastern Mediterranean: new record and biological considerations. J. Mollus. Stud. 65, 380–383. https://doi.org/10.1093/mollus/65.3.380 (1999).Article 

    Google Scholar 
    23.Bello, G. How rare is Histioeuthis bonnellii (Cephalopoda: Histioteuthidae) in the eastern Mediterranean Sea? J. Mollus. Stud. 66, 575–576. https://doi.org/10.1093/mollus/66.4.575 (2000).Article 

    Google Scholar 
    24.Belcari, P. & Sartor, P. Bottom trawling teuthofauna of the northern Tyrrhenian Sea. Sci. Mar. 57, 145–152 (1993).
    Google Scholar 
    25.Quetglas, A., Carbonell, A. & Sánchez, P. Demersal continental shelf and upper slope cephalopod assemblages from the Balearic Sea (North-Western Mediterranean). Biological aspects of some deep-sea species. Estuar. Coast. Shelf Sci. 50, 739–749. https://doi.org/10.1006/ecss.1999.0603 (2000).ADS 
    Article 

    Google Scholar 
    26.Culurgioni, J., Cuccu, D., Mereu, M. & Figus, V. Larval anisakid nematodes of Histioteuthis reversa (Verril, 1880) and H. bonnellii (Férussac, 1835) (Cephalopoda: Teuthoidea) from Sardinian Channel (western Mediterranean). Bull. Eur. Ass. Fish Pathol. 30, 217 (2010).
    Google Scholar 
    27.Capua, D. I cefalopodi delle coste e dell’Arcipelago Toscano: sistematica, anatomia, fisiologia e sfruttamento delle specie presenti nel Mediterraneo. 446 (Evolver, 2004).28.Crocetta, F. et al. Bottom-trawl catch composition in a highly polluted coastal area reveals multifaceted native biodiversity and complex communities of fouling organisms on litter discharge. Mar. Environ. Res. 155, 104875. https://doi.org/10.1016/j.marenvres.2020.104875 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    30.Meyer, C. P. Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biol. J. Linn. Soc. 79, 401–459. https://doi.org/10.1046/j.1095-8312.2003.00197.x (2003).Article 

    Google Scholar 
    31.Morgulis, A. et al. Database indexing for production MegaBLAST searches. Bioinformatics 24, 1757–1764. https://doi.org/10.1093/bioinformatics/btn322 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Berland, B. Nematodes from some Norwegian marine fishes. Sarsia 2, 1–50. https://doi.org/10.1080/00364827.1961.10410245 (1961).Article 

    Google Scholar 
    33.Nagasawa, K. & Moravec, F. Larval anisakid nematodes of Japanese common squid (Todarodes pacificus) from the Sea of Japan. J. Parasitol. 81, 69–75. https://doi.org/10.2307/3284008 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Nagasawa, K. & Moravec, F. Larval anisakid nematodes from four species of squid (Cephalopoda: Teuthoidea) from the central and western North Pacific Ocean. J. Nat. Hist. 36, 8. https://doi.org/10.1080/00222930110051752 (2002).Article 

    Google Scholar 
    35.Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83(4), 575–583 (1997).CAS 
    Article 

    Google Scholar 
    36.Zhu, X., Gasser, R. B., Podolska, M. & Chilton, N. Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. Int. J. Parasitol. 28, 1911–1921. https://doi.org/10.1016/S0020-7519(98)00150-7 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Nadler, S. A. & Hudspeth, D. S. Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J. Parasitol. 86, 380–393. https://doi.org/10.1645/0022-3395(2000)086[0380:POTANA]2.0.CO;2 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Valentini, A. et al. Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J. Parasitol. 92, 156–166. https://doi.org/10.1645/GE-3504.1 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x (2011).Article 

    Google Scholar 
    40.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9(8), 772. https://doi.org/10.1038/nmeth.2109 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Guindon, S. & Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 52, 696–704. https://doi.org/10.1080/10635150390235520 (2003).Article 
    PubMed 

    Google Scholar 
    42.Akaike, H. Information theory and an extension of the maximum likelihood principle in Proceeding of the second international symposium on information theory (eds. Petrov, T. & Caski, F.) 267–281 (Akademiai Kiado, 1973).43.Posada, D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. https://doi.org/10.1093/molbev/msn083 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Posada, D. & Buckley, T. R. Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808. https://doi.org/10.1080/10635150490522304 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Ronquist, F. & Huelsenbeck, J. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 (2003).CAS 
    Article 

    Google Scholar 
    46.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Kumar, S. et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Lindgren, A. R. Molecular inference of phylogenetic relationships among Decapodiformes (Mollusca: Cephalopoda) with special focus on the squid Order Oegopsida. Mol. Phylogenet. 56(1), 77–90. https://doi.org/10.1016/j.ympev.2010.03.025 (2010).Article 

    Google Scholar 
    49.Taite, M., Vecchione, M., Fennell, S. & Allcock, L. A. Paralarval and juvenile cephalopods within warm-core eddies in the North Atlantic. Bul. Mar. Sci. 96(2), 235–262. https://doi.org/10.5343/bms.2019.0042 (2020).Article 

    Google Scholar 
    50.Guardone, L. et al. Larval ascaridoid nematodes in horned and musky octopus (Eledone cirrhosa and E. moschata) and longfin inshore squid (Doryteuthis pealeii): safety and quality implications for cephalopod products sold as fresh on the Italian market. Int. J. Food Microbiol. 333, 108812 (2020).CAS 
    Article 

    Google Scholar 
    51.Pascual, S., Abollo, E., Mladineo, I. & Gestal, C. Metazoa and Related Diseases in Handbook of Pathogens and Diseases in Cephalopods (eds. Gestal, C., Pascual S., Guerra A., Fiorito G. & Vieites, J. M.) 169–179 (2019).52.Mattiucci, S. & Nascetti, G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host—parasite co-evolutionary processes. Adv. Parasitol. 66, 47–148. https://doi.org/10.1016/S0065-308X(08)00202-9 (2008).Article 
    PubMed 

    Google Scholar 
    53.Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and Anisakiasis: an ecological and evolutionary road map. Adv. Parasitol. 99, 93–263. https://doi.org/10.1016/bs.apar.2017.12.001 (2018).Article 
    PubMed 

    Google Scholar 
    54.Kie, M. Aspects of the life cycle and morphology of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda, Ascaridoidea, Anisakidae). Can. J. Zool. 71, 1289–1296. https://doi.org/10.1139/z93-178 (1993).Article 

    Google Scholar 
    55.Santoro, M. et al. Helminth parasites of the dwarf sperm whale Kogia sima (Cetacea: Kogiidae) from the Mediterranean Sea, with implications on host ecology. Dis. Aquat. Organ. 14, 175–182. https://doi.org/10.3354/dao03251 (2018).CAS 
    Article 

    Google Scholar 
    56.Kawakami, T. A review of sperm whale food. Sci. Rep. Whales Res. Inst. 32, 199–218 (1980).
    Google Scholar 
    57.Garibaldi, F. & Podestà, M. Stomach contents of a sperm whale (Physeter macrocephalus) stranded in Italy (Ligurian Sea, northwestern Mediterranean). JMBA 94(6), 1087–1091. https://doi.org/10.1017/S0025315413000428 (2014).Article 

    Google Scholar 
    58.Mattiucci, S., Nascetti, G., Bullini, L., Orecchia, P. & Paggi, L. Genetic structure of Anisakis physeteris and its differentiation from the Anisakis simplex complex (Ascaridida: Anisakidae). Parasitology 93, 383–387. https://doi.org/10.1017/S0031182000051544 (1986).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Mattiucci, S. et al. Genetic divergence and reproductive isolation between Anisakis brevispiculata and Anisakis physeteris (Nematoda: Anisakidae). Int. J. Parasitol. 31, 9–14. https://doi.org/10.1016/S0020-7519(00)00125-9 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Gupta, P. C. & Masoodi, B. A. Three new and one known nematode (Family: Anisakidae) from marine fishes of India. Indian J. Parasitol. 14(2), 157–164 (1990).
    Google Scholar 
    61.Vicente, J. J., Mincarone, M. M. & Pint, R. M. First report of Lappetascaris lutjani Rasheed, 1965 (Nematoda, Ascaridoidea, Anisakidae) parasitizing Trachipterus arawatae (Pisces, Lampridiformes) on the Atlantic coast of Brazil. Mem. Inst. Oswaldo Cruz. 97, 93–94. https://doi.org/10.1590/s0074-02762002000100015(2002) (2002).Article 
    PubMed 

    Google Scholar 
    62.Bruce, N. L. & Cannon, L. R. G. Hysterothylacium, Iheringascaris and Maricostula new genus, nematodes (Ascaridoidea) from Australian pelagic marine fishes. J. Nat. Hist. 23(6), 1397–1441. https://doi.org/10.1080/00222938900770771 (1989).Article 

    Google Scholar 
    63.Shamsi, S. Morphometric and molecular descriptions of three new species of Hysterothylacium (Nematoda: Raphidascarididae) from Australian marine fish. J. Helminthol. 91, 1–12. https://doi.org/10.1017/S0022149X16000596 (2016).CAS 
    Article 

    Google Scholar 
    64.Li, L. et al. Molecular phylogeny and dating reveal a terrestrial origin in the early carboniferous for ascaridoid nematodes. Syst. Biol. 67(5), 888–900. https://doi.org/10.1093/sysbio/syy018 (2018).Article 
    PubMed 

    Google Scholar 
    65.Garcia, A., Mattiucci, S., Santos, M. N., Damiano, S. & Nascetti, G. Metazoan parasites of Xiphias gladius (L. 1758) (Pisces: Xiphiidae) from the Atlantic Ocean: implications for host stock identification. ICES J. Mar. Sci. 68, 175–182 (2010).Article 

    Google Scholar 
    66.Klimpel, S. & Palm, H. W. Anisakid Nematode (Ascaridoidea) Life Cycles and Distribution: Increasing Zoonotic Potential in the Time of Climate Change? in Progress in Parasitology. Parasitology Research Monographs (ed. Mehlhorn, H.) https://doi.org/10.1007/978-3-642-21396-0_11 (Springer, 2011).67.Kuhn, T., Cunze, S., Kochmann, J. & Klimpel, S. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm. Sci. Rep. 6, 30246. https://doi.org/10.1038/srep30246 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Cipriani, P. et al. Occurrence of larval ascaridoid nematodes in the Argentinean short-finned squid Illex argentinus from the Southwest Atlantic Ocean (off Falkland Islands). Int. J. Food Microbiol. 297, 27–31. https://doi.org/10.1016/j.ijfoodmicro.2019.02.019 (2019).Article 
    PubMed 

    Google Scholar 
    69.Cipriani, P. et al. Anisakis simplex (s.s.) larvae (Nematoda: Anisakidae) hidden in the mantle of European flying squid Todarodes sagittatus (Cephalopoda: Ommastrephidae) in NE Atlantic Ocean: food safety implications. Int. J. Food Microbiol. 339, 109021 (2021).CAS 
    Article 

