More stories

  • in

    Tamarixia radiata global distribution to current and future climate using the climate change experiment (CLIMEX) model

    Arunrat, N., Sereenonchai, S., Chaowiwat, W. & Wang, C. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 807, 150741 (2022).ADS 
    CAS 

    Google Scholar 
    Chandio, A. A., Shah, M. I., Sethi, N. & Mushtaq, Z. Assessing the effect of climate change and financial development on agricultural production in ASEAN-4: the role of renewable energy, institutional quality, and human capital as moderators. Environ. Sci. Pollut. Res. 29, 13211–13225 (2022).
    Google Scholar 
    Masood, N., Akram, R., Fatima, M., Mubeen, M., Hussain, S., Shakeel, M., Khan, N., Adnan, M., Wahid, A., Shah, A. N. and Ihsan, M. Z. (2022) Insect pest management under climate change. In Building climate resilience in agriculture. Springer, ChamOzdemir, D. The impact of climate change on agricultural productivity in Asian countries: A heterogeneous panel data approach. Environ. Sci. Pollut. Res. 29, 8205–8217 (2022).
    Google Scholar 
    Aidoo, O. F. et al. Climate-induced range shifts of invasive species (Diaphorina citri Kuwayama). Pest Manag. Sci. 78, 2534–2549 (2022).CAS 

    Google Scholar 
    Hebbar, K. B. et al. Predicting the Potential Suitable Climate for Coconut (Cocos nucifera L.) Cultivation in India under Climate Change Scenarios Using the MaxEnt Model. Plants. 11, 731 (2022).
    Google Scholar 
    Martín-Vélez, V. & Abellán, P. Effects of climate change on the distribution of threatened invertebrates in a Mediterranean hotspot. Insect Conserv. Divers. 15, 370–379 (2022).
    Google Scholar 
    Williams, J. J., Freeman, R., Spooner, F. & Newbold, T. Vertebrate population trends are influenced by interactions between land use, climatic position, habitat loss and climate change. Glob. Chang. Biol. 28, 797–815 (2022).CAS 

    Google Scholar 
    Aidoo, O. F. et al. Lethal yellowing disease: insights from predicting potential distribution under different climate change scenarios. J. Plant Dis. Prot. 128, 1313–1325 (2021).
    Google Scholar 
    Sofaer, H. R. et al. Development and delivery of species distribution models to inform decision-making. Bioscience 69, 544–557 (2019).
    Google Scholar 
    Mead FW, The Asiatic citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Florida Department of Agriculture Conservation Service, Division of Plant Industry Entomological Circular No. 180.Bové, J. M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. Plant Pathol. J. 1, 7–37 (2006).
    Google Scholar 
    Li, S., Wu, F., Duan, Y., Singerman, A. & Guan, Z. Citrus greening: Management strategies and their economic impact. HortScience 55, 604–612 (2020).
    Google Scholar 
    Jia, H. et al. Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 15, 817–823 (2017).CAS 

    Google Scholar 
    Ehsani, R., Dewdney, M. & Johnson, E. Controlling HLB with thermotherapy: What have we learned so far?. Citrus Ind. News 9, 26–28 (2016).
    Google Scholar 
    Spreen, T. H., Baldwin, J. P. & Futch, S. H. An economic assessment of the impact of Huanglongbing on citrus tree plantings in Florida. J. Hortic. Sci. 49, 1052–1055 (2014).
    Google Scholar 
    Djeddour, D., Pratt, C., Constantine, K., Rwomushana, I. and Day, R., (2021) The Asian citrus greening disease (Huanglongbing). Evidence note on invasiveness and potential economic impacts for East Africa. CABI Working Paper, 24, 94Hu, J., Jiang, J. & Wang, N. Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 108, 186–195 (2018).CAS 

    Google Scholar 
    Fan, G. C. et al. Evaluation of thermotherapy against Huanglongbing (citrus greening) in the greenhouse. J. Integr. Agric. 15, 111–119 (2016).
    Google Scholar 
    Nguyen, V. A., Bartels, D. & Gilligan, C. Modelling the spread and mitigation of an emerging vector-borne pathogen: citrus greening in the US. Biorxiv https://doi.org/10.1101/2022.05.04.490566 (2022).Article 

    Google Scholar 
    Milosavljević, I. et al. Post-release evaluation of Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae) and Tamarixia radiata (Hymenoptera: Eulophidae) for biological control of Diaphorina citri (Hemiptera: Liviidae) in Urban California, USA. Agronomy 12, 583 (2022).
    Google Scholar 
    Maluta, N., Castro, T. & Lopes, J. R. S. Entomopathogenic fungus disrupts the phloem-probing behavior of Diaphorina citri and may be an important biological control tool in citrus. Sci. Rep. 12, 1–10 (2022).
    Google Scholar 
    Hall, D. G., Richardson, M. L., Ammar, E. D. & Halbert, S. E. Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomol. Exp. Appl. 146, 207–223 (2013).
    Google Scholar 
    Vázquez-García, M. et al. Insecticide resistance in adult Diaphorina citri Kuwayama1 from lime orchards in central west Mexico. Southwest. Entomol. 38, 579–596 (2013).
    Google Scholar 
    Naeem, A., Freed, S., Jin, F. L., Akmal, M. & Mehmood, M. Monitoring of insecticide resistance in Diaphorina citri Kuwayama (Hemiptera: Psyllidae) from citrus groves of Punjab Pakistan. Crop Prot. 86, 62–68 (2016).CAS 

    Google Scholar 
    Hulme, P. E. et al. Grasping at the routes of biological invasions: A framework for integrating pathways into policy. J. Appl. Ecol. 45, 403–414 (2008).
    Google Scholar 
    Oke, A. O., Oladigbolu, A. A., Kunta, M., Alabi, O. J. & Sétamou, M. First report of the occurrence of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae), an invasive species in Nigeria. West Africa. Sci. Rep. 10, 1–8 (2020).
    Google Scholar 
    Tang, Y.Q. (1990) On the parasite complex of Diaphorina citri Kuwayama (Homoptera: Psyllidae) in Asian-Pacific and other areas. In proceedings 4th international conference on citrus rehabilitation, Chiang Mai, Thailand. 4: 240 245Chien, C. C., Chiu, S. C. & Ku, S. C. Biological control of Diaphorina citri in Taiwan. Fruits 44, 401–407 (1989).
    Google Scholar 
    Hoddle, M. S. Foreign exploration for natural enemies of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), in the Punjab of Pakistan for use in a classical biological control program in California USA. Pakistan Entomol. 34, 1–5 (2012).
    Google Scholar 
    Étienne, J., Quilici, S., Marival, D., Franck, A. & Gonzalez Fernandez, C. Biological control of Diaphorina citri (Hemiptera: Psyllidae) in Guadeloupe by imported Tamarixia radiata (Hymenoptera: Eulophidae). Fruits 56, 307–315 (2001).
    Google Scholar 
    Qureshi, J. A., Rogers, M. E., Hall, D. G. & Stansly, P. A. Incidence of invasive Diaphorina citri (Hemiptera: Psyllidae) and its introduced parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) in Florida citrus. J. Econ. Entomol. 102, 247–256 (2009).
    Google Scholar 
    Chen, X., Triana, M. & Stansly, P. A. Optimizing production of Tamarixia radiata (Hymenoptera: Eulophidae), a parasitoid of the citrus greening disease vector Diaphorina citri (Hemiptera: Psylloidea). Biol. Control. 105, 13–18. https://doi.org/10.1016/j.biocontrol.2016.10.010 (2017).Article 

