More stories

  • in

    Multiple impacts of microplastics can threaten marine habitat-forming species

    Collection of marine organismsMarine invertebrates such as Corallium rubrum are ideal organisms to perform controlled experiments and to gather useful information on a variety of environmental conditions74. This species, whose diet is based on small zooplankton captured with the polyp tentacles, has been already used in long-term experiments74,75,76. Coral specimens were collected in March 2017 at ca. 35-m depth in the Marine Protected Area of Portofino (Punta del Faro, 44°17′41.02 N; 9°13′31.30 E) in the Ligurian Sea (North-Western Mediterranean Sea) by scuba divers (using TRIMIX blending).Experimental designAfter recovery, the coral specimens were brought to the laboratory and maintained in a tank (30 L) at in situ temperature (13 ± 0.8 °C) and subjected to the continuous flux of natural seawater filtered onto 0.7-µm pore-size membranes (micro-glass fibre paper, Munktell) by using two submersible pumps (Euronatale, 203 V, 50 Hz, 4 Watt).Sixty coral branches obtained from different colonies, with similar morphology, and a surface of ~2 cm2 each, were distributed among 12 experimental tanks, in order to have 5 coral branches per tank (12 L glass tanks, containing on average, 274 ± 26.4 coral polyps each). The corals were acclimatised for 20 days in a temperature-controlled room, and dim light conditions, before starting experiments. Each tank, filled with natural seawater, was equipped with a prefiltered (0.2 µm) channelled aeration system combined with motor-driven paddles in order to create convective currents, which allowed the resuspension of the microplastic mixture, thus ensuring as much as possible a homogeneous distribution of the polymers. This experimental system was designed and set up according to Sutherland et al.77. To assess the potential effects of increasing microplastic  microparticles L−1 (here defined as low, medium and high concentrations of microplastic particles). We also quantified the exact amount of particles actually interacting with the corals, by discounting the fractions loss due to experimental manipulations (see details in Supplementary Methods). According to the results reported in the Supplementary Results, the systems were responsible for the loss of ca. 40% of the microplastic particles, thus the corals in experimental systems were actually exposed to 60, 300 and 600 microplastic particles per litre (to which we referred the low, medium and high concentrations).The highest concentrations of microplastics (up to 600 microplastic particles per litre) can reflect future contamination on the basis of estimates obtained by numerical models9, whereas the low and medium concentrations have been selected to represent highly-contaminated marine habitats, including the areas where the corals were collected (Ligurian Sea)78,79. In particular, for the Ligurian Sea, we estimated an average value of 94 microplastic particles L−1, based on the concentrations of microplastic particles ( >200 µm) determined by Fossi et al.78,79, and the most cautionary correction factor (105) calculated by Brandon et al.10 for the unaccounted smaller fraction of microplastics (25–75% of the fragments falling approximately in the 20–100 µm dimensional class with median range: 59–116).Microplastic mixtures were also prepared considering the concentration and composition of dominant polymers in different coastal marine environments, especially in hot spots of microplastic contamination5,7,8.The microplastic mixture added to the tanks was composed of 76.6% polyethylene, 10.9% polypropylene, 7.3% polystyrene, 3.3% polyvinylchloride and 1.8% polyethylene terephthalate particles. These particles were obtained by milling plastic objects from everyday life (i.e., containers, bottles, cups, pipes) according to Paul-Pont et al.8 (Supplementary Table 5). Plastic milling was carried out under a laminar flow hood in chilled sterilized and 0.02 µm prefiltered milliQ water. All the tools used for handling plastics were pre-treated with 1% sodium hypochlorite in water and rinsed 10 times with sterilized and 0.02 µm prefiltered milliQ water, and then dried under laminar flow hood. Details on the preparation of microplastic mixtures are reported in the Supplementary Methods.The low, medium and high concentrations of microplastics were added in triplicate tanks (n = 3 for each concentration). Additional systems containing seawater and coral branches without microplastics (n = 3, here defined Controls), and seawater added with microplastics (at the highest concentration) without red corals (n = 3, here define CTRL MPs) were used as controls. Overall, the experimental setup comprised 15 tanks.The experiments for assessing the impact of microplastics on red corals started immediately after the microplastic mixture addition (time 0). During the experiment, seawater temperature (range: 13.10 ± 0.01–13.13 ± 0.05 °C), salinity (range: 38.35 ± 0.18–38.65 ± 0.18) and oxygen levels (7.10 ± 0.08–7.36 ± 0.2 mg L−1) were monitored daily in all tanks using a probe (YSI Professional Plus, USA) and corals were fed three times a week with 103 Artemia salina nauplii L−1.After ten days the condition of corals that were exposed to microplastics was deteriorating, so we collected one coral branch from each tank for molecular analyses (i.e., associated microbiome, gene expression and DNA damage). After 14 days, the experiment was stopped because the coral branches that were exposed to the medium and high microplastic particle concentrations were completely wrapped in mucus, with a large portion of damaged tissue and without polyp activity, therefore corals were defined dead (overall 12 branches, see ‘Results’ section for details). Coral branches in the controls showed no visible signs of necrosis or other macroscopic stress. The tissue remained intact, and the colour unchanged until the end of the experiment.Effects of microplastic ingestionCoral feeding activityTo assess the impact of microplastics on feeding activity of C. rubrum, analyses based on the use of Artemia salina were performed after 2 and 10 days from the start of the experiment (t0) in replicate systems (n = 3 for each treatment, n = 3 for the controls) according to standard international protocols80. The nauplii of Artemia salina were reared in the laboratory, incubating 0.5 g of cysts (Ocean Nutrition) in 1 L of seawater filtered onto 0.2-µm filter in a separatory funnel, 2 days before the analysis of feeding rate. At hatching, nauplii were counted and maintained in vials to obtain the concentration of 1000 nauplii L−1. To avoid stress, corals (one branch for each tank) were transferred underwater to beakers along with 1 L seawater of each tank. After addition of live A. salina nauplii (1000 nauplii L−1) to the 1 L beakers containing the coral branches and to the controls, three aliquots of 10 ml seawater were collected after ~30 s from the start of the experiment (t0) and after 2 and 4 h. The remaining nauplii present in each seawater aliquot were counted under a stereomicroscope at ×3.2 magnification (Zeiss Stami 2000). Mean ingestion rates (nauplii removed h−1) were determined by linear regression analysis.Accumulation of microplastics by C. rubrum
    To investigate the accumulation of plastic polymers by C. rubrum polyps, the number of microplastic particles ingested by coral polyps was evaluated after 14 days of exposure to microplastic mixture, by dissolving polyps and skeleton of the corals (one for each tank at the concentration of 1000 microplastic particles L−1) using an acid/base digestion protocol36 with some modifications.To exclude biases on the estimate of the number of microplastic particles actually accumulated within the polyps, coral branches were accurately rinsed with milliQ water and checked under stereomicroscope (at ×50 magnification) for the potential presence of microplastic particles adherent to the coral tissue. Coral branches were then soaked in 5 ml of 4.5% sodium hypochlorite (NaClO) for 24 h and dissolved in 5 ml of 37% HCl for 30 min. Particulate material was retained on a 0.2-μm filter in a vacuum filtration system, and microplastic particles were counted under a stereomicroscope at ×50 magnification. The chemical composition of the polymers ingested by corals was confirmed by FT-IR analyses (Perkin Elmer, software Packages Spectrum 5.3.1). To evaluate possible damage to plastic polymers due to the use of acid/base solutions, we exposed polypropylene, polyethylene, polystyrene, polyvinylchloride and polyethylene terephthalate at the same volume and concentration of NaClO and HCl during digestion of the coral.Potential transfer of microplastics by zooplanktonWhile testing the exposure of the red corals to microplastics, we also determined the rate of microplastic ingestion by A. salina nauplii used to feed the red corals, in order to assess their role as potential vectors of microplastics. To do this, additional tanks (n = 3) were added with 0.2 µm prefiltered 12 L natural seawater, 1000 nauplii L−1 of A. salina and the same microplastic mixture used for the experiment on the red corals (at the highest concentration). Three other tanks were used as controls containing 0.2 µm prefiltered 12 L natural seawater and 1000 nauplii L−1 of A. salina.Microplastic ingestion by A. salina was determined after 2 and 10 days of experiment following the enzymatic digestion protocol previously developed81 with some modifications. Such a procedure degrades biological tissues without affecting shape, colour and composition of plastic fragments. Gut contents of 100 individuals of A. salina (n = 5) were assessed under a stereomicroscope (Leica MZ125) and light microscope (Zeiss Axiovert 200) and photographed with a Zeiss Axiocam digital camera. Afterwards, nauplii were processed immediately according to the modified enzymatic digestion protocol. Nauplii were dried in an oven for 3 h at 60 °C, transferred to glass jars containing a buffer homogenizing solution (400 mM Tris-HCl pH 8, 60 mM EDTA pH 8, 5 M NaCl, SDS 1%) incubated at 50 °C for 15 min and exposed to Proteinase K (1 mg ml−1). Then, samples were dried for 2 h at 50 °C, homogenized and re-incubated at 60 °C for 20 min and sonicated on ice (1–2 min) three times. After digestion, the microplastic-containing suspensions were placed in Utermöhl chambers and the microplastics were examined at the inverted light microscope (Leica DMI3000-Bat ×200 magnification) and counted. Microplastics obtained from nauplii digested after 10 days of incubation were also measured and categorized by colours and shape to evaluate the numbers and the size spectra of microplastics ingested by A. salina during the experiment.Physical impact on coral coenenchymaScanning electron microscopy (SEM) analysesTo investigate the physical damage of the microplastic mixture on the coral tissues, samples (one branch from each tank including the control) were collected before the start of the experiment (t0), after 7 days and at the end