More stories

  • in

    The sublethal effects of neonicotinoids on spiders are independent of their nutritional status

    1.Holmstrum, P. et al. Interactions between effects of environmental chemicals and natural stressors: A review. Sci. Total Environ. 408, 3746–3762 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    2.Wahl, O. & Ulm, K. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica. Oecologia 59, 106–128 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Schmehl, D. R., Teal, P. E. A., Frazier, J. L. & Grozinger, C. M. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol. 71, 177–190 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Tosi, S., Nieh, J. C., Sgolastra, F., Cabbri, R. & Medrzycki, P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. Biol. Sci. 284, 20171711 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Stuligross, C. & Williams, N. M. Pesticide and resource stressors additively impair wild bee reproduction. Proc. Biol. Sci. 287, 20201390 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    6.Liess, M., Foit, K., Knillmann, S., Schäfer, R. B. & Liess, H.-D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).
    Google Scholar 
    9.Simpson, S. J., Le Couteur, D. G. & Raubenheimer, D. Putting the balance back in diet. Cell 161, 18–23 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Wise, D. Food limitation of the spider Linyphia marginata: Experimental field studies. Ecology 56, 637–646 (1975).Article 

    Google Scholar 
    11.Bilde, T. & Toft, S. Quantifying food limitation of arthropod predators in the field. Oecologia 115, 54–58 (1998).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wilder, S. M. & Rypstra, A. Diet quality affects mating behaviour and egg production in a wolf spider. Anim. Behav. 76, 439–445 (2008).Article 

    Google Scholar 
    13.Tanaka, K. & Itô, Y. Decrease in respiratory rate in a wolf spider, Pardosa astrigera (L. Koch), under starvation. Res. Popul. Ecol. 24, 360–374 (1982).Article 

    Google Scholar 
    14.O’Connor, K. I., Taylor, A. C. & Metcalfe, N. B. The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. J. Fish Biol. 57, 41–51 (2000).Article 

    Google Scholar 
    15.McCue, M. D. Specific dynamic action: A century of investigation. Comp. Biochem. Physiol. A. 144, 381394 (2006).Article 
    CAS 

    Google Scholar 
    16.Secor, S. M. Specific dynamic action: A review of the postprandial metabolic response. J. Comp. Physiol. B 179, 1–56 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Van Leeuwen, T. E., Rosenfeld, J. S. & Richards, J. G. Effects of food ration on SMR: Influence of food consumption on individual variation in metabolic rate in juvenile coho salmon (Onchorhynchus kisutch). J. Anim. Ecol. 81, 395–402 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Parthasarathy, B. & Somanathan, H. Body condition and food shapes group dispersal but not solitary dispersal in a social spider. Behav. Ecol. 29, 619–627 (2018).Article 

    Google Scholar 
    19.Koemel, N. A., Barnes, C. L. & Wilder, S. M. Metabolic and behavioral responses of predators to prey nutrient content. J. Insect Physiol. 116, 25–31 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Řezáč, M., Řezáčová, V. & Heneberg, P. Neonicotinoid insecticides limit the potential of spiders to re-colonize disturbed agroecosystems when using silk-mediated dispersal. Sci. Rep. 9, 12272 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Řezáč, M., Řezáčová, V. & Heneberg, P. Contact application of neonicotinoids suppresses the predation rate in different densities of prey and induces paralysis of common farmland spiders. Sci. Rep. 9, 5724 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Fagan, W. F. et al. Nitrogen in insects: implications for trophic complexity and species diversification. Am. Nat. 160, 784–802 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Raubenheimer, D., Mayntz, D., Simpson, S. J. & Tøft, S. Nutrient-specific compensation following diapause in a predator: Implications for intraguild predation. Ecology 88, 2598–2608 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Lease, H. M. & Wolf, B. O. Exoskeletal chitin scales iso¬metrically with body size in terrestrial insects. J. Morphol. 271, 759–768 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    25.Wilder, S. M., Norris, M., Lee, R. W., Raubenheimer, D. & Simpson, S. J. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 16, 895–902 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Salomon, M., Mayntz, D. & Lubin, Y. Colony nutrition skews reproduction in a social spider. Behav. Ecol. 19, 605–611 (2008).Article 

    Google Scholar 
    27.Jensen, K., Mayntz, D., Wang, T., Simpson, S. J. & Overgaard, J. Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. J. Insect Physiol. 56, 1095–1100 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D. & Simpson, S. J. Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim. Behav. 81, 993–999 (2011).Article 

    Google Scholar 
    29.Wiggins, W. D. & Wilder, S. M. Mismatch between dietary requirements for lipid by a predator and availability of lipid in prey. Oikos 127, 1024–1032 (2018).CAS 
    Article 

    Google Scholar 
    30.Uetz, G. W., Bischoff, J. & Raver, J. Survivorship of wolf spiders (Lycosidae) reared on different diets. J. Arachnol. 20, 207–211 (1992).
    Google Scholar 
    31.Sigsgaard, L., Toft, S. & Villareal, S. Diet-dependent survival, development and fecundity of the spider Atypena formosana (Oi) (Araneae: Linyphiidae) implications for biological control in rice. Biocontrol Sci. Technol. 11, 233–244 (2001).Article 

    Google Scholar 
    32.Fisker, E. N. & Toft, S. Effects of chronic exposure to a toxic prey in a generalist predator. Physiol. Entomol. 29, 129–138 (2004).Article 

    Google Scholar 
    33.Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D. & Simpson, S. J. Prey nutrient composition has different effects on Pardosa wolf spiders with dissimilar life histories. Oecologia 165, 577–583 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Wilder, S. M. Spider nutrition: An integrative perspective. Adv. Insect Physiol. 40, 87–136 (2011).Article 

    Google Scholar 
    35.Barnes, C. L., Hawlena, D. & Wilder, S. M. Predators buffer the effects of variation in prey nutrient content for nutrient deposition. Oikos 128, 360–367 (2019).Article 

    Google Scholar 
    36.Jensen, K. et al. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B 279, 2212–2218 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Toft, S. & Macías-Hernández, N. Metabolic adaptations for isopod specialization in three species of Dysdera spiders from the Canary Islands. Physiol. Entomol. 42, 191–198 (2017).CAS 
    Article 

    Google Scholar 
    38.Barry, K. L. & Wilder, S. M. Macronutrient intake affects reproduction of a predatory insect. Oikos 122, 1058–1064 (2013).Article 

    Google Scholar 
    39.Wilder, S. M. & Schneider, J. M. Micronutrient consumption by female Argiope bruennichi affects offspring survival. J. Insect Physiol. 100, 128–132 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Demaree, S. R., Gilbert, C. D., Mersmann, H. J. & Smith, S. B. Conjugated linoleic acid differentially modifies fatty acid composition in subcellular fractions of muscle and adipose tissue but not adiposity of postweaning pigs. J. Nutr. 132, 3272–3279 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Nagao, K. & Yanagita, T. Conjugated fatty acids in food and their health benefits. J. Biosci. Bioeng. 100, 152–157 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hennessy, A. A., Ross, P. R., Fitzgerald, G. F. & Stanton, C. Sources and bioactive properties of conjugated dietary fatty acids. Lipids 51, 377–397 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hawley, J., Simpson, S. J. & Wilder, S. M. Effects of prey macronutrient content on body composition and nutrient intake in a web-building spider. PLoS ONE 9, e99165 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Dicks, L. Bees, lies and evidence-based policy. Nature 494, 283 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    47.Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356, 1395–1397 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Song, F. et al. Specific loops D, E and F of nicotinic acetylcholine receptor β1 subunit may confer imidacloprid selectivity between Myzus persicae and its predatory enemy Pardosa pseudoannulata. Insect Biochem. Mol. Biol. 39, 833–841 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Korenko, S., Sýkora, J., Řezáč, M. & Heneberg, P. Neonicotinoids suppress contact chemoreception in a common farmland spider. Sci. Rep. 10, 7019 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Benamú, M. et al. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure. Chemosphere 181, 241–249 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Korenko, S., Saska, P., Kysilková, K., Řezáč, M. & Heneberg, P. Prey contaminated with neonicotinoids induces feeding deterrent behavior of a common farmland spider. Sci. Rep. 9, 15895 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Park, Y. et al. Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 61, 255–259 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Sun, Q. et al. Imidacloprid promotes high fat diet-induced adiposity in female C57BL/6J mice and enhances adipogenesis in 3T3-L1 adipocytes via the AMPKα-mediated pathway. J. Agric. Food Chem. 65, 6572–6581 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Sun, Q. et al. Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. J. Agric. Food Chem. 64, 9293–9306 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.McCluney, K. E. & Sabo, J. L. Water availability directly determines per capita consumption at two trophic levels. Ecology 90, 1463–1469 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.McCluney, K. E. & Sabo, J. L. Tracing water sources of terrestrial animal populations with stable isotopes: Laboratory tests with crickets and spiders. PLoS ONE 5, e15696 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Leinbach, I. L., McCluney, K. E. & Sabo, J. L. Predator water balance alters intraguild predation in a streamside food web. Ecology 100, e02635 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Noldus, L. P., Spink, A. J. & Tegelenbosch, R. A. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 33, 398–414 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Pétillon, J. J., Deruytter, D., Decae, A., Renault, D. & Bonte, D. Habitat use, but not dispersal limitations, as the mechanism behind the aggregated population structure of the mygalomorph species Atypus affinis. Anim. Biol. 62, 181–192 (2012).Article 

    Google Scholar 
    61.Radwan, M. A. & Mohamed, M. S. Imidacloprid induced alterations in enzyme activities and energy reserves of the land snail, Helix aspersa. Ecotoxicol. Environ. Saf. 95, 91–97 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Ribeiro, S., Sousa, J. P., Nogueira, A. J. A. & Soares, A. M. V. M. Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus. Ecotoxicol. Environ. Saf. 49, 131–138 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Rambabu, P. J. & Rao, M. B. Effect of an organochlorine and three organophosphate pesticides on glucose, glycogen, lipid and protein contents in tissues of the freshwater snail, Bellamya dissimilis (Müller). Bull. Environ. Contam. Toxicol. 53, 142–148 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Dutra, B. K., Fernandes, F. A., Lauffer, A. L. & Oliveira, G. T. Carbofuran-induced alterations in the energy metabolism and reproductive behaviors of Hyalella castroi (Crustacea, Amphipoda). Comp. Biochem. Physiol. Part C 149, 640–646 (2009).CAS 

    Google Scholar 
    65.Messiad, R., Habes, D. & Soltani, N. Reproductive effects of a neonicotinoid insecticide (Imidacloprid) in the German Cockroaches Blattella germanica L. (Dictyoptera, Blattellidae). J. Entomol. Zool. Stud. 3, 1–6 (2015).
    Google Scholar 
    66.Abdelsalam, S. A., Alzahrani, A. M., Elmenshawy, O. M., Sedky, A. & Abdel-Moneim, A. M. Biochemical and ultrastructural changes in the ovaries of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) following acute imidacloprid poisoning. J. Asia Pac. Entomol. 23, 709–714 (2020).Article 