    Google Scholar 
    Kistner, E. J., Amrich, R., Castillo, M., Strode, V. & Hoddle, M. S. Phenology of Asian citrus psyllid (Hemiptera: Liviidae), with special reference to biological control by Tamarixia radiata, in the residential landscape of southern California. J. Econ. Entomol. 109, 1047–1057. https://doi.org/10.1093/jee/tow021 (2016).Article 

    Google Scholar 
    Ramos Aguila, L. C. et al. Temperature-dependent biological control effectiveness of Tamarixia radiata (Hymenoptera: Eulophidea) under laboratory conditions. J. Econ. Entomol. 114, 2009–2017 (2021).
    Google Scholar 
    Ramos Aguila, L. C. et al. Temperature-dependent demography and population projection of Tamarixia radiata (Hymenoptera: Eulophidea) reared on Diaphorina citri (Hemiptera: Liviidae). J. Econ. Entomol. 113, 55–63 (2020).
    Google Scholar 
    Ashraf, H. J. et al. Comparative microbiome analysis of Diaphorina citri and its associated parasitoids Tamarixia radiata and Diaphorencyrtus aligarhensis reveals Wolbachia as a dominant endosymbiont. Environ. Microbiol. 24, 1638–1652 (2022).CAS 

    Google Scholar 
    Chow, A. & Sétamou, M. Parasitism of Diaphorina citri (Hemiptera: Liviidae) by Tamarixia radiata (Hymenoptera: Eulophidae) on residential citrus in Texas: Importance of colony size and instar composition. Biol. Control 165, 104796 (2022).
    Google Scholar 
    Ajene, I. J. et al. Habitat suitability and distribution potential of Liberibacter species (“Candidatus Liberibacter asiaticus” and “Candidatus Liberibacter africanus”) associated with citrus greening disease. Environ. Microbiol. 26, 575–588 (2020).
    Google Scholar 
    Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986 (2016).
    Google Scholar 
    Kearney, M. & Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol 12, 334–350 (2009).
    Google Scholar 
    Byeon, D. H., Jung, S. & Lee, W. H. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J. Asia-Pac. Biodivers. 1, 325–333 (2018).
    Google Scholar 
    Kriticos, D. J., Yonow, T. & McFadyen, R. E. The potential distribution of Chromolaena odorata (Siam weed) in relation to climate. Weed Res 45, 246–254 (2005).
    Google Scholar 
    Wharton, T. N. & Kriticos, D. J. The fundamental and realized niche of the Monterey pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae): implications for managing softwood plantations in Australia. Divers. Distrib. 10, 253–262 (2004).
    Google Scholar 
    Sutherst, R., Maywald, G. and Kriticos, D., CLIMEX version 3: user’s guide. (2007).Ramirez-Cabral, N. Y., Kumar, L. & Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 7, 1–3 (2017).CAS 

    Google Scholar 
    McCalla, K. A., Keçeci, M., Milosavljević, I., Ratkowsky, D. A. & Hoddle, M. S. The influence of temperature variation on life history parameters and thermal performance curves of Tamarixia radiata (Hymenoptera: Eulophidae), a parasitoid of the Asian citrus psyllid (Hemiptera: Liviidae). J. Econ. Entomol. 112, 1560–1574 (2019).
    Google Scholar 
    Gonzalez-Cabrera, J., Moreno-Carrillo, G., Sanchez-Gonzalez, J. A. & Bernal, H. C. Natural and augmented parasitism of tamarixia radiata (Hymenoptera Eulophidae) in Urban Areas of western Mexico. Entomol. Sci. 53, 486–492. https://doi.org/10.18474/JES17-112.1 (2018).Article 

    Google Scholar 
    Chavez, Y. et al. Tamarixia radiata (Waterston) and Cheilomenes sexmaculata (Fabricius) as biological control agents of Diaphorina citri Kuwayama in Ecuador. Chil. J. Agric. Res. 77, 180–184. https://doi.org/10.4067/S0718-58392017000200180 (2017).Article 

    Google Scholar 
    Flores, D. & Ciomperlik, M. Biological control using the ectoparasitoid, Tamarixia radiata, against the Asian citrus psyllid, Diaphorina citri, in the lower Rio Grande valley of Texas. Southwest. Entomol. 42, 49–59. https://doi.org/10.3958/059.042.0105 (2017).Article 

    Google Scholar 
    Parra, J. R., Alves, G. R., Diniz, A. J. & Vieira, J. M. Tamarixia radiata (Hymenoptera: Eulophidae) × Diaphorina citri (Hemiptera: Liviidae): Mass rearing and potential use of the parasitoid in Brazil. J. Integr. Pest. Manag. https://doi.org/10.1093/jipm/pmw003 (2016).Article 

    Google Scholar 
    Diniz, A. J. F., Otimização da criação de Diaphorina citri Kuwayama, 1908 (Hemiptera: Liviidae) e de Tamarixia radiata (Waterston, 1922) (Hymenoptera: Eulophidae), visando a produção em larga escala do parasitoide e avalliação do seu estabelecimento em campo. Tese (Doutorado em Entomologia)—Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, São Paulo. (2013)Hoddle, M. S. & Pandey, R. Host range testing of Tamarixia radiata (Hymenoptera: Eulophidae) sourced from the Punjab of Pakistan for classical biological control of Diaphorina citri (Hemiptera: Liviidae: Euphyllurinae: Diaphorinini) in California. J. Econ. Entomol. 107, 125–136. https://doi.org/10.1603/EC13318 (2014).Article 

    Google Scholar 
    Gómez-Torres, M. L., Nava, D. E. & Parra, J. R. Thermal hygrometric requirements for the rearing and release of Tamarixia radiata (Waterston) (Hymenoptera, Eulophidae). Rev. Bras. Entomol. 58, 291–295. https://doi.org/10.1590/S0085-56262014000300011 (2014).Article 

    Google Scholar 
    Gómez-Torres, M. L., Nava, D. E. & Parra, J. R. Life table of Tamarixia radiata (Hymenoptera: Eulophidae) on Diaphorina citri (Hemiptera: Psyllidae) at different temperatures. J. Econ. Entomol. 105, 338–343 (2012).
    Google Scholar 
    Chong, J. H., Roda, A. L. & Mannion, C. M. Density and natural enemies of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Psyllidae), in the residential landscape of Southern Florida. J. Agric. Urban Entomol. 27, 33–49. https://doi.org/10.3954/11-05.1 (2010).Article 

    Google Scholar 
    Pluke, R. W., Qureshi, J. A. & Stansly, P. A. Citrus flushing patterns, Diaphorina citri (Hemiptera: Psyllidae) populations and parasitism by Tamarixia radiata (Hymenoptera: Eulophidae) in Puerto Rico. Florida Entomol. 91, 36–42 (2008).
    Google Scholar 
    Ashraf, H. J. et al. Genetic diversity of Tamarixia radiata populations and their associated endosymbiont Wolbachia species from China. Agronomy 11, 2018 (2021).CAS 

