Different effects of pesticides on transcripts of the endocrine regulation and energy metabolism in honeybee foragers from different colonies
Eilers, E. J., Kremen, C., Smith Greenleaf, S., Garber, A. K. & Klein, A. M. Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS ONE 6, 21363 (2011).ADS
Google Scholar
Williams, P. H. The dependence of crop pollination within the European Union on pollination by honey bees. Agric. Zool. Rev. 6, 229–257 (1994).
Google Scholar
Burd, M. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot. Rev. 60, 83–139 (1994).MathSciNet
Google Scholar
Aguilar, R., Ashworth, L., Galetto, L. & Aizen, M. A. Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecol. Lett. 9, 968–980 (2006).
Google Scholar
Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010).
Google Scholar
van Engelsdorp, D., Hayes, J., Underwood, R. M. & Pettis, J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 3, e4071 (2008).ADS
Google Scholar
Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).CAS
Google Scholar
Van Engelsdorp, D. et al. Colony collapse disorder: A descriptive study. PLoS ONE 4, e6481 (2009).ADS
Google Scholar
Genersch, E. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 103(suppl 1), 10–19 (2010).
Google Scholar
Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).
Google Scholar
Insolia, L. et al. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Sci. Rep. 12(1), 20787. https://doi.org/10.1038/s41598-022-24946-4 (2022).Article
ADS
CAS
Google Scholar
Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: A risk assessment. PLoS ONE 9(4), e94482 (2014).ADS
Google Scholar
Bolognesi, C. & Merlo, F. D. Pesticides: Human health effects. Encyclop. Environ. Health 1, 438–453 (2011).
Google Scholar
Mullin, C. A. et al. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 1, e9754 (2015).
Google Scholar
Calatayud-Vernich, P., Calatayud, F., Simó, E. & Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut. 241, 106–114. https://doi.org/10.1016/j.envpol.2018.05.062 (2018).Article
CAS
Google Scholar
Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 2016(7), 12459 (2016).ADS
Google Scholar
Zhao, H. et al. Review on effects of some insecticides on honey bee health. Pestic. Biochem. Physiol. 188, 105219. https://doi.org/10.1016/j.pestbp.2022.105219 (2022).Article
CAS
Google Scholar
Ludicke, J. C. & Nieh, J. C. Thiamethoxam impairs honey bee visual learning, alters decision times, and increases abnormal behaviors. Ecotoxicol. Environ. Saf. 193, 110367 (2020).CAS
Google Scholar
Tison, L., Duer, A., Púčiková, V., Greggers, U. & Menzel, R. Detrimental effects of clothianidin on foraging and dance communication in honey bees. PLoS ONE 15(10), e0241134 (2020).CAS
Google Scholar
Fent, K., Schmid, M. & Christen, V. Global transcriptome analysis reveals relevant effects at environmental concentrations of cypermethrin in honey bees (Apis mellifera). Environ. Pollut. 259, 113715 (2020).CAS
Google Scholar
Christen, V., Krebs, J., Bünter, I. & Fent, K. Biopesticide spinosad induces transcriptional alterations in genes associated with energy production in honey bees (Apis mellifera) at sublethal concentrations. J. Hazard. Mater. 378, 120736 (2019).CAS
Google Scholar
Christen, V., Krebs, J. & Fent, K. Fungicides chlorothanolin, azoxystrobin and folpet induce transcriptional alterations in genes encoding enzymes involved in oxidative phosphorylation and metabolism in honey bees (Apis mellifera) at sublethal concentrations. J. Hazard. Mater. 377, 215–226 (2019).CAS
Google Scholar
Fent, K., Haltiner, T., Kunz, P. & Christen, V. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. Chemosphere 260, 127542 (2020).ADS
CAS
Google Scholar
Christen, V., Grossar, D., Charrière, J. D., Eyer, M. & Jeker, L. Correlation between increased homing flight duration and altered gene expression in the brain of honey bee foragers after acute oral exposure to thiacloprid and thiamethoxam. Insect Sci. 1, 1–15 (2021).
Google Scholar
Mao, W., Schuler, M. A. & Berenbaum, M. R. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. USA 114(10), 2538–2543 (2017).ADS
CAS
Google Scholar
Christen, V., Kunz, P. Y. & Fent, K. Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators?. Environ. Pollut. 243(Pt B), 1588–1601 (2018).CAS
Google Scholar
Testai, E., Buratti, F. & Di Consiglio, E. Chlorpyrifos Hayes’ Handbook of Pesticide Toxicology 1505–1526 (Academic Press, 2010).
Google Scholar
Eastmond, D. & Balakrishnan, S. Genotoxicity of Pesticides Hayes’ Handbook of Pesticide Toxicology 357–380 (Academic Press, 2010).
Google Scholar
Urlacher, E. et al. Measurements of chlorpyrifos levels in forager bees and comparison with levels that disrupt honey bee odor-mediated learning under laboratory conditions. J. Chem. Ecol. 42(2), 127–138 (2016).CAS
Google Scholar
Li, Z. et al. Effects of sublethal concentrations of chlorpyrifos on olfactory learning and memory performances in two bee species, Apis mellifera and Apis cerana. Sociobiology 64, 174 (2017).
Google Scholar
DeGrandi-Hoffman, G., Chen, Y. & Simonds, R. The effects of pesticides on queen rearing and virus titers in honey bees (Apis mellifera L.). Insects 4, 71–89 (2013).
Google Scholar
Cutler, G. C., Purdy, J., Giesy, J. P. & Solomon, K. R. Risk to pollinators from the use of chlorpyrifos in the United States. In Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States Reviews of Environmental Contamination and Toxicology (eds Giesy, J. & Solomon, K.) (Springer, 2014).