    Google Scholar 
    67.Tufi, S., Stel, J. M., De Boer, J., Lamoree, M. H. & Leonards, P. E. G. Metabolomics to explore imidacloprid-induced toxicity in the central nervous system of the freshwater snail Lymnaea stagnalis. Environ. Sci. Technol. 49, 14529–14536 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Ewere, E. E., Reichelt-Brushett, A. & Benkerndorff, K. Imidacloprid and formulated product impacts the fatty acids and enzymatic activities in tissues of Sydney rock oysters, Saccostrea glomerata. Mar. Environ. Res. 151, 104765 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Capowiez, Y., Rault, M., Mazzia, C. & Belzunces, L. Earthworm behavior as a biomarker: A case study using imidacloprid. Pedobiologia 47, 542–547 (2003).
    Google Scholar 
    70.Drobne, D. et al. Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Chemosphere 71, 1326–1334 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes

    1.Cadwell, K. The virome in host health and disease. Immunity 42, 805–813 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Paez-Espino, D. et al. Uncovering earth’s virome. Nature https://doi.org/10.1038/nature19094 (2016).Article 
    PubMed 

    Google Scholar 
    3.Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Dolja, V. V. & Koonin, E. V. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 244, 36–52 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Li, C.-X. et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 4, e05378 (2015).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    6.Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Atoni, E. et al. Metagenomic Virome Analysis of Culex Mosquitoes from Kenya and China. Viruses 10, 30 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    8.Sadeghi, M. et al. Virome of > 12 thousand Culex mosquitoes from throughout California. Virology 523, 74–88 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Zakrzewski, M. et al. Mapping the virome in wild-caught Aedes aegypti from Cairns and Bangkok. Nat. Publ. Group https://doi.org/10.1038/s41598-018-22945-y (2018).Article 

    Google Scholar 
    10.Xia, H. et al. Comparative metagenomic profiling of viromes associated with four common mosquito species in China. Virol. Sin. 33, 59–66 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Frey, K. G. et al. Bioinformatic characterization of mosquito viromes within the eastern United States and Puerto Rico: ciscovery of novel viruses. Evolut. Bioinform. 12s2, EBO.S38518 (2016).Article 

    Google Scholar 
    12.Chandler, J. A., Liu, R. M. & Bennett, S. N. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 06, 403 (2015).Article 

    Google Scholar 
    13.Chandler, J. A. et al. Metagenomic shotgun sequencing of a Bunyavirus in wild-caught Aedes aegypti from Thailand informs the evolutionary and genomic history of the Phleboviruses. Virology 464–465, 312–319 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    14.Cholleti, H. et al. Discovery of novel viruses in mosquitoes from the Zambezi valley of Mozambique. PLoS ONE 11, e0162751 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Scarpassa, V. M. et al. An insight into the sialotranscriptome and virome of Amazonian anophelines. BMC Genom. https://doi.org/10.1186/s12864-019-5545-0 (2019).Article 

    Google Scholar 
    16.Hameed, M. et al. A viral metagenomic analysis reveals rich viral abundance and diversity in mosquitoes from pig farms. Transbound. Emerg. Dis. 67, 328–343 (2019).PubMed 
    Article 

    Google Scholar 
    17.Fauver, J. R. et al. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-speci. Virology 498, 288–299 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Xiao, P. et al. Metagenomic sequencing from mosquitoes in China reveals a variety of insect and human viruses. Front. Cell. Infect. Microbiol. 8, 131–211 (2018).Article 
    CAS 

    Google Scholar 
    19.Shi, C. et al. Stable distinct core eukaryotic viromes in different mosquito species from Guadeloupe, using single mosquito viral metagenomics. Microbiome https://doi.org/10.1186/s40168-019-0734-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.World Health Organization. A global brief on vector-borne diseases. (2014).21.Vasilakis, N. & Tesh, R. B. Insect-specific viruses and their potential impact on arbovirus transmission. Curr. Opin. Virol. 15, 69–74 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Goenaga, S. et al. Potential for co-infection of a mosquito-specific flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes. Viruses 7, 5801–5812 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Hall-Mendelin, S. et al. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Parasit. Vectors 9, 414 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Colmant, A. M. G. et al. The recently identified flavivirus Bamaga virus is transmitted horizontally by Culex mosquitoes and interferes with West Nile virus replication in vitro and transmission in vivo. PLoS Negl. Trop. Dis. 12, e0006886 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Romo, H., Kenney, J. L., Blitvich, B. J. & Brault, A. C. Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerg. Microbes Infect 7, 181 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Schultz, M. J., Frydman, H. M. & Connor, J. H. Dual Insect specific virus infection limits Arbovirus replication in Aedes mosquito cells. Virology 518, 406–413 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Thongsripong, P. et al. Mosquito vector diversity across habitats in central Thailand endemic for dengue and other arthropod-borne diseases. PLoS Negl. Trop. Dis. 7, e2507 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Kukutla, P., Steritz, M. & Xu, J. Depletion of ribosomal RNA for mosquito gut metagenomic RNA-seq. JoVE https://doi.org/10.3791/50093 (2013).Article 
    PubMed 

    Google Scholar 
    29.Rattanarithikul, R., Harrison, B. A. & Panthusiri, P. Coleman RE (2005) Illustrated keys to the mosquitoes of Thailand I. Background; geographic distribution; lists of genera, subgenera, and species; and a key to the genera. Southeast Asian J. Trop. Med. Public Health 36 Suppl 1, 1–80 (2005).PubMed 

    Google Scholar 
    30.Rattanarithikul, R. et al. Illustrated keys to the mosquitoes of Thailand. II. Genera Culex and Lutzia. Southeast Asian J. Trop. Med. Public Health 36 Suppl 2, 1–97 (2005).PubMed 

    Google Scholar 
    31.Rattanarithikul, R., Harrison, B. A., Panthusiri, P., Peyton, E. L. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand III. Genera Aedeomyia, Ficalbia, Mimomyia, Hodgesia, Coquillettidia, Mansonia, and Uranotaenia. Southeast Asian J. Trop. Med. Public Health 37 Suppl 1, 1–85 (2006).PubMed 

    Google Scholar 
    32.Rattanarithikul, R., Harrison, B. A., Harbach, R. E., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand. IV. Anopheles. Southeast Asian J. Trop. Med. Public Health 37 Suppl 2, 1–128 (2006).PubMed 

    Google Scholar 
    33.Rattanarithikul, R., Harbach, R. E., Harrison, B. A., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand V. Genera Orthopodomyia, Kimia, Malaya, Topomyia, Tripteroides, and Toxorhynchites. Southeast Asian J. Trop. Med. Public Health 38, 1–65 (2007).PubMed 

    Google Scholar 
    34.Rattanarithikul, R. et al. Illustrated keys to the mosquitoes of Thailand. VI. Tribe Aedini. Southeast Asian J. Trop. Med. Public Health 41 Suppl 1, 1–225 (2010).PubMed 

    Google Scholar 
    35.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    39.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. bioRxiv 447110 (2018).42.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for interface of large phylogenetic trees. 1–8 (2010).43.Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz239 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Ryan, F. P. Human endogenous retroviruses in multiple sclerosis: potential for novel neuro-pharmacological research. Curr. Neuropharmacol. 9, 360–369 (2011).47.Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15, R46 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Simmonds, P. et al. ICTV virus taxonomy profile: Flaviviridae. J. Gen. Virol. 98, 2–3 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Kyaw, A. K. et al. Virus research. Virus Res. 247, 120–124 (2018).Article 
    CAS 

    Google Scholar 
    51.Valles, S. M. et al. ICTV virus taxonomy profile: Iflaviridae. J. Gen. Virol. 98, 527–528 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Kobayashi, D. et al. Isolation and characterization of a new iflavirus from Armigeres spp. mosquitoes in the Philippines. J. Gen. Virol. 98, 2876–2881 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Viruses, I. C. O. T. O., King, A. M. Q., Adams, M. J., Lefkowitz, E. & Carstens, E. B. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (Elsevier, Amsterdam, 2011).
    Google Scholar 
    54.Hillman, B. I. & Cai, G. The family narnaviridae: Simplest of RNA viruses. Adv. Virus Res. 86, 149–176 (2013).PubMed 
    Article 

    Google Scholar 
    55.Turina, M. et al. ICTV virus taxonomy profile: Ourmiavirus. J. Gen. Virol. 98, 129–130 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Yong, C. Y., Yeap, S. K., Omar, A. R. & Tan, W. S. Advances in the study of nodavirus. PeerJ 5, e3841 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Sahul Hameed, A. S. et al. ICTV virus taxonomy profile: Nodaviridae. J. Gen. Virol. 100, 3–4 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Sanborn, M. et al. Metagenomic analysis reveals three novel and prevalent mosquito biruses from a single pool of Aedes vexans nipponii collected in the Republic of Korea. Viruses 11, 222 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    59.Olendraite, I. et al. ICTV virus taxonomy profile: Polycipiviridae. J. Gen. Virol. 100, 554–555 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Wichgers Schreur, P. J., Kormelink, R. & Kortekaas, J. Genome packaging of the Bunyavirales. Curr. Opin. Virol. 33, 151–155 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Marklewitz, M., Zirkel, F., Kurth, A., Drosten, C. & Junglen, S. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family. Proc. Natl. Acad. Sci. U.S.A. 112, 7536–7541 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Walker, P. J. et al. ICTV virus taxonomy profile: Rhabdoviridae. J. Gen. Virol. 99, 447–448 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Sun, Q. et al. Complete genome sequence of Menghai rhabdovirus, a novel mosquito-borne rhabdovirus from China. Adv. Virol. 162, 1103–1106 (2017).CAS 

    Google Scholar 
    64.Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J. H. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 281, 215–220 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Flegontov, P. et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol 23, 1787–1793 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Kaur, D. et al. Occurrence of Setaria digitata in a cow. J Parasit Dis 39, 477–478 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Heneberg, P. et al. Intermediate hosts of the trematode Collyriclum faba (Plagiochiida: Collyriclidae) identified by an integrated morphological and genetic approach. Parasit. Vectors 8, 85 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Enabulele, E. E., Lawton, S. P., Walker, A. J. & Kirk, R. S. Molecular and morphological characterization of the cercariae of Lecithodendrium linstowi (Dollfus, 1931), a trematode of bats, and incrimination of the first intermediate snail host Radix balthica. Parasitology 145, 307–312 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Greiman, S. E. et al. Real-time PCR detection and phylogenetic relationships of Neorickettsia spp. in digeneans from Egypt, Philippines, Thailand, Vietnam and the United States. Parasitol. Int. 66, 1003–1007 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Lantova, L. & Volf, P. Mosquito and sand fly gregarines of the genus Ascogregarina and Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina)—Overview of their taxonomy, life cycle, host specificity and pathogenicity. Infect. Genet. Evol. 28, 616–627 (2014).PubMed 
    Article 

    Google Scholar 
    71.Roychoudhury, S. et al. Comparison of the morphology of oocysts and the phylogenetic analysis of four Ascogregarina species (Eugregarinidae: Lecudinidae) as inferred from small subunit ribosomal DNA sequences. Parasitol. Int. 56, 113–118 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Muslim, A., Fong, M.-Y., Mahmud, R., Lau, Y.-L. & Sivanandam, S. Armigeres subalbatus incriminated as a vector of zoonotic Brugia pahangi filariasis in suburban Kuala Lumpur Peninsular Malaysia. Parasites Vectors 6, 219 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Hiscox, A. et al. Armigeres subalbatus colonization of damaged pit latrines: A nuisance and potential health risk to residents of resettlement villages in Laos. Med. Vet. Entomol. 30, 95–100 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Chaves, L. F., Imanishi, N. & Hoshi, T. Population dynamics of Armigeres subalbatus (Diptera: Culicidae) across a temperate altitudinal gradient. Bull. Entomol. Res. 105, 589–597 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Ohba, S.-Y., Van Soai, N., Van Anh, D. T., Nguyen, Y. T. & Takagi, M. Study of mosquito fauna in rice ecosystems around Hanoi, northern Vietnam. Acta Trop. 142, 89–95 (2015).PubMed 
    Article 