    Google Scholar 
    Jung, J. M., Lee, W. H. & Jung, S. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomol. Res. 46, 223–235 (2016).
    Google Scholar 
    Kriticos, D. J. et al. CLIMEX Version 4, 184p (2015).
    Google Scholar 
    Gomez-Marco, F., Gebiola, M., Baker, B. G., Stouthamer, R. & Simmons, G. S. Impact of the temperature on the phenology of Diaphorina citri (Hemiptera: Liviidae) and on the establishment of Tamarixia radiata (Hymenoptera: Eulophidae) in urban areas in the lower Colorado Desert in Arizona. Environ. Entomol. 48, 514–523 (2019).
    Google Scholar 
    Vieira, J. M. Biologia em temperaturas alternantes e exigências térmicas de Diaphorina citri Kuwayama, 1908 (Hemiptera: Liviidae) e Tamarixia radiata (Waterston, 1922) (Hymenoptera: Eulophidae) visando ao seu zoneamento em regiões citrícolas do estado (Doctoral dissertation, Universidade de São Paulo).Castillo, J., Jacas, J. A., Peña, J. E., Ulmer, B. J. & Hall, D. G. Effect of temperature on life history of Quadrastichus haitiensis (Hymenoptera: Eulophidae), an endoparasitoid of Diaprepes abbreviatus (Coleoptera: Curculionidae). Biol. Control. 36, 189–196 (2006).
    Google Scholar 
    McFarland, C. D. & Hoy, M. A. Survival of Diaphorina citri (Homoptera: Psyllidae), and its two parasitoids, Tamarixia radiata (Hymenoptera: Eulophidae) and Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae), under different relative humidities and temperature regimes. Fla. Entomol. 84, 227–233 (2001).
    Google Scholar 
    Fauvergue, X. & Quilici, S. Etude de certains parametres de la biologie de Tamarixia radiata (Waterston, 1992)(Hymenoptera: Eulophidae), ectoparasitoide primaire de Diaphorina citri Kuwayama (Hemiptera: Psyllidae) vecteur du greening des agrumes. Paris Fruits 46, 179–179 (1991).
    Google Scholar 
    Araújo, F. H. et al. Modelling climate suitability for Striga asiatica, a potential invasive weed of cereal crops. Crop Prot. 1(160), 106050 (2022).
    Google Scholar 
    Silva, D. A. & RS, Kumar L, Shabani F and Picanço MC,. Potential risk levels of invasive Neoleucinodes elegantalis (small tomato borer) in areas optimal for open-field Solanum lycopersicum (tomato) cultivation in the present and under predicted climate change. Pest Manag. Sci 73, 616–627 (2017).
    Google Scholar 
    Kumar, S., Neven, L. G. & Yee, W. L. Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere 5, 1–23. https://doi.org/10.1890/ES14-00050.1 (2014).Article 
    CAS 

    Google Scholar 
    Kriticos, D. J. et al. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 1, 53–64 (2012).
    Google Scholar 
    Santana Júnior PA, Worldwide spatial distribution of Tuta absoluta (Lepidoptera: Gelechiidae) and its natural enemies under current and future climatic change conditions through modelling. 136 f 2019 (Tese (Doutorado em Fitotecnia) – Universidade Federal de Viçosa, 2019).
    Google Scholar 
    Kriticos, D. J., Maywald, G. F., Yonow, T., Zurcher, E. J., Herrmann, N. I. and Sutherst, R. W., CLIMEX Version 4: Exploring the effects of climate on plants, animals and diseases. CSIRO, Canberra.156, (2015)Ramos Aguila, L. C. et al. Temperature-dependent demography and population projection of Tamarixia radiata (Hymenoptera: Eulophidea) reared on Diaphorina citri (Hemiptera: Liviidae). J. Econ. Entomol. 113, 55–63 (2019).
    Google Scholar 
    Oliveira, R. C., Modelagem de nicho ecológico para Helicoverpa punctigera (Wallengren, 1860) (Lepidoptera: Noctuidae) no mundo: Potencial invasão e riscos diante das mudanças climáticas. (2021). http://www.repositorio.ufc.br/handle/riufc/61961Bazzocchi, G. G., Lanzoni, A., Burgio, G. & Fiacconi, M. R. Effects of temperature and host on the pre-imaginal development of the parasitoid Diglyphus isaea (Hymenoptera: Eulophidae). Biol. Control 26, 74–82 (2003).
    Google Scholar 
    Hondo, T., Koike, A. & Sugimoto, T. Comparison of thermal tolerance of seven native species of parasitoids (Hymenoptera: Eulophidae) as biological control agents against Liriomyza trifolii (Diptera: Agromyzidae) in Japan. Appl. Entomol. Zool. 41, 73–82 (2006).
    Google Scholar 
    Duale, A. Effect of temperature and relative humidity on the biology of the stem borer parasitoid Pediobius furvus (Gahan) (Hymenoptera: Eulophidae) for the management of stem borers. Environ. Entomol. 34, 1–5 (2005).
    Google Scholar 
    Ashraf, H. J. et al. Comparative transcriptome analysis of Tamarixia radiata (Hymenoptera: Eulophidae) reveals differentially expressed genes upon heat shock. Comp. Biochem. Physiol. D: Genom. Proteom. 41, 100940 (2022).CAS 

    Google Scholar 
    van Doan, C. et al. Natural enemies of herbivores maintain their biological control potential under short-term exposure to future CO2, temperature, and precipitation patterns. Ecol. Evol. 11, 4182–4192 (2021).
    Google Scholar 
    Thomson, L. J., Macfadyen, S. & Hoffmann, A. A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control. 52, 296–306 (2010).
    Google Scholar 
    Rosenblatt, A. E. & Schmitz, O. J. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol. 31, 965–975 (2016).
    Google Scholar 
    Aidoo, O. F. et al. A machine learning algorithm-based approach (MaxEnt) for predicting invasive potential of Trioza erytreae on a global scale. Ecol. Inform. 71, 101792 (2022).
    Google Scholar 
    Aidoo, O. F. et al. The Impact of Climate Change on Potential Invasion Risk of Oryctes monoceros Worldwide. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2022.895906 (2022).Article 

    Google Scholar 
    Hao, M. et al. Global potential distribution of Oryctes rhinoceros, as predicted by Boosted Regression Tree model. Glob. Ecol. Conserv. 1(37), e02175 (2022).
    Google Scholar 
    Aidoo, O. F. et al. Model-based prediction of the potential geographical distribution of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae) based on MaxEnt. Agric. For. Entomol. 24, 390–404 (2022).
    Google Scholar  More

  • in

    Bagarius bagarius, and Eichhornia crassipes are suitable bioindicators of heavy metal pollution, toxicity, and risk assessment

