eDNA metabarcoding of small plankton samples to detect fish larvae and their preys from Atlantic and Pacific waters
1.Johnson, C. L., Runge, J. A., Curtis, K. A. & Durbin, E. G. Biodiversity and ecosystem function in the Gulf of Maine: Pattern and role of Zooplankton and Pelagic Nekton. PLoS ONE 6(1), e16491 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
2.Bulman, C. M., He, X. & Koslow, J. A. Trophic ecology of the mid-slope demersal fish community off southern Tasmania, Australia. Mar. Freshw. Res. 53(1), 59–72 (2002).Article
Google Scholar
3.Walker, W. A., Mead, J. G. & Brownell, R. L. Diets of Baird’s beaked whales, Berardius bairdii, in the southern Sea of Okhotsk and off the Pacific coast of Honshu, Japan. Mar. Mamm. Sci. 18, 902–919 (2002).Article
Google Scholar
4.Boeing, W. J. & Duffy-Anderson, J. T. Ichthyoplankton dynamics and biodiversity in the Gulf of Alaska: Responses to environmental change. Ecol. Ind. 8, 292–302 (2008).Article
Google Scholar
5.Beaugrand, G., Brander, K. M., Souissi, J. A. L. S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).ADS
CAS
PubMed
Article
Google Scholar
6.Möllmann, C. & Diekmann, R. Marine ecosystem regime shifts induced by climate and overfishing: A review for the Northern Hemisphere. Adv. Ecol. Res. 47, 303 (2012).Article
Google Scholar
7.Morote, E., Olivar, M. P., Bozzano, A., Villate, F. & Uriarte, I. Feeding selectivity in larvae of the European hake (Merluccius merluccius) in relation to ontogeny and visual capabilities. Mar. Biol. 158, 1349–1361 (2011).Article
Google Scholar
8.Rombouts, I. et al. Global latitudinal variations in marine copepod diversity and environmental factors. Proc. R. Soc. B Biol. Sci. 276(1670), 3053–3062 (2009).Article
Google Scholar
9.Piontkovski, S. A. & Castellani, C. Long-term declining trend of zooplankton biomass in the Tropical Atlantic. Hydrobiologia 632, 365–370 (2009).Article
Google Scholar
10.Ruppert, K. M., Kline, R. J. & Rahman, Md. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).Article
Google Scholar
11.Ardura, A., Morote, E., Kochzius, M. & Garcia-Vazquez, E. Diversity of planktonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes. PeerJ 4, e2438 (2016).PubMed
PubMed Central
Article
Google Scholar
12.Fuentes, S., Rick, J., Scherp, P., Chistoserdov, A., & Noel, J. Development of Real-Time PCR assays for the detection of Cylindrospermopsis raciborskii. In Proceedings of the 12th International Conference on Harmful Algae, 397 (2008).13.Zaiko, A. et al. Metabarcoding approach for the ballast water surveillance—An advantageous solution or an awkward challenge?. Mar. Pollut. Bull. 92, 25–34 (2015).CAS
PubMed
Article
Google Scholar
14.Zaiko, A. et al. Detecting nuisance species using NGST: Methodology shortcomings and possible application in ballast water monitoring. Mar. Environ. Res. 112(B), 64–72 (2015).CAS
PubMed
Article
Google Scholar
15.Ardura, A., Zaiko, A., Martinez, J. L., Borrell, Y. J. & Garcia-Vazquez, E. Environmental DNA evidence of transfer of North Sea molluscs across tropical waters. J. Molluscan Stud. 81(4), 495–501 (2015).Article
Google Scholar
16.Zaiko, A., Samulioviene, A., Ardura, A. & Garcia-Vazquez, E. Metabarcoding approach for nonindigenous species surveillance in marine coastal waters. Mar. Pollut. Bull. 10, 53–59 (2015).Article
CAS
Google Scholar
17.Borrell, Y. J. et al. Metabarcoding and post-sampling strategies to discover non-indigenous species: A case study in the estuaries of the central south Bay of Biscay. J. Nat. Conserv. 42, 67–74. https://doi.org/10.1016/j.jnc.2017.07.002 (2017).Article
Google Scholar
18.Steyaert, M. et al. Advances in metabarcoding techniques bring us closer to reliable monitoring of the marine benthos. J. Appl. Ecol. 57, 2234–2245. https://doi.org/10.1111/1365-2664.13729 (2020).CAS
Article
Google Scholar
19.von Ammon, U. et al. Combining morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests in biofouling communities. Sci. Rep. 8, 16290. https://doi.org/10.1038/s41598-018-34541-1 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
20.Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348(6237), 1261359. https://doi.org/10.1126/science.1261359 (2015).CAS
Article
Google Scholar
21.Gimmler, A., de Vargas, C., Audic, S. & Stoeck, T. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci. Rep. 6, 33555 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
22.Bucklin, A., Lindeque, P. K., Rodriguez-Ezpeleta, N., Albaina, A. & Lehtiniemi, M. Metabarcoding of marine zooplankton: Prospects, progress and pitfalls. J. Plankton Res. 38(3), 393–400. https://doi.org/10.1093/plankt/fbw023 (2016).CAS
Article
Google Scholar
23.Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929e942 (2016).Article
CAS
Google Scholar
24.Holdaway, R. et al. Using DNA metabarcoding to assess New Zealand’s terrestrial biodiversity. N. Z. J. Ecol. 41(2), 251–262. https://doi.org/10.20417/nzjecol.41.28 (2017).Article