    Google Scholar 
    76.Tsuda, Y., Takagi, M., Suwonkerd, W., Sugiyama, A. & Wada, Y. Comparisons of rice field mosquito (Diptera: Culicidae) abundance among areas with different agricultural practices in northern Thailand. J. Med. Entom. 35, 845–848 (1998).CAS 
    Article 

    Google Scholar 
    77.Ohba, S.-Y. et al. Mosquitoes and their potential predators in rice agroecosystems of the Mekong Delta, southern Vietnam. J. Am. Mosq. Control Assoc. 27, 384–392 (2011).PubMed 
    Article 

    Google Scholar 
    78.Su, C.-L. et al. Molecular epidemiology of Japanese encephalitis virus in mosquitoes in Taiwan during 2005–2012. PLoS Negl. Trop. Dis. 8, e3122 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Keiser, J. et al. Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop. 95, 40–57 (2005).PubMed 
    Article 

    Google Scholar 
    80.Apiwathnasorn, C., Samung, Y., Prummongkol, S., Asavanich, A. & Komalamisra, N. Surveys for natural host plants of Mansonia mosquitoes inhabiting Toh Daeng peat swamp forest, Narathiwat Province, Thailand. Southeast Asian J. Trop. Med. Public Health 37, 279–282 (2006).PubMed 

    Google Scholar 
    81.Surtees, G., Simpson, D. I. H., Bowen, E. T. W. & Grainger, W. E. Ricefield development and arbovirus epidemiology, Kano Plain, Kenya. Trans. R. Soc. Trop. Med. Hyg. 64, 511–518 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Kwa, B. H. Environmental change, development and vector-borne disease: Malaysia’s experience with filariasis, scrub typhus and dengue. Environ. Dev. Sustain. 10, 209–217 (2008).Article 

    Google Scholar 
    83.Cook, S. et al. Molecular evolution of the insect-specific flaviviruses. J. Gen. Virol. 93, 223–234 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Parry, R. & Asgari, S. Aedes anphevirus: an insect-specific virus distributed worldwide in Aedes aegypti mosquitoes that has complex interplays with Wolbachia and Dengue Virus Infection in Cells. J. Virol. 92, e00224–18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Shi, M. et al. High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in western Australia. J. Virol. 91, e00680–17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    86.Thongsripong, P. et al. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases. Ecol. Evol. 8, 1352–1368 (2018).PubMed 
    Article 

    Google Scholar 
    87.Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 27, 105–117 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 1–12 (2014).MathSciNet 
    Article 
    CAS 

    Google Scholar 
    89.Pollock, J., Glendinning, L., Wisedchanwet, T. & Watson, M. The madness of microbiome: attempting to find consensus ‘best practice’ for 16S microbiome studies. Appl. Environ. Microbiol. 84, e02627–17 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Blair, C. D., Olson, K. E. & Bonizzoni M. The widespread occurrence and potential biological roles of endogenous viral elements in insect genomes. Curr. Issues Mol. Biol. 34, 13–30 (2020).PubMed 
    Article 

    Google Scholar  More

  • in

    Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress

    1.Julkowska MM, Testerink C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 2015;20:586–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Li H, Zhao Q, Huang H. Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci Total Environ. 2019;669:258–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.FAO. Extent of salt-affected soils. 2020. http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/. Accessed 14 June 2020.4.Jamil A, Riaz S, Ashraf M, Foolad MR. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci. 2011;30:435–58.Article 

    Google Scholar 
    5.Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, Aarrouf J, et al. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem. 2014;83:126–33.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.McFarlane DJ, George RJ, Barrett-Lennard EG, Gilfedder M. Salinity in dryland agricultural systems: challenges and opportunities. In: Farooq M, Siddique KHM, editors. Innovations in dryland agriculture. 1st ed. Switzerland: Springer Nature; 2016. p. 521–47.
    Google Scholar 
    7.Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. N. Phytol. 2018;217:523–39.CAS 
    Article 

    Google Scholar 
    8.Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield. Plant Biol. 2019;21:31–38.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    9.Flood PJ, Hancock AM. The genomic basis of adaptation in plants. Curr Opin Plant Biol. 2017;36:88–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Yuan F, Leng B, Wang B. Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Front Plant Sci. 2016;7:977.PubMed 
    PubMed Central 

    Google Scholar 
    11.Yang Y, Guo Y. Unraveling salt stress signaling in plants. J Integr Plant Biol. 2018;60:796–804.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Kazan K, Lyons R. The link between flowering time and stress tolerance. J Exp Bot. 2015;67:47–60.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    13.Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Lowry DB, Hall MC, Salt DE, Willis JH. Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. N. Phytol. 2009;183:776–88.Article 

    Google Scholar 
    15.Ilangumaran G, Smith DL. Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci. 2017;8:1768.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems biology of plant microbiome interactions. Mol Plant. 2019;12:804–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 2018;9:112.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018;36:1100–9.CAS 
    Article 

    Google Scholar 
    21.Jha B, Gontia I, Hartmann A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil. 2012;356:265–77.CAS 
    Article 

    Google Scholar 
    22.Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, et al. Isolation of ACC deaminase-produ0cing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil. 2014;374:753–66.CAS 
    Article 

    Google Scholar 
    23.Soldan R, Mapelli F, Crotti E, Schnell S, Daffonchio D, Marasco R, et al. Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res. 2019;223:33–43.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    24.Bal HB, Nayak L, Das S, Adhya TK. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 2013;366:93–105.CAS 
    Article 

    Google Scholar 
    25.Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep. 2016;6:34768.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Dong ZY, Rao MPN, Wang HF, Fang BZ, Liu YH, Li L, et al. Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. Sci Total Environ. 2019;686:107–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Yaish MW, Al-Lawati A, Jana GA, Patankar HV, Glick BR. Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One. 2016;11:e0159007.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Yang H, Hu J, Long X, Liu Z, Rengel Z. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci Rep. 2016;6:20687.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Thiem D, Gołębiewski M, Hulisz P, Piernik A, Hrynkiewicz K. How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots? Front Microbiol. 2018;9:651.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev. 2014;34:737–52.Article 

    Google Scholar 
    31.Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57:233–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Badri DV, Vivanco JM. Regulation and function of root exudates. Plant Cell Environ. 2009;32:666–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 2013;7:1609–19.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Niu B, Paulson JN, Zheng X, Kolter R. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci USA. 2017;114:E2450–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Vargas R, Pankova E, Balyuk A, Krasilnikov P, Khasankhanova G, editors. Handbook for saline soil management. Food and Agriculture Organization of the United Nations and Lomonosov Moscow State University, Rome, Italy, 2018, pp 8–11.37.McNamara NP, Black HIJ, Beresford NA, Parekh NR. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol. 2003;24:117–32.Article 

    Google Scholar 
    38.Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 2019;366:606–12.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    40.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, et al. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinforma (Oxf, Engl). 2018;34:2371–5.CAS 
    Article 

    Google Scholar 
    45.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA. 2013;110:6548–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Javůrková VG, Kreisinger J, Procházka P, Požgayová M, Ševčíková K, Brlík V, et al. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 2019;13:2363–76.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    51.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Community ecology package. R package version 2.5-6. https://cran.r-project.org. Accessed 1 Sep 2019.52.Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Santhanam R, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA. 2015;112:E5013–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Dudenhöffer J-H, Scheu S, Jousset A. Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. J Ecol. 2016;104:1566–75.Article 
    CAS 

    Google Scholar 
    56.Kong HG, Kim BK, Song GC, Lee S, Ryu C-M. Aboveground whitefly infestation-mediated reshaping of the root microbiota. Front Microbiol. 2016;7:1314.PubMed 
    PubMed Central 

    Google Scholar 
    57.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Pieterse CM, de Jonge R, Berendsen RL. The soil-borne supremacy. Trends Plant Sci. 2016;21:171–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18:124.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    61.Cominelli E, Conti L, Tonelli C, Galbiati M. Challenges and perspectives to improve crop drought and salinity tolerance. N. Biotechnol. 2013;30:355–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, et al. Stress tolerance in plants via habitat adapted symbiosis. ISME J. 2008;2:404–16.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Hamilton EW III, Frank DA. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology. 2001;82:2397–402.Article 

    Google Scholar 
    64.Cipollini D, Rigsby CM, Barto EK. Microbes as targets and mediators of allelopathy in plants. J Chem Ecol. 2012;38:714–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Ahmed V, Verma MK, Gupta S, Mandhan V, Chauhan NS. Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Front Microbiol. 2018;9:159.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Troost TA, Kooi BW, Kooijman SALM. When do mixotrophs specialize? Adaptive dynamics theory applied to a dynamic energy budget model. Math Biosci. 2005;193:159–82.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Venceslau SS, Lino RR, Pereira IA. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem. 2010;285:22774–83.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res. 2018;209:21–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Kumar M, Etesami H, Kumar V, editors. Saline soil-based agriculture by halotolerant microorganisms. Singapore: Springer Nature Singapore Pte Ltd; 2019.
    Google Scholar 
    70.Etesami H, Glick BR. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environ Exp Bot. 2020;23:104124.Article 
    CAS 

    Google Scholar 
    71.van der Heijden MG, Schlaeppi K. Root surface as a frontier for plant microbiome research. Proc Natl Acad Sci USA. 2015;112:2299–300.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    72.Bakhshandeh E, Gholamhosseini M, Yaghoubian Y, Pirdashti H. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regul. 2020;90:123–36.CAS 
    Article 

    Google Scholar 
    73.Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA. 2012;109:1159–64.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Matos A, Kerkhof L, Garland JL. Effects of microbial community diversity on the survival of Pseudomonas aeruginosa in the wheat rhizosphere. Micro Ecol. 2005;49:257–64.CAS 
    Article 

    Google Scholar 
    77.Hol WHG, de Boer W, Termorshuizen AJ, Meyer KM, Schneider JHM, et al. Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol Lett. 2010;13:292–301.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.Article 

    Google Scholar 
    79.Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands. Int J Phytoremediat. 2016;18:1113–21.CAS 
    Article 

    Google Scholar 
    80.Misra S, Dixit VK, Mishra SK, Chauhan PS. Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. Ann Microbiol. 2019;69:419–34.CAS 
    Article 

    Google Scholar 
    81.Gest H. The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, fellows of the Royal Society. Notes Rec R Soc Lond. 2004;58:187–201.PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish

    1.IPCC. The Ocean and Cryosphere in a changing Climate—Summary for Policymakers (2019).2.Carmack, E. et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new arctic. Bull. Am. Meteorol. Soc. 96, 2079–2105 (2015).ADS 
    Article 

    Google Scholar 
    3.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 

    Google Scholar 
    4.Borgå, K. The Arctic ecosystem: a canary in the coal mine for global multiple stressors. Environ. Toxicol. Chem. 38, 487–488 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    5.Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018).ADS 
    Article 