    Analytical method validationThe results of the precision study with relative standard deviation (RSD), and accuracy are shown in Table 1. Through the precision study we found the value of RSD as less than 5%. Moreover, accuracy was done with percent recovery experiments. The results showed that the percentage recoveries for spiked samples were in the range of 95.7–103.7%.Table 1 Shows percent (%) recovery and relative standard deviation.Full size tablePhysicochemical properties and water quality indexThe investigations of the water quality properties of the Narora channel are shown in Table 2. The temperature, TDS, turbidity, and alkalinity were within the standards of the country18 and WHO19 (taken from UNEPGEMS). While pH and dissolved oxygen (D.O) were above the recommended standards indicating poor water quality. Moreover, the detected heavy metals were in the following order Ni  > Fe  > Cd  > Zn  > Cr  > Cu  > Mn. Among these heavy metals Mn, Cu, and Zn were within the recommended limits whereas Cr, Fe, Ni, and Cd were crossing the limits18 contributing to the poor quality. Furthermore, the WQI calculation will give more insights into the overall quality of water as it explains the combined effect of several physicochemical properties12. Its calculation is done simply by converting numerous variables of water quality into a single number12,20. In addition to this, WQI simplifies all the data and helps in clarifying water quality issues by combining the complex data and producing a score that shows the status of water quality2,12,21. The WQI classifies water quality status into five groups such as if WQI  Cu  > Zn  > Fe  > Zn  > Ni  > Cr from root to stalk; and Mn  > Cd  > Zn  > Cu  > Fe  > Ni  > Cr from stalk to leaves.Table 5 Heavy metal concentrations in Eichhornia crassipes (mg/kg.dw).Full size tableFigure 3MPI values in E. crassipes.Full size imageTable 6 Bioaccumulation factor (BAF), transfer factor (TF), and mobility factor (MF) in plant E. crassipes.Full size tableThese factors BAF, TF, and MF are utilized to monitor the level of anthropogenic pollution in plants and their surrounding medium2,15,32,34,35. BAF shows the concentrations of heavy metals bioaccumulated by plants from the water. If the BAF  > 1 it indicates hyperaccumulation36. So, in the present study, all the concerned heavy metals were hyperaccumulated in the plant. The TF elucidates the capability of the plant to translocate the accumulated metals to its other parts. The roots of E. crassipes showed the highest translocation capacity for Ni (1.57) as well as Zn (1.30) to other parts. If the value of TF exceeds 1, then it represents the high accumulation efficiency37,38, therefore, plants will be considered as the hyperaccumulators for the Ni and Zn. Although the Cd was the highest accumulated metal in the plant, it could have been because of its may be because of its low TF. Whereas, TF values lower than 1 for Cr, Mn, Fe, Cu, and Cd pointed out that this plant’s roots act as a non-hyperaccumulator for these heavy metals. Furthermore, the highest MF values were depicted for Mn in both cases which reflects that E. crassipes can suitably be used for phytoextraction of Mn as well as for Cd, Zn, Fe, Ni, and Cu. The BAF, TF, and MF of Cr are low in the present study, which implies that roots are limiting the Cr. Moreover, if the BAF ≤ 1.00 then it shows the capability of absorption only rather than accumulation36,37. In addition, if the values of BAF, TF, and MF exceed 1, plants can also work for phytoextraction. Furthermore, if the BAF  > 1 and TF  More

  • in

    Dynamics of aggregate-associated organic carbon after long-term cropland conversion in a karst region, southwest China

    Effects of cropland conversion on OC pool in bulk soilCropland restoration identified as an efficient ecological project to promote soil C sequestration in karst erosion areas28,30. The conversion from MS to FG resulted in the total soil OC content and stock across 0–30 cm layers increasing by 46.12% and 43.73% respectively. The result was highly coincident with previous studies observed at 0–10 cm layer, which reported that FG cultivation replaced from MS cultivation could remarkably increase soil OC pool in karst region, Southwest China28. In our study, the lower OC content and stock in MS may be partially attributed to the non-returned crop residues and increased exposure of deep soil OM to oxygen under tillage disturbance, resulting in decreased soil OC accumulation through reducing the input of OM and accelerating OM decomposition28,30,37,38. Nevertheless, the conversion from MS to FG can increase the soil OC pool by increasing inputs from crops. For detail, laregly aboverground crops are harvested and removed from the fields each every year for economic production, there is thus a lack of aboverground OC input. Therefore, the root biomass became the main source of OM inputs, and even slight changes in biomass can substantially alter soil C level39. In the present study, the root biomass in FG field was approximately 6 times that in MS field (110.06 ± 17.24 kg hm−2 averagely) (Table S2). Consequently, the higher root biomass in FG are responsible for the corresponding higher C storage of fine root in FG, which is supported by the fact that higher amount of C were stored in the fine roots of FG field compared with that of MS field (Table S2). In fact, several studies have demonstrated that cultivation of perennial grasses is efficient in stimulating soil OC accumulation owing to its great amount of fine roots and underground biomass33,40. Soil disturbance (such as tillage) is one of the main causes of soil C depletion in agricultural systems, and increased tillage practice can result in greater soil C loss41,42,43. Therefore, the frequent tillage conducted in MS field resulted in lower levels of OC than that in FG field under minimal tillage disturbance.Impacts of cropland conversion on soil aggregates structure and stabilitySoil structure plays an important role in soil environment and quality, which is strongly characterized by soil aggregates and their stability43,44. In our study, soil macro-aggregates dominated the largest portion of total soil while meso-aggregates and micro-aggregates were only accounted for a small portion, indicating that cropland conversion could facilitated the formation of macro-aggregates (Table 2). These findings are in line with other studies, wherein that macro-aggregates occupied the major portion of total soil following farmland or vegetation restoration19,30. Tillage disturbance often disrupts aggregates by bringing subsurface soil to the surface, which can readily promote soil C turnover and hinder macro-aggregate formation45. Conversely, minimal tillage experienced and greater accumulation of root residues resulted in higher C accumulation in the FG field. Furthermore, fine roots improved the soil aggregate stability via the interaction with mycorrhizal fungi, which produced exudates and binding agents and promoted the formation of soil aggregates46,47. Therefore, higher inputs of root residue in the soil could enhance the capacity of aggregate re-formation. In fact, these can be supported by the higher value of root biomass and its C stock in the FG field. In addition, forage grass cultivation can enhance the formation of large and stable soil aggregates by fine roots and fungal hyphae through the production of exudates and binding agents, such as humic compounds, polymers and roots48,49. Thus, few tillage disturbance and higher inputs of root biomass in FG field resulted in soil aggregation enhanced, especially macro-aggregates.Soil aggregate stability can also be characterized by the values of MWD and GMD. Higher MWD or GMD values indicate greater aggregate stability due to more agglomerate ability. The value of MWD in the current study varied from 1.36 to 1.96, which was classified as “stable” by LeBissonnais’ categorization of aggregate stability50.Regardless of soil depth, the FG field had the greatest MWD and GMD values, indicating that its soil aggregates were more stable than those of the other three cropland use types. We may thus draw the conclusion that FG cropland conversion can improve the stability of aggregates based on MWD and GMD.Changes in OC stocks associated –aggregates following cropland conversionCropland use change generally affects soil C sequestration through changing OM inputs and decomposition19. Our study revealed that aggregate-associated OC was significantly higher in FG field than in MS field. These increases were mainly attributed to the new C derived from root residues inputs and decreased losses of OC associated-aggregate by C mineralization in FG soil49. Generally, tillage can breakdown large aggregates into small aggregates, and thus decrease the formation of soil macro-aggregates41,42. Thus, the lower OC content and stock associated-aggregate in MS field can be attributed to the OC loss resulting from soil erosion, and OM input reduction with tillage disturbance8,30,45.In this study, the effects of cropland conversion on OC content associated-aggregate fractions occurred in the top 20 cm soil layers. In the karst region, approximate 57–89% of crop roots are concentrated in the surface soil layer, which directly affects OM inputs from underground root residues51,52. Meanwhile, tillage practices also happened on top 20 cm soil layer6,28,29. As a result, in soils below 20 cm, little or no tillage disturbance and limited OM inputs resulted in fewer or no distinctly changing levels of OC content associated with aggregate following cropland use change.Cropland use change not only affected the OC stocks in bulk soil, but also affected the OC stocks associated-aggregates (Table 1). The difference of sensitivity of OC associated-aggregate to cropland use change may affect its contribution to bulk soil OC accumulation30,38. In our study, the macro-aggregate fraction was the most important contributor to total OC stock increase, followed by meso-aggregate and micro-aggregate (Fig. 4). This is primarily due to the higher amount and OC content of macro-aggregates. Overall all cropland use types, the OC stock associated with macro-aggregate in FG field was higher than that in other three cropland types regardless of soil depth (Fig. 4). For instance, OC stocks within macro-aggregate accounted for about 85.40%, 77.72% and 97.55% of total soil OC stock at 0–10 cm, 10–20 cm and 20–30 cm, respectively, under the conversion from MS to FG. Thus, the accumulation pattern of bulk soil OC stocks could closely related with changes of OC stocks associated with macro-aggregate under cropland use change.The physical protection of OC in aggregates is regarded as one of the main mechanisms for soil OC accumulation through diminishing soil OC degradation and preventing its interaction with mineral particles53,54. In the present study, OC stock in bulk soil correlated substantially with the OC content-associated aggregate following cropland conversion (Fig. 5). Further analysised revealed that OC stocks in bulk soil was significantly correlated to OC stock associated with macro-aggregate (R2 = 0.83, p  More