of the experiment and prepared for SEM analyses according to standard protocols82 with some modifications. Coral branches were stored in 0.7 µm prefiltered seawater with 4% buffered formalin. After 24 h, samples were washed with 0.7 µm prefiltered seawater and dehydrated for 3 h in 20% ethanol. After 3 h they were washed in the same way and dehydrated in ethanol 50%. After 3 h, samples were stored in 70% ethanol. Samples were stored at +4 °C. We dehydrated samples using different gradients of ethanol solutions (70–80%, 80–90%, 90–95%, 95–99% in 2 days)82. Then, samples were dried using HMDS (Hexamethyldisilazane, Aldrich 440191)83. Dried samples were mounted on aluminium stubs using Leit-C glue (conductive carbon cement, Neubauer Chemikalien) and sputter-coated with gold. Samples were examined with a Scanning Electron Microscope (Zeiss SUPRA 40). In addition, the tissue damage percentage was assessed on SEM micrographs at ×200 of magnification by using PhotoQuad v1.4 software84. Such a software for advanced image processing of 2D photographic quadrat samples, dedicated to ecological applications, was used for the analysis of three randomly selected areas from the apex to the base of each coral rotating it on three sides (n = 9). Additional analyses through random SEM observations (n = 20) at 3.00KX to 17.00KX of magnification were carried out to determine prokaryotic cell abundances around lesions of corals (n = 3) exposed to high concentrations of microplastic particles. Data were standardised to the coral surface analysed.Mucus release and trapped microplastics and prokaryotic cellsTo evaluate the first symptoms of coral stress, a photographic report was conducted daily. The abundance of microplastic particles trapped in coral mucus was estimated using an enzymatic digestion protocol81 with some modifications. Mucus produced by corals exposed to higher microplastics concentrations was dried in oven at 60 °C for 12 h. After 12 h, five ml of homogenizing solution was added to the samples and incubated at 50 °C for 15 min. Proteinase K (1 mg mL−1) was added to the samples, which subsequently were incubated at 50 °C for 2 h. Then, samples were homogenized and incubated again at 60 °C for 20 min, after that samples were sonicated three times (three 1-min treatments using a Branson Sonifier 2200; 60 W). After digestion, microplastics-containing suspension was filtered on 0.2-μm filters in a vacuum filtration system (Whatman, Nuclepore). Filters were analysed at stereomicroscope at ×50 magnification (Zeiss Stemi 2000).Stress signals at the molecular levelRNA extraction, cDNA synthesis and gene expression level by qPCRTo assess potential changes in the gene expression pattern of C. rubrum due to microplastics, total RNA was extracted from ca. 20 mg of tissue (wet weight) from one coral branch randomly collected from each treatment (n = 3) and control (n = 3) after 10 days of experiment by using Quick-RNA™ MiniPrep (Zymo Research, Freiburg, Germany) according to the manufacturer’s instructions. Total RNA was also extracted from additional samples of coral branches collected randomly at the beginning of the experiment. Once scraped by surgical disposable scalpels (Braun), coral tissues were placed in new 2 ml sterile tubes and washed three times with phosphate-buffered saline (PBS 1×). Samples were centrifuged at 1800 rpm for 10 min in an Eppendorf® 5810r refrigerated centrifuge using a swing-out rotor at 4 °C and, after removing the supernatant, were homogenized for 5 min with a RNase-free sterile glass stick in RNA lysis buffer. Contaminating DNA was degraded by treating each sample with DNase dissolved in RNase-free water included in the kit. For each sample, 250 ng of total RNA extracted was retrotranscribed with an iScript™ cDNA Synthesis kit (Bio-Rad, Milan, Italy), following the manufacturer’s instructions. The reaction was performed on the Veriti™ 96-Well Thermal Cycler (Applied Biosystem, Monza, Italy). To evaluate the efficiency of cDNA synthesis, a PCR was performed with primers of the reference gene, cytochrome oxidase I (COI, Supplementary Table 6). The reaction was carried out using MyTaq™ HS DNA Polymerase (Bioline, Luckenwalde, Germany) on the Veriti™ 96-Well Thermal Cycler (Applied Biosystem, Monza, Italy). The PCR programme consisted of a denaturation step at 95 °C for 1 min, 35 cycles at 95 °C for 45 s, 60 °C for 45 s, and 72 °C for 45 s and a final extension step at 72 °C for 10 min.The expression levels of the six genes of hsp70, hsp60, MnSOD, mtMutS, EF1 and cytb, involved in a broad range of functional responses, such as stress, detoxification processes, and DNA repair, were followed by real-time qPCR to identify potential stress of corals exposed to microplastics61. For the cytb, target-specific primer pairs were designed with the Primer 3 software (http://primer3.ut.ee85) using nucleotide sequences retrieved from the GenBank database for C. rubrum as template (https://www.ncbi.nlm.nih.gov/genbank/; Supplementary Table 6). SensiFAST™ SYBR® & Fluorescein mix (Bioline, Luckenwalde, Germany) were used for measuring the levels of mRNAs on CFX Connect™ Real-Time PCR detection system (Biorad, Milan, Italy). Fluorescence was measured using CFX Manager™ software (Biorad, Milan, Italy). All genes tested by qPCR in this study were amplified with primers purchased from Life Technologies/Thermo Fisher Scientific (Milan, Italy). The fold change in target gene mRNA expression of corals exposed to microplastics compared with the control was calculated using the comparative CT method using the 2−ΔΔCt equation86. COI was used as reference gene for normalising the gene expression analyses.DNA oxidative damageFor evaluating oxidative DNA damage potentially due to microplastic exposure on C. rubrum, the content of 8-hydroxydeoxyguanosine (8-OHdG) was analysed. DNA was extracted from 20 mg (wet weight) of tissue randomly collected from one coral branch for each treatment (n = 3) and control (n = 3) after 10 days of experiment using DNeasy Blood & Tissue Kits (Qiagen, Valencia, CA) and following the manufacturer’s protocol. Finally, samples were kept at −20 °C before subsequent analyses. Nucleic acids extracted (2 μg) were transferred into new 2-ml tubes and incubated for 5 min at 95 °C, then rapidly chilled on ice. Samples were digested to nucleosides by incubating the denatured DNA in sodium acetate 20 mM, pH 5.2 with 2 μl of nuclease P1 (6 U/μl; Merck KGaA, Darmstadt, Germany) for 2 h at 37 °C. Each sample was then incubated with 5 μl alkaline phosphatase (1 U/μl; Roche, Mannheim, Germany) in Tris-HCl 100 mM, pH 7.5 for 1 h at 37 °C. The reaction mixtures were then centrifuged for 5 min at 6000 × g and the supernatants tested for DNA oxidation with an OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation; Cell Biolabs, CA, USA). As positive control, Escherichia coli genomic DNA (2 μg) was incubated in a final concentration of 50 and 100 mM H2O2 overnight at 37 °C, and subsequently tested.Prokaryotic abundance in coral mucus and surrounding seawaterTo highlight possible effects in terms of prokaryotic contamination associated with the exposure of the corals to microplastics, we determined prokaryotic abundances in the mucus released by C. rubrum and the surrounding seawater.Prokaryotic abundances in the coral mucus collected from each tank (except for the control where coral mucus was not released) after 14 days of the experiment, were analysed by epifluorescence microscopy. The extraction of prokaryotic cells from the mucus (ca. 1 mL for each tank) was performed using pyrophosphate (final concentration, 5 mM) and ultrasound treatment (three 1-min treatments using a Branson Sonifier 2200; 60 W)87. Then, samples were diluted from 50- to 100-fold with sterile water filtered onto 0.2-μm pore-size filters (Anodisc filters; black-stained polycarbonate). The filters were stained using SYBR Green I (10,000× in anhydrous dimethyl sulfoxide, Molecular Probes-Invitrogen) diluted 1:20 in prefiltered TE buffer (pH 7.5) and incubated in the dark for 20 min; a drop (20 µl) of antifade solution (composed of 50% 6.7 mmol L−1 phosphate buffer at pH 7.8 and 50% glycerol with the addition of 0.5% ascorbic acid) was laid both on a glass slide and on the filter mounted on it. Prokaryotic counts were performed under epifluorescence microscopy (magnification, ×1000; Zeiss filter set #09, 488009-9901-000, excitation BP 450–490 nm, beam splitter FT 515, emission LP 520), by examining at least 20 fields per slide and counting at least 400 cells per filter.For the determination of prokaryote abundance in seawater surrounding corals, three replicates of 10 ml of seawater were collected from each tank. Total prokaryotic abundance was determined according to Danovaro87. Samples were filtered onto 0.2-μm pore-size filters (Anodisc black-stained polycarbonate filters, Whatman) into a funnel with vacuum pressure no greater than 20 kPa (or 150 mmHg) to avoid cell damage. When the sample had passed through, filters were stained with 20 µl of SYBR Green I (10,000× in anhydrous dimethyl sulfoxide, Molecular Probes-Invitrogen) diluted 1:20 in prefiltered TE buffer (pH 7.5) and incubated in the dark for 20 min. Then, to remove the excess stain, filters were washed three times using 3 ml of Milli-Q water; a drop (20 µl) of antifading solution (composed of 50% 6.7 mmol L−1 phosphate buffer at pH 7.8 and 50% glycerol with the addition of 0.5% ascorbic acid) was laid both on a glass slide and on the filter mounted on it. Prokaryotic counts were carried out as described above.Microbiome of corals exposed to microplasticsThe coral microbiome was analysed immediately before the start of the experiment (before the addition of microplastics) and after 10 days of the experiment, both in replicated coral branches exposed to microplastics and in unexposed corals (Control t10). For the analysis of the microbiome, ca. 20 mg of tissue (wet weight) from one coral branch randomly collected from two tanks of each treatment and control was scraped from the skeleton by using surgical disposable scalpels (Braun) and DNA extraction was performed using the QIAGEN DNeasy Blood & Tissue Kit. Briefly, samples were digested with proteinase K at 56 °C overnight or until the tissue was completely lysed, then samples were processed following the manufacturer’s protocol. Finally, samples were held at −20 °C before PCR amplification and sequencing. The molecular size of the DNA extracts was analysed by agarose gel electrophoresis (1%) and the amount and purity of DNA were determined by Nanodrop spectrophotometer (ND-1000). For PCR amplification of the 16S V3 region, the Bacteria-specific primer pair 805R/341F was chosen with Illumina-specific adapters and barcodes. Sequencing was performed on an Illumina MiSeq platform by LGC Genomics GmbH (Berlin, Germany).Raw sequencing paired-end reads were first joined using the bbmerge tool from the BBMap suite88 in a two-step process: reads that did not merge in a first step were quality-trimmed to remove low-quality bases (Q  More