Google Scholar
25.van der Loos, L. M. & Nijland, R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Mol. Ecol. 00, 1–19. https://doi.org/10.1111/mec.15592 (2020).Article
Google Scholar
26.Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Tot. Environ. 678, 499–524 (2019).CAS
Article
Google Scholar
27.Ardura, A. Species-specific markers for early detection of marine invertebrate invaders through eDNA methods: Gaps and priorities in GenBank as database example. J. Nat. Conserv. 47, 51–57. https://doi.org/10.1016/j.jnc.2018.11.005 (2019).Article
Google Scholar
28.Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Natl. Acad. Sci. U. S. A. 270, 313–321 (2003).CAS
Google Scholar
29.Ward, R., Hanner, R. & Hebert, P. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 74, 329–356. https://doi.org/10.1111/j.1095-8649.2008.02080.x (2009).CAS
Article
PubMed
Google Scholar
30.Elbrecht, V. & Leese, F. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front. Environ. Sci. 5, 11. https://doi.org/10.3389/fenvs.2017.00011 (2017).Article
Google Scholar
31.Albaina, A., Aguirre, M., Abad, D., Santos, M. & Estonba, A. 18S rRNA V9 metabarcoding for diet characterization: A critical evaluation with two sympatric zooplanktivorous fish species. Ecol. Evol. 6(6), 1809–1824 (2016).PubMed
PubMed Central
Article
Google Scholar
32.Abad, D., Albaina, A., Aguirre, M. & Estonaba, A. 18S V9 metabarcoding correctly depicts plankton estuarine community drivers. Mar. Ecol. Prog. Ser. 584, 31–43 (2017).ADS
CAS
Article
Google Scholar
33.Günther, B., Knebelsberger, T., Neumann, H., Laakman, S. & Martinez Arbizu, P. Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci. Rep. 8, 14822 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
34.Borrell, Y. J., Miralles, L., Do-Huu, H., Mohammed-Geba, K. & Garcia-Vazquez, E. DNA in a bottle—Rapid metabarcoding survey for early alerts of invasive species in ports. PLoS ONE 12(9), e0183347. https://doi.org/10.1371/journal.pone.0183347 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
35.Ardura, A. et al. Nuisance Algae in ballast water facing international conventions. Insights from DNA metabarcoding in ships arriving in bay of Biscay. Water 12(8), 1–14. https://doi.org/10.3390/W12082168 (2020).Article
Google Scholar
36.Jose, E. C., Furio, E. F., Borja, V. M., Gatdula, N. C. & Santos, M. D. Zooplankton composition and abundance and its relationship with physico-chemical parameters in Manila Bay. J. Oceanogr. Mar. Res. 3(1), 1000136 (2015).Article
Google Scholar
37.Montoya-Maya, P. & Strydom, N. A. Zooplankton composition, abundance and distribution in selected south and west coast estuaries in South Africa. Afr. J. Aquat. Sci. 34(2), 147–157 (2009).Article
Google Scholar
38.Youssara, F. & Gaudy, R. Variations of zooplankton in the frontal area of the Alboran sea (Mediterranean Sea) in winter 1997. Oceanol. Acta 24, 361–376 (2001).Article
Google Scholar
39.Ndour, I., Berraho, A., Fall, M., Ettahiri, O. & Sambe, B. Composition, distribution and abundance of zooplankton and ichthyoplankton along the Senegal-Guinea maritime zone (West Africa). Egypt. J. Aquat. Res. 44(2), 109–124 (2018).Article
Google Scholar
40.Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: A review. Biogeosciences 7, 1543–1586 (2010).ADS
Article
Google Scholar
41.Uye, S., Iwamoto, N., Ueda, T., Tamaki, H. & Nakahira, K. Geographical variations in the trophic structure of the plankton community along a eutrophic-mesotrophic-oligotrophic transect. Fish. Oceanogr. 8(3), 227–237 (1999).Article
Google Scholar
42.Hanfland, C. & König, B. The Expedition PS116 of the Research Vessel Polarstern to the Atlantic Ocean in 2018, Berichte zur Polar- und Meeresforschung = Reports on polar and marine research. Bremerhaven Alfred Wegener Inst. Polar Mar. Res. 731, 54. https://doi.org/10.2312/BzPM_0731_2019 (2019).Article
Google Scholar
43.Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10(1), 34. https://doi.org/10.1186/1742-9994-10-34 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
44.Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861. https://doi.org/10.1111/1755-0998.12138 (2013).CAS
Article
PubMed
Google Scholar
45.Fernandez, S., Rodríguez-Martínez, S., Martínez, J. L., Garcia-Vazquez, E. & Ardura, A. How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias, Northern Spain). Environ. DNA 1, 385–401. https://doi.org/10.1002/edn3.40 (2019).Article
Google Scholar
46.Zhan, A. et al. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol. Evol. 4(6), 558–565 (2013).Article
Google Scholar
47.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
48.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 14.1. Technical notes. (2011).49.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
50.Baker, C. Workflow for generating a qiime-compatible blast database from an entrez search. (2017).51.Pielou, E. C. Ecological Diversity Vol. 7, 165 (Wiley, 1975).