    Google Scholar 
    70.Klimpel, S., Kellermanns, E. & Palm, H. W. The role of pelagic swarm fish (Myctophidae: Teleostei) in the oceanic life cycle of Anisakis sibling species at the Mid-Atlantic Ridge, Central Atlantic. Parasitol. Res. 104, 43–53. https://doi.org/10.1007/s00436-008-1157-3 (2008).Article 
    PubMed 

    Google Scholar 
    71.Mattiucci, S., Paoletti, M. & Webb, S. C. Anisakis nascettii n. sp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: morphological description, genetic relationships between congeners and ecological data. Syst. Parasitol. 74, 199–217. https://doi.org/10.1007/s11230-009-9212-8 (2009).Article 
    PubMed 

    Google Scholar 
    72.Pico-Duran, G., Pulleiro-Potel, L., Abollo, E., Pascual, S. & Munoz, P. Molecular identification of Anisakis and Hysterothylacium larvae in commercial cephalopods from the Spanish Mediterranean coast. Vet. Parasitol. 220, 47–53. https://doi.org/10.1016/j.vetpar.2016.02.020 (2016).Article 
    PubMed 

    Google Scholar 
    73.Menconi, V. et al. Occurrence of ascaridoid nematodes in Illex coindetii, a commercially relevant cephalopod species from the Ligurian Sea (Northwest Mediterranean Sea). Food Control https://doi.org/10.1016/j.foodcont.2020.107311 (2020).Article 

    Google Scholar 
    74.Blazekovic, K. et al. Three Anisakis spp. isolated from toothed whales stranded along the eastern Adriatic Sea coast. Int. J. Parasitol. 45(1), 17–31. https://doi.org/10.1016/j.ijpara.2014.07.012 (2015).Article 
    PubMed 

    Google Scholar 
    75.Santoro, M. et al. Epidemiology of Sulcascaris sulcata (Nematoda: Anisakidae) ulcerous gastritis in the Mediterranean loggerhead sea turtle (Caretta caretta). Parasitol. Res. 118, 1457–1463. https://doi.org/10.1007/s00436-019-06283-0 (2019).Article 
    PubMed 

    Google Scholar 
    76.Bao, M., Cipriani, P., Giulietti, L., Drivenes, N. & Levsen, A. Quality issues related to the presence of the fish parasitic nematode Hysterothylacium aduncum in export shipments of fresh Northeast Arctic cod (Gadus morhua). Food Control 121, 107724. https://doi.org/10.1016/j.foodcont.2020.107724 (2020).CAS 
    Article 

    Google Scholar 
    77.Zhang, K., Xu, Z., Chen, H. X., Guo, N. & Li, L. Anisakid and raphidascaridid nematodes (Ascaridoidea) infection in the important marine food-fish Lophius litulon (Jordan) (Lophiiformes: Lophiidae). Int. J. Food Microbiol. 284, 105–111. https://doi.org/10.1016/j.ijfoodmicro.2018.08.002 (2018).Article 
    PubMed 

    Google Scholar 
    78.Szostakowska, B., Myjak, P., Kur, J. & Sywula, T. Molecular evaluation of Hysterothylacium auctum (Nematoda, Ascaridida, Raphidascarididae) taxonomy from fish of the southern Baltic. Acta Parasitol. 46(3), 194–201 (2001).CAS 

    Google Scholar 
    79.Andres, M. J., Peterson, M. S. & Overstreet, R. M. Endohelminth parasites of some midwater and benthopelagic stomiiform fishes from the northern Gulf of Mexico. Gulf Caribb. Res. 27, 11–19. https://doi.org/10.18785/gcr.2701.02 (2016).Article 

    Google Scholar 
    80.Li, L., Liu, Y. Y. & Zhang, L. P. Morphological and molecular identification of Hysterothylacium longilabrum sp. Nov. (Nematoda: Anisakidae) and larvae of different stages from marine fishes in the South China Sea. Parasitol. Res. 111(2), 767–777 (2012).Article 

    Google Scholar 
    81.Shamsi, S. et al. Occurrence of ascaridoid nematodes in selected edible fish from the Persian Gulf and description of Hysterothylacium larval type XV and Hysterothylacium persicum n. sp. (Nematoda: Raphidascarididae). Int. J. Food Microbiol. 236, 65–67. https://doi.org/10.1016/j.ijfoodmicro.2016.07.006 (2016).Article 
    PubMed 

    Google Scholar 
    82.Chen, H. X. et al. Detection of ascaridoid nematode parasites in the important marine food-fish Conger myriaster (Brevoort) (Anguilliformes: Congridae) from the Zhoushan fishery, China. Parasit. Vectors 11, 274. https://doi.org/10.1186/s13071-018-2850-4 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Liu, Y. Y., Xu, Z., Zhang, L. P. & Li, L. Redescription and genetic characterization of Hysterothylacium thalassini Bruce, 1990 (Nematoda: Anisakidae) from marine fishes in the South China Sea. J. Parasitol. 99, 655–661. https://doi.org/10.1645/12-136.1 (2013).Article 
    PubMed 

    Google Scholar 
    84.Shamsi, S., Gasser, R. & Beveridge, I. Description and genetic characterisation of Hysterothylacium (Nematoda: Raphidascarididae) larvae parasitic in Australian marine fishes. Parasitol. Int. 62, 320–328. https://doi.org/10.1016/j.parint.2012.10.001 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    85.Li, L., Zhao, W. T., Guo, Y. N. & Zhang, L. P. Nematode parasites infecting the starry batfish Halieutaea stellata (Vahl) (Lophiiformes: Ogcocephalidae) from the East and South China Sea. J. Fish. Dis. 39(5), 515–529. https://doi.org/10.1111/jfd.12374 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    86.Zhao, W. T. et al. Ascaridoid parasites infecting in the frequently consumed marine fishes in the coastal area of China: a preliminary investigation. Parasitol. Int. 65(2), 87–98. https://doi.org/10.1016/j.parint.2015.11.002 (2016).Article 
    PubMed 

    Google Scholar 
    87.Hossen, M. S. & Shamsi, S. Zoonotic nematode parasites infecting selected edible fish in New South Wales, Australia. Int. J. Food Microbiol. 308, 108306. https://doi.org/10.1016/j.ijfoodmicro.2019.108306 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Jabbar, A. et al. Mutation scanning-based analysis of anisakid larvae from Sillago flindersi from Bass Strait, Australia. Electrophoresis 33, 499–505. https://doi.org/10.1002/elps.201100438 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    89.Jabbar, A. et al. Molecular characterization of anisakid nematode larvae from 13 species of fish from Western Australia. Int. J. Food Microbiol. 161(3), 247–253. https://doi.org/10.1016/j.ijfoodmicro.2012.12.012 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    90.Shamsi, S., Stellar, E. & Chen, Y. New and known zoonotic nematode larvae within selected fish species from Queensland waters in Australia. Int. J. Food Microbiol. 272, 73–82. https://doi.org/10.1016/j.ijfoodmicro.2018.03.007 (2018).Article 
    PubMed 

    Google Scholar 
    91.Arizono, N. et al. Ascariasis in Japan: is pig-derived ascaris infecting humans? Jpn. J. Infect. Dis. 63(6), 447–448 (2010).PubMed 

    Google Scholar 
    92.Mattiucci, S. et al. Metazoan parasitic infections of swordfish (Xiphias gladius) from the Mediterranean Sea and Atlantic Gibraltar waters: implications for stock assessment. Col. Vol. Sci. Pap. ICCAT 58(4), 1470–1482 (2005).
    Google Scholar 
    93.Di Azevedo, M. I. N. & Iñiguez, A. M. Nematode parasites of commercially important fish from the southeast coast of Brazil: morphological and genetic insight. Int. J. Food Microbiol. 267, 29–41. https://doi.org/10.1016/j.ijfoodmicro.2017.12.014 (2018).Article 
    PubMed 

    Google Scholar 
    94.Pekmezci, G. Z., Yardimci, B., Onuk, E. E. & Umur, S. Molecular characterization of Hysterothylacium fabri (Nematoda: Anisakidae) from Zeus faber (Pisces: Zeidae) caught off the Mediterranean coasts of Turkey based on nuclear ribosomal and mitochondrial DNA sequences. Parasitol. Int. 63(1), 127–131. https://doi.org/10.1016/j.parint.2013.10.006 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    95.Zhao, J. Y., Zhao, W. T., Ali, A. H., Chen, H. X. & Li, L. Morphological variability, ultrastructure and molecular characterisation of Hysterothylacium reliquens (Norris & Overstreet, 1975) (Nematoda: Raphidascarididae) from the oriental sole Brachirus orientalis (Bloch & Schneider) (Pleuronectiformes: Soleidae). Parasitol. Int. 66(1), 831–838. https://doi.org/10.1016/j.parint.2016.09.012 (2016).Article 
    PubMed 