  • in

    Accelerated Varroa destructor population growth in honey bee (Apis mellifera) colonies is associated with visitation from non-natal bees

    1.Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7(5), e37235 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Stern, R. et al. Sequential introduction of honeybee colonies increases cross-pollination, fruit-set and yield of ‘Spadona’pear (Pyrus communis L.). J. Hortic. Sci. Biotechnol. 79(4), 652–658 (2004).Article 

    Google Scholar 
    3.Sabbahi, R., DeOliveira, D. & Marceau, J. Influence of honey bee (Hymenoptera: Apidae) density on the production of canola (Crucifera: Brassicacae). J. Econ. Entomol. 98(2), 367–372 (2005).PubMed 
    Article 

    Google Scholar 
    4.Stern, R., Eisikowitch, D. & Dag, A. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76(1), 17–23 (2001).Article 

    Google Scholar 
    5.Walters, S. A. & Taylor, B. H. Effects of honey bee pollination on pumpkin fruit and seed yield. HortScience 41(2), 370–373 (2006).Article 

    Google Scholar 
    6.Aras, P., De Oliveira, D. & Savoie, L. Effect of a Honey Bee (Hymenoptera: Apidae) Gradient on the Pollination and Yield of Lowbush Blueberry. J. Econ. Entomol. 89(5), 1080–1083 (1996).Article 

    Google Scholar 
    7.Steinhauer, N., et al., Drivers of colony losses. Curr. Opin. Insect Sci. 2018.8.Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower then agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Kulhanek, K. et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 56, 328–340 (2017).Article 

    Google Scholar 
    10.Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49(1), 1–6 (2010).Article 

    Google Scholar 
    11.Kang, Y. et al. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector. Math. Biosci. 275, 71–92 (2016).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    12.Ruffinengo, S. et al. Integrated Pest Management to control Varroa destructor and its implications to Apis mellifera colonies. Zootec. Trop. 32(2), 149–168 (2015).
    Google Scholar 
    13.Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103(Suppl 1), S96-119 (2010).PubMed 
    Article 

    Google Scholar 
    14.Boecking, O. & Genersch, E. Varroosis–the ongoing crisis in bee keeping. J. Verbr. Lebensm. 3(2), 221–228 (2008).Article 

    Google Scholar 
    15.Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. 116(5), 1792–1801 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Yang, X. & Cox-Foster, D. Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology 134(3), 405–412 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Francis, R. M., Nielsen, S. L. & Kryger, P. Varroa-virus interaction in collapsing honey bee colonies. PLoS ONE 8(3), e57540 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Traynor, K. S. et al. Multiyear survey targeting disease incidence in US honey bees. Apidologie 23, 113–121 (2016).
    Google Scholar 
    19.Bee Informed, P. Managment Survey Results. 2019 [cited 2018 October 1, 2018].20.Giacobino, A. et al. Risk factors associated with failures of Varroa treatments in honey bee colonies without broodless period. Apidologie 46, 573–582 (2015).Article 

    Google Scholar 
    21.Haber, A. I., Steinhauer, N. A. & van Engelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations. J. Econ. Entomol. 112, 1509–1525 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Thoms, C. A. et al. Beekeeper stewardship, colony loss, and Varroa destructor management. Ambio 48, 1209–1218 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Wilkinson, D. & Smith, G. C. A model of the mite parasite, Varroa destructor, on honeybees (Apis mellifera) to investigate parameters important to mite population growth. Ecol. Model. 148(3), 263–275 (2002).Article 

    Google Scholar 
    24.Harris, J. W. et al. Variable population growth of Varroa destructor (Mesostigmata: Varroidae) in colonies of honey bees (Hymenoptera: Apidae) during a 10-year period. Environ. Entomol. 32(6), 1305–1312 (2003).Article 

    Google Scholar 
    25.DeGrandi-Hoffman, G. & Curry, R. A mathematical model of Varroa mite (Varroa destructor Anderson and Trueman) and honeybee (Apis mellifera L.) population dynamics. Int. J. Acarol. 30(3), 259–274 (2004).Article 

    Google Scholar 
    26.Pfeiffer, K. J. & Crailsheim, K. Drifting of honeybees. Insectes Soc. 45(2), 151–167 (1998).Article 

    Google Scholar 
    27.Goodwin, R. M. et al. Drift of Varroa destructor-infested worker honey bees to neighbouring colonies. J. Apic. Res. 45(3), 155–156 (2006).Article 

    Google Scholar 
    28.Nolan, M. P. & Delaplane, K. S. Distance between honey bee Apis mellifera colonies regulates populations of Varroa destructor at a landscape scale. Apidologie 48(1), 8–16 (2017).Article 

    Google Scholar 
    29.Seeley, T. D. & Smith, M. L. Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46(6), 716–727 (2015).Article 

    Google Scholar 
    30.Frey, E., Schnell, H. & Rosenkranz, P. Invasion of Varroa destructor mites into mite-free honey bee colonies under the controlled conditions of a military training area. J. Apic. Res. 50(2), 138–144 (2011).Article 

    Google Scholar 
    31.Frey, E. & Rosenkranz, P. Autumn invasion rates of Varroa destructor (Mesostigmata: Varroidae) into honey bee (Hymenoptera: Apidae) colonies and the resulting increase in mite populations. J. Econ. Entomol. 107(2), 508–515 (2014).PubMed 
    Article 

    Google Scholar 
    32.Kralj, J. & Fuchs, S. Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37(5), 577–587 (2006).Article 

    Google Scholar 
    33.Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14(6), e0218392 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Forfert, N. et al. Parasites and pathogens of the honeybee (Apis mellifera) and their influence on inter-colonial transmission. PLoS ONE 10(10), e0140337 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Steinhauer, N. & Saegerman, C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Sci. Total Environ. 753, 141629 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    36.DeGrandi-Hoffman, G. et al. Population growth of Varroa destructor (Acari: Varroidae) in honey bee colonies is affected by the number of foragers with mites. Exp. Appl. Acarol. 69(1), 21–34 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Hagler, J. et al. A method for distinctly marking honey bees, Apis mellifera, originating from multiple apiary locations. J. Insect Sci. 11(1), 143 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    38.Delaplane, K. S., van der Steen, J. & Guzman-Novoa, E. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apic. Res. 52(1), 1–12 (2013).Article 

    Google Scholar 
    39.Winston, M. The Biology of the Honey Bee 281 (Harvard University Press, Cambridge, MA, 1987).
    Google Scholar 
    40.Nazzi, F. & Le Conte, Y. Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Ann. Rev. Entomol. 61, 417–432 (2016).CAS 
    Article 

    Google Scholar 
    41.Geffre, A. C. et al. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl. Acad. Sci. 117(19), 10406–10413 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Rosenkranz, P. Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud, South America. Apidologie 30(2/3), 159–172 (1999).Article 

    Google Scholar 
    43.Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47(3), 467–482 (2016).Article 

    Google Scholar  More

  • in

    Mapping the deforestation footprint of nations reveals growing threat to tropical forests

    1.Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).
    Google Scholar 
    2.UN FAO Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? (FAO Interdepartmental Working Group, 2016).3.Douglas, I. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 185–197 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-809665-9.09206-54.Hassan, R., Scholes, R. & Ash, N. Ecosystems and Human Well-Being: Current State and Trends (Island Press, 2005).5.Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).
    Google Scholar 
    6.Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).
    Google Scholar 
    7.Houghton, R. A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298–313 (1999).
    Google Scholar 
    8.Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl Acad. Sci. USA 114, 5775–5777 (2017).CAS 

    Google Scholar 
    9.D’Almeida, C. et al. The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int. J. Climatol. 27, 633–647 (2007).
    Google Scholar 
    10.Laurance, W. F. et al. Ecosystem decay of amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002).
    Google Scholar 
    11.Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).
    Google Scholar 
    12.Take action to stop Amazon burning. Nature 573, 163 (2019)13.Karstensen, J., Peters, G. P. & Andrew, R. M. Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environ. Res. Lett. 8, 024005 (2013).
    Google Scholar 
    14.Godar, J., Tizado, E. J. & Pokorny, B. Who is responsible for deforestation in the Amazon? A spatially explicit analysis along the Transamazon Highway in Brazil. For. Ecol. Manag. 267, 58–73 (2012).
    Google Scholar 
    15.Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.de Area Leão Pereira, E. J., de Santana Ribeiro, L. C., da Silva Freitas, L. F. & de Barros Pereira, H. B. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy 92, 104491 (2020).
    Google Scholar 
    17.Escobar, H. Deforestation in the Brazilian Amazon is still rising sharply. Science 369, 613 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
    Google Scholar 
    19.Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).
    Google Scholar 
    20.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).
    Google Scholar 
    21.Jha, S. & Bawa, K. S. Population growth, human development, and deforestation in biodiversity hotspots. Conserv. Biol. 20, 906–912 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).CAS 