    Google Scholar 
    6.Onarheim, I. H., Eldevik, T., Smedsrud, L. H. & Stroeve, J. C. Seasonal and regional manifestation of Arctic Sea ice loss. J. Clim. 31, 4917–4932 (2018).ADS 
    Article 

    Google Scholar 
    7.Screen, J. A. & Simmonds, I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett. 37, 1–5 (2010).Article 

    Google Scholar 
    8.Onarheim, I. H. & Årthun, M. Toward an ice-free Barents Sea. Geophys. Res. Lett. 44, 8387–8395 (2017).ADS 
    Article 

    Google Scholar 
    9.Champine, R. D., Morris, R. & Elder, S. The melting Arctic is now open for business. National Geographic Magazine (2019).10.Orourke, R. et al. Changes in the Arctic: Background and Issues for Congress 129 (DIANE Publishing, 2020).
    Google Scholar 
    11.Eriksen, E., Huserbråten, M., Gjøsæter, H., Vikebø, F. & Albretsen, J. Polar cod egg and larval drift patterns in the Svalbard archipelago. Polar Biol. https://doi.org/10.1007/s00300-019-02549-6 (2019).Article 

    Google Scholar 
    12.Eguíluz, V. M., Fernández-Gracia, J., Irigoien, X. & Duarte, C. M. A quantitative assessment of Arctic shipping in 2010–2014. Sci. Rep. 6, 30682 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Ellis, B., & Brigham, L. Arctic Marine Shipping Assessment 2009 Report. (2009).14.Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).PubMed 
    Article 

    Google Scholar 
    15.Pollino, C. A. & Holdway, D. A. Toxicity testing of crude oil and related compounds using early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Ecotoxicol. Environ. Saf. 52, 180–189 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Miller, B. & Kendall, A. W. Early Life History of Marine Fishes (University of California Press, 2009). https://doi.org/10.1525/9780520943766.
    Google Scholar 
    17.Dahlke, F. T. et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Sci. Adv. 4, 8821 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    18.Petersen, G. I. & Kristensen, P. Bioaccumulation of lipophilic substances in fish early life stages. Environ. Toxicol. Chem. 17, 1385–1395 (1998).CAS 
    Article 

    Google Scholar 
    19.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Jung, J.-H. et al. Differential toxicokinetics determines the sensitivity of two marine embryonic fish exposed to Iranian heavy crude oil. Environ. Sci. Technol. 49, 13639–13648 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Ingvarsdóttir, A. et al. Effects of different concentrations of crude oil on first feeding larvae of Atlantic herring (Clupea harengus). J. Mar. Syst. 93, 69–76 (2012).Article 

    Google Scholar 
    22.Pasparakis, C., Esbaugh, A. J., Burggren, W. & Grosell, M. Physiological impacts of deepwater horizon oil on fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 224, 108558 (2019).CAS 
    Article 

    Google Scholar 
    23.Steiner, N. S. et al. Impacts of the changing ocean-sea ice system on the key forage fish arctic cod (Boreogadus saida) and subsistence fisheries in the western Canadian arctic—evaluating linked climate, ecosystem and economic (CEE) models. Front. Mar. Sci. 6, 179 (2019).Article 

    Google Scholar 
    24.Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B Biol. Sci. 282, 20151546 (2015).Article 

    Google Scholar 
    25.Harter, B. B., Elliott, K. H., Divoky, G. J. & Davoren, G. K. Arctic cod (Boreogadus saida) as prey: fish length-energetics relationships in the Beaufort Sea and Hudson Bay. Arctic 66, 191–196 (2013).Article 

    Google Scholar 
    26.Graham, M. & Hop, H. Aspects of reproduction and larval biology of Arctic cod (Boreogadus saida). Arctic 48, 130–135 (1995).Article 

    Google Scholar 
    27.Gradinger, R. R. & Bluhm, B. A. In-situ observations on the distribution and behavior of amphipods and Arctic cod (Boreogadus saida) under the sea ice of the High Arctic Canada Basin. Polar Biol. 27, 595–603 (2004).Article 

    Google Scholar 
    28.Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403–2412 (2018).Article 

    Google Scholar 
    29.ICES. Report of the Arctic Fisheries Working Group. 859 http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2018/AFWG/00-AFWG%202018%20Report.pdf (2018).30.Eriksen, E., Ingvaldsen, R. B., Nedreaas, K. & Prozorkevich, D. The effect of recent warming on polar cod and beaked redfish juveniles in the Barents Sea. Reg. Stud. Mar. Sci. 2, 105–112 (2015).Article 

    Google Scholar 
    31.Astthorsson, O. S. Distribution, abundance and biology of polar cod, Boreogadus saida, in Iceland–East Greenland waters. Polar Biol. 39, 995–1003 (2016).Article 

    Google Scholar 
    32.Divoky, G. J., Lukacs, P. M. & Druckenmiller, M. L. Effects of recent decreases in arctic sea ice on an ice-associated marine bird. Prog. Oceanogr. 136, 151–161 (2015).ADS 
    Article 

    Google Scholar 
    33.Hansen, M. O., Nielsen, T. G., Stedmon, C. A. & Munk, P. Oceanographic regime shift during 1997 in Disko Bay, Western Greenland. Limnol. Oceanogr. 57, 634–644 (2012).ADS 
    Article 

    Google Scholar 
    34.Nahrgang, J. et al. Gender specific reproductive strategies of an Arctic key species (Boreogadus saida) and implications of climate change. PLoS ONE 9, e98452 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Huserbråten, M. B. O., Eriksen, E., Gjøsæter, H. & Vikebø, F. Polar cod in jeopardy under the retreating Arctic sea ice. Commun. Biol. 2, 1–8 (2019).Article 

    Google Scholar 
    36.Nahrgang, J. et al. Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil. Environ. Pollut. 218, 605–614 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Laurel, B. J. et al. Embryonic crude oil exposure impairs growth and lipid allocation in a keystone arctic forage fish. iScience 19, 1101–1113 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Politis, S. N. et al. Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae. PLoS ONE 12, e0182726 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.O’Dea, R. E., Lagisz, M., Hendry, A. P. & Nakagawa, S. Developmental temperature affects phenotypic means and variability: a meta-analysis of fish data. Fish Fish. 20, 1005–1022 (2019).Article 

    Google Scholar 
    40.Réalis-Doyelle, E., Pasquet, A., De Charleroy, D., Fontaine, P. & Teletchea, F. Strong effects of temperature on the early life stages of a cold stenothermal fish species, brown trout (Salmo trutta L.). PLoS ONE 11, e0155487 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Réalis-Doyelle, E., Pasquet, A., Fontaine, P. & Teletchea, F. How climate change may affect the early life stages of one of the most common freshwater fish species worldwide: the common carp (Cyprinus carpio). Hydrobiologia 805, 365–375 (2018).Article 
    CAS 

    Google Scholar 
    42.Hicken, C. E. et al. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc. Natl. Acad. Sci. 108, 7086–7090 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Carls, M. G., Rice, S. D. & Hose, J. E. Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environ. Toxicol. Chem. 18, 481–493 (1999).CAS 
    Article 

    Google Scholar 
    44.Incardona, J. P. Molecular mechanisms of crude oil developmental toxicity in fish. Arch. Environ. Contam. Toxicol. 73, 19–32 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Sørhus, E. et al. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. Elife 6, e20707 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Incardona, J. P. & Scholz, N. L. The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. Aquat. Toxicol. 177, 515–525 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Perrichon, P. et al. Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac performance of larval mahi–mahi, Coryphaena hippurus. PLoS ONE 13, e0203949 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Pasparakis, C. et al. Combined effects of oil exposure, temperature and ultraviolet radiation on buoyancy and oxygen consumption of embryonic mahi–mahi, Coryphaena hippurus. Aquat. Toxicol. 191, 113–121 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Pasparakis, C., Mager, E. M., Stieglitz, J. D., Benetti, D. & Grosell, M. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi–mahi (Coryphaena hippurus). Aquat. Toxicol. 181, 113–123 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).ADS 
    Article 

    Google Scholar 
    51.McNicholl, D. G., Davoren, G. K., Majewski, A. R. & Reist, J. D. Isotopic niche overlap between co-occurring capelin (Mallotus villosus) and polar cod (Boreogadus saida) and the effect of lipid extraction on stable isotope ratios. Polar Biol. 41, 423–432 (2018).Article 

    Google Scholar 
    52.Kühn, S. et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 41, 1269–1278 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Bouchard, C. & Fortier, L. Circum-arctic comparison of the hatching season of polar cod Boreogadus saida: a test of the freshwater winter refuge hypothesis. Prog. Oceanogr. 90, 105–116 (2011).ADS 
    Article 

    Google Scholar 
    54.Laurel, B. J., Spencer, M., Iseri, P. & Copeman, L. A. Temperature-dependent growth and behavior of juvenile Arctic cod (Boreogadus saida) and co-occurring North Pacific gadids. Polar Biol. 39, 1127–1135 (2016).Article 

    Google Scholar 
    55.Drost, H. E. et al. Upper thermal limits of the hearts of Arctic cod Boreogadus saida : adults compared with larvae: boreogadus saida thermal limits. J. Fish Biol. 88, 718–726 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Bender, M. L. et al. Effects of chronic dietary petroleum exposure on reproductive development in polar cod (Boreogadus saida). Aquat. Toxicol. 180, 196–208 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Bender, M. L. et al. Effects of acute exposure to dispersed oil and burned oil residue on long-term survival, growth, and reproductive development in polar cod (Boreogadus saida). Mar. Environ. Res. 140, 468–477 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Boehm, P. D., Neff, J. M. & Page, D. S. Assessment of polycyclic aromatic hydrocarbon exposure in the waters of Prince William Sound after the Exxon Valdez oil spill: 1989–2005. Mar. Pollut. Bull. 54, 339–356 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Sammarco, P. W. et al. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico. Mar. Pollut. Bull. 73, 129–143 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Berenshtein, I. et al. Invisible oil beyond the Deepwater Horizon satellite footprint. Sci. Adv. 6, eaaw8863 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Incardona, J. P. et al. Cardiac arrhythmia is the primary response of embryonic pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ. Sci. Technol. 43, 201–207 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Incardona, J. P. et al. Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages. Aquat. Toxicol. Amst. Neth. 142–143, 303–316 (2013).Article 
    CAS 

    Google Scholar 
    63.de Soysa, T. Y. et al. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. BMC Biol. 10, 40 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Incardona, J. P. et al. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci. Rep. 5, 13499 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Heintz, R. A. et al. Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar. Ecol. Prog. Ser. 208, 205–216 (2000).ADS 
    Article 