Google Scholar
52.Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).
Google Scholar
53.Perez, J., Álvarez, P., Martinez, J. L. & Garcia-Vazquez, E. Genetic identification of hake and megrim eggs in formaldehyde-fixed plankton samples. ICES J. Mar. Sci. 62(5), 908–914. https://doi.org/10.1016/j.icesjms.2005.04.001 (2005).CAS
Article
Google Scholar
54.Von der Heyden, S., Lipinski, M. R. & Matthee, C. A. Species specific genetic markers for identification of early life history stages of Cape hakes, Merluccius capensis and M. paradoxus in the southern Benguela Current. J. Fish Biol. 70, 262–268 (2007).Article
Google Scholar
55.Fox, C. J. et al. TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: Implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods. Mol. Ecol. 14, 879–884 (2005).CAS
PubMed
Article
Google Scholar
56.Karaiskou, N. et al. Horse mackerel egg identification using DNA methodology. Mar. Ecol. 28, 429–434 (2007).ADS
CAS
Article
Google Scholar
57.Madden, M. J. L. et al. Using DNA barcoding to improve invasive pest identification at U.S. ports-of-entry. PLoS ONE 14, e0222291. https://doi.org/10.1371/journal.pone.0222291 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
58.Bridge, P. D., Roberts, P. J., Spooner, B. M. & Panchal, G. On the unreliability of published DNA sequences. New Phytol. 160, 43–48. https://doi.org/10.1046/j.1469-8137.2003.00861.x (2003).CAS
Article
Google Scholar
59.Leray, M. et al. GenBank is a reliable resource for 21st century biodiversity research. PNAS 116, 22651–22656. https://doi.org/10.1073/pnas.1911714116 (2019).ADS
CAS
Article
PubMed
Google Scholar
60.Edwards, M. et al. Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends Ecol. Evol. 25(10), 602–610. https://doi.org/10.1016/j.tree.2010.07.007 (2010).Article
PubMed
Google Scholar
61.Pillar, S. C. & Wilkinson, I. S. The diet of Cape hake Merluccius capensis on the south coast of South Africa. S. Afr. J. Mar. Sci. 15(1), 225–239. https://doi.org/10.2989/02577619509504845 (1995).Article
Google Scholar
62.Miossec, L., Le Deuff, R. M. & Goulletquer, R. Alien Species Alert: Crassostrea gigas (Pacific oyster). ICES Cooper. Res. Rep. 299, 42 (2009).
Google Scholar
63.Eckman, J. E. Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates. J. Exp. Mar. Biol. Ecol. 200, 207–237 (1996).Article
Google Scholar
64.Wellington, G. M. & Victor, B. C. Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar. Biol. 101, 557–567 (1989).Article
Google Scholar
65.Roy, K., Jablonski, D., Valentine, J. W. & Rosenberg, G. Marine latitudinal diversity gradients: Tests of causal hypotheses. Proc. Natl. Acad. Sci. U. S. A. 95, 3699–3702 (1998).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
66.Hillebrand, H. Strength, slope and variability of marine latitudinal gradients. Mar. Ecol. Prog. Ser. 273, 251–267 (2004).ADS
Article
Google Scholar
67.Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. U. S. A. 105(22), 7774–7778 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
68.Chao, Z. et al. Cytochrome C oxidase subunit I barcodes provide an efficient tool for Jinqian Baihua She (Bungarus parvus) authentication. Pharmacogn. Mag. 10(40), 449–457. https://doi.org/10.4103/0973-1296.141816 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
69.Ibabe, A., Rayon, F., Martinez, J. L. & Garcia-Vazquez, E. Environmental DNA from plastic and textile marine litter detects exotic and nuisance species nearby ports. PLoS ONE 15(6), e0228811 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
70Ardura, A. et al. Stress resistance for unraveling potential biopollutants. Insight from ballast wáter community análisis through DNA. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2020.111935 (2020).Article
PubMed
Google Scholar
71.Brown, C. M. et al. Short-term changes in reef fish community metrics correlate with variability in large shark occurrence. Food Webs 24, e00147. https://doi.org/10.1016/j.fooweb.2020.e00147 (2020).Article
Google Scholar
72.Paxton, A. B. et al. Artificial habitats host elevated densities of large reef-associated predators. PLoS ONE 15(9), e0237374. https://doi.org/10.1371/journal.pone.0237374 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
73.Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10(7), e0130324. https://doi.org/10.1371/journal.pone.0130324 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar More