    Google Scholar  More

  • in

    Multiple impacts of microplastics can threaten marine habitat-forming species

    Collection of marine organismsMarine invertebrates such as Corallium rubrum are ideal organisms to perform controlled experiments and to gather useful information on a variety of environmental conditions74. This species, whose diet is based on small zooplankton captured with the polyp tentacles, has been already used in long-term experiments74,75,76. Coral specimens were collected in March 2017 at ca. 35-m depth in the Marine Protected Area of Portofino (Punta del Faro, 44°17′41.02 N; 9°13′31.30 E) in the Ligurian Sea (North-Western Mediterranean Sea) by scuba divers (using TRIMIX blending).Experimental designAfter recovery, the coral specimens were brought to the laboratory and maintained in a tank (30 L) at in situ temperature (13 ± 0.8 °C) and subjected to the continuous flux of natural seawater filtered onto 0.7-µm pore-size membranes (micro-glass fibre paper, Munktell) by using two submersible pumps (Euronatale, 203 V, 50 Hz, 4 Watt).Sixty coral branches obtained from different colonies, with similar morphology, and a surface of ~2 cm2 each, were distributed among 12 experimental tanks, in order to have 5 coral branches per tank (12 L glass tanks, containing on average, 274 ± 26.4 coral polyps each). The corals were acclimatised for 20 days in a temperature-controlled room, and dim light conditions, before starting experiments. Each tank, filled with natural seawater, was equipped with a prefiltered (0.2 µm) channelled aeration system combined with motor-driven paddles in order to create convective currents, which allowed the resuspension of the microplastic mixture, thus ensuring as much as possible a homogeneous distribution of the polymers. This experimental system was designed and set up according to Sutherland et al.77. To assess the potential effects of increasing microplastic  microparticles L−1 (here defined as low, medium and high concentrations of microplastic particles). We also quantified the exact amount of particles actually interacting with the corals, by discounting the fractions loss due to experimental manipulations (see details in Supplementary Methods). According to the results reported in the Supplementary Results, the systems were responsible for the loss of ca. 40% of the microplastic particles, thus the corals in experimental systems were actually exposed to 60, 300 and 600 microplastic particles per litre (to which we referred the low, medium and high concentrations).The highest concentrations of microplastics (up to 600 microplastic particles per litre) can reflect future contamination on the basis of estimates obtained by numerical models9, whereas the low and medium concentrations have been selected to represent highly-contaminated marine habitats, including the areas where the corals were collected (Ligurian Sea)78,79. In particular, for the Ligurian Sea, we estimated an average value of 94 microplastic particles L−1, based on the concentrations of microplastic particles ( >200 µm) determined by Fossi et al.78,79, and the most cautionary correction factor (105) calculated by Brandon et al.10 for the unaccounted smaller fraction of microplastics (25–75% of the fragments falling approximately in the 20–100 µm dimensional class with median range: 59–116).Microplastic mixtures were also prepared considering the concentration and composition of dominant polymers in different coastal marine environments, especially in hot spots of microplastic contamination5,7,8.The microplastic mixture added to the tanks was composed of 76.6% polyethylene, 10.9% polypropylene, 7.3% polystyrene, 3.3% polyvinylchloride and 1.8% polyethylene terephthalate particles. These particles were obtained by milling plastic objects from everyday life (i.e., containers, bottles, cups, pipes) according to Paul-Pont et al.8 (Supplementary Table 5). Plastic milling was carried out under a laminar flow hood in chilled sterilized and 0.02 µm prefiltered milliQ water. All the tools used for handling plastics were pre-treated with 1% sodium hypochlorite in water and rinsed 10 times with sterilized and 0.02 µm prefiltered milliQ water, and then dried under laminar flow hood. Details on the preparation of microplastic mixtures are reported in the Supplementary Methods.The low, medium and high concentrations of microplastics were added in triplicate tanks (n = 3 for each concentration). Additional systems containing seawater and coral branches without microplastics (n = 3, here defined Controls), and seawater added with microplastics (at the highest concentration) without red corals (n = 3, here define CTRL MPs) were used as controls. Overall, the experimental setup comprised 15 tanks.The experiments for assessing the impact of microplastics on red corals started immediately after the microplastic mixture addition (time 0). During the experiment, seawater temperature (range: 13.10 ± 0.01–13.13 ± 0.05 °C), salinity (range: 38.35 ± 0.18–38.65 ± 0.18) and oxygen levels (7.10 ± 0.08–7.36 ± 0.2 mg L−1) were monitored daily in all tanks using a probe (YSI Professional Plus, USA) and corals were fed three times a week with 103 Artemia salina nauplii L−1.After ten days the condition of corals that were exposed to microplastics was deteriorating, so we collected one coral branch from each tank for molecular analyses (i.e., associated microbiome, gene expression and DNA damage). After 14 days, the experiment was stopped because the coral branches that were exposed to the medium and high microplastic particle concentrations were completely wrapped in mucus, with a large portion of damaged tissue and without polyp activity, therefore corals were defined dead (overall 12 branches, see ‘Results’ section for details). Coral branches in the controls showed no visible signs of necrosis or other macroscopic stress. The tissue remained intact, and the colour unchanged until the end of the experiment.Effects of microplastic ingestionCoral feeding activityTo assess the impact of microplastics on feeding activity of C. rubrum, analyses based on the use of Artemia salina were performed after 2 and 10 days from the start of the experiment (t0) in replicate systems (n = 3 for each treatment, n = 3 for the controls) according to standard international protocols80. The nauplii of Artemia salina were reared in the laboratory, incubating 0.5 g of cysts (Ocean Nutrition) in 1 L of seawater filtered onto 0.2-µm filter in a separatory funnel, 2 days before the analysis of feeding rate. At hatching, nauplii were counted and maintained in vials to obtain the concentration of 1000 nauplii L−1. To avoid stress, corals (one branch for each tank) were transferred underwater to beakers along with 1 L seawater of each tank. After addition of live A. salina nauplii (1000 nauplii L−1) to the 1 L beakers containing the coral branches and to the controls, three aliquots of 10 ml seawater were collected after ~30 s from the start of the experiment (t0) and after 2 and 4 h. The remaining nauplii present in each seawater aliquot were counted under a stereomicroscope at ×3.2 magnification (Zeiss Stami 2000). Mean ingestion rates (nauplii removed h−1) were determined by linear regression analysis.Accumulation of microplastics by C. rubrum
    To investigate the accumulation of plastic polymers by C. rubrum polyps, the number of microplastic particles ingested by coral polyps was evaluated after 14 days of exposure to microplastic mixture, by dissolving polyps and skeleton of the corals (one for each tank at the concentration of 1000 microplastic particles L−1) using an acid/base digestion protocol36 with some modifications.To exclude biases on the estimate of the number of microplastic particles actually accumulated within the polyps, coral branches were accurately rinsed with milliQ water and checked under stereomicroscope (at ×50 magnification) for the potential presence of microplastic particles adherent to the coral tissue. Coral branches were then soaked in 5 ml of 4.5% sodium hypochlorite (NaClO) for 24 h and dissolved in 5 ml of 37% HCl for 30 min. Particulate material was retained on a 0.2-μm filter in a vacuum filtration system, and microplastic particles were counted under a stereomicroscope at ×50 magnification. The chemical composition of the polymers ingested by corals was confirmed by FT-IR analyses (Perkin Elmer, software Packages Spectrum 5.3.1). To evaluate possible damage to plastic polymers due to the use of acid/base solutions, we exposed polypropylene, polyethylene, polystyrene, polyvinylchloride and polyethylene terephthalate at the same volume and concentration of NaClO and HCl during digestion of the coral.Potential transfer of microplastics by zooplanktonWhile testing the exposure of the red corals to microplastics, we also determined the rate of microplastic ingestion by A. salina nauplii used to feed the red corals, in order to assess their role as potential vectors of microplastics. To do this, additional tanks (n = 3) were added with 0.2 µm prefiltered 12 L natural seawater, 1000 nauplii L−1 of A. salina and the same microplastic mixture used for the experiment on the red corals (at the highest concentration). Three other tanks were used as controls containing 0.2 µm prefiltered 12 L natural seawater and 1000 nauplii L−1 of A. salina.Microplastic ingestion by A. salina was determined after 2 and 10 days of experiment following the enzymatic digestion protocol previously developed81 with some modifications. Such a procedure degrades biological tissues without affecting shape, colour and composition of plastic fragments. Gut contents of 100 individuals of A. salina (n = 5) were assessed under a stereomicroscope (Leica MZ125) and light microscope (Zeiss Axiovert 200) and photographed with a Zeiss Axiocam digital camera. Afterwards, nauplii were processed immediately according to the modified enzymatic digestion protocol. Nauplii were dried in an oven for 3 h at 60 °C, transferred to glass jars containing a buffer homogenizing solution (400 mM Tris-HCl pH 8, 60 mM EDTA pH 8, 5 M NaCl, SDS 1%) incubated at 50 °C for 15 min and exposed to Proteinase K (1 mg ml−1). Then, samples were dried for 2 h at 50 °C, homogenized and re-incubated at 60 °C for 20 min and sonicated on ice (1–2 min) three times. After digestion, the microplastic-containing suspensions were placed in Utermöhl chambers and the microplastics were examined at the inverted light microscope (Leica DMI3000-Bat ×200 magnification) and counted. Microplastics obtained from nauplii digested after 10 days of incubation were also measured and categorized by colours and shape to evaluate the numbers and the size spectra of microplastics ingested by A. salina during the experiment.Physical impact on coral coenenchymaScanning electron microscopy (SEM) analysesTo investigate the physical damage of the microplastic mixture on the coral tissues, samples (one branch from each tank including the control) were collected before the start of the experiment (t0), after 7 days and at the end of the experiment and prepared for SEM analyses according to standard protocols82 with some modifications. Coral branches were stored in 0.7 µm prefiltered seawater with 4% buffered formalin. After 24 h, samples were washed with 0.7 µm prefiltered seawater and dehydrated for 3 h in 20% ethanol. After 3 h they were washed in the same way and dehydrated in ethanol 50%. After 3 h, samples were stored in 70% ethanol. Samples were stored at +4 °C. We dehydrated samples using different gradients of ethanol solutions (70–80%, 80–90%, 90–95%, 95–99% in 2 days)82. Then, samples were dried using HMDS (Hexamethyldisilazane, Aldrich 440191)83. Dried samples were mounted on aluminium stubs using Leit-C glue (conductive carbon cement, Neubauer Chemikalien) and sputter-coated with gold. Samples were examined with a Scanning Electron Microscope (Zeiss SUPRA 40). In addition, the tissue damage percentage was assessed on SEM micrographs at ×200 of magnification by using PhotoQuad v1.4 software84. Such a software for advanced image processing of 2D photographic quadrat samples, dedicated to ecological applications, was used for the analysis of three randomly selected areas from the apex to the base of each coral rotating it on three sides (n = 9). Additional analyses through random SEM observations (n = 20) at 3.00KX to 17.00KX of magnification were carried out to determine prokaryotic cell abundances around lesions of corals (n = 3) exposed to high concentrations of microplastic particles. Data were standardised to the coral surface analysed.Mucus release and trapped microplastics and prokaryotic cellsTo evaluate the first symptoms of coral stress, a photographic report was conducted daily. The abundance of microplastic particles trapped in coral mucus was estimated using an enzymatic digestion protocol81 with some modifications. Mucus produced by corals exposed to higher microplastics concentrations was dried in oven at 60 °C for 12 h. After 12 h, five ml of homogenizing solution was added to the samples and incubated at 50 °C for 15 min. Proteinase K (1 mg mL−1) was added to the samples, which subsequently were incubated at 50 °C for 2 h. Then, samples were homogenized and incubated again at 60 °C for 20 min, after that samples were sonicated three times (three 1-min treatments using a Branson Sonifier 2200; 60 W). After digestion, microplastics-containing suspension was filtered on 0.2-μm filters in a vacuum filtration system (Whatman, Nuclepore). Filters were analysed at stereomicroscope at ×50 magnification (Zeiss Stemi 2000).Stress signals at the molecular levelRNA extraction, cDNA synthesis and gene expression level by qPCRTo assess potential changes in the gene expression pattern of C. rubrum due to microplastics, total RNA was extracted from ca. 20 mg of tissue (wet weight) from one coral branch randomly collected from each treatment (n = 3) and control (n = 3) after 10 days of experiment by using Quick-RNA™ MiniPrep (Zymo Research, Freiburg, Germany) according to the manufacturer’s instructions. Total RNA was also extracted from additional samples of coral branches collected randomly at the beginning of the experiment. Once scraped by surgical disposable scalpels (Braun), coral tissues were placed in new 2 ml sterile tubes and washed three times with phosphate-buffered saline (PBS 1×). Samples were centrifuged at 1800 rpm for 10 min in an Eppendorf® 5810r refrigerated centrifuge using a swing-out rotor at 4 °C and, after removing the supernatant, were homogenized for 5 min with a RNase-free sterile glass stick in RNA lysis buffer. Contaminating DNA was degraded by treating each sample with DNase dissolved in RNase-free water included in the kit. For each sample, 250 ng of total RNA extracted was retrotranscribed with an iScript™ cDNA Synthesis kit (Bio-Rad, Milan, Italy), following the manufacturer’s instructions. The reaction was performed on the Veriti™ 96-Well Thermal Cycler (Applied Biosystem, Monza, Italy). To evaluate the efficiency of cDNA synthesis, a PCR was performed with primers of the reference gene, cytochrome oxidase I (COI, Supplementary Table 6). The reaction was carried out using MyTaq™ HS DNA Polymerase (Bioline, Luckenwalde, Germany) on the Veriti™ 96-Well Thermal Cycler (Applied Biosystem, Monza, Italy). The PCR programme consisted of a denaturation step at 95 °C for 1 min, 35 cycles at 95 °C for 45 s, 60 °C for 45 s, and 72 °C for 45 s and a final extension step at 72 °C for 10 min.The expression levels of the six genes of hsp70, hsp60, MnSOD, mtMutS, EF1 and cytb, involved in a broad range of functional responses, such as stress, detoxification processes, and DNA repair, were followed by real-time qPCR to identify potential stress of corals exposed to microplastics61. For the cytb, target-specific primer pairs were designed with the Primer 3 software (http://primer3.ut.ee85) using nucleotide sequences retrieved from the GenBank database for C. rubrum as template (https://www.ncbi.nlm.nih.gov/genbank/; Supplementary Table 6). SensiFAST™ SYBR® & Fluorescein mix (Bioline, Luckenwalde, Germany) were used for measuring the levels of mRNAs on CFX Connect™ Real-Time PCR detection system (Biorad, Milan, Italy). Fluorescence was measured using CFX Manager™ software (Biorad, Milan, Italy). All genes tested by qPCR in this study were amplified with primers purchased from Life Technologies/Thermo Fisher Scientific (Milan, Italy). The fold change in target gene mRNA expression of corals exposed to microplastics compared with the control was calculated using the comparative CT method using the 2−ΔΔCt equation86. COI was used as reference gene for normalising the gene expression analyses.DNA oxidative damageFor evaluating oxidative DNA damage potentially due to microplastic exposure on C. rubrum, the content of 8-hydroxydeoxyguanosine (8-OHdG) was analysed. DNA was extracted from 20 mg (wet weight) of tissue randomly collected from one coral branch for each treatment (n = 3) and control (n = 3) after 10 days of experiment using DNeasy Blood & Tissue Kits (Qiagen, Valencia, CA) and following the manufacturer’s protocol. Finally, samples were kept at −20 °C before subsequent analyses. Nucleic acids extracted (2 μg) were transferred into new 2-ml tubes and incubated for 5 min at 95 °C, then rapidly chilled on ice. Samples were digested to nucleosides by incubating the denatured DNA in sodium acetate 20 mM, pH 5.2 with 2 μl of nuclease P1 (6 U/μl; Merck KGaA, Darmstadt, Germany) for 2 h at 37 °C. Each sample was then incubated with 5 μl alkaline phosphatase (1 U/μl; Roche, Mannheim, Germany) in Tris-HCl 100 mM, pH 7.5 for 1 h at 37 °C. The reaction mixtures were then centrifuged for 5 min at 6000 × g and the supernatants tested for DNA oxidation with an OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation; Cell Biolabs, CA, USA). As positive control, Escherichia coli genomic DNA (2 μg) was incubated in a final concentration of 50 and 100 mM H2O2 overnight at 37 °C, and subsequently tested.Prokaryotic abundance in coral mucus and surrounding seawaterTo highlight possible effects in terms of prokaryotic contamination associated with the exposure of the corals to microplastics, we determined prokaryotic abundances in the mucus released by C. rubrum and the surrounding seawater.Prokaryotic abundances in the coral mucus collected from each tank (except for the control where coral mucus was not released) after 14 days of the experiment, were analysed by epifluorescence microscopy. The extraction of prokaryotic cells from the mucus (ca. 1 mL for each tank) was performed using pyrophosphate (final concentration, 5 mM) and ultrasound treatment (three 1-min treatments using a Branson Sonifier 2200; 60 W)87. Then, samples were diluted from 50- to 100-fold with sterile water filtered onto 0.2-μm pore-size filters (Anodisc filters; black-stained polycarbonate). The filters were stained using SYBR Green I (10,000× in anhydrous dimethyl sulfoxide, Molecular Probes-Invitrogen) diluted 1:20 in prefiltered TE buffer (pH 7.5) and incubated in the dark for 20 min; a drop (20 µl) of antifade solution (composed of 50% 6.7 mmol L−1 phosphate buffer at pH 7.8 and 50% glycerol with the addition of 0.5% ascorbic acid) was laid both on a glass slide and on the filter mounted on it. Prokaryotic counts were performed under epifluorescence microscopy (magnification, ×1000; Zeiss filter set #09, 488009-9901-000, excitation BP 450–490 nm, beam splitter FT 515, emission LP 520), by examining at least 20 fields per slide and counting at least 400 cells per filter.For the determination of prokaryote abundance in seawater surrounding corals, three replicates of 10 ml of seawater were collected from each tank. Total prokaryotic abundance was determined according to Danovaro87. Samples were filtered onto 0.2-μm pore-size filters (Anodisc black-stained polycarbonate filters, Whatman) into a funnel with vacuum pressure no greater than 20 kPa (or 150 mmHg) to avoid cell damage. When the sample had passed through, filters were stained with 20 µl of SYBR Green I (10,000× in anhydrous dimethyl sulfoxide, Molecular Probes-Invitrogen) diluted 1:20 in prefiltered TE buffer (pH 7.5) and incubated in the dark for 20 min. Then, to remove the excess stain, filters were washed three times using 3 ml of Milli-Q water; a drop (20 µl) of antifading solution (composed of 50% 6.7 mmol L−1 phosphate buffer at pH 7.8 and 50% glycerol with the addition of 0.5% ascorbic acid) was laid both on a glass slide and on the filter mounted on it. Prokaryotic counts were carried out as described above.Microbiome of corals exposed to microplasticsThe coral microbiome was analysed immediately before the start of the experiment (before the addition of microplastics) and after 10 days of the experiment, both in replicated coral branches exposed to microplastics and in unexposed corals (Control t10). For the analysis of the microbiome, ca. 20 mg of tissue (wet weight) from one coral branch randomly collected from two tanks of each treatment and control was scraped from the skeleton by using surgical disposable scalpels (Braun) and DNA extraction was performed using the QIAGEN DNeasy Blood & Tissue Kit. Briefly, samples were digested with proteinase K at 56 °C overnight or until the tissue was completely lysed, then samples were processed following the manufacturer’s protocol. Finally, samples were held at −20 °C before PCR amplification and sequencing. The molecular size of the DNA extracts was analysed by agarose gel electrophoresis (1%) and the amount and purity of DNA were determined by Nanodrop spectrophotometer (ND-1000). For PCR amplification of the 16S V3 region, the Bacteria-specific primer pair 805R/341F was chosen with Illumina-specific adapters and barcodes. Sequencing was performed on an Illumina MiSeq platform by LGC Genomics GmbH (Berlin, Germany).Raw sequencing paired-end reads were first joined using the bbmerge tool from the BBMap suite88 in a two-step process: reads that did not merge in a first step were quality-trimmed to remove low-quality bases (Q  More