    Google Scholar 
    23.Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).
    Google Scholar 
    25.Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).
    Google Scholar 
    26.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    28.Saikku, L., Soimakallio, S. & Pingoud, K. Attributing land-use change carbon emissions to exported biomass. Environ. Impact Assess. Rev. 37, 47–54 (2012).
    Google Scholar 
    29.Beckman, J., Sands, R. D., Riddle, A. A., Lee, T. & Walloga, J. M. International Trade and Deforestation: Potential Policy Effects via a Global Economic Model (USDA, 2017); https://ideas.repec.org/p/ags/uersrr/262185.html30.Cuypers, D. et al. The Impact of EU Consumption on Deforestation: Comprehensive Analysis of the Impact of EU consumption on Deforestation (European Commission, 2013).31.Zhang, Q. et al. Global timber harvest footprints of nations and virtual timber trade flows. J. Clean. Prod. 250, 119503 (2020).
    Google Scholar 
    32.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).
    Google Scholar 
    35.Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45, 538–550 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    36.Tropek, R. et al. Comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).
    Google Scholar 
    38.Forest Fact Book 2017–2018 (Government of Canada Publications, 2017).39.Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Ericsson, K. & Werner, S. The introduction and expansion of biomass use in Swedish district heating systems. Biomass. Bioenergy 94, 57–65 (2016).
    Google Scholar 
    41.Kennedy, C. & Southwood, T. The number of species of insects associated with British trees: a re-analysis. J. Anim. Ecol. 53, 455–478 (1984).
    Google Scholar 
    42.Braun, A. C. H. et al. Assessing the impact of plantation forestry on plant biodiversity: a comparison of sites in Central Chile and Chilean Patagonia. Glob. Ecol. Conserv. 10, 159–172 (2017).
    Google Scholar 
    43.Kang, D., Wang, X., Li, S. & Li, J. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat. Sci. Rep. 7, 3561 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    45.Erwin, T. L. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36, 74–75 (1982).
    Google Scholar 
    46.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167 (2003).
    Google Scholar 
    48.Bradford, M. & Murphy, H. T. The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS ONE 14, e0208377 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    49.Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).
    Google Scholar 
    51.Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Weinzettel, J., Vačkář, D. & Medková, H. Human footprint in biodiversity hotspots. Front. Ecol. Environ. 16, 447–452 (2018).
    Google Scholar 
    53.Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    54.Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).
    Google Scholar 
    55.Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Glob. Environ. Change 62, 102055 (2020).
    Google Scholar 
    56.Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).
    Google Scholar 
    57.Blackman, A., Goff, L. & Rivera Planter, M. Does eco-certification stem tropical deforestation? Forest stewardship council certification in mexico. J. Environ. Econ. Manag. 89, 306–333 (2018).
    Google Scholar 
    58.Protecting and Restoring Forests: A Story of Large Commitments yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report (NYDF Assessment Partners, 2019).59.Meijer, K. S. A comparative analysis of the effectiveness of four supply chain initiatives to reduce deforestation. Trop. Conserv. Sci. 8, 583–597 (2015).
    Google Scholar 
    60.Carvalho, W. D. et al. Deforestation control in the brazilian amazon: a conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspect. Ecol. Conserv. 17, 122–130 (2019).
    Google Scholar 
    61.Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA 116, 23202–23208 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Nolte, C., le Polain de Waroux, Y., Munger, J., Reis, T. N. P. & Lambin, E. F. Conditions influencing the adoption of effective anti-deforestation policies in South America’s commodity frontiers. Glob. Environ. Change 43, 1–14 (2017).
    Google Scholar 
    63.Godar, J., Gardner, T. A., Tizado, E. J. & Pacheco, P. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 111, 15591–15596 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Alix-Garcia, J. M., Sims, K. R. E. & Yañez-Pagans, P. Only one tree from each seed? Environmental effectiveness and poverty alleviation in Mexico’s payments for ecosystem services program. Am. Econ. J.: Econ. Policy 7, 1–40 (2015).
    Google Scholar 
    65.Alix-Garcia, J. M. et al. Payments for environmental services supported social capital while increasing land management. Proc. Natl Acad. Sci. USA 115, 7016–7021 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Börner, J. et al. The effectiveness of payments for environmental services. World Dev. 96, 359–374 (2017).
    Google Scholar 
    67.Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Annual Review 2017 (PEFC, 2017).69.Higgins, V. & Richards, C. Framing sustainability: alternative standards schemes for sustainable palm oil and South–South trade. J. Rural Stud. 65, 126–134 (2019).
    Google Scholar 
    70.Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).CAS 

    Google Scholar 
    71.World Countries (ArcGIS, 2020); https://www.arcgis.com/home/item.html?id=d974d9c6bc924ae0a2ffea0a46d71e3d72.Hansen, M. et al. Response to comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption, and international trade. Environ. Sci. Technol. 46, 172–179 (2012).CAS 

    Google Scholar 
    74.Moran, D. & Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 11, 094017 (2016).
    Google Scholar 
    75.Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the carbon footprint of nations. Environ. Sci. Technol. 50, 10512–10517 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Yang, Y. et al. Mapping global carbon footprint in China. Nat. Commun. 11, 2237 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Sun, Z., Scherer, L., Tukker, A. & Behrens, P. Linking global crop and livestock consumption to local production hotspots. Glob. Food Sec. 25, 100323 (2020).
    Google Scholar 
    78.Global Forest Resource Assessment 2000 FAO Forestry Paper 140 (FAO, 2001).79.Sasaki, N. & Putz, F. E. Critical need for new definitions of ‘forest’ and ‘forest degradation’ in global climate change agreements. Conserv. Lett. 2, 226–232 (2009).
    Google Scholar 
    80.Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Lenzen, M. et al. The Global MRIO Lab – charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).
    Google Scholar 
    82.Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).
    Google Scholar 
    83.You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).
    Google Scholar  More

  • in

    Evolutionary assembly of flowering plants into sky islands

    1.Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).Article 

    Google Scholar 
    2.Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).CAS 
    Article 

    Google Scholar 
    3.Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    4.Münkemüller, T., Boucher, F., Thuiller, W. & Lavergne, S. Common conceptual and methodological pitfalls in the analysis of phylogenetic niche conservatism. Funct. Ecol. 29, 627–639 (2015).Article 

    Google Scholar 
    5.Behrensmeyer, A. K. et al. (eds) Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (Univ. of Chicago Press, 1992).6.Graham, A. Late Cretaceous and Cenozoic History of North American Vegetation North of Mexico (Oxford Univ. Press, 1999).7.Latham, R. E. & Ricklefs, R. E. in Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schluter, D.) 294–314 (Univ. of Chicago Press, 1993).8.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).CAS 
    Article 

    Google Scholar 
    9.Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639–644 (2004).Article 

    Google Scholar 
    10.Ricklefs, R. E. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology 87, S3–S13 (2006).Article 

    Google Scholar 
    11.Qian, H. & Sandel, B. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Glob. Ecol. Biogeogr. 26, 1258–1269 (2017).Article 

    Google Scholar 
    12.Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514 (2000).Article 

    Google Scholar 
    13.Pulsipher, L. M. & Pulsipher, A. World Regional Geography: Global Patterns, Local Lives 6th edn (W.H. Freeman, 2014).14.Culmsee, H. & Leuschner, C. Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests. J. Biogeogr. 40, 1997–2010 (2013).Article 

    Google Scholar 
    15.González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. & Swenson, N. G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145–153 (2014).Article 

    Google Scholar 
    16.Qian, H., Zhang, Y., Zhang, J. & Wang, X. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Glob. Ecol. Biogeogr. 22, 1183–1191 (2013).Article 

    Google Scholar 
    17.Qian, H., Field, R., Zhang, J., Zhang, J. & Chen, S. Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees in forest communities in China. J. Biogeogr. 43, 603–615 (2016).Article 

    Google Scholar 
    18.Qian, H. & Ricklefs, R. E. Out of the tropical lowlands: latitude versus elevation. Trends Ecol. Evol. 31, 738–741 (2016).Article 

    Google Scholar 
    19.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).Article 

    Google Scholar 
    20.Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography https://doi.org/10.1111/ecog.04434 (2019).21.Mazel, F. et al. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography 39, 913–920 (2016).CAS 
    Article 

    Google Scholar 
    22.Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).Article 

    Google Scholar 
    23.Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems 2nd edn (Springer, 2003).24.Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).Article 

    Google Scholar 
    25.Gallien, L., Zurell, D. & Zimmermann, N. E. Frequency and intensity of facilitation reveal opposing patterns along a stress gradient. Ecol. Evol. 8, 2171–2181 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    26.Choler, P., Michalet, R. & Callaway, R. M. Facilitation and competition on gradients in alpine plant communities. Ecology 82, 3295–3308 (2001).Article 

    Google Scholar 
    27.Butterfield, B. J. et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478–486 (2013).CAS 
    Article 

    Google Scholar 
    28.Steinbauer et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).Article 

    Google Scholar 
    29.Takhtajan, A. L. Flowering Plants: Origin and Dispersal (Oliver & Boyd, 1969).30.Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).Article 

    Google Scholar 
    31.Heald, W. Sky Island (D. Van Nostrand Co., Inc., 1967).32.Marx, H. E. et al. Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J. Biogeogr. 44, 2618–2630 (2017).Article 

    Google Scholar 
    33.Humboldt, A. V. & Bonpland, A. Essai sur la Géographie des Plantes: Accompagné d’un Tableau Physique des Régions Équinoxiales (Arno Press, 1977).34.Qian, H., White, P. S., Klinka, K. & Chourmouzis, C. Phytogeographical and community similarities of alpine tundras of Changbaishan Summit, China, and Indian Peaks, USA. J. Veg. Sci. 10, 869–882 (1999).Article 

    Google Scholar 
    35.Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73–78 (2011).Article 

    Google Scholar 
    36.Chapin, F. S. III & Körner, C. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. III & Körner, C.) 313–320 (Springer, 1995).37.Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).Article 

    Google Scholar 
    38.Webb, C., Ackerly, D. & Kembel, S. Phylocom: Software for the analysis of phylogenetic community structure and character evolution, with Phylomatic. R package version 4.2 (2011).39.Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. https://doi.org/10.1016/j.pld.2020.11.005 (2021).40.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    41.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article 

    Google Scholar 
    42.Tsirogiannis, C., Sandel, B. & Cheliotis, D. Efficient computation of popular phylogenetic tree measures. Lect. Notes Comput. Sci. 7534, 30–43 (2012).Article 

    Google Scholar 
    43.Tsirogiannis, C., Sandel, B. & Kalvisa, A. New algorithms for computing phylogenetic biodiversity. Lect. Notes Comput. Sci. 8701, 187–203 (2014).Article 

    Google Scholar 
    44.Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).Article 

    Google Scholar  More

  • in

    Further behavioural parameters support reciprocity and milk theft as explanations for giraffe allonursing

    1.Rippeyoung, P. L. F. & Noonan, M. C. The economic costs of breastfeeding for women. Breastfeed Med. 6(5), 325–327 (2011).PubMed 
    Article 

    Google Scholar 
    2.Gloneková, M., Vymyslická, P. J., Žáčková, M. & Brandlová, K. Giraffe nursing behaviour reflects environmental conditions. Behaviour 154, 115–129 (2017).Article 

    Google Scholar 
    3.Hejcmanová, P. et al. Suckling behaviour of eland antelopes (Taurotragus spp.) under semi-captive and farm conditions. J. Ethol. 29, 161–168 (2011).Article 

    Google Scholar 
    4.Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).
    Google Scholar 
    5.Gittleman, J. L. & Thompson, S. D. Energy allocation in mammalian reproduction. Am. Zool. 28, 863–875 (1988).Article 