  • in

    TRPM8 thermosensation in poikilotherms mediates both skin colour and locomotor performance responses to cold temperature

    Lovegrove, B. G. A phenology of the evolution of endothermy in birds and mammals. Biol. Rev. 92, 1213–1240 (2017).
    Google Scholar 
    Cuthill, I. C. et al. The biology of color. Science 357, 1–7 (2017).
    Google Scholar 
    Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160345 (2017).
    Google Scholar 
    Smith, K. R. et al. Color change for thermoregulation versus camouflage in free-ranging lizards. Am. Nat. 188, 668–678 (2016).
    Google Scholar 
    Rudh, A. & Qvarnström, A. Adaptive colouration in amphibians. Semin. Cell Dev. Biol. 24, 553–561 (2013).
    Google Scholar 
    Geen, M. R. S. & Johnston, G. R. Coloration affects heating and cooling in three color morphs of the Australian bluetongue lizard, Tiliqua scincoides. J. Therm. Biol. 43, 54–60 (2014).
    Google Scholar 
    Tattersall, G. J., Eterovick, P. C. & de Andrade, D. V. Tribute to R. G. Boutilier: skin colour and body temperature changes in basking Bokermannohyla alvarengai (Bokermann 1956). J. Exp. Biol. 209, 1185–1196 (2006).
    Google Scholar 
    Tattersall, G. J., Hillman, S. S., Drewes, R. C. & Sokol, O. M. The thermogenesis of digestion in rattlesnakes. J. Exp. Biol. 207, 579–585 (2004).
    Google Scholar 
    Seebacher, F. & Murray, S. A. Transient receptor potential ion channels control thermoregulatory behaviour in reptiles. PLoS One 2, e281, 1–7 (2007).Forget-Klein, É. & Green, D. M. Toads use the subsurface thermal gradient for temperature regulation underground. J. Therm. Biol. 99, 1–9 (2021).
    Google Scholar 
    Kiefer, M. C., Van Sluys, M. & Rocha, C. F. D. Thermoregulatory behaviour in Tropidurus torquatus (Squamata, Tropiduridae) from Brazilian coastal populations: an estimate of passive and active thermoregulation in lizards. Acta Zool. 88, 81–87 (2007).
    Google Scholar 
    Spencer, K. et al. Growth at cold temperature increases the number of motor neurons to optimize locomotor function. Curr. Biol. 29, 1787–1799.e5 (2019).CAS 

    Google Scholar 
    Herrel, A. & Bonneaud, C. Temperature dependence of locomotor performance in the tropical clawed frog, Xenopus tropicalis. J. Exp. Biol. 215, 2465–2470 (2012).
    Google Scholar 
    Casterlin, M. E. & Reynolds, W. W. Diel activity and thermoregulatory behavior of a fully aquatic frog: Xenopus laevis. Hydrobiologia 75, 189–191 (1980).
    Google Scholar 
    Guo, K. et al. The thermal dependence and molecular basis of physiological color change in Takydromus septentrionalis (Lacertidae). Biol. Open 10, 1–9 (2021).
    Google Scholar 
    De Velasco, J. B. & Tattersall, G. J. The influence of hypoxia on the thermal sensitivity of skin colouration in the bearded dragon, Pogona vitticeps. J. Comp. Physiol. B. 178, 867–875 (2008).CAS 

    Google Scholar 
    Stuart-Fox, D. & Moussalli, A. Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 463–470 (2009).
    Google Scholar 
    Sanabria, E. A., Vaira, M., Quiroga, L. B., Akmentins, M. S. & Pereyra, L. C. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae). J. Therm. Biol. 41, 1–5 (2014).
    Google Scholar 
    Clusella-Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal benefits of melanism in cordylid lizards: a theoretical and field test. Ecology 90, 2297–2312 (2009).
    Google Scholar 
    Duarte, R. C., Flores, A. A. V. & Stevens, M. Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philos. Trans. R. Soc. B: Biol. Sci. 372, 1–7 (2017).Bertolesi, G. E. & McFarlane, S. Seeing the light to change colour: an evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res. 31, 354–373 (2018).CAS 

    Google Scholar 
    Bertolesi, G. E. et al. The regulation of skin pigmentation in response to environmental light by pineal type II opsins and skin melanophore melatonin receptors. J. Photochem. Photobiol. B Biol. 212, 112024 (2020).CAS 

    Google Scholar 
    Bagnara, J. T. Pineal regulation of the body lightening reaction in amphibian larvae. Sci. (80-.). 132, 1481–1483 (1960).CAS 

    Google Scholar 
    Bertolesi, G. E., Song, Y. N., Atkinson-Leadbeater, K., Yang, J.-L. J. & McFarlane, S. Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation. Pigment Cell Melanoma Res. 30, 413–423 (2017).CAS 

    Google Scholar 
    Wang, H. & Siemens, J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temp. (Austin, Tex.) 2, 178–187 (2015).
    Google Scholar 
    Hoffstaetter, L. J., Bagriantsev, S. N. & Gracheva, E. O. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflug. Arch. Eur. J. Physiol. 470, 745–759 (2018).CAS 

    Google Scholar 
    Kashio, M. Thermosensation involving thermo-TRPs. Mol. Cell. Endocrinol. 520, 1–8 (2021).
    Google Scholar 
    Señarís, R., Ordás, P., Reimúndez, A. & Viana, F. Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis. Pflug. Arch. 470, 761–777 (2018).
    Google Scholar 
    Guo, H., Carlson, J. A. & Slominski, A. Role of TRPM in melanocytes and melanoma. Exp. Dermatol. 21, 650–654 (2012).CAS 

    Google Scholar 
    Kadowaki, T. Evolutionary dynamics of metazoan TRP channels. Pflug. Arch. 467, 2043–2053 (2015).CAS 

    Google Scholar 
    Saito, S. & Tominaga, M. Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temp. (Austin, Tex.) 4, 141–152 (2017).
    Google Scholar 
    Saito, S. et al. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates. J. Biol. Chem. 287, 30743–30754 (2012).CAS 

    Google Scholar 
    Saito, S. et al. Evolution of heat sensors drove shifts in thermosensation between xenopus species adapted to different thermal niches. J. Biol. Chem. 291, 11446–11459 (2016).CAS 

    Google Scholar 
    Gracheva, E. O. et al. Molecular basis of infrared detection by snakes. Nature 464, 1006–1011 (2010).CAS 

    Google Scholar 
    Laursen, W. J., Anderson, E. O., Hoffstaetter, L. J., Bagriantsev, S. N. & Gracheva, E. O. Species-specific temperature sensitivity of TRPA1. Temp. (Austin, Tex.) 2, 214–226 (2015).
    Google Scholar 
    Bertolesi, G. E., Hehr, C. L. & McFarlane, S. Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland. Pigment Cell Melanoma Res. 28, 559–571 (2015).CAS 

    Google Scholar 
    Bagnara, J. T. The pineal and the body lightening reaction of larval amphibians. Gen. Comp. Endocrinol. 3, 86–100 (1963).CAS 