    Google Scholar 
    66.Sorheim, K. R. & Moldestad, M. O. Weathering properties of the Goliat Kobbe and two Goliat Blend of Kobbe and Realgrunnen crude oils. (2008).67.Sørensen, L., Melbye, A. G. & Booth, A. M. Oil droplet interaction with suspended sediment in the seawater column: influence of physical parameters and chemical dispersants. Mar. Pollut. Bull. 78, 146–152 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Sørensen, L. et al. Accumulation and toxicity of monoaromatic petroleum hydrocarbons in early life stages of cod and haddock. Environ. Pollut. 251, 212–220 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    69.Meador, J. P. & Nahrgang, J. Characterizing crude oil toxicity to early-life stage fish based on a complex mixture: Are we making unsupported assumptions?. Environ. Sci. Technol. 53, 11080–11092 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Sørensen, L. et al. Oil droplet fouling and differential toxicokinetics of polycyclic aromatic hydrocarbons in embryos of Atlantic haddock and cod. PLoS ONE 12, e0180048 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Carls, M. G. et al. Fish embryos are damaged by dissolved PAHs, not oil particles. Aquat. Toxicol. 88, 121–127 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Hansen, B. H. et al. Developmental effects in fish embryos exposed to oil dispersions—the impact of crude oil micro-droplets. Mar. Environ. Res. 150, 104753 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Olsvik, P. A., Berntssen, M. H. G., Hylland, K., Eriksen, D. Ø. & Holen, E. Low impact of exposure to environmentally relevant doses of 226Ra in Atlantic cod (Gadus morhua) embryonic cells. J. Environ. Radioact. 109, 84–93 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Sundby, S. & Kristiansen, T. The principles of buoyancy in marine fish eggs and their vertical distributions across the world oceans. PLoS ONE 10, e0138821 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Spencer, M. L., Vestfals, C. D., Mueter, F. J. & Laurel, B. J. Ontogenetic changes in the buoyancy and salinity tolerance of eggs and larvae of polar cod (Boreogadus saida) and other gadids. Polar Biol. 18, 1141–1158. https://doi.org/10.1007/s00300-020-02620-7 (2020).Article 

    Google Scholar 
    76.Pasparakis, C., Wang, Y., Stieglitz, J. D., Benetti, D. D. & Grosell, M. Embryonic buoyancy control as a mechanism of ultraviolet radiation avoidance. Sci. Total Environ. 651, 3070–3078 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Kent, D., Drost, H. E., Fisher, J., Oyama, T. & Farrell, A. P. Laboratory rearing of wild Arctic cod Boreogadus saida from egg to adulthood: rearing boreogadus saida from egg to adulthood. J. Fish Biol. 88, 1241–1248 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Jordaan, A., Hayhurst, S. E. & Kling, L. J. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J. Fish Biol. 68, 7–24 (2006).Article 

    Google Scholar 
    79.Porter, S. M. & Bailey, K. M. The effect of early and late hatching on the escape response of walleye pollock (Theragra chalcogramma) larvae. J. Plankton Res. 29, 291–300 (2007).Article 

    Google Scholar 
    80.Spicer, J. I., Tills, O., Truebano, M. & Rundle, S. D. Developmental plasticity and heterokairy. In Development and Environment (eds Burggren, W. & Dubansky, B.) 73–96 (Springer, 2018). https://doi.org/10.1007/978-3-319-75935-7_4.
    Google Scholar 
    81.Bouchard, C. et al. Climate warming enhances polar cod recruitment, at least transiently. Prog. Oceanogr. 156, 121–129 (2017).Article 

    Google Scholar 
    82.Koenker, B. L., Laurel, B. J., Copeman, L. A. & Ciannelli, L. Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2386–2402 (2018).Article 

    Google Scholar 
    83.Bouchard, C. & Fortier, L. The importance of Calanus glacialis for the feeding success of young polar cod: a circumpolar synthesis. Polar Biol. https://doi.org/10.1007/s00300-020-02643-0 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Balazy, K., Trudnowska, E., Wichorowski, M. & Błachowiak-Samołyk, K. Large versus small zooplankton in relation to temperature in the Arctic shelf region. Polar Res. 37, 1427409 (2018).Article 

    Google Scholar 
    85.Weydmann, A. et al. Shift towards the dominance of boreal species in the Arctic: inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Mar. Ecol. Prog. Ser. 501, 41–52 (2014).ADS 
    Article 

    Google Scholar 
    86.Marsh, J. M., Mueter, F. J. & Quinn, T. J. Environmental and biological influences on the distribution and population dynamics of polar cod (Boreogadus saida) in the US Chukchi Sea. Polar Biol. https://doi.org/10.1007/s00300-019-02561-w (2019).Article 

    Google Scholar 
    87.Lange, R. & Marshall, D. Ecologically relevant levels of multiple, common marine stressors suggest antagonistic effects. Sci. Rep. 7, 6281 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Liess, M., Foit, K., Knillmann, S., Schäfer, R. B. & Liess, H.-D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).Article 
    CAS 

    Google Scholar 
    90.Holst, J. C. & McDonald, A. FISH-LIFT: a device for sampling live fish with trawls. Fish. Res. 48, 87–91 (2000).Article 

    Google Scholar 
    91.Hall, T. E., Smith, P. & Johnston, I. A. Stages of embryonic development in the Atlantic cod Gadus morhua. J. Morphol. 259, 255–270 (2004).PubMed 
    Article 

    Google Scholar 
    92.Houde, E. D. Mortality. In Fishery Science (ed. Fuiman, L. A.) (Wiley, 1989).
    Google Scholar 
    93.Sørensen, L., Silva, M. S., Booth, A. M. & Meier, S. Optimization and comparison of miniaturized extraction techniques for PAHs from crude oil exposed Atlantic cod and haddock eggs. Anal. Bioanal. Chem. 408, 1023–1032 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    94.Sørensen, L., Meier, S. & Mjøs, S. A. Application of gas chromatography/tandem mass spectrometry to determine a wide range of petrogenic alkylated polycyclic aromatic hydrocarbons in biotic samples. Rapid Commun. Mass Spectrom. 30, 2052–2058 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    95.Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45e–445 (2001).Article 

    Google Scholar 
    96.Riley, P. & Skirrow, G. Chemical Oceanography 56–74 (Academic Press, 1975).
    Google Scholar 
    97.Laurel, B. J., Copeman, L. A., Hurst, T. P. & Parrish, C. C. The ecological significance of lipid/fatty acid synthesis in developing eggs and newly hatched larvae of Pacific cod (Gadus macrocephalus). Mar. Biol. 157, 1713–1724 (2010).CAS 
    Article 

    Google Scholar 
    98.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Wassenberg, D. M. & Di Giulio, R. T. Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ. Health Perspect. 112, 1658–1664 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, version 2018). https://www.R-project.org/.101.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Van Willigen, B. nlme: Linear and Nonlinear Mixed Effects Models. (2020).102.Pinheiro, J. & Bates, D. Fitting linear mixed-effects models. In Mixed-Effects Models in S and S-Plus 133–199 (Springer, 2000).103.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
    Google Scholar 
    104.Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).ADS 
    Article 

    Google Scholar 
    105.Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond “p < 0.05”. Am. Stat. 73, 1–19 (2019).MathSciNet  Article  Google Scholar  106.Amrheim, V., Greenland, S. & McShane, B. Time to retire statistical significance Nature2019.pdf. Nature 567, 305–307 (2019).ADS  Article  CAS  Google Scholar  More

  • in

    Occurrence of bioluminescent and nonbioluminescent species in the littoral earthworm genus Pontodrilus

    In this study, we confirmed that P. longissimus is nonbioluminescent, despite its close relationship to the luminous species P. litoralis (Supplementary Fig. S2)8. The presence of both luminous and nonluminous species in a single genus is likely widespread, but only a few examples have been confirmed; for example, the genera Vibrio and Photobacterium (marine bacteria)9, Epigonus (deep-sea fishes)10, Mycena (bonnet mushrooms)11 and Eisenia (terrestrial earthworms)12 have been reported to contain both luminous and nonluminous species. P. litoralis and P. longissimus can easily be collected at the same beach8 and reared in a laboratory; thus, they are suitable for studying the ecology and evolution of bioluminescence.In vitro luciferin-luciferase cross-reaction tests of P. longissimus and P. litoralis confirmed that the luminescence ability of P. litoralis is due to the presence of multiple bioluminescent components in coelomic fluid, i.e., luciferin, luciferase and the light emitter. Cross-reaction tests have previously indicated that luminous earthworms in the genera Pontodrilus (Megascolecidae), Microscolex and Diplocardia (Acanthodrilidae) share the same basic bioluminescence mechanisms5,7,13,14, despite their distant relationships to each other15,16. It is expected that the ancestral state of Pontodrilus is nonbioluminescent because the nearest extant relatives of Pontodrilus belong to the genus Plutellus Perrier, 1873, and all members of this group are nonbioluminescent6,17. These findings suggested that P. litoralis secondarily acquired bioluminescent properties through parallel evolution, similar to the case of bioluminescence in lampyrid and elaterid beetles18. We detected a clear difference in the protein composition of the secreted fluid between P. litoralis and P. longissimus (Supplementary Fig. S1). Luciferase and other bioluminescent components of luminous earthworms were not identified, and further comparative analyses of the protein bands, which appear only in the secreted fluid of luminous species, will be useful to understand the mechanisms of bioluminescence and its parallel evolution.In Thailand, P. longissimus was found sympatrically with P. litoralis at the beaches along the coast, but the microhabitats of the two congeners are different; P. litoralis was collected on the beach surface (under trash or leaf litter on sandy beaches), whereas P. longissimus was found at a greater depth than P. litoralis, i.e., a depth of more than 10 cm, where trash and leaves are scarce8 (Fig. 4A–D). It has been hypothesized that the biological function of bioluminescence in Annelida, including P. litoralis, is to stun or divert attention as an anti-predator defense19,20,21,22,23,24,25, but experiments and observations of the prey are limited. Sivinski & Forrest25 reported that the luminescence of Microscolex phosphoreus deterred predation by the mole cricket Scapteriscus acletus under laboratory conditions, although the specimen was ultimately consumed. A British television program26 presented by David Attenborough showed that the French luminous earthworm Avelona ligra glowed when attacked by the carabid beetle, but the beetle consumed the luminescent worm without any hesitation. We suggest that the absence of bioluminescence in P. longissimus may be associated with its presence in habitats with low predation pressure, whereas P. litoralis acquired a bioluminescent property during evolution that enabled it live on the surface of the beach, which is rich in nutrition and food sources3,27 as well as potential predators.Figure 4(A) The microhabitat of Pontodrilus litoralis from Aichi Prefecture, Japan. (B) The microhabitat of P. longissimus in Ranong, Thailand; sympatric Pontodrilus specimens were collected from this location8. (C) P. longissimus was found at a depth of 10–30 cm in muddy sand; the earthworm is shown by an arrow. (D) Bright field image of the Pontodrilus species included in this study. (E) An earwig (Anisolabis maritima) (a potential Pontodrilus predator) grooming its forelegs after attacking P. litoralis. (F) A. maritima (arrowhead) was found in the same microhabitat as P. litoralis in Aichi Prefecture, Japan.Full size imageIndeed, while we observed some burrowing bivalves, no potential predators were observed in the deep sand inhabited by P. longissimus. In contrast, various carnivorous invertebrates, such as earwigs, rove beetles and carabid beetles, were observed on the surface of beaches in Thailand and Japan, where P. litoralis live (Seesamut pers. obs.). We therefore performed a feeding experiment using maritime earwigs sympatrically distributed in a P. litoralis habitat. The maritime earwig Anisolabis maritima (Dermaptera, Anisolabididae) is a cosmopolitan species that can be found in Japan. It has well-developed compound eyes (Fig. 4E) and is considered a carnivorous animal that forages for prey at night28, 29. A. maritima (body length ≤ 30 mm) was the predominant predator at the beach where P. litoralis was collected (Fig. 4F). Some rove beetles (Coleoptera, Staphylinidae) were found in the same habitat, but they seemed to be too small ( More

  • in

    Flowers adapt to welcome the birds — but not the bees

    In Europe, bumblebees pollinate the flowers called foxgloves, but foxgloves that spread to the Americas are also pollinated by hummingbirds and have evolved as a result. Credit: Getty

    Ecology
    16 April 2021
    Flowers adapt to welcome the birds — but not the bees

    Once in the Americas, foxgloves swiftly evolved under pressure by pollinating hummingbirds.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Evolution can forge new relationships between plants and pollinators in fewer than 85 generations.The showy purple flowers called common foxgloves (Digitalis purpurea) are native to Europe, where they are pollinated by bumblebees. When admiring humans took the foxglove to the Americas, it was enthusiastically embraced by a new guild of nectar-drinkers — the hummingbirds.Maria Clara Castellanos at the University of Sussex in Brighton, UK, and her colleagues tallied visitors to foxgloves in the United Kingdom, Colombia and Costa Rica during more than 2,000 3-minute study periods. They found that hummingbirds pollinate up to 27% of foxgloves in Colombia and Costa Rica, where the flowers’ corollas — the long purple tubes that gardeners love so much — are 13% and 26% longer, respectively, than those of UK foxgloves.So why would foxgloves with longer corollas do better? Plants with corollas too long for bumblebees to reach their nectar are guaranteed to be pollinated by hummingbirds, which are more effective than bees at depositing pollen on the next flower. The longer corolla also creates a more comfortable fit for a hovering hummingbird, perhaps improving pollination rates.Hummingbirds can travel further between flowers than can bees, which might reduce plant inbreeding.