    Google Scholar 
    6.Arnold, L. C., Habe, M., Troxler, J., Nowack, J. & Vetter, S. G. Rapid establishment of teat order and allonursing in wild boar (Sus scrofa). Ethology 125, 940–948 (2019).Article 

    Google Scholar 
    7.Pluháček, J., Olléová, M., Bartošová, J. & Bartoš, L. Effect of ecological adaptation on suckling behaviour in three zebra species. Behaviour 149(13–14), 1395–1411 (2012).
    Google Scholar 
    8.Pluháček, J., Olléová, M., Bartoš, L. & Bartošová, J. Time spent suckling is affected by different social organization in three zebra species. J. Zool. 292, 10–17 (2014).Article 

    Google Scholar 
    9.Packer, C., Lewis, S. & Pusey, A. A comparative analysis of non-offspring nursing. Anim. Behav. 43, 265–281 (1992).Article 

    Google Scholar 
    10.Gloneková, M., Brandlová, K. & Pluháček, J. Higher maternal care and tolerance in more experienced giraffe mothers. Acta Ethol. 23, 1–7 (2020).Article 

    Google Scholar 
    11.MacLeod, K., Nielsen, J. F. & Clutton-Brock, T. H. Factors predicting the frequency, likelihood and duration of allonursing in the cooperatively breeding meerkat. Anim. Behav. 86, 1059–1067 (2013).Article 

    Google Scholar 
    12König, B. Cooperative care of young in mammals. Naturwissenschaften 84, 489–497 (1997).
    Google Scholar 
    13.Roulin, A. Why do lactating females nurse alien offspring? A review of hypotheses and empirical evidence. Anim. Behav. 63, 201–208 (2002).Article 

    Google Scholar 
    14.Bartoš, L., Vaňková, D., Hyánek, J. & Šiler, J. Impact of allosucking on growth of farmed red deer calves (Cervus elaphus). Anim. Sci. 72, 493–500 (2001).Article 

    Google Scholar 
    15.Bartoš, L., Vaňková, D., Šiler, J. & Illmann, G. Adoption, allonursing and allosucking in farmed red deer (Cervus elaphus). Anim. Sci. 72, 483–492 (2001).Article 

    Google Scholar 
    16.Engelhardt, S. C., Weladji, R. B., Holand, Ø. & Nieminen, M. Allosuckling in reindeer (Rangifer tarandus): A test of the improved nutrition and compensation hypotheses. Mammal. Biol. Z Säugetierkd 81(2), 146–152 (2016).Article 

    Google Scholar 
    17.Víchová, J. & Bartoš, L. Allosuckling in cattle: Gain or compensation?. Appl. Anim. Behav. Sci. 94, 223–235 (2005).Article 

    Google Scholar 
    18.Engelhardt, S. C. et al. Allosuckling in reindeer (Rangifer tarandus): Milk-theft, mismothering or kin selection?. Behav. Process. 107, 133–141 (2014).Article 

    Google Scholar 
    19.Gloneková, M., Brandlová, K. & Pluháček, J. Stealing milk by young and reciprocal mothers: High incidence of allonursing in giraffes, Giraffa camelopardalis. Anim. Behav. 113, 113–123 (2016).Article 

    Google Scholar 
    20.Pluháček, J., Bartošová, J. & Bartoš, L. Suckling behavior in captive plains zebra (Equus burchellii): Sex differences in foal behavior. J. Anim. Sci. 88(1), 131–136 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    21.Gloneková, M., Brandlová, K. & Pluháček, J. Giraffe males have longer suckling bouts than females. J. Mammal. 101(2), 558–653 (2020).Article 

    Google Scholar 
    22.Pluháček, J., Bartošová, J. & Bartoš, L. Further evidence for sex differences in suckling behaviour of captive plains zebra foals. Acta Ethol. 14, 91–95 (2011).Article 

    Google Scholar 
    23.Drábková, J. et al. Sucking and allosucking duration in farmed red deer (Cervus elaphus). Appl. Anim. Behav. Sci. 113(1), 215–223 (2008).Article 

    Google Scholar 
    24.Mendl, M. & Paul, E. S. Observation of nursing and sucking behaviour as an indicator of milk transfer and parental investment. Anim. Behav. 37, 513–515 (1989).Article 

    Google Scholar 
    25.Therrien, J. F., Cote, S. D., Festa-Bianchet, M. & Ouellet, J. P. Maternal care in white-tailed deer: Trade-off between maintenance and reproduction under food restriction. Anim. Behav. 75, 235–243 (2007).Article 

    Google Scholar 
    26.Plesner Jensen, S., Siefert, L., Okori, J. & Clutton-Brock, T. Age-related participation in allosuckling by nursing warthogs (Phacochoerus africanus). J. Zool. 248, 443–449 (1999).Article 

    Google Scholar 
    27Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).Article 

    Google Scholar 
    28.Engelhardt, S. C., Weladji, R. B., Holand, Ø., Røed, K. H. & Nieminen, M. Evidence of reciprocal allonursing in reindeer, Rangifer tarandus. Ethology 121(3), 245–259 (2015).Article 

    Google Scholar 
    29.Jones, J. D. & Treanor, J. J. Allonursing and cooperative birthing behavior in Yellowstone bison, Bison bison. Can. Field-Nat. 122(2), 171–172 (2008).Article 

    Google Scholar 
    30.Pusey, A. E. & Packer, C. Non-offspring nursing in social carnivores—Minimizing the costs. Behav. Ecol. 5, 362–374 (1994).Article 

    Google Scholar 
    31Murphey, R. M., Paranhos da Costa, M. J. R., Gomes da Silva, R. & de Souza, R. Allonursing in river buffalo, Bubalis bubalis: Nepotism, incompetence, or thivery?. Anim. Behav. 49, 1611–1616 (1995).Article 

    Google Scholar 
    32.Olléová, M., Pluháček, J. & King, S. R. B. Effect of social system on allosuckling and adoption in zebras. J. Zool. 288(2), 127–134 (2012).Article 

    Google Scholar 
    33.Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212–229 (1984).Article 

    Google Scholar 
    35.Baldovino, M. C. & Di Bitetti, M. S. Allonursing in tufted capuchin monkeys (Cebus nigritus): Milk or pacifier?. Folia Primatol. 79, 79–92 (2007).Article 

    Google Scholar 
    36.Boness, D. J., Craig, M. P., Honigman, L. & Austin, S. Fostering behavior and the effect of female density in Hawaiian monk seals, Monachus schauinslandi. J. Mammal. 79, 1060–1069 (1998).Article 

    Google Scholar 
    37.Cassinello, J. Allosuckling behaviour in Ammotragus. Z. Saugetierkd 64(6), 363–370 (1999).
    Google Scholar 
    38.Nuñez, C. M., Adelman, J. S. & Rubenstein, D. I. A free-ranging, feral mare Equus caballus affords similar maternal care to her genetic and adopted offspring. Am. Nat. 182, 674–681 (2013).PubMed 
    Article 

    Google Scholar 
    39.Brandlová, K., Bartoš, L. & Haberová, T. Camel calves as opportunistic milk thefts? The first description of allosuckling in domestic bactrian camel (Camelus bactrianus). PLoS ONE 8(1), e53052 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Zapata, B., Gaete, G., Correa, L., González, B. & Ebensperger, L. A case of allosuckling in wild guanacos (Lama guanicoe). J. Ethol. 27, 295–297 (2009).Article 

    Google Scholar 
    41.Bond, M. L. & Lee, D. E. Simultaneous multiple-calf allonursing by a wild Masai giraffe. Afr. J. Ecol. 58(1), 126–128 (2020).Article 

    Google Scholar 
    42.Pratt, D. M. & Anderson, V. H. Giraffe cowecalf relationships and social development of the calf in the Serengeti. Z. Tierpsychol. 51(3), 233–251 (1979).Article 

    Google Scholar 
    43.Saito, M. & Idani, G. Suckling and allosuckling behavior in wild giraffe (Giraffa camelopardalis tippelskirchi). Mammal. Biol. 93, 1–4 (2018).Article 

    Google Scholar 
    44.Zoelzer, F., Engel, C., Paul, W. D. & Anna Lena, B. A comparative study of nightly allonursing behaviour in four zoo-housed groups of giraffes (Giraffa camelopardalis). J. Zoo Aquar. Res. 8(3), 175–180 (2020).
    Google Scholar 
    45.Schino, G. & Aureli, F. The relative roles of kinship and reciprocity in explaining primate altruism. Ecol. Lett. 13, 45–50 (2010).PubMed 
    Article 

    Google Scholar 
    46.Bercovitch, F. B., Bashaw, M. J. & del Castillo, S. M. Sociosexual behavior, male mating tactics, and the reproductive cycle of giraffe Giraffa camelopardalis. Horm. Behav. 50(2), 314–321 (2006).PubMed 
    Article 

    Google Scholar 
    47.Bercovitch, F. B. & Berry, P. S. M. Herd composition, kinship and fission—fusion social dynamics among wild giraffe. Afr. J. Ecol. 51(2), 206–216 (2013).Article 

    Google Scholar 
    48.Carter, K. D., Seddon, J. M., Frere, C. H., Carter, J. K. & Goldizen, A. W. Fission-fusion dynamics in wild giraffes may be driven by kinship, spatial overlap and individual social preferences. Anim. Behav. 85, 385–394 (2013).Article 

    Google Scholar 
    49.D’haen, M., Fennessy, J., Stabach, J. & Brandlová, K. Population structure and spatial ecology of Kordofan giraffe in Garamba National Park, Democratic Republic of Congo. Ecol. Evol. 9(19), 11395–11405 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Horová, E., Brandlová, K. & Gloneková, M. The first description of dominance hierarchy in captive giraffe: Not loose and egalitarian, but clear and linear. PLoS ONE 10(5), e0124570 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Jůnková Vymyslická, P., Brandlová, K., Hozdecká, K., Žáčková, M. & Hejcmanová, P. Feeding rank in the Derby eland: Lessons for management. Afr. Zool. 50(4), 313–320 (2015).Article 

    Google Scholar 
    52.Broussard, D. R., Risch, T. S., Dobson, F. S. & Murie, J. O. Senescence and age-related reproduction of female Columbian ground squirrels. J. Anim. Ecol. 72, 212–219 (2003).Article 