    Google Scholar 
    Nisembaum, L. et al. In the heat of the night: thermo-TRPV channels in the salmonid pineal photoreceptors and modulation of melatonin secretion. Endocrinology 156, 4629–4638 (2015).CAS 

    Google Scholar 
    Schartl, M. et al. What is a vertebrate pigment cell? Pigment Cell Melanoma Res. 29, 8–14 (2016).
    Google Scholar 
    Slominski, A. Cooling skin cancer: menthol inhibits melanoma growth. Focus on ‘TRPM8 activation suppresses cellular viability in human melanoma’. Am. J. Physiol. – Cell Physiol. 295, C293–C295 (2008).CAS 

    Google Scholar 
    Yamamura, H., Ugawa, S., Ueda, T., Morita, A. & Shimada, S. TRPM8 activation suppresses cellular viability in human melanoma. Am. J. Physiol. Cell Physiol. 295, C296–C301 (2008).CAS 

    Google Scholar 
    Knowlton, W. M. et al. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J. Neurosci. 33, 2837–2848 (2013).CAS 

    Google Scholar 
    Weyer-Menkhoff, I., Pinter, A., Schlierbach, H., Schänzer, A. & Lötsch, J. Epidermal expression of human TRPM8, but not of TRPA1 ion channels, is associated with sensory responses to local skin cooling. Pain 160, 2699–2709 (2019).Kumasaka, M., Sato, S., Yajima, I. & Yamamoto, H. Isolation and developmental expression of tyrosinase family genes in Xenopus laevis. Pigment Cell Res. 16, 455–462 (2003).CAS 

    Google Scholar 
    Rodionov, V. I., Hope, A. J., Svitkina, T. M. & Borisy, G. G. Functional coordination of microtubule-based and actin-based motility in melanophores. Curr. Biol. 8, 165–169 (1998).CAS 

    Google Scholar 
    Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).CAS 

    Google Scholar 
    Gosset, J. R. et al. A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679. Eur. J. Pharm. Sci. 109S, S161–S167 (2017).
    Google Scholar 
    Winchester, W. J. et al. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans. J. Pharmacol. Exp. Ther. 351, 259–269 (2014).
    Google Scholar 
    Bianchi, B., Smith, P. A. & Abriel, H. The ion channel TRPM4 in murine experimental autoimmune encephalomyelitis and in a model of glutamate-induced neuronal degeneration. Mol. Brain 11, 1–10 (2018).
    Google Scholar 
    Li, K., Shi, Y., Gonye, E. C. & Bayliss, D. A. TRPM4 contributes to subthreshold membrane potential oscillations in multiple mouse pacemaker neurons. eNeuro 8, 1–13 (2021).
    Google Scholar 
    Dong, W. et al. Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum. J. Neurophysiol. 101, 803–815 (2009).
    Google Scholar 
    Bertolesi, G. E., Debnath, N., Atkinson-Leadbeater, K., Niedzwiecka, A. & McFarlane, S. Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference. Mol. Ecol. 30, 6659–6676 (2021).CAS 

    Google Scholar 
    Viczian, A. S. & Zuber, M. E. A simple behavioral assay for testing visual function in xenopus laevis. J. Vis. Exp. 12, 51726 (2014).
    Google Scholar 
    Myers, B. R., Sigal, Y. M. & Julius, D. Evolution of thermal response properties in a cold-activated TRP channel. PLoS One 4, e5741 (2009).
    Google Scholar 
    Furman, B. L. S. et al. Pan-African phylogeography of a model organism, the African clawed frog ‘Xenopus laevis’. Mol. Ecol. 24, 909–925 (2015).CAS 

    Google Scholar 
    Wilson, R. S., James, R. S. & Johnston, I. A. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis. J. Comp. Physiol. B. 170, 117–124 (2000).CAS 

    Google Scholar 
    Kashiwagi, K. et al. Xenopus tropicalis: an ideal experimental animal in amphibia. Exp. Anim. 59, 395–405 (2010).CAS 

    Google Scholar 
    Martínez-Freiría, F., Toyama, K. S., Freitas, I. & Kaliontzopoulou, A. Thermal melanism explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers. Sci. Rep. 10, 72871–1 (2020).Tanaka, K. Does the thermal advantage of melanism produce size differences in color-dimorphic snakes? Zool. Sci. 26, 698–703 (2009).
    Google Scholar 
    Moreno Azócar, D. L., Nayan, A. A., Perotti, M. G. & Cruz, F. B. How and when melanic coloration is an advantage for lizards: the case of three closely-related species of Liolaemus. Zool. (Jena.) 141, 125774 (2020).
    Google Scholar 
    Azócar, D. L. M. et al. Effect of body mass and melanism on heat balance in Liolaemus lizards of the goetschi clade. J. Exp. Biol. 219, 1162–1171 (2016).
    Google Scholar 
    Smith, K. R. et al. Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. Proc. R. Soc. B Biol. Sci. 283, 20160626 (2016).
    Google Scholar 
    Rowe, J. W. et al. Thermal and substrate color-induced melanization in laboratory reared red-eared sliders (Trachemys scripta elegans). J. Therm. Biol. 61, 125–132 (2016).
    Google Scholar 
    Larsen, E. H. Dual skin functions in amphibian osmoregulation. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 253, 110869 (2021).CAS 

    Google Scholar 
    Franco-Belussi, L., Sköld, H. N. & De Oliveira, C. Internal pigment cells respond to external UV radiation in frogs. J. Exp. Biol. 219, 1378–1383 (2016).
    Google Scholar 
    Langhelle, A., Lindell, M. J. & Nyström, P. Effects of ultraviolet radiation on amphibian embryonic and larval development. J. Herpetol. 33, 449–456 (1999).
    Google Scholar 
    Mueller, K. P. & Neuhauss, S. C. F. Sunscreen for fish: co-option of UV light protection for camouflage. PLoS One 9, e87372 (2014).
    Google Scholar 
    Perotti, M. G., Diéguez, M. & Del, C. Effect of UV-B exposure on eggs and embryos of patagonian anurans and evidence of photoprotection. Chemosphere 65, 2063–2070 (2006).CAS 

    Google Scholar 
    Nilsson Sköld, H., Aspengren, S. & Wallin, M. Rapid color change in fish and amphibians – function, regulation, and emerging applications. Pigment Cell Melanoma Res. 26, 29–38 (2013).
    Google Scholar 
    Vences, M. et al. Field body temperatures and heating rates in a montane frog population: the importance of black dorsal pattern for thermoregulation on JSTOR. Ann. Zool. Fennici 39, 209–220 (2002).
    Google Scholar 
    Lindgren, J. et al. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506, 484–488 (2014).CAS 

    Google Scholar 
    Bonino, M. F., Cruz, F. B. & Perotti, M. G. Does temperature at local scale explain thermal biology patterns of temperate tadpoles? J. Therm. Biol. 94, 102744 (2020).
    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 

    Google Scholar 
    Liu, T. et al. RNA interference-mediated depletion of TRPM8 enhances the efficacy of epirubicin chemotherapy in prostate cancer LNCaP and PC3 cells. Oncol. Lett. 15, 4129–4136 (2018).
    Google Scholar 
    Kashina, A. S. et al. Protein Kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr. Biol. 14, 1877–1881 (2004).CAS 

    Google Scholar  More

  • in

    Predicting the potential suitable distribution area of Emeia pseudosauteri in Zhejiang Province based on the MaxEnt model

    Daskalova, G. N. et al. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368(6497), 1341–1347 (2020).ADS 
    CAS 

    Google Scholar 
    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366(6470), 1236–1239 (2019).ADS 
    CAS 