  • in

    Evolutionary assembly of flowering plants into sky islands

    1.Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).Article 

    Google Scholar 
    2.Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).CAS 
    Article 

    Google Scholar 
    3.Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    4.Münkemüller, T., Boucher, F., Thuiller, W. & Lavergne, S. Common conceptual and methodological pitfalls in the analysis of phylogenetic niche conservatism. Funct. Ecol. 29, 627–639 (2015).Article 

    Google Scholar 
    5.Behrensmeyer, A. K. et al. (eds) Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (Univ. of Chicago Press, 1992).6.Graham, A. Late Cretaceous and Cenozoic History of North American Vegetation North of Mexico (Oxford Univ. Press, 1999).7.Latham, R. E. & Ricklefs, R. E. in Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schluter, D.) 294–314 (Univ. of Chicago Press, 1993).8.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).CAS 
    Article 

    Google Scholar 
    9.Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639–644 (2004).Article 

    Google Scholar 
    10.Ricklefs, R. E. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology 87, S3–S13 (2006).Article 

    Google Scholar 
    11.Qian, H. & Sandel, B. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Glob. Ecol. Biogeogr. 26, 1258–1269 (2017).Article 

    Google Scholar 
    12.Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514 (2000).Article 

    Google Scholar 
    13.Pulsipher, L. M. & Pulsipher, A. World Regional Geography: Global Patterns, Local Lives 6th edn (W.H. Freeman, 2014).14.Culmsee, H. & Leuschner, C. Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests. J. Biogeogr. 40, 1997–2010 (2013).Article 

    Google Scholar 
    15.González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. & Swenson, N. G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145–153 (2014).Article 

    Google Scholar 
    16.Qian, H., Zhang, Y., Zhang, J. & Wang, X. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Glob. Ecol. Biogeogr. 22, 1183–1191 (2013).Article 

    Google Scholar 
    17.Qian, H., Field, R., Zhang, J., Zhang, J. & Chen, S. Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees in forest communities in China. J. Biogeogr. 43, 603–615 (2016).Article 

    Google Scholar 
    18.Qian, H. & Ricklefs, R. E. Out of the tropical lowlands: latitude versus elevation. Trends Ecol. Evol. 31, 738–741 (2016).Article 

    Google Scholar 
    19.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).Article 

    Google Scholar 
    20.Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography https://doi.org/10.1111/ecog.04434 (2019).21.Mazel, F. et al. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography 39, 913–920 (2016).CAS 
    Article 

    Google Scholar 
    22.Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).Article 

    Google Scholar 
    23.Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems 2nd edn (Springer, 2003).24.Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).Article 

    Google Scholar 
    25.Gallien, L., Zurell, D. & Zimmermann, N. E. Frequency and intensity of facilitation reveal opposing patterns along a stress gradient. Ecol. Evol. 8, 2171–2181 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    26.Choler, P., Michalet, R. & Callaway, R. M. Facilitation and competition on gradients in alpine plant communities. Ecology 82, 3295–3308 (2001).Article 

    Google Scholar 
    27.Butterfield, B. J. et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478–486 (2013).CAS 
    Article 

    Google Scholar 
    28.Steinbauer et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).Article 

    Google Scholar 
    29.Takhtajan, A. L. Flowering Plants: Origin and Dispersal (Oliver & Boyd, 1969).30.Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).Article 