    Google Scholar 
    53.Cameron, E. Z., Linklater, W. L., Stafford, K. J. & Minot, E. O. Aging and improving reproductive success in horses: declining residual reproductive value or just older and wiser?. Behav. Ecol. Sociobiol. 47(4), 243–249 (2000).Article 

    Google Scholar 
    54.Cameron, E. Z., Linklater, W. L., Stafford, K. J. & Minot, E. O. A case of cooperative nursing and offspring care by mother and daughter feral horses. J. Zool. 249, 486–489 (1999).Article 

    Google Scholar 
    55.Ekvall, K. Effects of social organization, age and aggressive behaviour on allosuckling in wild fallow deer. Anim. Behav. 56, 695–703 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Birgersson, B. & Ekvall, K. Suckling time and fawn growth in fallow deer (Dama dama). Zoology 232, 641–650 (1994).
    Google Scholar 
    57.Fennessy, J. et al. Multi-locus analyses reveal four giraffe species instead of one. Curr. Biol. 26(18), 2543–2549 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Estes, R. The Behavior Guide to African Mammals (University of California Press, 1991).
    Google Scholar 
    59.Altmann, J. Observational study of behaviour: Sampling methods. Behaviour 49, 227–267 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Špinka, M. & Illmann, G. Suckling behaviour of young dairy calves with their own and alien mothers. Appl. Anim. Behav. Sci. 33(2), 165–173 (1992).Article 

    Google Scholar 
    61.Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 56, 330–338 (1922).Article 

    Google Scholar  More

  • in

    Functional groups in microbial ecology: updated definitions of piezophiles as suggested by hydrostatic pressure dependence on temperature

    1.Capece MC, Clark E, Saleh JK, Halford D, Heinl N, Hoskins S, et al. Polyextremophiles and the constraints for terrestrial habitability. In: Seckbach J, Oren A, Stan-Lotter H, editors. Polyextremophiles. Life under muliple forms of stress. Dordrecht, Neaderlands: Springer; 2013. p. 3–60.2.Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS. The limits for life under multiple extremes. Trends Microbiol. 2013;21:204–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Oger PM, Jebbar M. The many ways of coping with pressure. Res Microbiol. 2010;161:799–809.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bartlett DH. Pressure effects on in vivo microbial processes. Biochim Biophys Acta. 2002;1595:367–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW. Biotechnology under high pressure: applications and implications. Trends Biotechnol. 2009;27:434–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Jannasch HW, Taylor CD. Deep-sea microbiology. Ann Rev Microbiol. 1984;38:487–514.CAS 
    Article 

    Google Scholar 
    8.Fang J, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol. 2010;18:413–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Yayanos AA. Microbiology to 10,500 meters in the deep sea. Ann Rev Microbiol. 1995;49:777–805.CAS 
    Article 

    Google Scholar 
    10.Eloe EA, Lauro FM, Vogel RF, Bartlett DH. The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol. 2008;74:6298–305.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Horikoshi K, Bull AT Prologue: Definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K, editor. Extremophiles handbook. Tokyo, Japan: Springer; 2011. p. 3–18.12.Holt RD. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA. 2009;106:19659–65.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Talley LD, Pickard GL, Emery WJ, Swift JH. Typical distributions of water characteristics. In: Descriptive physical oceanography, 6th ed. London, UK: Elsevier; 2011. p. 67–110.14.Jebbar M, Franzetti B, Girard E, Oger P. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles. 2015;19:721–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Berhardt G, Jaenicke R, Ludemann H-D, Konig H, Stetter KO. High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl Environ Microbiol. 1998;54:1258–61.Article 

    Google Scholar 
    16.Scoma A, Garrido-Amador P, Nielsen SD, Roy H, Kjeldsen KU. The polyextremophilic bacterium Clostridium paradoxum attains piezophilic traits by modulating its energy metabolism and cell membrane composition. Appl Environ Microbiol. 2019;85:e00802–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Wiegel J. Temperature spans for growth: hypothesis and discussion. FEMS Microbiol Rev. 1990;75:155–70.Article 

    Google Scholar 
    18.Morita RY. Psychrophilic bacteria. Bacteriol Rev. 1975;39:144–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Zeikus JG. Thermophilic Bacteria—Ecology. Physiol Technol Enz Microb Technol. 1979;1:243–52.CAS 
    Article 

    Google Scholar 
    20.Yayanos AA. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA. 1986;83:9542–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Jannasch HW, Wirsen CO. Variability of pressure adaptation in deep sea bacteria. Arch Microbiol. 1984;139:281–8.Article 

    Google Scholar 
    22.Yayanos AA, Chastain R. The influence of nutrition on the physiology of piezophilic bacteria. In: Bell CR, Brylinsky M, Johnson-Green P, Eds. Proceedings of the 8th International Symposium on Microbial Ecology. Halifax, NS, Canada: Atlantic Canada Society for Microbial Ecology; 6; 1999.23.Matsumura P, Keller DM, Marquis RE. Restricted pH ranges and reduced yields for bacterial growth under pressure. Microb Ecol. 1974;1:176–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Oren A. Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev. 1999;63:334–48.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yayanos AA, Dietz AS, Van, Boxtel R. Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol. 1982;44:1356–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE. The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol. 1984;130:1911–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH. The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol. 2007;73:838–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Marteinsson VT, Birrien J-L-, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, et al. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol. 1999;49:351–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Alain K. Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Sys Evol Microbiol. 2002;52:1331–9.CAS 

    Google Scholar 
    30.Canganella F, Gonzalez JM, Yanagibayashi M, Kato C, Horikoshi K. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol. 1997;168:1–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Canganella F, Gambacorta A, Kato C, Horikoshi K. Effects of hydrostatic pressure and temperature on physiological traits of Thermococcus guaymasensis and Thermococcus aggregans growing on starch. Microbiol Res. 2000;154:297–306.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW. Prokaryotic responses to hydrostatic pressure in the ocean-a review. Environ Microbiol. 2013;15:1262–74.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nogi Y, Masui N, Kato C. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles. 1998;2:1–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Arakawa S, Nogi Y, Sato T, Yoshida Y, Usami R, Kato C. Diversity of piezophilic microorganisms in the closed ocean Japan Sea. Biosci Biotechnol Biochem. 2006;70:749–52.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Xu Y, Nogi Y, Kato C, Liang Z, Ruger H-J, De Kegel D, et al. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol. 2003;53:533–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Sekiguchi T, Sato T, Enoki M, Kanehiro H, Kato C. Procedure for isolation of the plastic degrading piezophilic bacteria from deep-sea environments. J Jap Soc Extremophil. 2010a;9:25–30.Article 

    Google Scholar 
    37.Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep. Res Dev. 2010b;11:33–41.
    Google Scholar 
    38.Nogi Y, Kato C, Horikoshi K. Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol. 2002;52:1527–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Yayanos AA, Dietz AS, van Boxtel R. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science. 1979;205:808–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol. 2004;54:1627–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kato C, Sato T, Horikoshi K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Cons. 1995;4:1–9.Article 

    Google Scholar 
    42.Kato C, Inoue A, Horikoshi K. Isolating and characterizing deep-sea marinemicroorganisms. Tibtech. 1996;14:6–12.CAS 
    Article 

    Google Scholar 
    43.Nogi Y, Kato C. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles. 1999;3:71–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT. Isolation of an Obligately Barophilic Bacterium and Description of a New Genus, Colwellia gen. nov. Systematic and Applied Microbiology. 1988;10:152–60.Article 

    Google Scholar 
    45.Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 2017;67:824–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Cao J, Lai Q, Liu P, Wei Y, Wang L, Liu R, et al. Salinimonas sediminis sp. nov., a piezophilic bacterium isolated from a deep-sea sediment sample from the New Britain Trench. Int J Syst Evol Microbiol. 2018;68:3766–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Liu P, Ding W, Lai Q, Liu R, Wei Y, Wang L, et al. Physiological and genomic features of Paraoceanicella profunda gen. nov., sp. nov., a novel piezophile isolated from deep seawater of the Mariana Trench. MicrobiologyOpen. 2019;00:e966.
    Google Scholar 
    48.Quéméneur M, Erauso G, Frouin E, Zeghal E, Vandecasteele C, Ollivier B, et al. Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Front Microbiol. 2019;10:1497.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Xiao X, Wang P, Zeng X, Bartlett DH, Wang F. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol. 2007;57:60–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Alazard D, Dukan S, Urios A, Verhe F, Bouabida N, Morel F, et al. Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol. 2003;53:173–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Pathom-Aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K, Bull AT, et al. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 2006;56:1233–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A. Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol. 2009;11(8):1983–97.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Erauso G, Reysenbach A-L, Godfroy A, Meunier J-R, Crump B, Partensky F, et al. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol. 1993;160:338–49.CAS 
    Article 

    Google Scholar 
    54.Li Y, Mandelco L, Wiegel J. Isolation and Characterization of a Moderately Thermophilic Anaerobic Alkaliphile. Clostridium paradoxum sp. nov. Int J Sys Bacteriol. 1993;43:450–60.Article 

    Google Scholar 
    55.Zhao W, Zeng X, Xiao X. Thermococcus eurythermalis sp. nov., a conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin. Int J Sys Evol Microbiol. 2015;65:30–5.CAS 
    Article 

    Google Scholar 
    56.Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, et al. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A. 2008;105:10949–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.González JM, Kato C, Horikoshi K. Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol. 1995;164:159–64.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS. Methanococcusjannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol. 1983;136:254–61.CAS 
    Article 

    Google Scholar  More

  • in

    Identify potential allelochemicals from Humulus scandens (Lour.) Merr. root extracts that induce allelopathy on Alternanthera philoxeroides (Mart.) Griseb.