    J. Ecol. (2021)

    Ecology More

  • in

    A decadal perspective on north water microbial eukaryotes as Arctic Ocean sentinels

    1.Lovejoy, C., Massana, R. & Pedros-Alio, C. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl. Environ. Microb. 72, 3085–3095. https://doi.org/10.1128/aem.72.5.3085-3095.2006 (2006).CAS 
    Article 

    Google Scholar 
    2.Chamnansinp, A., Li, Y., Lundholm, N. & Moestrup, Ø. Global diversity of two widespread, colony-forming diatoms of the marine plankton, Chaetoceros socialis (syn. C. radians) and Chaetoceros gelidus sp. nov.. J. Phycol. 49, 1128–1141. https://doi.org/10.1111/jpy.12121 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Bluhm, B. A. & Gradinger, R. Regional variability in food availability for Arctic marine mammals. Ecol. Appl. 18, S77-96. https://doi.org/10.1890/06-0562.1 (2008).Article 
    PubMed 

    Google Scholar 
    4.Bâcle, J., Carmack, E. C. & Ingram, R. G. Water column structure and circulation under the North Water during spring transition: April–July 1998. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4907–4925. https://doi.org/10.1016/S0967-0645(02)00170-4 (2002).ADS 
    Article 

    Google Scholar 
    5.Dumont, D., Gratton, Y. & Arbetter, T. E. Modeling wind-driven circulation and landfast ice-edge processes during polynya events in Northern Baffin Bay. J. Phys. Oceanogr. 40, 1356–1372. https://doi.org/10.1175/2010JPO4292.1 (2010).ADS 
    Article 

    Google Scholar 
    6.Tremblay, J. -É., Gratton, Y., Fauchot, J. & Price, N. M. Climatic and oceanic forcing of new, net, and diatom production in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4927–4946. https://doi.org/10.1016/S0967-0645(02)00171-6 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives. Progr. Oceanogr. 139, 66–88. https://doi.org/10.1016/j.pocean.2015.08.007 (2015).ADS 
    Article 

    Google Scholar 
    8.Møller, E. F. et al. Zooplankton phenology may explain the North Water polynya’s importance as a breeding area for little auks. Mar. Ecol. Progr. Ser. 605, 207–223. https://doi.org/10.3354/meps12745 (2018).ADS 
    Article 

    Google Scholar 
    9.Mei, Z.-P. et al. Physical control of spring–summer phytoplankton dynamics in the North Water, April–July 1998. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4959–4982. https://doi.org/10.1016/S0967-0645(02)00173-X (2002).ADS 
    Article 

    Google Scholar 
    10.Marchese, C. et al. Changes in phytoplankton bloom phenology over the North Water (NOW) polynya: a response to changing environmental conditions. Polar Biol. 40, 1721–1737. https://doi.org/10.1007/s00300-017-2095-2 (2017).Article 

    Google Scholar 
    11.Martin, J. et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar. Ecol. Progr. Ser. 412, 69–84. https://doi.org/10.3354/meps08666 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Joli, N. et al. Need for focus on microbial species following ice melt and changing freshwater regimes in a Janus Arctic Gateway. Sci. Rep. 8, 9405. https://doi.org/10.1038/s41598-018-27705-6 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Lehmann, N. et al. Remote western Arctic nutrients fuel remineralization in deep Baffin Bay. Global Biogeochem. Cycles 33, 649–667. https://doi.org/10.1029/2018GB006134 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Blais, M. et al. Contrasting interannual changes in phytoplankton productivity and community structure in the coastal Canadian Arctic Ocean. Limnol. Oceanogr. 62, 2480–2497. https://doi.org/10.1002/lno.10581 (2017).ADS 
    Article 

    Google Scholar 
    15.Ardyna, M., Gosselin, M., Michel, C., Poulin, M. & Tremblay, J. -É. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: Contrasting oligotrophic and eutrophic regions. Mar. Ecol. Progr. Ser. 442, 37–57. https://doi.org/10.3354/meps09378 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212. https://doi.org/10.1002/2014GL061047 (2014).ADS 
    Article 

    Google Scholar 
    17.Lovejoy, C., Legendre, L., Martineau, M.-J., Bâcle, J. & Von Quillfeldt, C. H. Distribution of phytoplankton and other protists in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 5027–5047. https://doi.org/10.1016/S0967-0645(02)00176-5 (2002).ADS 
    Article 

    Google Scholar 
    18.Tremblay, J. -É., Michel, C., Hobson, K. A., Gosselin, M. & Price, N. M. Bloom dynamics in early opening waters of the Arctic Ocean. Limnol. Oceanogr. 51, 900–912. https://doi.org/10.4319/lo.2006.51.2.0900 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Mayzaud, P., Boutoute, M., Noyon, M., Narcy, F. & Gasparini, S. Lipid and fatty acids in naturally occurring particulate matter during spring and summer in a high arctic fjord (Kongsfjorden, Svalbard). Mar. Biol. 160, 383–398. https://doi.org/10.1007/s00227-012-2095-2 (2013).CAS 
    Article 

    Google Scholar 
    20.Dumont, D., Gratton, Y. & Arbetter, T. E. Modeling the dynamics of the North Water Polynya Ice Bridge. J. Phys. Oceanogr. 39, 1448–1461. https://doi.org/10.1175/2008jpo3965.1 (2009).ADS 
    Article 

    Google Scholar 
    21.Simo-Matchim, A.-G., Gosselin, M., Poulin, M., Ardyna, M. & Lessard, S. Summer and fall distribution of phytoplankton in relation to environmental variables in Labrador fjords, with special emphasis on Phaeocystis pouchetii. Mar. Ecol. Progr. Ser. 572, 19–42. https://doi.org/10.3354/meps12125 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Flynn, K. J. et al. Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now?. J. Plankton Res. 41, 375–391. https://doi.org/10.1093/plankt/fbz026 (2019).Article 

    Google Scholar 
    23.Levinsen, H. & Nielsen, T. G. The trophic role of marine pelagic ciliates and heterotrophic dinoflagellates in arctic and temperate coastal ecosystems: A cross-latitude comparison. Limnol. Oceanogr. 47, 427–439. https://doi.org/10.4319/lo.2002.47.2.0427 (2002).ADS 
    Article 

    Google Scholar 
    24.Marquardt, M., Vader, A., Stübner, E. I., Reigstad, M. & Gabrielsen, T. M. Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, in West Spitsbergen, Norway). Appl. Environ. Microb. 82, 1868–1880. https://doi.org/10.1128/AEM.03208-15 (2016).CAS 
    Article 

    Google Scholar 
    25.Terrado, R., Vincent, W. F. & Lovejoy, C. Mesopelagic protists: diversity and succession in a coastal Arctic ecosystem. Aquat. Microb. Ecol. 56, 25–39. https://doi.org/10.3354/ame01327 (2009).Article 

    Google Scholar 
    26.Johnson, M. D. & Beaudoin, D. J. The genetic diversity of plastids associated with mixotrophic oligotrich ciliates. Limnol. Oceanogr. 64, 2187–2201. https://doi.org/10.1002/lno.11178 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Onda, D. F. et al. Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front. Mar. Sci. 4, 16. https://doi.org/10.3389/fmars.2017.00016 (2017).ADS 
    Article 

    Google Scholar 
    28.Olsen, L. M. et al. A red tide in the pack ice of the Arctic Ocean. Sci. Rep. 9, 9536. https://doi.org/10.1038/s41598-019-45935-0 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Lovejoy, C. et al. Distribution, phylogeny, and growth of cold-adapted Picoprasinophytes in Arctic seas 1. J. Phycol. 43, 78–89. https://doi.org/10.1111/j.1529-8817.2006.00310.x (2007).CAS 
    Article 

    Google Scholar 
    30.Metfies, K., von Appen, W.-J., Kilias, E., Nicolaus, A. & Nöthig, E.-M. Biogeography and photosynthetic biomass of arctic marine pico-eukaroytes during summer of the record sea ice minimum 2012. PLoS ONE 11, e0148512. https://doi.org/10.1371/journal.pone.0148512 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Joli, N., Monier, A., Logares, R. & Lovejoy, C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 11, 1372. https://doi.org/10.1038/ismej.2017.7 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Piedade, G. J., Wesdorp, E. M., Montenegro-Borbolla, E., Maat, D. S. & Brussaard, C. P. D. Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris. Viruses 10, 676. https://doi.org/10.3390/v10120676 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    33.Maat, D. S. et al. Characterization and temperature dependence of Arctic Micromonas polaris viruses. Viruses 9, 134. https://doi.org/10.3390/v9060134 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    34.Demory, D. et al. Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean. ISME J. 13, 132–146. https://doi.org/10.1038/s41396-018-0248-0 (2019).Article 
    PubMed 

    Google Scholar 
    35.Ardyna, M. et al. Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr. 62, 2113–2132. https://doi.org/10.1002/lno.10554 (2017).ADS 
    Article 

    Google Scholar 
    36.Luddington, I. A., Lovejoy, C. & Kaczmarska, I. Species-rich meta-communities of the diatom order Thalassiosirales in the Arctic and northern Atlantic Ocean. J. Plankton Res. 38, 781–797. https://doi.org/10.1093/plankt/fbw030 (2016).CAS 
    Article 

    Google Scholar 
    37.Booth, B. C. et al. Dynamics of Chaetoceros socialis blooms in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 5003–5025. https://doi.org/10.1016/S0967-0645(02)00175-3 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Oziel, L. et al. Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean. Nat. Commun. 11, 1–8. https://doi.org/10.1038/s41467-020-15485-5 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Dı́ez, B., Pedrós-Alió, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA Gene cloning and sequencing. Appl. Environ. Microb. 67, 2932. https://doi.org/10.1128/AEM.67.7.2932-2941.2001 (2001).Article 