    Google Scholar 
    31.Heald, W. Sky Island (D. Van Nostrand Co., Inc., 1967).32.Marx, H. E. et al. Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J. Biogeogr. 44, 2618–2630 (2017).Article 

    Google Scholar 
    33.Humboldt, A. V. & Bonpland, A. Essai sur la Géographie des Plantes: Accompagné d’un Tableau Physique des Régions Équinoxiales (Arno Press, 1977).34.Qian, H., White, P. S., Klinka, K. & Chourmouzis, C. Phytogeographical and community similarities of alpine tundras of Changbaishan Summit, China, and Indian Peaks, USA. J. Veg. Sci. 10, 869–882 (1999).Article 

    Google Scholar 
    35.Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73–78 (2011).Article 

    Google Scholar 
    36.Chapin, F. S. III & Körner, C. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. III & Körner, C.) 313–320 (Springer, 1995).37.Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).Article 

    Google Scholar 
    38.Webb, C., Ackerly, D. & Kembel, S. Phylocom: Software for the analysis of phylogenetic community structure and character evolution, with Phylomatic. R package version 4.2 (2011).39.Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. https://doi.org/10.1016/j.pld.2020.11.005 (2021).40.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    41.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article 

    Google Scholar 
    42.Tsirogiannis, C., Sandel, B. & Cheliotis, D. Efficient computation of popular phylogenetic tree measures. Lect. Notes Comput. Sci. 7534, 30–43 (2012).Article 

    Google Scholar 
    43.Tsirogiannis, C., Sandel, B. & Kalvisa, A. New algorithms for computing phylogenetic biodiversity. Lect. Notes Comput. Sci. 8701, 187–203 (2014).Article 

    Google Scholar 
    44.Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).Article 

    Google Scholar  More

  • in

    Further behavioural parameters support reciprocity and milk theft as explanations for giraffe allonursing

    1.Rippeyoung, P. L. F. & Noonan, M. C. The economic costs of breastfeeding for women. Breastfeed Med. 6(5), 325–327 (2011).PubMed 
    Article 

    Google Scholar 
    2.Gloneková, M., Vymyslická, P. J., Žáčková, M. & Brandlová, K. Giraffe nursing behaviour reflects environmental conditions. Behaviour 154, 115–129 (2017).Article 

    Google Scholar 
    3.Hejcmanová, P. et al. Suckling behaviour of eland antelopes (Taurotragus spp.) under semi-captive and farm conditions. J. Ethol. 29, 161–168 (2011).Article 

    Google Scholar 
    4.Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).
    Google Scholar 
    5.Gittleman, J. L. & Thompson, S. D. Energy allocation in mammalian reproduction. Am. Zool. 28, 863–875 (1988).Article 

    Google Scholar 
    6.Arnold, L. C., Habe, M., Troxler, J., Nowack, J. & Vetter, S. G. Rapid establishment of teat order and allonursing in wild boar (Sus scrofa). Ethology 125, 940–948 (2019).Article 

    Google Scholar 
    7.Pluháček, J., Olléová, M., Bartošová, J. & Bartoš, L. Effect of ecological adaptation on suckling behaviour in three zebra species. Behaviour 149(13–14), 1395–1411 (2012).
    Google Scholar 
    8.Pluháček, J., Olléová, M., Bartoš, L. & Bartošová, J. Time spent suckling is affected by different social organization in three zebra species. J. Zool. 292, 10–17 (2014).Article 

    Google Scholar 
    9.Packer, C., Lewis, S. & Pusey, A. A comparative analysis of non-offspring nursing. Anim. Behav. 43, 265–281 (1992).Article 

    Google Scholar 
    10.Gloneková, M., Brandlová, K. & Pluháček, J. Higher maternal care and tolerance in more experienced giraffe mothers. Acta Ethol. 23, 1–7 (2020).Article 

    Google Scholar 
    11.MacLeod, K., Nielsen, J. F. & Clutton-Brock, T. H. Factors predicting the frequency, likelihood and duration of allonursing in the cooperatively breeding meerkat. Anim. Behav. 86, 1059–1067 (2013).Article 

    Google Scholar 
    12König, B. Cooperative care of young in mammals. Naturwissenschaften 84, 489–497 (1997).
    Google Scholar 
    13.Roulin, A. Why do lactating females nurse alien offspring? A review of hypotheses and empirical evidence. Anim. Behav. 63, 201–208 (2002).Article 

    Google Scholar 
    14.Bartoš, L., Vaňková, D., Hyánek, J. & Šiler, J. Impact of allosucking on growth of farmed red deer calves (Cervus elaphus). Anim. Sci. 72, 493–500 (2001).Article 

    Google Scholar 
    15.Bartoš, L., Vaňková, D., Šiler, J. & Illmann, G. Adoption, allonursing and allosucking in farmed red deer (Cervus elaphus). Anim. Sci. 72, 483–492 (2001).Article 

    Google Scholar 
    16.Engelhardt, S. C., Weladji, R. B., Holand, Ø. & Nieminen, M. Allosuckling in reindeer (Rangifer tarandus): A test of the improved nutrition and compensation hypotheses. Mammal. Biol. Z Säugetierkd 81(2), 146–152 (2016).Article 

    Google Scholar 
    17.Víchová, J. & Bartoš, L. Allosuckling in cattle: Gain or compensation?. Appl. Anim. Behav. Sci. 94, 223–235 (2005).Article 

    Google Scholar 
    18.Engelhardt, S. C. et al. Allosuckling in reindeer (Rangifer tarandus): Milk-theft, mismothering or kin selection?. Behav. Process. 107, 133–141 (2014).Article 

    Google Scholar 
    19.Gloneková, M., Brandlová, K. & Pluháček, J. Stealing milk by young and reciprocal mothers: High incidence of allonursing in giraffes, Giraffa camelopardalis. Anim. Behav. 113, 113–123 (2016).Article 

    Google Scholar 
    20.Pluháček, J., Bartošová, J. & Bartoš, L. Suckling behavior in captive plains zebra (Equus burchellii): Sex differences in foal behavior. J. Anim. Sci. 88(1), 131–136 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    21.Gloneková, M., Brandlová, K. & Pluháček, J. Giraffe males have longer suckling bouts than females. J. Mammal. 101(2), 558–653 (2020).Article 

    Google Scholar 
    22.Pluháček, J., Bartošová, J. & Bartoš, L. Further evidence for sex differences in suckling behaviour of captive plains zebra foals. Acta Ethol. 14, 91–95 (2011).Article 

    Google Scholar 
    23.Drábková, J. et al. Sucking and allosucking duration in farmed red deer (Cervus elaphus). Appl. Anim. Behav. Sci. 113(1), 215–223 (2008).Article 

    Google Scholar 
    24.Mendl, M. & Paul, E. S. Observation of nursing and sucking behaviour as an indicator of milk transfer and parental investment. Anim. Behav. 37, 513–515 (1989).Article 

    Google Scholar 
    25.Therrien, J. F., Cote, S. D., Festa-Bianchet, M. & Ouellet, J. P. Maternal care in white-tailed deer: Trade-off between maintenance and reproduction under food restriction. Anim. Behav. 75, 235–243 (2007).Article 

    Google Scholar 
    26.Plesner Jensen, S., Siefert, L., Okori, J. & Clutton-Brock, T. Age-related participation in allosuckling by nursing warthogs (Phacochoerus africanus). J. Zool. 248, 443–449 (1999).Article 

    Google Scholar 
    27Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).Article 

    Google Scholar 
    28.Engelhardt, S. C., Weladji, R. B., Holand, Ø., Røed, K. H. & Nieminen, M. Evidence of reciprocal allonursing in reindeer, Rangifer tarandus. Ethology 121(3), 245–259 (2015).Article 

    Google Scholar 
    29.Jones, J. D. & Treanor, J. J. Allonursing and cooperative birthing behavior in Yellowstone bison, Bison bison. Can. Field-Nat. 122(2), 171–172 (2008).Article 

    Google Scholar 
    30.Pusey, A. E. & Packer, C. Non-offspring nursing in social carnivores—Minimizing the costs. Behav. Ecol. 5, 362–374 (1994).Article 

    Google Scholar 
    31Murphey, R. M., Paranhos da Costa, M. J. R., Gomes da Silva, R. & de Souza, R. Allonursing in river buffalo, Bubalis bubalis: Nepotism, incompetence, or thivery?. Anim. Behav. 49, 1611–1616 (1995).Article 

    Google Scholar 
    32.Olléová, M., Pluháček, J. & King, S. R. B. Effect of social system on allosuckling and adoption in zebras. J. Zool. 288(2), 127–134 (2012).Article 

    Google Scholar 
    33.Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212–229 (1984).Article 

    Google Scholar 
    35.Baldovino, M. C. & Di Bitetti, M. S. Allonursing in tufted capuchin monkeys (Cebus nigritus): Milk or pacifier?. Folia Primatol. 79, 79–92 (2007).Article 

    Google Scholar 
    36.Boness, D. J., Craig, M. P., Honigman, L. & Austin, S. Fostering behavior and the effect of female density in Hawaiian monk seals, Monachus schauinslandi. J. Mammal. 79, 1060–1069 (1998).Article 

    Google Scholar 
    37.Cassinello, J. Allosuckling behaviour in Ammotragus. Z. Saugetierkd 64(6), 363–370 (1999).
    Google Scholar 
    38.Nuñez, C. M., Adelman, J. S. & Rubenstein, D. I. A free-ranging, feral mare Equus caballus affords similar maternal care to her genetic and adopted offspring. Am. Nat. 182, 674–681 (2013).PubMed 
    Article 

    Google Scholar 
    39.Brandlová, K., Bartoš, L. & Haberová, T. Camel calves as opportunistic milk thefts? The first description of allosuckling in domestic bactrian camel (Camelus bactrianus). PLoS ONE 8(1), e53052 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Zapata, B., Gaete, G., Correa, L., González, B. & Ebensperger, L. A case of allosuckling in wild guanacos (Lama guanicoe). J. Ethol. 27, 295–297 (2009).Article 

    Google Scholar 
    41.Bond, M. L. & Lee, D. E. Simultaneous multiple-calf allonursing by a wild Masai giraffe. Afr. J. Ecol. 58(1), 126–128 (2020).Article 

    Google Scholar 
    42.Pratt, D. M. & Anderson, V. H. Giraffe cowecalf relationships and social development of the calf in the Serengeti. Z. Tierpsychol. 51(3), 233–251 (1979).Article 

    Google Scholar 
    43.Saito, M. & Idani, G. Suckling and allosuckling behavior in wild giraffe (Giraffa camelopardalis tippelskirchi). Mammal. Biol. 93, 1–4 (2018).Article 

    Google Scholar 
    44.Zoelzer, F., Engel, C., Paul, W. D. & Anna Lena, B. A comparative study of nightly allonursing behaviour in four zoo-housed groups of giraffes (Giraffa camelopardalis). J. Zoo Aquar. Res. 8(3), 175–180 (2020).
    Google Scholar 
    45.Schino, G. & Aureli, F. The relative roles of kinship and reciprocity in explaining primate altruism. Ecol. Lett. 13, 45–50 (2010).PubMed 
    Article 