    1.Pomella, A. W. V., Barreto, R. W. & Charudattan, R. Nimbya alternantherae a potential biocontrol agent for alligatorweed, Alternanthera philoxeroides. Biocontrol 52, 271–288 (2007).CAS 
    Article 

    Google Scholar 
    2.Barreto, R. W. & Torres, A. N. L. Nimbya alternantherae and Cercospora alternantherae: two new records of fungal pathogens on Alternanthera philoxeroides (alligatorweed) in Brazil, Australas. Plant Pathol 28, 103–107 (1999).
    Google Scholar 
    3.Ridenour, W. M. & Callaway, R. M. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126, 444–450 (2001).ADS 
    Article 

    Google Scholar 
    4.Tanveer, A., Ali, H. H. & Manalil, S. Eco-biology and management of alligator weed [Alternanthera philoxeroides (Mart.) Griseb.] a review. Wetlands 38, 1067–1079 (2018).Article 

    Google Scholar 
    5.Garbari, F. & Pedullà, M. L. Alternanthera philoxeroides (Mart) Griseb (Amaranthaceae), a new species for the exotic flora of Italy. J. Plant Taxon Geogr 56, 139–143 (2001).
    Google Scholar 
    6.Chen, X., Wang, R. & Cao, Q. The relationship between the distribution of invasive plant Alternanthera philoxeroides and soil properties is scale-dependent. Pol. J. Environ. Stud. 24, 1931–1938 (2015).Article 

    Google Scholar 
    7.Wang, T., Hu, J. & Miao, L. The invasive stoloniferous clonal plant Alternanthera philoxeroides outperforms its co-occurring non-invasive functional counterparts in heterogeneous soil environments-invasion implications. Sci. Rep. 6, 38036 (2016).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    8.Wang, B., Li, W. & Wang, J. Genetic diversity of Alternanthera philoxeroides in China. Aquat. Bot. 81, 277–283 (2005).Article 

    Google Scholar 
    9.Shen, J., Shen, M. & Wang, X. Effect of environmental factors on shoot emergence and vegetative growth of alligatorweed (Alternanthera philoxcroides). Weed Sci. 53, 471–478 (2005).CAS 
    Article 

    Google Scholar 
    10.Bassett, I., Paynter, Q. & Hankin, R. Characterising alligator weed (Alternanthera philoxeroides; Amaranthaceae) invasion at a northern New Zealand lake. N. Z. J. Ecol. 36, 216–222 (2012).
    Google Scholar 
    11.Pan, X. Y. Invasive Alternanthera philoxeroides: biology, ecology and management. Acta Phytotaxonomica Sinica 45, 884–900 (2007).Article 

    Google Scholar 
    12.Phung, T., Xuan, T. & Tu, A. T. Weed suppressing potential and isolation of potent plant growth inhibitors from Castanea crenata Sieb. et Zucc. Molecules 23, 345 (2018).Article 
    CAS 

    Google Scholar 
    13.Yu, Z. & Bi, H. Status Quo of research on ecosystem services value in China and suggestions to future research. Energy Procedia 5, 1044–1048 (2011).Article 

    Google Scholar 
    14.Yang, S., Wang, Q. & Hu, T. Physiological responses to allelopathy of decomposing Cinnamomum septentrionale leaf litter of three crops (corn, cucumber, and cowpea). Chin. J. App. Environ. Biol. 29, 292–298 (2018).
    Google Scholar 
    15.Dong, B. C., Fu, T. & Luo, F. L. Herbivory-induced maternal effects on growth and defense traits in the clonal species Alternanthera philoxeroides. Sci. Total Environ. 605–606, 114–123 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    16.Dugdale, T. M., Clements, D. & Hunt, T. D. Alligatorweed produces viable stem fragments in response to herbicide treatment. J. Aquat. Plant Manag. 48, 84–91 (2010).
    Google Scholar 
    17.Clements, D., Dugdale, T. M. & Butler, K. L. Management of aquatic alligator weed in an early stage of invasion. Manag. Biol. Invas. 5, 327–339 (2014).Article 

    Google Scholar 
    18.Clements, D., Dugdale, T. M. & Butler, K. L. Herbicide efficacy for aquatic Alternanthera philoxeroides management in an early stage of invasion: integrating above-ground biomass, below-ground biomass and viable stem fragmentation. Weed Res. 57, 257–266 (2017).CAS 
    Article 

    Google Scholar 
    19.Bond, W. & Grundy, A. Non-chemical weed management in organic farming systems. Weed Res. 41, 383–405 (2001).Article 

    Google Scholar 
    20.Schooler, S., Cook, T. & Bourne, A. Selective herbicides reduce alligator weed (Alternanthera Philoxeroides) biomass by enhancing competition. Weed Sci. 56, 259–264 (2008).CAS 
    Article 

    Google Scholar 
    21.Sainty, G., Mccorkelle, G., & Julien, M. Control and spread of alligator weed Alternanthera philoxeroides (Mart.) Griseb., in Australia: Lessons for other regions. Wetlands Ecol. Manage. 5, 195–201 (1997).Article 

    Google Scholar 
    22.Annett, R., Habibi, H. R. & Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 34, 458–479 (2014).CAS 
    Article 

    Google Scholar 
    23.Bais, H. P., Vepachedu, R. & Gilroy, S. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301, 1377–1380 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Zhang, Z., Deng, L. L. & Wang, L. C. Allelopathic potential of Phragmites australis extracts on the growth of invasive plant Alternanthera philoxeroides. Allelopath. J. 45, 54–63 (2018).Article 

    Google Scholar 
    25.Jabran, K., Mahajan, G. & Sardana, V. Allelopathy for weed control in agricultural systems. Crop Prot. 72, 57–65 (2015).Article 

    Google Scholar 
    26.Kumbhar, B. A. & Patel, D. D. Allelopathic effects of different weed species on crop. J. Pharm. Sci. Biosci. Res. 6, 801–805 (2016).
    Google Scholar 
    27.Weston, L. A. & Duke, S. O. Weed and crop allelopathy. Crit. Rev. Plant Sci. 22, 367–389 (2003).CAS 
    Article 

    Google Scholar 
    28.Rice, E.L., Allelopathy, 2nd Ed, A. Press, Editor. 1-50 (1984).29.Da Silva, I. F. & Vieira, E. A. Phytotoxic potential of Senna occidentalis (L.) Link extracts on seed germination and oxidative stress of Ipe seedlings. Plant Biol. 21, 770–779 (2019).Article 
    CAS 

    Google Scholar 
    30.Zeng, R. S. Allelopathy—the solution is indirect. J. Chem. Ecol. 40, 515–516 (2014).CAS 
    Article 

    Google Scholar 
    31.Otusanya, O. O., Ilori, O. J. & Adelusi, A. A. Allelopathic effects of tithonia diversifolia (Hemsl) A. gray on germination and growth of Amaranthus cruentus. Res. J. Environ. Sci. 1, 285–293 (2007).CAS 
    Article 

    Google Scholar 
    32.Chen, Z. & Meng, S. Research progress of Humulus scandens. Chin. Pharm. Affairs 24, 73–77 (2011).CAS 

    Google Scholar 
    33.Cao, Y., Wang, T. & Xiao, Y. A. The interspecific competition between Humulus scandens and Alternanthera philoxeroides. J. Plant Interactions 9, 194–199 (2013).Article 
    CAS 

    Google Scholar 
    34.Huang, Y. M., Zhang, Y. & Liu, Q. Research on allelopathy of aqueous extract from tagetes patula to four garden plants. Acta pratacultural sinica (Chinese) 24, 150–158 (2015).
    Google Scholar 
    35.Li, W., Luo, J. & Tian, X. A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them. Sci. Rep. 5, 11004 (2015).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    36.Cheng, T. S. The toxic effects of diethyl phthalate on the activity of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). Aquat. Toxicol. 124, 171–178 (2012).Article 
    CAS 

    Google Scholar 
    37.Makoi, J. H. & Ndakidemi, P. A. Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr. J. Biotech. 6, 739–748 (2007).
    Google Scholar 
    38.Zhang, K. M., Shen, Y. & Yang, J. The defense system for Bidens pilosa root exudate treatments in Pteris multifida gametophyte. Ecotoxicol. Environ. Saf. 173, 203–213 (2019).CAS 
    Article 

    Google Scholar 
    39.Noctor, G., Reichheld, J.-P. & Foyer, C. H. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 80, 3–12 (2017).Article 
    CAS 

    Google Scholar 
    40.Kaur, N., Chugh, V. & Gupta, A. K. Essential fatty acids as functional components of foods-a review. J. Food Sci. Technol. 51, 2289–2303 (2014).CAS 
    Article 

    Google Scholar 
    41.Sun, C. H., Li, Y. & He, H. Y. Physiological and biochemical responses of Chenopodium album to drought stresses. Atca Ecologica Sinica 25, 2556–2561 (2005).CAS 

    Google Scholar 
    42.Li, P., Wang, X. & Li, Y. The contents of phenolic acids in continuous cropping peanut and their allelopathy. Acta Ecol. Sin. 30, 2128–2134 (2010).MathSciNet 
    Article 

    Google Scholar 
    43.Wang, Y. X., Sun, G. R. & Wang, J. B. Relationships among MDA content, plasma membrane permeability and the chlorophyll fluorescence parameters of Puccinellia tenuiflora seedlings under NaCl stress. Acta Ecol. Sin. 26, 122–129 (2006).CAS 

    Google Scholar 
    44.Li, Z. Q., Li, J. T. & Bing, J. The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana. Hereditas (Beijing) 41, 534–547 (2019).
    Google Scholar 
    45.Tang, K., Ming, L. & Shan, D. Allelopathy autotoxicity effects of aquatic extracts from rhizospheric soil on rooting and growth of stem cuttings in Pogostemon cablin. J. Chin. Med. Mater. 37, 935–939 (2014).CAS 

    Google Scholar 
    46.Coelho, E. M. P., Barbosa, M. C. & Mito, M. S. The activity of the antioxidant defense system of the weed species Senna obtusifolia L and its resistance to allelochemical stress. J. Chem. Ecol. 43, 725–738 (2017).CAS 
    Article 

    Google Scholar 
    47.Li, J. & Wang, X. Advance of research on Humulus scandens. Qilu Pharm. Affairs 26, 353–355 (2007).
    Google Scholar 
    48.Xu, B., Jin, Y. & Yihan, W. Chemical constituents from stems and leaves of Humulus scandens. Chin. Tradit. Herb. Drugs 45, 1228–1231 (2014).CAS 

    Google Scholar 
    49.Zhang, J., Liu, J. & Dai, L.-F. Unlocking the potential antioxidant and anti-inflammatory activities of Rhododendron molle G. Don. Pak. J. Pharm. Sci. 32, 2375–2383 (2019).CAS 