    Google Scholar 
    Siddig, A. A., Ellison, A. M., Ochs, A., Villar-Leeman, C. & Lau, M. K. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Ind. 60, 223–230 (2016).
    Google Scholar 
    Thancharoen, A. Well managed firefly tourism: A good tool for firefly conservation in Thailand. Lampyrid. 2, 142–148 (2012).
    Google Scholar 
    Hwang, Y. T., Moon, J., Lee, W. S., Kim, S. A. & Kim, J. Evaluation of firefly as a tourist attraction and resource using contingent valuation method based on a new environmental paradigm. J. Qual. Assur. Hosp. Tour. 21(3), 320–336 (2019).Carlson, A. D. & Copeland, J. Flash communication in fireflies. Q. Rev. Biol. 60(4), 415–436 (1985).
    Google Scholar 
    Evans, T. R., Salvatore, D., van de Pol, M. & Musters, C. J. M. Adult firefly abundance is linked to weather during the larval stage in the previous year. Ecol. Entomol. 44(2), 265–273 (2018).
    Google Scholar 
    Lewis, S. M. et al. A global perspective on firefly extinction threats. Bioscience 70(2), 157–167 (2020).
    Google Scholar 
    Cao, C. Q., Zhang, Y., Wang, Y. Z. & He, H. Progress in the research, protection, development and utilization of fireflies. J. Environ. Entomol.1–36 (2022).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853–858 (2000).ADS 
    CAS 

    Google Scholar 
    Thorn, J. S., Nijman, V., Smith, D. & Nekaris, K. A. I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates:Nycticebus). Divers. Distrib. 15(2), 289–298 (2009).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40(1), 677–697 (2009).
    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).
    Google Scholar 
    Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-Niche Factor Analysis: How to compute habitat-suitability maps without absence data?. Ecology 83(7), 2027–2036 (2002).
    Google Scholar 
    Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. A (General). 135(3), 370–384 (1972).
    Google Scholar 
    Hastie, T. J. Generalized additive models. Statistical models in S. Routledge. 249–307 (2017).Stockwell, D. R. & Noble, I. R. Induction of sets of rules from animal distribution data: A robust and informative method of data analysis. Math. Comput. Simul. 33(5–6), 385–390 (1992).
    Google Scholar 
    Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186(2), 251–270 (2005).
    Google Scholar 
    Jung, J. M., Lee, W. H. & Jung, S. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomol. Res. 46(4), 223–235 (2016).
    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161–175 (2008).
    Google Scholar 
    Moreno, R., Zamora, R., Molina, J. R., Vasquez, A. & Herrera, M. Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Eco. Inform. 6(6), 364–370 (2011).
    Google Scholar 
    Wang, Z. et al. Prediction of potential distribution of the invasive Chrysanthemum Lace Bug, Corythucha marmorata in China based on Maxent. J. Environ. Entomol. 41(3), 626–633 (2019).
    Google Scholar 
    Li, A. et al. MaxEnt modeling to predict current and future distributions of Batocera lineolata (Coleoptera: Cerambycidae) under climate change in China. Ecoscience 27(1), 23–31 (2020).
    Google Scholar 
    Sutherland, L. N., Powell, G. S. & Bybee, S. M. Validating species distribution models to illuminate coastal fireflies in the South Pacific (Coleoptera: Lampyridae). Sci. Rep. 11(1), 1–12 (2021).ADS 

    Google Scholar 
    Fu, X. H., Ballantyne, L. A. & Lambkin, C. Emeia gen. nov., a new genus of Luciolinae fireflies from China (Coleoptera: Lampyridae) with an unusual trilobite-like larva, and a redescription of the genus Curtos Motschulsky. Zootaxa. 3403(1), 1–53 (2012).Idris, N. S. et al. The dynamics of landscape changes surrounding a firefly ecotourism area. Glob. Ecol. Conserv. 29, e01741 (2021).
    Google Scholar 
    Santiago-Blay, J. A. Silent Sparks: The Wondrous World of Fireflies. Life: The Excitement of Biology. (2016).Picchi, M. S., Avolio, L., Azzani, L., Brombin, O. & Camerini, G. Fireflies and land use in an urban landscape: the case of Luciola italica L.(Coleoptera: Lampyridae) in the city of Turin. J. Insect Conserv. 17(4), 797–805 (2013).Pearsons, K. A., Lower, S. E. & Tooker, J. F. Toxicity of clothianidin to common Eastern North American fireflies. PeerJ 9, e12495 (2021).
    Google Scholar 
    Madruga Rios, O. & Hernández Quinta, M. Larval Feeding Habits of the Cuban Endemic FireflyAlecton discoidalisLaporte (Coleoptera: Lampyridae). Psyche J. Entomol. 2010, 1–5 (2010).Roberge, J. M. & Angelstam, P. E. R. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18(1), 76–85 (2004).
    Google Scholar 
    Bowen-Jones, E. & Entwistle, A. Identifying appropriate flagship species: The importance of culture and local contexts. Oryx 36(2), 189–195 (2002).
    Google Scholar 
    Walpole, M. J. & Leader-Williams, N. Tourism and flagship species in conservation. Biodivers. Conserv. 11(3), 543–547 (2002).Zhejiang Provincial Bureau of Statistics. Zhejiang physical geography profile, http://tjj.zj.gov.cn/col/col1525489/index.html (2022).Zhejiang Provincial Forestry Department. Announcement of Forest Resources and Their Ecological Function Value in Zhejiang Province. Zhejiang Daily. https://doi.org/10.38328/n.cnki.nzjrb.2016.002829 (2016).Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).
    Google Scholar 
    Brown, J. L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
    Google Scholar 
    Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 13(5), 922 (2021).ADS 

    Google Scholar 
    WAN, J. et al. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. J. Integr. Agric. 19(8), 2072–2082 (2020).Zhou, R. et al. Projecting the potential distribution of glossina morsitans (Diptera: Glossinidae) under climate change using the MaxEnt model. Biology. 10(11), 1150 (2021).
    Google Scholar 
    Hill, M. P., Hoffmann, A. A., McColl, S. A. & Umina, P. A. Distribution of cryptic blue oat mite species in Australia: current and future climate conditions. Agric. For. Entomol. 14(2), 127–137 (2011).
    Google Scholar 
    Su, H., Bista, M. & Li, M. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Sci. Rep. 11(1), 1 (2021).ADS 
    CAS 

    Google Scholar 
    Proosdij, A. J., Sosef, M., Wieringa, J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).
    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151 (2008).
    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43(6), 1223–1232 (2006).
    Google Scholar 
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6(1), 337–348 (2016).
    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).ADS 
    CAS 
    MATH 

    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133(3), 225–245 (2000).
    Google Scholar 
    Gama, M., Crespo, D., Dolbeth, M. & Anastácio, P. M. Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the impact of climate change. Aquat. Conserv. Mar. Freshwat. Ecosyst. 27(3), 675–684 (2017).
    Google Scholar 
    Zhao, Y., Deng, X., Xiang, W., Chen, L. & Ouyang, S. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Eco. Inform. 64, 101393 (2021).
    Google Scholar 
    Evans, T. R., Salvatore, D., van de Pol, M. & Musters, C. J. M. Adult firefly abundance is linked to weather during the larval stage in the previous year. Ecol. Entomol. 44(2), 265–273 (2018).Chettri, B., Bhupathy, S. & Acharya, B. K. Distribution pattern of reptiles along an eastern Himalayan elevation gradient India. Acta Oecol. 36(1), 16–22 (2010).ADS 