    Google Scholar 
    40.Crawford, D. W., Cefarelli, A. O., Wrohan, I. A., Wyatt, S. N. & Varela, D. E. Spatial patterns in abundance, taxonomic composition and carbon biomass of nano-and microphytoplankton in subarctic and Arctic Seas. Prog. Oceanogr. 162, 132–159. https://doi.org/10.1016/j.pocean.2018.01.006 (2018).ADS 
    Article 

    Google Scholar 
    41.Fu, R. & Gong, J. Single cell analysis linking ribosomal (r) DNA and r RNA copy numbers to cell size and growth rate provides insights into molecular protistan ecology. J. Eukaryot. Microbiol. 64, 885–896. https://doi.org/10.1111/jeu.12425 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Lewis, K., Van Dijken, G. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202. https://doi.org/10.1126/science.aay8380 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Updated daily Sea Ice Index, Version 3 (NSIDC: National Snow and Ice Data Center, Boulder, CO USA). https://doi.org/10.7265/N5K072F8 (2017).44.Ryan, P. A. & Münchow, A. Sea ice draft observations in Nares Strait from 2003 to 2012. J. Geophys. Res. Oceans 122, 3057–3080. https://doi.org/10.1002/2016JC011966 (2017).ADS 
    Article 

    Google Scholar 
    45.Grasshoff, K. et al. (eds). Methods of seawater analysis 3rd edn (John Wiley & Sons). https://doi.org/10.1002/9783527613984 (2009).46.Terrado, R. et al. Protist community composition during spring in an Arctic flaw lead polynya. Polar Biol. 34, 1901–1914. https://doi.org/10.1007/s00300-011-1039-5 (2011).Article 

    Google Scholar 
    47.Dasilva, C. R., Li, W. K. W. & Lovejoy, C. Phylogenetic diversity of eukaryotic marine microbial plankton on the Scotian Shelf Northwestern Atlantic Ocean. J. Plankton Res. 36, 344–363. https://doi.org/10.1093/plankt/fbt123 (2014).CAS 
    Article 

    Google Scholar 
    48.Comeau, A. M., Li, W. K., Tremblay, J. -É., Carmack, E. C. & Lovejoy, C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6, e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Bushnell, B., Rood, J. & Singer, E. BBMerge–accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056. https://doi.org/10.1371/journal.pone.0185056 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 75, 7537–7541. https://doi.org/10.1128/AEM.01541-09 (2009).CAS 
    Article 

    Google Scholar 
    53.Comeau, A. M. et al. Protists in Arctic drift and land-fast sea ice. J. Phycol. 49, 229–240. https://doi.org/10.1111/jpy.12026 (2013).Article 
    PubMed 

    Google Scholar 
    54.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604. https://doi.org/10.1093/nar/gks1160 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Berger, S. A., Krompass, D. & Stamatakis, A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under Maximum Likelihood. Syst. Biol. 60, 291–302. https://doi.org/10.1093/sysbio/syr010 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Thomson, R. E. & Fine, I. V. Estimating mixed layer depth from oceanic profile data. J. Atmos. Ocean. Technol. 20, 319–329. https://doi.org/10.1175/1520-0426(2003)020%3c0319:EMLDFO%3e2.0.CO;2 (2003).ADS 
    Article 

    Google Scholar 
    61.Chazdon, R. L. et al. A novel statistical method for classifying habitat generalists and specialists. Ecology 92, 1332–1343. https://doi.org/10.1890/10-1345.1 (2011).Article 
    PubMed 

    Google Scholar 
    62.Melling, H., Gratton, Y. & Ingram, G. Ocean circulation within the North Water polynya of Baffin Bay. Atmos. Ocean 39, 301–325. https://doi.org/10.1080/07055900.2001.9649683 (2001).Article 

    Google Scholar  More

  • in

    The non-indigenous Oithona davisae in a Mediterranean transitional environment: coexistence patterns with competing species

    1.Carlton, J. T. & Geller, J. B. Ecological roulette: The global transport of non-indigenous marine organisms. Sciences 261, 78–82 (1993).Article 

    Google Scholar 
    2.Ruiz, G. M., Fofonov, P. & Hines, A. H. Non-indigenous species as stressors in estuarine and marine communities: Assessing invasion impacts and interactions. Limnol. Oceanogr. 44, 950–972 (1999).ADS 
    Article 

    Google Scholar 
    3.Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).Article 

    Google Scholar 
    4.Tsiamis, K. et al. Non-indigenous species refined national baseline inventories: A synthesis in the context of the European Union’s Marine Strategy Framework Directive. Mar. Pollut. Bull. 145, 429–435 (2019).CAS 
    Article 

    Google Scholar 
    5.Gollasch, S. Overview on introduced aquatic species in European navigational and adjacent waters. Helgol. Mar. Res. 60(2), 84–89 (2006).ADS 
    Article 

    Google Scholar 
    6.Zenetos, A. et al. Alien species in the Mediterranean Sea by 2010 A contribution to the application of European Union’ Marine Strategy Framework Directive (MSFD) Part I. Spatial distribution. Mediterr. Mar. Sci. 11, 381–493 (2010).Article 

    Google Scholar 
    7.Zenetos, A. et al. Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Est. Coast. Shelf. Sci. 191, 171–187 (2017).ADS 
    Article 

    Google Scholar 
    8.Uttieri, M. et al. Towards a EURopean OBservatory of the non-indigenous calanoid copepod Pseudodiaptomus marinUS. Biol. Invasions 22(3), 885–906. https://doi.org/10.1007/s10530-019-02174-8 (2020).Article 

    Google Scholar 
    9.Vidjak, O. et al. Zooplankton in Adriatic port environments: Indigenous communities and non-indigenous species. Mar. Pollut. Bull. 147, 133–149. https://doi.org/10.1016/j.marpolbul.2018.06.055 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Malej, A. et al. Mnemiopsis leidyi in the northern Adriatic: Here to stay?. J. Sea Res. 124, 10–16. https://doi.org/10.1016/j.seares.2017.04.010 (2017).ADS 
    Article 

    Google Scholar 
    11.Marchini, A., Ferrario, J., Sfriso, A. & Occhipinti-Ambrogi, A. Current status and trends of biological invasions in the Lagoon of Venice, a hotspot of marine NIS introductions in the Mediterranean Sea. Biol. Invasions 17, 2943–2962. https://doi.org/10.1007/s10530-015-0922-3 (2015).Article 

    Google Scholar 
    12.Galliene, C. P. & Robins, D. B. Is Oithona the most important copepod in the world’s oceans?. J. Plankton Res. 23(12), 1421–1432 (2001).Article 

    Google Scholar 
    13.Saiz, E., Calbet, A. & Broglio, E. Effects of small-scale turbolence on copepods: The case of Oithona davisae. Limnol. Oceanogr. 48, 1304–1311. https://doi.org/10.4319/lo.2003.48.3.1304 (2003).ADS 
    Article 

    Google Scholar 
    14.Turner, T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43(2), 255–266 (2004).
    Google Scholar 
    15.Hwang, I. S., Kumar, R., Dahms, H. U., Tseng, L. C. & Chen, Q. C. Mesh size affects abundance estimates of Oithona spp. (Copepoda, Cyclopoida). Crustaceana 80(7), 827–837 (2007).Article 

    Google Scholar 
    16.Nishida, S., Tanaka, O. & Omori, M. Cyclopoid copepods of the family Oithonidae in Suruga bay and adjacent waters. Bull. Plankton Soc. Japan 24, 120–157 (1977).
    Google Scholar 
    17.Uye, S. I. & Sano, K. Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser. 118, 121–128 (1995).ADS 
    Article 

    Google Scholar 
    18.Zagami, G. et al. Biogeographical distribution and ecology of the planktonic copepod Oithona davisae: Rapid invasion in Lakes Faro and Ganzirri (Central Mediterranean Sea). In Trends in Copepod Studies-Distribution, Biology and Ecology (ed. Uttieri, M.) 59–82 (Nova Science Publisher, New York, 2018).
    Google Scholar 
    19.Cornils, A. & Wend-Heckmann, B. First report of the planktonic copepod Oithona davisae in the northern Wadden Sea (North Sea): Evidence for recent invasion?. Helgol. Mar. Res. 69, 243–248. https://doi.org/10.1007/s10152-015-0426-7 (2015).ADS 
    Article 

    Google Scholar 
    20.Uye, S. I. & Sano, K. Seasonal variations in biomass, growth rate and production rate of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Progr. Ser. 163, 37–44 (1998).ADS 
    Article 

    Google Scholar 
    21.Ferrari, F. D. & Orsi, J. Oithona davisae, new species, and Limnoithona sinensis (Burckhardt, 1912) (Copepoda, Oithonidae) from the Sacramento San-Joaquin Estuary, California. J. Crustac. Biol. 4, 106–126. https://doi.org/10.2307/1547900 (1984).Article 

    Google Scholar 
    22.Cordell, J. R. et al. Factors influencing densities of non-indigenous species in the ballast water of ships arriving at ports in Puget Sound, Washington, United States. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 322–343. https://doi.org/10.1002/aqc.986 (2009).Article 

    Google Scholar 
    23.Dexter, E., Bollens, S. M., Cordell, J. & Rollwagen-Bollenseric, G. Zooplankton invasion on a grand scale: Insights from a 20-yr time series across 38 Northeast Pacific estuaries. Ecosphere 11(5), e03040 (2020).Article 

    Google Scholar 
    24.Temnykh, A. & Nishida, S. New record of the planktonic copepod Oithona davisae Ferrari and Orsi in the Black Sea with notes on the identity of Oithona brevicornis. Aquat. Invasions 7, 425–431 (2012).Article 

    Google Scholar 
    25.Uriarte, I., Villate, F. & Iriarte, A. Zooplankton recolonization of the inner estuary of Bilbao: Influence of pollution abatement, climate and non-indigenous species. J. Plankton Res. 38, 718–731. https://doi.org/10.1093/plankt/fbv060 (2015).Article 

    Google Scholar 
    26.Isinibilir, M., Svetlichny, L. & Hubareva, E. Competitive advantage of the invasive copepod Oithona davisae over the indigenous copepod Oithona nana in the Marmara Sea and Golden Horn Estuary. Mar. Freshw. Behav. Physiol. 49(6), 391–405. https://doi.org/10.1080/10236244.2016.1236528 (2016).CAS 
    Article 

    Google Scholar 
    27.Terbıyık Kurt, T. & Beşiktepe, Ş. First distribution record of the invasive copepod Oithona davisae Ferrari and Orsi, 1984, in the coastal waters of the Aegean Sea. Mar. Ecol. 40(3), e12548. https://doi.org/10.1111/maec.12548 (2019).Article 

    Google Scholar 
    28.Cucco, A. & Umgiesser, G. Modeling the Venice Lagoon residence time. Ecol. Model. 193, 34–51 (2006).Article 

    Google Scholar 
    29.Gačić, M. et al. Temporal variations of water flow between the Venetian lagoon and the open sea. J. Mar. Syst. 51, 33–47. https://doi.org/10.1016/j.jmarsys.2004.05.025 (2004).Article 

    Google Scholar 
    30.Zuliani, A., Zaggia, L., Collavini, F. & Zonta, R. Freshwater discharge from the drainage basin to the Venice Lagoon (Italy). Environ. Int. 31, 929–938 (2005).Article 