    Google Scholar 
    46.Bercovitch, F. B., Bashaw, M. J. & del Castillo, S. M. Sociosexual behavior, male mating tactics, and the reproductive cycle of giraffe Giraffa camelopardalis. Horm. Behav. 50(2), 314–321 (2006).PubMed 
    Article 

    Google Scholar 
    47.Bercovitch, F. B. & Berry, P. S. M. Herd composition, kinship and fission—fusion social dynamics among wild giraffe. Afr. J. Ecol. 51(2), 206–216 (2013).Article 

    Google Scholar 
    48.Carter, K. D., Seddon, J. M., Frere, C. H., Carter, J. K. & Goldizen, A. W. Fission-fusion dynamics in wild giraffes may be driven by kinship, spatial overlap and individual social preferences. Anim. Behav. 85, 385–394 (2013).Article 

    Google Scholar 
    49.D’haen, M., Fennessy, J., Stabach, J. & Brandlová, K. Population structure and spatial ecology of Kordofan giraffe in Garamba National Park, Democratic Republic of Congo. Ecol. Evol. 9(19), 11395–11405 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Horová, E., Brandlová, K. & Gloneková, M. The first description of dominance hierarchy in captive giraffe: Not loose and egalitarian, but clear and linear. PLoS ONE 10(5), e0124570 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Jůnková Vymyslická, P., Brandlová, K., Hozdecká, K., Žáčková, M. & Hejcmanová, P. Feeding rank in the Derby eland: Lessons for management. Afr. Zool. 50(4), 313–320 (2015).Article 

    Google Scholar 
    52.Broussard, D. R., Risch, T. S., Dobson, F. S. & Murie, J. O. Senescence and age-related reproduction of female Columbian ground squirrels. J. Anim. Ecol. 72, 212–219 (2003).Article 

    Google Scholar 
    53.Cameron, E. Z., Linklater, W. L., Stafford, K. J. & Minot, E. O. Aging and improving reproductive success in horses: declining residual reproductive value or just older and wiser?. Behav. Ecol. Sociobiol. 47(4), 243–249 (2000).Article 

    Google Scholar 
    54.Cameron, E. Z., Linklater, W. L., Stafford, K. J. & Minot, E. O. A case of cooperative nursing and offspring care by mother and daughter feral horses. J. Zool. 249, 486–489 (1999).Article 

    Google Scholar 
    55.Ekvall, K. Effects of social organization, age and aggressive behaviour on allosuckling in wild fallow deer. Anim. Behav. 56, 695–703 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Birgersson, B. & Ekvall, K. Suckling time and fawn growth in fallow deer (Dama dama). Zoology 232, 641–650 (1994).
    Google Scholar 
    57.Fennessy, J. et al. Multi-locus analyses reveal four giraffe species instead of one. Curr. Biol. 26(18), 2543–2549 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Estes, R. The Behavior Guide to African Mammals (University of California Press, 1991).
    Google Scholar 
    59.Altmann, J. Observational study of behaviour: Sampling methods. Behaviour 49, 227–267 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Špinka, M. & Illmann, G. Suckling behaviour of young dairy calves with their own and alien mothers. Appl. Anim. Behav. Sci. 33(2), 165–173 (1992).Article 

    Google Scholar 
    61.Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 56, 330–338 (1922).Article 

    Google Scholar  More

  • in

    Functional groups in microbial ecology: updated definitions of piezophiles as suggested by hydrostatic pressure dependence on temperature

    1.Capece MC, Clark E, Saleh JK, Halford D, Heinl N, Hoskins S, et al. Polyextremophiles and the constraints for terrestrial habitability. In: Seckbach J, Oren A, Stan-Lotter H, editors. Polyextremophiles. Life under muliple forms of stress. Dordrecht, Neaderlands: Springer; 2013. p. 3–60.2.Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS. The limits for life under multiple extremes. Trends Microbiol. 2013;21:204–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Oger PM, Jebbar M. The many ways of coping with pressure. Res Microbiol. 2010;161:799–809.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bartlett DH. Pressure effects on in vivo microbial processes. Biochim Biophys Acta. 2002;1595:367–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW. Biotechnology under high pressure: applications and implications. Trends Biotechnol. 2009;27:434–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Jannasch HW, Taylor CD. Deep-sea microbiology. Ann Rev Microbiol. 1984;38:487–514.CAS 
    Article 

    Google Scholar 
    8.Fang J, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol. 2010;18:413–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Yayanos AA. Microbiology to 10,500 meters in the deep sea. Ann Rev Microbiol. 1995;49:777–805.CAS 
    Article 

    Google Scholar 
    10.Eloe EA, Lauro FM, Vogel RF, Bartlett DH. The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol. 2008;74:6298–305.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Horikoshi K, Bull AT Prologue: Definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K, editor. Extremophiles handbook. Tokyo, Japan: Springer; 2011. p. 3–18.12.Holt RD. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA. 2009;106:19659–65.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Talley LD, Pickard GL, Emery WJ, Swift JH. Typical distributions of water characteristics. In: Descriptive physical oceanography, 6th ed. London, UK: Elsevier; 2011. p. 67–110.14.Jebbar M, Franzetti B, Girard E, Oger P. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles. 2015;19:721–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Berhardt G, Jaenicke R, Ludemann H-D, Konig H, Stetter KO. High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl Environ Microbiol. 1998;54:1258–61.Article 

    Google Scholar 
    16.Scoma A, Garrido-Amador P, Nielsen SD, Roy H, Kjeldsen KU. The polyextremophilic bacterium Clostridium paradoxum attains piezophilic traits by modulating its energy metabolism and cell membrane composition. Appl Environ Microbiol. 2019;85:e00802–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Wiegel J. Temperature spans for growth: hypothesis and discussion. FEMS Microbiol Rev. 1990;75:155–70.Article 

    Google Scholar 
    18.Morita RY. Psychrophilic bacteria. Bacteriol Rev. 1975;39:144–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Zeikus JG. Thermophilic Bacteria—Ecology. Physiol Technol Enz Microb Technol. 1979;1:243–52.CAS 
    Article 

    Google Scholar 
    20.Yayanos AA. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA. 1986;83:9542–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Jannasch HW, Wirsen CO. Variability of pressure adaptation in deep sea bacteria. Arch Microbiol. 1984;139:281–8.Article 

    Google Scholar 
    22.Yayanos AA, Chastain R. The influence of nutrition on the physiology of piezophilic bacteria. In: Bell CR, Brylinsky M, Johnson-Green P, Eds. Proceedings of the 8th International Symposium on Microbial Ecology. Halifax, NS, Canada: Atlantic Canada Society for Microbial Ecology; 6; 1999.23.Matsumura P, Keller DM, Marquis RE. Restricted pH ranges and reduced yields for bacterial growth under pressure. Microb Ecol. 1974;1:176–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Oren A. Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev. 1999;63:334–48.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yayanos AA, Dietz AS, Van, Boxtel R. Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol. 1982;44:1356–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE. The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol. 1984;130:1911–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH. The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol. 2007;73:838–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Marteinsson VT, Birrien J-L-, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, et al. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol. 1999;49:351–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Alain K. Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Sys Evol Microbiol. 2002;52:1331–9.CAS 

    Google Scholar 
    30.Canganella F, Gonzalez JM, Yanagibayashi M, Kato C, Horikoshi K. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol. 1997;168:1–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Canganella F, Gambacorta A, Kato C, Horikoshi K. Effects of hydrostatic pressure and temperature on physiological traits of Thermococcus guaymasensis and Thermococcus aggregans growing on starch. Microbiol Res. 2000;154:297–306.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW. Prokaryotic responses to hydrostatic pressure in the ocean-a review. Environ Microbiol. 2013;15:1262–74.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nogi Y, Masui N, Kato C. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles. 1998;2:1–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Arakawa S, Nogi Y, Sato T, Yoshida Y, Usami R, Kato C. Diversity of piezophilic microorganisms in the closed ocean Japan Sea. Biosci Biotechnol Biochem. 2006;70:749–52.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Xu Y, Nogi Y, Kato C, Liang Z, Ruger H-J, De Kegel D, et al. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol. 2003;53:533–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Sekiguchi T, Sato T, Enoki M, Kanehiro H, Kato C. Procedure for isolation of the plastic degrading piezophilic bacteria from deep-sea environments. J Jap Soc Extremophil. 2010a;9:25–30.Article 

    Google Scholar 
    37.Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep. Res Dev. 2010b;11:33–41.
    Google Scholar 
    38.Nogi Y, Kato C, Horikoshi K. Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol. 2002;52:1527–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Yayanos AA, Dietz AS, van Boxtel R. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science. 1979;205:808–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol. 2004;54:1627–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kato C, Sato T, Horikoshi K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Cons. 1995;4:1–9.Article 

    Google Scholar 
    42.Kato C, Inoue A, Horikoshi K. Isolating and characterizing deep-sea marinemicroorganisms. Tibtech. 1996;14:6–12.CAS 
    Article 

    Google Scholar 
    43.Nogi Y, Kato C. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles. 1999;3:71–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT. Isolation of an Obligately Barophilic Bacterium and Description of a New Genus, Colwellia gen. nov. Systematic and Applied Microbiology. 1988;10:152–60.Article 

    Google Scholar 
    45.Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 2017;67:824–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Cao J, Lai Q, Liu P, Wei Y, Wang L, Liu R, et al. Salinimonas sediminis sp. nov., a piezophilic bacterium isolated from a deep-sea sediment sample from the New Britain Trench. Int J Syst Evol Microbiol. 2018;68:3766–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Liu P, Ding W, Lai Q, Liu R, Wei Y, Wang L, et al. Physiological and genomic features of Paraoceanicella profunda gen. nov., sp. nov., a novel piezophile isolated from deep seawater of the Mariana Trench. MicrobiologyOpen. 2019;00:e966.
    Google Scholar 
    48.Quéméneur M, Erauso G, Frouin E, Zeghal E, Vandecasteele C, Ollivier B, et al. Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Front Microbiol. 2019;10:1497.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Xiao X, Wang P, Zeng X, Bartlett DH, Wang F. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol. 2007;57:60–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Alazard D, Dukan S, Urios A, Verhe F, Bouabida N, Morel F, et al. Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol. 2003;53:173–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Pathom-Aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K, Bull AT, et al. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 2006;56:1233–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A. Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol. 2009;11(8):1983–97.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Erauso G, Reysenbach A-L, Godfroy A, Meunier J-R, Crump B, Partensky F, et al. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol. 1993;160:338–49.CAS 
    Article 

    Google Scholar 
    54.Li Y, Mandelco L, Wiegel J. Isolation and Characterization of a Moderately Thermophilic Anaerobic Alkaliphile. Clostridium paradoxum sp. nov. Int J Sys Bacteriol. 1993;43:450–60.Article 

    Google Scholar 
    55.Zhao W, Zeng X, Xiao X. Thermococcus eurythermalis sp. nov., a conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin. Int J Sys Evol Microbiol. 2015;65:30–5.CAS 
    Article 

    Google Scholar 
    56.Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, et al. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A. 2008;105:10949–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.González JM, Kato C, Horikoshi K. Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol. 1995;164:159–64.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS. Methanococcusjannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol. 1983;136:254–61.CAS 
    Article 

    Google Scholar  More

  • in

    Identify potential allelochemicals from Humulus scandens (Lour.) Merr. root extracts that induce allelopathy on Alternanthera philoxeroides (Mart.) Griseb.