Google Scholar
Christen, V. & Fent, K. Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination. Environ. Pollut. 226, 48–59 (2017).CAS
Google Scholar
Stevenson, J. H. The acute toxicity of unformulated pesticides to worker honey bees (Apis mellifera L.). Plant Pathol. 27, 38–40 (1978).CAS
Google Scholar
Bartlett, D. W. et al. The strobilurin fungicides. Pest. Manag. Sci. 58, 649–662 (2002).CAS
Google Scholar
Ostiguy, N. et al. Honey bee exposure to pesticides: A four-year nationwide study. Insects. 10, 13 (2019).
Google Scholar
Inoue, L. V. B., Domingues, C. E. C., Gregorc, A., Silva-Zacarin, E. C. M. & Malaspina, O. Harmful effects of pyraclostrobin on the fat body and pericardial cells of foragers of africanized honey bee. Toxics 10, 530. https://doi.org/10.3390/toxics10090530 (2022).Article
CAS
Google Scholar
Nicodemo, D. et al. Mitochondrial respiratory inhibition promoted by pyraclostrobin in fungi is also observed in honey bees. Environ. Toxicol. Chem. 39, 1267–1272 (2020).CAS
Google Scholar
Domingues, C. E. C., Inoue, L. V. B., Silva-Zacarin, E. C. M. & Malaspina, O. Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees. Environ. Pollut. 266, 115267 (2020).
Google Scholar
Tadei, R. et al. Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Sci. Rep 9, 3277 (2019).ADS
Google Scholar
Zioga, E., Kelly, R., White, B. & Stout, J. C. Plant protection product residues in plant pollen and nectar: A review of current knowledge. Environ. Res. 189, 109873 (2020).CAS
Google Scholar
Corona, M. et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. USA 104, 7128–7133 (2007).ADS
CAS
Google Scholar
Winston, M. L. The Biology of the Honey Bee (Harvard University Press, 1987).
Google Scholar
Ueno, T., Nakaoka, T., Takeuchi, H. & Kubo, T. Differential gene expression in the hypopharyngeal glands of worker honeybees (Apis mellifera L.) associated with an age-dependent role change. Zool. Sci. 8, 557–563 (2009).
Google Scholar
Kubo, T. et al. Change in the expression of hypopharyngealgland proteins of the worker honeybees (Apis mellifera L.) with age and/or role. J. Biochem. 119, 291–295 (1996).CAS
Google Scholar
Ohashi, K., Sawata, M., Takeuchi, H., Natori, S. & Kubo, T. Molecular cloning of cDNA and analysis of expression of the gene for alpha-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Biochem. Biophys. Res. Commun. 221, 380–385 (1996).CAS
Google Scholar
Ohashi, K., Natori, S. & Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem. 265, 127–133 (1999).CAS
Google Scholar
Chanchao, C., Padoongsupalai, R. & Sangvanich, P. Expression and characterization of α-glucosidase III in the dwarf honeybee, Apis florea (Hymenoptera: Apoidea: Apidae). Insect Sci. 14(4), 283–293 (2007).CAS
Google Scholar
Corby-Harris, V. & Snyder, L. A. Measuring hypopharyngeal gland acinus size in honey bee (Apis mellifera) Workers. J. Vis. Exp. 139, 58261 (2018).
Google Scholar
Yamada, T. & Yamada, K. Comparison of long-term changes in size and longevity of bee colonies in mid-west Japan and Maui with and without exposure to pesticide, cold winters, and mites. PeerJ 8, e9505 (2020).
Google Scholar
Rinkevich, F. D. et al. Genetics, synergists, and age affect insecticide sensitivity of the honey bee, Apis mellifera. PLoS ONE 10(10), e0139841 (2015).
Google Scholar
Weidenmüller, A. The control of nest climate in bumblebee (Bombus terrestris) colonies: Interindividual variability and self reinforcement in fanning response. Behav. Ecol. 15(1), 120–128 (2004).MathSciNet
Google Scholar
Flatt, T., Tu, M. P. & Tatar, M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays 27, 999–1010 (2005).CAS
Google Scholar
Wu, M. C., Chang, Y. W., Lu, K. H. & Yang, E. C. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect. Biochem. Mol. Biol. 88, 12–20 (2017).CAS
Google Scholar
Ament, S. A., Corona, M., Pollock, H. S. & Robinson, G. E. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. USA 105, 4226–4231 (2008).ADS
CAS
Google Scholar
Nicodemo, D. et al. Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environ. Toxicol. Chem. 33(9), 2070–2075 (2014).CAS
Google Scholar
Syromyatnikov, M. Y., Lopatin, A. V., Starkov, A. A. & Popov, V. N. Isolation and properties of flight muscle mitochondria of the bumblebee Bombus terrestris (L.). Biochemistry 78(8), 909–914 (2013).CAS
Google Scholar
Dayer, F. C. Coadaptation of colony design and worker performance in honeybees. In Diversity in the Genus Apis (ed. Smith, D. R.) 2133–2245 (Westview Press, 1991).
Google Scholar
Simon-Delso, N., Amaral-Rogers, V. & Belzunces, L. P. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34 (2015).CAS
Google Scholar
Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect. Mol. Biol. 5, 645–656 (2006).
Google Scholar
Pankiw, T. & Page, R. E. Response thresholds to sucrose predict foraging division of labor in honeybees. Behav. Ecol. Sociobiol. 47, 265–267 (2000).
Google Scholar More