    Google Scholar 
    31.Sigovini, M. Multiscale dynamics of zoobenthic communities and relationships with environmental factors in the Lagoon of Venice. 207 pp (2011).32.Zirino, A. et al. Salinity and its variability in the Lagoon of Venice, 2000–2009. Adv. Oceanogr. Limnol. 5, 41–59. https://doi.org/10.1080/19475721.2014.900113 (2014).Article 

    Google Scholar 
    33.Amos, C. L., Umgiesser, G., Ghezzo, M., Kassem, H. & Ferrarin, C. Sea Surface Temperature Trends in Venice Lagoon and the Adjacent Waters. J. Coast. Res. 33(2), 385–395. https://doi.org/10.2112/JCOASTRES-D-16-00017.1 (2016).Article 

    Google Scholar 
    34.Ravera, O. The Lagoon of Venice: The result of both natural factors and human influence. J. Limnol. 59, 19–30 (2000).Article 

    Google Scholar 
    35.Solidoro, C. et al. Response of the Venice Lagoon ecosystem to natural and anthropogenic pressures over the last 50 years. In Coastal lagoons: Critical habitats of environmental change (eds Kennish, M. J. & Paerl, H. W.) 483–511 (CRC Press, New York, 2010).
    Google Scholar 
    36.Camatti, E., Pansera, M. & Bergamasco, A. The copepod Acartia tonsa Dana in a microtidal Mediterranean lagoon: History of a successful invasion. Water 11(6), 1200. https://doi.org/10.3390/w11061200 (2019).CAS 
    Article 

    Google Scholar 
    37.Schroeder, A. et al. DNA metabarcoding and morphological analysis-Assessment of zooplankton biodiversity in transitional waters. Mar. Environ. Res. https://doi.org/10.1016/j.marenvres.2020.104946 (2020).Article 
    PubMed 

    Google Scholar 
    38.Camatti, E. et al. Analisi dei popolamenti zooplanctonici nella laguna di Venezia dal 1975 al 2004. Biol. Mar. Mediterr. 13, 46–53 (2006).
    Google Scholar 
    39.Riccardi, N. Selectivity of plankton nets over mesozooplankton taxa: Implications for abundance, biomass and diversity estimation. J. Limnol. 69(2), 287–296. https://doi.org/10.3274/JL10-69-2-10 (2010).Article 

    Google Scholar 
    40.Pansera, M. et al. How does mesh-size selection reshape the description of zooplankton community structure in coastal lakes?. Est. Coast. Shelf. Sci. 151, 221–235 (2014).ADS 
    Article 

    Google Scholar 
    41.Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton methodology manual (Elsevier, New York, 2000).
    Google Scholar 
    42.Clarke, K.R. & Gorley, R.N. PRIMERv6: User Manual/Tutorial. PRIMER-E, Plymouth, 192 pp (2006).43.Legendre, L. & Legendre, P. Ecologie numerique, Tome 2: La structure de données écologiques. Québec, Canada Masson, Paris, France and Presses de l’Univ. du (1984).44.Tokeshi, M. Niche apportionment or random assortment e species abundance patterns revisited. J. Anim. Ecol. 59, 1129–1146 (1990).Article 

    Google Scholar 
    45.Tokeshi, M. Species abundance patterns and community structure. Adv. Ecol. Res. 24, 111–186 (1993).Article 

    Google Scholar 
    46.Fesl, C. Niche-oriented species-abundance models: Different approaches of their application to larval chironomid (Diptera) assemblages in a large river. J. Anim. Ecol. 71, 1085–1094 (2002).Article 

    Google Scholar 
    47.Spatharis, S., Orfanidis, S., Panayotidis, P. & Tsirtsis, G. Assembly processes in upper subtidal macroalgae: The effect of wave exposure. Est. Coast. Shelf. Sci. 91(2), 298–305. https://doi.org/10.1016/j.ecss.2010.10.032 (2011).ADS 
    Article 

    Google Scholar 
    48.Ferreira, F. C. & Petrere, J. M. Comments about some species abundance patterns: Classic, neutral, and niche partitioning models. Braz. J. Biol. 68(4), 1003–1012. https://doi.org/10.1590/S1519-69842008000500008 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Spatharis, S., Mouillot, D., Do Chi, T., Danielidis, D. B. & Tsirtsis, G. A niche-based modeling approach to phytoplankton community assembly rules. Oecol. 159(1), 171–180. https://doi.org/10.1007/s00442-008-1178-8 (2009).ADS 
    Article 

    Google Scholar 
    50.Johansson, F., Englund, G., Brodin, T. & Gardfjell, H. Species abundance models and patterns in dragonfly communities: Effects of fish predators. Oikos 114(1), 27–36 (2006).Article 

    Google Scholar 
    51.Anderson, B. J. & Mouillot, D. Influence of scale and resolution on niche apportionment rules in saltmeadow vegetation. Aquat. Biol. 1(2), 195–204. https://doi.org/10.3354/ab00017 (2007).Article 

    Google Scholar 
    52.Tokeshi, M. Power fraction: A new explanation of relative abundance patterns in species-rich assemblages. Oikos 75, 543–550 (1996).Article 

    Google Scholar 
    53.Seebens, H., Gastner, M. T., Blasius, B. & Courchamp, F. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 16(6), 782–790. https://doi.org/10.1111/ele.12111 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Casal, C. M. V. Global documentation of fish introductions: The growing crisis and recommendations for actions. Biol. Invasions 8, 3–11 (2006).Article 

    Google Scholar 
    55.Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf. Sci. 115, 1–13. https://doi.org/10.1016/j.ecss.2012.08.023 (2012).ADS 
    Article 

    Google Scholar 
    56.Schroeder, K. et al. Rapid response to climate change in a marginal sea. Sci. Rep. 7(1), 1–7. https://doi.org/10.1038/s41598-017-04455-5 (2017).CAS 
    Article 

    Google Scholar 
    57.Elliott, M. Biological pollutants and biological pollution — an increasing cause for concern. Mar. Pollut. Bull. 46, 275–280 (2003).CAS 
    Article 

    Google Scholar 
    58.Elton, C. S. The Ecology of Invasions by Animals and Plants (Methuen, London, 1958).
    Google Scholar 
    59.Gubanova, A., Garbazey, O. A., Popova, E. V., Altukhov, D. A. & Mukhanov, V. S. Oithona davisae: Naturalization in the Black Sea, interannual and seasonal dynamics, and effect on the structure of the planktonic copepod community. Oceanol. 59(6), 912–919. https://doi.org/10.31857/S0030-15745961008-1015 (2019).ADS 
    Article 

    Google Scholar 
    60.Altukhov, D. A., Gubanova, A. D. & Mukhanov, V. S. New invasive copepod Oithona davisae, Ferrari and Orsi, 1984: Seasonal dynamics in Sevastopol Bay and expansion along the Black Sea coasts. Mar. Ecol. 35, 28–34 (2014).ADS 
    Article 

    Google Scholar 
    61.Svetlichny, L. et al. Adaptive strategy of thermophilic Oithona davisae in the cold Black Sea environment. Turk. J. Fish. Aquat. Sci. 16(1), 077–090. https://doi.org/10.4194/1303-2712-v16_1_09 (2016).Article 

    Google Scholar 
    62.Hubareva, E. & Svetlichny, L. Salinity and temperature tolerance of alien copepods Acartia tonsa and Oithona davisae in the Black Sea. Rapp. Comm. Int. Mer. Mediterr. 40, 742. https://doi.org/10.13140/2.1.1145.3445 (2013).Article 

    Google Scholar 
    63.Svetlichny, L., Hubareva, E. & İşi̇ni̇bi̇li̇r, M. ,. Population dynamics of the copepod invader Oithona davisae in the Black Sea. Turk. J. Zool. 42(6), 684–693. https://doi.org/10.3906/zoo-1804-48 (2018).Article 

    Google Scholar 
    64.Uye, S. I. Replacement of large copepods by small ones with eutrophication of embayments: Cause and consequence. Hydrobiol. 292(293), 513–519. https://doi.org/10.1007/BF00229979 (1994).Article 

    Google Scholar 
    65.Saiz, E., Griffell, K., Calbet, A. & Isari, S. Feeding rates and prey: Predator size ratios of the nauplii and adult females of the marine cyclopoid copepod Oithona davisae. Limnol. Oceanography 59(6), 2077–2088 (2014).ADS 
    Article 

    Google Scholar 
    66.Cheng, W., Akiba, T., Omura, T. & Tanaka, Y. On the foraging and feeding ability of Oithona davisae (Crustacea, Copepoda). Hydrobiol. 741(1), 167–176. https://doi.org/10.1007/s10750-014-1867-8 (2014).Article 

    Google Scholar 
    67.Khanaychenko, A., Mukhanov, V., Aganesova, L., Besiktepe, S. & Gavrilova, N. Grazing and feeding selectivity of Oithona davisae in the Black Sea: Importance of cryptophytes. Turk. J. Fish. Aquat. Sci. 18(8), 937–949. https://doi.org/10.4194/1303-2712-v18_8_02 (2018).Article 

    Google Scholar 
    68.Uchima, M. Gut content analysis of neritic copepods Acartia omorii and Oithona davisae by a new method. Mar. Ecol. Prog. Ser. 48(1), 93–97 (1988).ADS 
    Article 

    Google Scholar 
    69.Uchima, M. & Hirano, R. Swimming behavior of the marine copepod Oithona davisae: Internal control and search for environment. Mar. Biol. 99(1), 47–56 (1988).Article 

    Google Scholar 
    70.Bernardi Aubry, F., Acri, F., Bianchi, F. & Pugnetti, A. Looking for patterns in the phytoplankton community of the Mediterranean microtidal Venice Lagoon: Evidence from ten years of observations. Sci. Mar. 77(1), 47–60. https://doi.org/10.3989/scimar.03638.21A (2013).CAS 
    Article 

    Google Scholar 
    71.Facca, C. et al. Description of a Multimetric Phytoplankton Index (MPI) for the assessment of transitional waters. Mar. Pollut. Bull. 79(1–2), 145–154. https://doi.org/10.1016/j.marpolbul.2013.12.025 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Acri, F., Braga, F. & Bernardi Aubry, F. Long-term dynamics in nutrients, chlorophyll a and water quality parameters in the Lagoon of Venice. Sci. Mar. https://doi.org/10.3989/scimar.05022.30A (2020).Article 

    Google Scholar 
    73.Bandelj, V. et al. Analysis of multitrophic plankton assemblages in the Lagoon of Venice. Mar. Ecol. Prog. Ser. 368, 23–40. https://doi.org/10.3354/meps07565 (2008).ADS 
    Article 

    Google Scholar 
    74.Gubanova, A. et al. Species composition of Black Sea marine planktonic copepods. J. Mar. Syst. 135, 44–52. https://doi.org/10.1016/j.jmarsys.2013.12.004 (2014).Article 

    Google Scholar 
    75.Sacca, A., Guglielmo, L. & Bruni, V. Vertical and temporal microbial community patterns in a meromictic coastal lake influenced by the Straits of Messina upwelling system. Hydrobiology 600(1), 89–104 (2008).Article 

    Google Scholar 
    76.Tagliapietra, D., Zanon, V., Frangipane, G., Umgiesser, G. & Sigovini, M. Physiographic zoning of the Venetian Lagoon. In Scientific Research and Safeguarding of Venice (ed. Campostrini, P.) 161–164 (2010). More