    1.Pomella, A. W. V., Barreto, R. W. & Charudattan, R. Nimbya alternantherae a potential biocontrol agent for alligatorweed, Alternanthera philoxeroides. Biocontrol 52, 271–288 (2007).CAS 
    Article 

    Google Scholar 
    2.Barreto, R. W. & Torres, A. N. L. Nimbya alternantherae and Cercospora alternantherae: two new records of fungal pathogens on Alternanthera philoxeroides (alligatorweed) in Brazil, Australas. Plant Pathol 28, 103–107 (1999).
    Google Scholar 
    3.Ridenour, W. M. & Callaway, R. M. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126, 444–450 (2001).ADS 
    Article 

    Google Scholar 
    4.Tanveer, A., Ali, H. H. & Manalil, S. Eco-biology and management of alligator weed [Alternanthera philoxeroides (Mart.) Griseb.] a review. Wetlands 38, 1067–1079 (2018).Article 

    Google Scholar 
    5.Garbari, F. & Pedullà, M. L. Alternanthera philoxeroides (Mart) Griseb (Amaranthaceae), a new species for the exotic flora of Italy. J. Plant Taxon Geogr 56, 139–143 (2001).
    Google Scholar 
    6.Chen, X., Wang, R. & Cao, Q. The relationship between the distribution of invasive plant Alternanthera philoxeroides and soil properties is scale-dependent. Pol. J. Environ. Stud. 24, 1931–1938 (2015).Article 

    Google Scholar 
    7.Wang, T., Hu, J. & Miao, L. The invasive stoloniferous clonal plant Alternanthera philoxeroides outperforms its co-occurring non-invasive functional counterparts in heterogeneous soil environments-invasion implications. Sci. Rep. 6, 38036 (2016).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    8.Wang, B., Li, W. & Wang, J. Genetic diversity of Alternanthera philoxeroides in China. Aquat. Bot. 81, 277–283 (2005).Article 

    Google Scholar 
    9.Shen, J., Shen, M. & Wang, X. Effect of environmental factors on shoot emergence and vegetative growth of alligatorweed (Alternanthera philoxcroides). Weed Sci. 53, 471–478 (2005).CAS 
    Article 

    Google Scholar 
    10.Bassett, I., Paynter, Q. & Hankin, R. Characterising alligator weed (Alternanthera philoxeroides; Amaranthaceae) invasion at a northern New Zealand lake. N. Z. J. Ecol. 36, 216–222 (2012).
    Google Scholar 
    11.Pan, X. Y. Invasive Alternanthera philoxeroides: biology, ecology and management. Acta Phytotaxonomica Sinica 45, 884–900 (2007).Article 

    Google Scholar 
    12.Phung, T., Xuan, T. & Tu, A. T. Weed suppressing potential and isolation of potent plant growth inhibitors from Castanea crenata Sieb. et Zucc. Molecules 23, 345 (2018).Article 
    CAS 

    Google Scholar 
    13.Yu, Z. & Bi, H. Status Quo of research on ecosystem services value in China and suggestions to future research. Energy Procedia 5, 1044–1048 (2011).Article 

    Google Scholar 
    14.Yang, S., Wang, Q. & Hu, T. Physiological responses to allelopathy of decomposing Cinnamomum septentrionale leaf litter of three crops (corn, cucumber, and cowpea). Chin. J. App. Environ. Biol. 29, 292–298 (2018).
    Google Scholar 
    15.Dong, B. C., Fu, T. & Luo, F. L. Herbivory-induced maternal effects on growth and defense traits in the clonal species Alternanthera philoxeroides. Sci. Total Environ. 605–606, 114–123 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    16.Dugdale, T. M., Clements, D. & Hunt, T. D. Alligatorweed produces viable stem fragments in response to herbicide treatment. J. Aquat. Plant Manag. 48, 84–91 (2010).
    Google Scholar 
    17.Clements, D., Dugdale, T. M. & Butler, K. L. Management of aquatic alligator weed in an early stage of invasion. Manag. Biol. Invas. 5, 327–339 (2014).Article 

    Google Scholar 
    18.Clements, D., Dugdale, T. M. & Butler, K. L. Herbicide efficacy for aquatic Alternanthera philoxeroides management in an early stage of invasion: integrating above-ground biomass, below-ground biomass and viable stem fragmentation. Weed Res. 57, 257–266 (2017).CAS 
    Article 

    Google Scholar 
    19.Bond, W. & Grundy, A. Non-chemical weed management in organic farming systems. Weed Res. 41, 383–405 (2001).Article 

    Google Scholar 
    20.Schooler, S., Cook, T. & Bourne, A. Selective herbicides reduce alligator weed (Alternanthera Philoxeroides) biomass by enhancing competition. Weed Sci. 56, 259–264 (2008).CAS 
    Article 

    Google Scholar 
    21.Sainty, G., Mccorkelle, G., & Julien, M. Control and spread of alligator weed Alternanthera philoxeroides (Mart.) Griseb., in Australia: Lessons for other regions. Wetlands Ecol. Manage. 5, 195–201 (1997).Article 

    Google Scholar 
    22.Annett, R., Habibi, H. R. & Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 34, 458–479 (2014).CAS 
    Article 

    Google Scholar 
    23.Bais, H. P., Vepachedu, R. & Gilroy, S. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301, 1377–1380 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Zhang, Z., Deng, L. L. & Wang, L. C. Allelopathic potential of Phragmites australis extracts on the growth of invasive plant Alternanthera philoxeroides. Allelopath. J. 45, 54–63 (2018).Article 

    Google Scholar 
    25.Jabran, K., Mahajan, G. & Sardana, V. Allelopathy for weed control in agricultural systems. Crop Prot. 72, 57–65 (2015).Article 

    Google Scholar 
    26.Kumbhar, B. A. & Patel, D. D. Allelopathic effects of different weed species on crop. J. Pharm. Sci. Biosci. Res. 6, 801–805 (2016).
    Google Scholar 
    27.Weston, L. A. & Duke, S. O. Weed and crop allelopathy. Crit. Rev. Plant Sci. 22, 367–389 (2003).CAS 
    Article 

    Google Scholar 
    28.Rice, E.L., Allelopathy, 2nd Ed, A. Press, Editor. 1-50 (1984).29.Da Silva, I. F. & Vieira, E. A. Phytotoxic potential of Senna occidentalis (L.) Link extracts on seed germination and oxidative stress of Ipe seedlings. Plant Biol. 21, 770–779 (2019).Article 
    CAS 

    Google Scholar 
    30.Zeng, R. S. Allelopathy—the solution is indirect. J. Chem. Ecol. 40, 515–516 (2014).CAS 
    Article 

    Google Scholar 
    31.Otusanya, O. O., Ilori, O. J. & Adelusi, A. A. Allelopathic effects of tithonia diversifolia (Hemsl) A. gray on germination and growth of Amaranthus cruentus. Res. J. Environ. Sci. 1, 285–293 (2007).CAS 
    Article 

    Google Scholar 
    32.Chen, Z. & Meng, S. Research progress of Humulus scandens. Chin. Pharm. Affairs 24, 73–77 (2011).CAS 

    Google Scholar 
    33.Cao, Y., Wang, T. & Xiao, Y. A. The interspecific competition between Humulus scandens and Alternanthera philoxeroides. J. Plant Interactions 9, 194–199 (2013).Article 
    CAS 

    Google Scholar 
    34.Huang, Y. M., Zhang, Y. & Liu, Q. Research on allelopathy of aqueous extract from tagetes patula to four garden plants. Acta pratacultural sinica (Chinese) 24, 150–158 (2015).
    Google Scholar 
    35.Li, W., Luo, J. & Tian, X. A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them. Sci. Rep. 5, 11004 (2015).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    36.Cheng, T. S. The toxic effects of diethyl phthalate on the activity of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). Aquat. Toxicol. 124, 171–178 (2012).Article 
    CAS 

    Google Scholar 
    37.Makoi, J. H. & Ndakidemi, P. A. Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr. J. Biotech. 6, 739–748 (2007).
    Google Scholar 
    38.Zhang, K. M., Shen, Y. & Yang, J. The defense system for Bidens pilosa root exudate treatments in Pteris multifida gametophyte. Ecotoxicol. Environ. Saf. 173, 203–213 (2019).CAS 
    Article 

    Google Scholar 
    39.Noctor, G., Reichheld, J.-P. & Foyer, C. H. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 80, 3–12 (2017).Article 
    CAS 

    Google Scholar 
    40.Kaur, N., Chugh, V. & Gupta, A. K. Essential fatty acids as functional components of foods-a review. J. Food Sci. Technol. 51, 2289–2303 (2014).CAS 
    Article 

    Google Scholar 
    41.Sun, C. H., Li, Y. & He, H. Y. Physiological and biochemical responses of Chenopodium album to drought stresses. Atca Ecologica Sinica 25, 2556–2561 (2005).CAS 

    Google Scholar 
    42.Li, P., Wang, X. & Li, Y. The contents of phenolic acids in continuous cropping peanut and their allelopathy. Acta Ecol. Sin. 30, 2128–2134 (2010).MathSciNet 
    Article 

    Google Scholar 
    43.Wang, Y. X., Sun, G. R. & Wang, J. B. Relationships among MDA content, plasma membrane permeability and the chlorophyll fluorescence parameters of Puccinellia tenuiflora seedlings under NaCl stress. Acta Ecol. Sin. 26, 122–129 (2006).CAS 

    Google Scholar 
    44.Li, Z. Q., Li, J. T. & Bing, J. The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana. Hereditas (Beijing) 41, 534–547 (2019).
    Google Scholar 
    45.Tang, K., Ming, L. & Shan, D. Allelopathy autotoxicity effects of aquatic extracts from rhizospheric soil on rooting and growth of stem cuttings in Pogostemon cablin. J. Chin. Med. Mater. 37, 935–939 (2014).CAS 

    Google Scholar 
    46.Coelho, E. M. P., Barbosa, M. C. & Mito, M. S. The activity of the antioxidant defense system of the weed species Senna obtusifolia L and its resistance to allelochemical stress. J. Chem. Ecol. 43, 725–738 (2017).CAS 
    Article 