    Google Scholar 
    50.Chen, Z., Guo, Q. & Huang, K. Analysis of volatile components of solidago canadensis by SPME/GC-MS. Acta Agriculturae Jiangxi (Chinese) 26, 1 (2008).
    Google Scholar 
    51.Wang, Y., Yu, J. & Zhang, Y. Effects of two allelochemicals on growth and physiological characteristics of eggplant seedlings. J. Gansu Agric. Univ. (Chinese) 3, 47–50 (2007).
    Google Scholar 
    52.Yu, J., Zhang, Y. & Niu, C. Effects of two kinds of allelochemicals on photosynthesis and chlorophyll fluorescence parameters of Solanum melongena L. seedlings. J. Appl. Ecol. 17, 1629–1632 (2006).ADS 
    CAS 

    Google Scholar 
    53.Lande, M. L., Kanedi, M. & Zulkifli, Z. Supperssive effexts of lantana camara leaf extracts on the growth of red chillli (Carsicum annuum). World J. Pharm. Life Sci. 3, 543–551 (2017).
    Google Scholar 
    54.Erida, G. & Saidi, N. Allelopathic screening of several weed species as potential bioherbicides. IOP Conf. Ser. Earth Environ. Sci. 334, 12–34 (2019).Article 

    Google Scholar 
    55.Cimmino, A., Masi, M. & Rubiales, D. Allelopathy for parasitic plant management. Nat. Prod. Commun. 13, 289–294 (2018).
    Google Scholar 
    56.Deng, J., Zhang, Y. & Hu, J. Autotoxicity of phthalate esters in tobacco root exudates: Effects on seed germination and seedling growth. Pedosphere 27, 1073–1082 (2017).CAS 
    Article 

    Google Scholar 
    57.Gu, S., Zheng, H. & Xu, Q. Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. Aquat. Toxicol. 191, 122–130 (2017).CAS 
    Article 

    Google Scholar 
    58.Perveen, S., Yousaf, M. & Zahoor, A. F. Extraction, isolation, and identification of various environment friendly components from cock’s comb (Celosia argentea) leaves for allelopathic potential. Toxicol. Environ. Chem. Rev. 96, 1523–1534 (2014).CAS 
    Article 

    Google Scholar 
    59.Alara, O. R., Abdurahman, N. H. & Ukaegbu, C. I. Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing soxhlet and microwave-assisted extraction techniques. J. Taibah Univ. Sci. 13, 414–422 (2019).Article 

    Google Scholar 
    60.Wei, W., Hou, Y. & Peng, S. Effects of light intensity on growth and biomass allocation of invasive plants Mikania micrantha and Chromolaena odorata. Acta Ecol. Sin. 37, 6021–6028 (2017).Article 

    Google Scholar 
    61.Williamson, G. B. & Richardson, D. Bioassays for allelopathy: measuring treatment responses with independent controls. J. Chem. Ecol. 14, 181–187 (1988).Article 

    Google Scholar 
    62.Gao, Y. B., Li, G. P. & Shi, H. Allelopathic effect of endophyte-infected achnatherum sibiricum on stipa grandis. Acta Ecol. Sin. 37, 1063–1073 (2017).Article 

    Google Scholar 
    63.Zhang, L., Wang, X. & Guo, J. Metabolic profiling of Chinese tobacco leaf of different geographical origins by GC-MS. Agric. Food Chem. 61, 2597–2605 (2013).CAS 
    Article 

    Google Scholar  More

  • in

    The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization

    1.Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW. Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Chang. 2016;6:751–8.Article 
    CAS 

    Google Scholar 
    2.Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Crowther TW, Hoogen JVD, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008;451:289–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang. 2013;3:909–12.CAS 
    Article 

    Google Scholar 
    6.Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Chang. 2018;8:885–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Li JQ, Pei JM, Pendall E, Fang CM, Nie M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol Biochem. 2020;141:107675.CAS 
    Article 

    Google Scholar 
    9.Wang QK, Zhao XC, Chen LC, Yang QP, Chen S, Zhang WD, et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct Ecol. 2019;33:514–23.Article 

    Google Scholar 
    10.Nottingham AT, Baath E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob Chang Biol. 2019;25:827–38.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Ye JS, Bradford MA, Dacal M, Maestre FT, García-Palacios P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob Chang Biol. 2019;25:3354–64.PubMed 
    Article 

    Google Scholar 
    12.Smith TP, Thomas TJH, Garcia-Carreras B, Sal S, Yvon-Durocher G, Bell T, et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat Commun. 2019;10:5124.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Schipper LA, Hobbs JK, Rutledge S, Arcus VL. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob Chang Biol 2014;20:3578–86.PubMed 
    Article 

    Google Scholar 
    14.Pietikainen J, Pettersson M, Baath E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol. 2005;52:49–58.PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Bárcenas-Moreno G, Gómez-Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol. 2009;15:2950–7.Article 

    Google Scholar 
    16.Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol. 2018;18:177.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Oliverio AM, Bradford MA, Fierer N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob Chang Biol. 2017;23:2117–29.PubMed 
    Article 

    Google Scholar 
    18.Bier RL, Bernhardt ES, Boot CM, Graham EB, Hall EK, Lennon JT, et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol Ecol. 2015;91:fiv113.PubMed 
    Article 
    CAS 

    Google Scholar 
    19.Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv. 2019;28:2405–29.Article 

    Google Scholar 
    20.Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Koch BJ, McHugh TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P, et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere. 2018;9:e02090.Article 

    Google Scholar 
    22.Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem. 2013;58:115–26.CAS 
    Article 

    Google Scholar 
    23.Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol. 2015;6:104.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Euskirchen ES, Bret-Harte MS, Shaver GR, Edgar CW, Romanovsky VE. Long-term release of carbon dioxide from Arctic Tundra ecosystems in Alaska. Ecosystems. 2017;20:960–74.CAS 
    Article 

    Google Scholar 
    26.Reed SC, Reibold R, Cavaleri MA, Alonso-Rodríguez AM, Berberich ME, Wood TE. Chapter six—soil biogeochemical responses of a tropical forest to warming and hurricane disturbance. In: Dumbrell AJ, Turner EC, Fayle TM, editors. Advances in ecological research. (Academic Press, Cambridge MA, 2020) pp 225–52.27.Witt C, Gaunt JL, Galicia CC, Ottow JCG, Neue HU. A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soils. 2000;30:510–9.CAS 
    Article 

    Google Scholar 
    28.Berry D, Ben Mahfoudh K, Wagner M, Loy A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol. 2012;78:612.CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    29.Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.Article 

    Google Scholar 
    30.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012;22:939–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Aronesty E. ea-utils: “Command-line tools for processing biological sequencing data”. 2011. https://github.com/ExpressionAnalysis/ea-utils.33.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Morrissey EM, Mau RL, Schwartz E, McHugh TA, Dijkstra P, Koch BJ, et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 2017;11:1890–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu X-JA, et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 2019;13:2162–72.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Gross N, Bagousse-Pinguet YL, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT. Functional trait diversity maximizes ecosystem multifunctionality. Nat Ecol Evol. 2017;1:0132.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Laliberté E, Norton DA, Scott D. Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. J Veg Sci. 2013;24:834–42.Article 

    Google Scholar 
    42.Plass-Johnson JG, Taylor MH, Husain AAA, Teichberg MC, Ferse SCA. Non-random variability in functional composition of coral reef fish communities along an environmental gradient. PLOS ONE. 2016;11:e0154014.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Götzenberger L, Botta-Dukát Z, Lepš J, Pärtel M, Zobel M, de Bello F. Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models. J Veg Sci. 2016;27:1275–87.Article 

    Google Scholar 
    44.Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, et al. Microbial richness and composition independently drive soil multifunctionality. Funct Ecol. 2017;31:2330–43.Article 

    Google Scholar 
    45.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.org/.46.Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, et al. Global trait–environment relationships of plant communities. Nat Ecol Evol. 2018;2:1906–17.PubMed 
    Article 

    Google Scholar 
    47.Piton G, Legay N, Arnoldi C, Lavorel S, Clément J-C, Foulquier A. Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands. J Ecol. 2020;108:876–93.CAS 
    Article 

    Google Scholar 
    48.Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Chang Biol. 2020;26:3221–9.PubMed 
    Article 

    Google Scholar 
    49.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Li J, Nie M, Pendall E, Reich PB, Pei J, Noh NJ, et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob Chang Biol. 2020;26:1873–85.PubMed 
    Article 

    Google Scholar 
    51.Lipson DA. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol. 2015;6:615.PubMed 
    PubMed Central 

    Google Scholar 
    52.Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T, et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36.Article 

    Google Scholar 
    53.Ali A, Yan E-R, Chang SX, Cheng J-Y, Liu X-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci Total Environ. 2017;574:654–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Buzzard V, Michaletz ST, Deng Y, He Z, Ning D, Shen L, et al. Continental scale structuring of forest and soil diversity via functional traits. Nat Ecol Evol. 2019;3:1298–308.PubMed 
    Article 

    Google Scholar 
    55.Luo Y-H, Cadotte MW, Burgess KS, Liu J, Tan S-L, Zou J-Y, et al. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecol Lett. 2019;22:1449–61.PubMed 
    Article 

    Google Scholar 
    56.Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA. 2007;104:20684–9.PubMed 
    Article 

    Google Scholar 
    57.Bradford MA. Thermal adaptation of decomposer communities in warming soils. Front Microbiol. 2013;4:333.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Morrissey EM, Mau RL, Schwartz E, Koch BJ, Hayer M, Hungate BA. Taxonomic patterns in the nitrogen assimilation of soil prokaryotes. Environ Microbiol. 2018;20:1112–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Coskun OK, Ozen V, Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Zhou G, Zhou X, Liu R, Du Z, Zhou L, Li S, et al. Soil fungi and fine root biomass mediate drought-induced reductions in soil respiration. Funct Ecol. 2020;34:2634–43.Article 

    Google Scholar 
    61.Melillo JM, Frey SD, Deangelis KM, Werner WJ, Bernard MJ, Bowles FP, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358:101–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Johnston ASA, Sibly RM. The influence of soil communities on the temperature sensitivity of soil respiration. Nat Ecol Evol. 2018;2:1597–602.PubMed 
    Article 

    Google Scholar  More