    Google Scholar 
    47.Li, J. & Wang, X. Advance of research on Humulus scandens. Qilu Pharm. Affairs 26, 353–355 (2007).
    Google Scholar 
    48.Xu, B., Jin, Y. & Yihan, W. Chemical constituents from stems and leaves of Humulus scandens. Chin. Tradit. Herb. Drugs 45, 1228–1231 (2014).CAS 

    Google Scholar 
    49.Zhang, J., Liu, J. & Dai, L.-F. Unlocking the potential antioxidant and anti-inflammatory activities of Rhododendron molle G. Don. Pak. J. Pharm. Sci. 32, 2375–2383 (2019).CAS 

    Google Scholar 
    50.Chen, Z., Guo, Q. & Huang, K. Analysis of volatile components of solidago canadensis by SPME/GC-MS. Acta Agriculturae Jiangxi (Chinese) 26, 1 (2008).
    Google Scholar 
    51.Wang, Y., Yu, J. & Zhang, Y. Effects of two allelochemicals on growth and physiological characteristics of eggplant seedlings. J. Gansu Agric. Univ. (Chinese) 3, 47–50 (2007).
    Google Scholar 
    52.Yu, J., Zhang, Y. & Niu, C. Effects of two kinds of allelochemicals on photosynthesis and chlorophyll fluorescence parameters of Solanum melongena L. seedlings. J. Appl. Ecol. 17, 1629–1632 (2006).ADS 
    CAS 

    Google Scholar 
    53.Lande, M. L., Kanedi, M. & Zulkifli, Z. Supperssive effexts of lantana camara leaf extracts on the growth of red chillli (Carsicum annuum). World J. Pharm. Life Sci. 3, 543–551 (2017).
    Google Scholar 
    54.Erida, G. & Saidi, N. Allelopathic screening of several weed species as potential bioherbicides. IOP Conf. Ser. Earth Environ. Sci. 334, 12–34 (2019).Article 

    Google Scholar 
    55.Cimmino, A., Masi, M. & Rubiales, D. Allelopathy for parasitic plant management. Nat. Prod. Commun. 13, 289–294 (2018).
    Google Scholar 
    56.Deng, J., Zhang, Y. & Hu, J. Autotoxicity of phthalate esters in tobacco root exudates: Effects on seed germination and seedling growth. Pedosphere 27, 1073–1082 (2017).CAS 
    Article 

    Google Scholar 
    57.Gu, S., Zheng, H. & Xu, Q. Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. Aquat. Toxicol. 191, 122–130 (2017).CAS 
    Article 

    Google Scholar 
    58.Perveen, S., Yousaf, M. & Zahoor, A. F. Extraction, isolation, and identification of various environment friendly components from cock’s comb (Celosia argentea) leaves for allelopathic potential. Toxicol. Environ. Chem. Rev. 96, 1523–1534 (2014).CAS 
    Article 

    Google Scholar 
    59.Alara, O. R., Abdurahman, N. H. & Ukaegbu, C. I. Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing soxhlet and microwave-assisted extraction techniques. J. Taibah Univ. Sci. 13, 414–422 (2019).Article 

    Google Scholar 
    60.Wei, W., Hou, Y. & Peng, S. Effects of light intensity on growth and biomass allocation of invasive plants Mikania micrantha and Chromolaena odorata. Acta Ecol. Sin. 37, 6021–6028 (2017).Article 

    Google Scholar 
    61.Williamson, G. B. & Richardson, D. Bioassays for allelopathy: measuring treatment responses with independent controls. J. Chem. Ecol. 14, 181–187 (1988).Article 

    Google Scholar 
    62.Gao, Y. B., Li, G. P. & Shi, H. Allelopathic effect of endophyte-infected achnatherum sibiricum on stipa grandis. Acta Ecol. Sin. 37, 1063–1073 (2017).Article 

    Google Scholar 
    63.Zhang, L., Wang, X. & Guo, J. Metabolic profiling of Chinese tobacco leaf of different geographical origins by GC-MS. Agric. Food Chem. 61, 2597–2605 (2013).CAS 
    Article 

    Google Scholar  More

  • in

    The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization

    1.Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW. Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Chang. 2016;6:751–8.Article 
    CAS 

    Google Scholar 
    2.Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Crowther TW, Hoogen JVD, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008;451:289–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang. 2013;3:909–12.CAS 
    Article 

    Google Scholar 
    6.Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Chang. 2018;8:885–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Li JQ, Pei JM, Pendall E, Fang CM, Nie M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol Biochem. 2020;141:107675.CAS 
    Article 

    Google Scholar 
    9.Wang QK, Zhao XC, Chen LC, Yang QP, Chen S, Zhang WD, et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct Ecol. 2019;33:514–23.Article 

    Google Scholar 
    10.Nottingham AT, Baath E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob Chang Biol. 2019;25:827–38.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Ye JS, Bradford MA, Dacal M, Maestre FT, García-Palacios P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob Chang Biol. 2019;25:3354–64.PubMed 
    Article 

    Google Scholar 
    12.Smith TP, Thomas TJH, Garcia-Carreras B, Sal S, Yvon-Durocher G, Bell T, et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat Commun. 2019;10:5124.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Schipper LA, Hobbs JK, Rutledge S, Arcus VL. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob Chang Biol 2014;20:3578–86.PubMed 
    Article 

    Google Scholar 
    14.Pietikainen J, Pettersson M, Baath E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol. 2005;52:49–58.PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Bárcenas-Moreno G, Gómez-Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol. 2009;15:2950–7.Article 

    Google Scholar 
    16.Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol. 2018;18:177.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Oliverio AM, Bradford MA, Fierer N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob Chang Biol. 2017;23:2117–29.PubMed 
    Article 

    Google Scholar 
    18.Bier RL, Bernhardt ES, Boot CM, Graham EB, Hall EK, Lennon JT, et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol Ecol. 2015;91:fiv113.PubMed 
    Article 
    CAS 

    Google Scholar 
    19.Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv. 2019;28:2405–29.Article 

    Google Scholar 
    20.Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Koch BJ, McHugh TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P, et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere. 2018;9:e02090.Article 

    Google Scholar 
    22.Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem. 2013;58:115–26.CAS 
    Article 

    Google Scholar 
    23.Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol. 2015;6:104.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Euskirchen ES, Bret-Harte MS, Shaver GR, Edgar CW, Romanovsky VE. Long-term release of carbon dioxide from Arctic Tundra ecosystems in Alaska. Ecosystems. 2017;20:960–74.CAS 
    Article 

    Google Scholar 
    26.Reed SC, Reibold R, Cavaleri MA, Alonso-Rodríguez AM, Berberich ME, Wood TE. Chapter six—soil biogeochemical responses of a tropical forest to warming and hurricane disturbance. In: Dumbrell AJ, Turner EC, Fayle TM, editors. Advances in ecological research. (Academic Press, Cambridge MA, 2020) pp 225–52.27.Witt C, Gaunt JL, Galicia CC, Ottow JCG, Neue HU. A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soils. 2000;30:510–9.CAS 
    Article 

    Google Scholar 
    28.Berry D, Ben Mahfoudh K, Wagner M, Loy A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol. 2012;78:612.CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    29.Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.Article 

    Google Scholar 
    30.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012;22:939–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Aronesty E. ea-utils: “Command-line tools for processing biological sequencing data”. 2011. https://github.com/ExpressionAnalysis/ea-utils.33.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Morrissey EM, Mau RL, Schwartz E, McHugh TA, Dijkstra P, Koch BJ, et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 2017;11:1890–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu X-JA, et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 2019;13:2162–72.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Gross N, Bagousse-Pinguet YL, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT. Functional trait diversity maximizes ecosystem multifunctionality. Nat Ecol Evol. 2017;1:0132.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Laliberté E, Norton DA, Scott D. Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. J Veg Sci. 2013;24:834–42.Article 

    Google Scholar 
    42.Plass-Johnson JG, Taylor MH, Husain AAA, Teichberg MC, Ferse SCA. Non-random variability in functional composition of coral reef fish communities along an environmental gradient. PLOS ONE. 2016;11:e0154014.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Götzenberger L, Botta-Dukát Z, Lepš J, Pärtel M, Zobel M, de Bello F. Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models. J Veg Sci. 2016;27:1275–87.Article 

    Google Scholar 
    44.Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, et al. Microbial richness and composition independently drive soil multifunctionality. Funct Ecol. 2017;31:2330–43.Article 

    Google Scholar 
    45.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.org/.46.Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, et al. Global trait–environment relationships of plant communities. Nat Ecol Evol. 2018;2:1906–17.PubMed 
    Article 

    Google Scholar 
    47.Piton G, Legay N, Arnoldi C, Lavorel S, Clément J-C, Foulquier A. Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands. J Ecol. 2020;108:876–93.CAS 
    Article 

    Google Scholar 
    48.Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Chang Biol. 2020;26:3221–9.PubMed 
    Article 

    Google Scholar 
    49.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Li J, Nie M, Pendall E, Reich PB, Pei J, Noh NJ, et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob Chang Biol. 2020;26:1873–85.PubMed 
    Article 

    Google Scholar 
    51.Lipson DA. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol. 2015;6:615.PubMed 
    PubMed Central 

    Google Scholar 
    52.Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T, et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36.Article 

    Google Scholar 
    53.Ali A, Yan E-R, Chang SX, Cheng J-Y, Liu X-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci Total Environ. 2017;574:654–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Buzzard V, Michaletz ST, Deng Y, He Z, Ning D, Shen L, et al. Continental scale structuring of forest and soil diversity via functional traits. Nat Ecol Evol. 2019;3:1298–308.PubMed 
    Article 

    Google Scholar 
    55.Luo Y-H, Cadotte MW, Burgess KS, Liu J, Tan S-L, Zou J-Y, et al. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecol Lett. 2019;22:1449–61.PubMed 
    Article 

    Google Scholar 
    56.Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA. 2007;104:20684–9.PubMed 
    Article 

    Google Scholar 
    57.Bradford MA. Thermal adaptation of decomposer communities in warming soils. Front Microbiol. 2013;4:333.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Morrissey EM, Mau RL, Schwartz E, Koch BJ, Hayer M, Hungate BA. Taxonomic patterns in the nitrogen assimilation of soil prokaryotes. Environ Microbiol. 2018;20:1112–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Coskun OK, Ozen V, Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Zhou G, Zhou X, Liu R, Du Z, Zhou L, Li S, et al. Soil fungi and fine root biomass mediate drought-induced reductions in soil respiration. Funct Ecol. 2020;34:2634–43.Article 

    Google Scholar 
    61.Melillo JM, Frey SD, Deangelis KM, Werner WJ, Bernard MJ, Bowles FP, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358:101–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Johnston ASA, Sibly RM. The influence of soil communities on the temperature sensitivity of soil respiration. Nat Ecol Evol. 2018;2:1597–602.PubMed 
    Article 

    Google Scholar  More