    Google Scholar 
    Brown, J. H. Mammals on mountainsides: elevational patterns of diversity. Global Ecol. Biogeogr. 10(1), 101–109 (2001).Gairola, S., Sharma, C. M., Ghildiyal, S. K. & Suyal, S. Tree species composition and diversity along an altitudinal gradient in moist tropical montane valley slopes of the Garhwal Himalaya India. For. Sci. Technol. 7(3), 91–102 (2011).
    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5), 773–785 (2006).
    Google Scholar 
    Abe, N. Kansei estimation on luminescence of Firefly-Kansei information measurement and welfare utilization. J. Japan Soc. Kansei Eng. 3(2), 41–50 (2004).
    Google Scholar 
    Buckley, R. et al. Economic value of protected areas via visitor mental health. Nat. Commun. 10(1), 1 (2019).
    Google Scholar 
    Lewis, S. M. et al. Firefly tourism: Advancing a global phenomenon toward a brighter future. Conserv. Sci. Pract. 3(5), 1 (2021).
    Google Scholar  More

  • in

    High abundance of hydrocarbon-degrading Alcanivorax in plumes of hydrothermally active volcanoes in the South Pacific Ocean

    German CR, Von Damm KL. Hydrothermal processes. In: Holland HD, Turekian KK and Elderfield H, editors. Treatise geochem, Vol. 6. The oceans and marine geochemistry. Oxford, UK:Elsevier-Pergamon, 2004;181–222.Bell JB, Woulds C, Oevelen DV. Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling. Sci Rep. 2017;7:1–3.
    Google Scholar 
    McCollom TM. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep Res Part I Oceanogr Res Pap. 2000;47:85–101.CAS 

    Google Scholar 
    Tunnicliffe V, Baross JA, Gebruk AV, Giere O, Holland ME, Koschinsky A, et al. Group report: what are the interactions between biotic processes at vents and physical, chemical, and geological conditions. In: Halbach PE, Tunnicliffe V, and Hein JR, editors. Energy and Mass Transfer in Marine Hydrothermal Systems. Berlin-Dahlem:University Press; 2003;251–70.Nakamura K, Takai K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog Earth Planet Sci. 2014;1:1–24.
    Google Scholar 
    Wang W, Li Z, Zeng L, Dong C, Shao Z. The oxidation of hydrocarbons by diverse heterotrophic and mixotrophic bacteria that inhabit deep-sea hydrothermal ecosystems. ISME J. 2020;14:1994–2006.CAS 

    Google Scholar 
    Sinha RK, Krishnan KP, Kurian PJ. Complete genome sequence and comparative genome analysis of Alcanivorax sp. IO_7, a marine alkane-degrading bacterium isolated from hydrothermally-influenced deep seawater of southwest Indian ridge. Genomics 2021;113:884–91.CAS 

    Google Scholar 
    Li J, Yang J, Sun M, Su L, Wang H, Gao J, et al. Distribution and succession of microbial communities along the dispersal pathway of hydrothermal plumes on the Southwest Indian Ridge. Front Mar Sci. 2020;7:581381.
    Google Scholar 
    Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, et al. Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environ Microbiol. 2016;18:4348–68.
    Google Scholar 
    Li WL, Huang JM, Zhang PW, Cui GJ, Wei ZF, Wu YZ, et al. Periodic and spatial spreading of alkanes and Alcanivorax bacteria in deep waters of the Mariana Trench. Appl Environ Microbiol. 2019;85:e02089–18.CAS 

    Google Scholar 
    Brooijmans RJW, Pastink MI, Siezen RJ. Hydrocarbon-degrading bacteria: The oil-spill clean-up crew. Micro Biotechnol. 2009;2:587.CAS 

    Google Scholar 
    Scoma A, Barbato M, Borin S, Daffonchio D, Boon N. An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. Sci Rep. 2016;6:1–3.
    Google Scholar 
    Lai Q, Wang L, Liu Y, Fu Y, Zhong H, Wang B, et al. Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol. 2011;61:1370–4.CAS 

    Google Scholar 
    Wu Y, Lai Q, Zhou Z, Qiao N, Liu C, Shao Z. Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. Int J Syst Evol Microbiol. 2009;59:1474–9.CAS 

    Google Scholar 
    Fernández-Martínez J, Pujalte MJ, García-Martínez J, Mata M, Garay E, Rodríguez-Valera F. Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol. 2003;53:331–8.
    Google Scholar 
    Radwan SS, Khanafer MM, Al-Awadhi HA. Ability of the so-called obligate hydrocarbonoclastic bacteria to utilize nonhydrocarbon substrates thus enhancing their activities despite their misleading name. BMC Microbiol. 2019;19:1–2.
    Google Scholar 
    Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, et al. Analysis of storage lipid accumulation in Alcanivorax borkumensis: Evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol. 2007;189:918–28.CAS 

    Google Scholar 
    Timm C, Davy B, Haase K, Hoernle KA, Graham IJ, De Ronde CEJ, et al. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc. Nat Commun. 2014;5:1–9.
    Google Scholar 
    Haase KM, Beier C, Bach W, Kleint C, Anderson MO, Rubin K, et al. SO-263 Cruise Report: Tonga Rift. 2018. https://doi.org/10.13140/RG.2.2.23035.16169.Gartman A, Hannington M, Jamieson JW, Peterkin B, Garbe-Schönberg D, Findlay AJ, et al. Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids. Geology 2018;46:39–42.CAS 

    Google Scholar 
    Falkenberg JJ, Keith M, Haase KM, Bach W, Klemd R, Strauss H, et al. Effects of fluid boiling on Au and volatile element enrichment in submarine arc-related hydrothermal systems. Geochim Cosmochim Acta. 2021;307:105–32.CAS 

    Google Scholar 
    Peters C, Strauss H, Haase K, Bach W, de Ronde CEJ, Kleint C, et al. SO2 disproportionation impacting hydrothermal sulfur cycling: Insights from multiple sulfur isotopes for hydrothermal fluids from the Tonga-Kermadec intraoceanic arc and the NE Lau Basin. Chem Geol. 2021;586:120586.CAS 

    Google Scholar 
    Baker ET, Walker SL, Massoth GJ, Resing JA. The NE Lau Basin: Widespread and abundant hydrothermal venting in the back-arc region behind a superfast subduction zone. Front Mar Sci. 2019;6:382.
    Google Scholar 
    Kim J, Lee KY, Kim JH. Metal-bearing molten sulfur collected from a submarine volcano: Implications for vapor transport of metals in seafloor hydrothermal systems. Geology 2011;39:351–4.CAS 

    Google Scholar 
    Klose L, Keith M, Hafermaas D, Kleint C, Bach W, Diehl A, et al. Trace element and isotope systematics in vent fluids and sulphides from Maka volcano, North Eastern Lau Spreading Centre: Insights into three-component fluid mixing. Front Earth Sci. 2021;9:1–26.
    Google Scholar 
    Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 

    Google Scholar 
    Dede B, Hansen CT, Neuholz R, Schnetger B, Kleint C, Walker S, et al. Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes. ISME J. 2022;16:1479–90.CAS 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 

    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: An R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 

    Google Scholar 
    Diehl A, Bach W. MARHYS (MARine HYdrothermal Solutions) Database: A global compilation of marine hydrothermal vent fluid, end member, and seawater compositions. Geochem Geophys Geosystems. 2020;21:e2020GC009385.
    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 

    Google Scholar 
    Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–9.CAS 

    Google Scholar 
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, et al. ARB: A software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 

    Google Scholar 
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.CAS 

    Google Scholar 
    Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 

    Google Scholar 
    Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS 

    Google Scholar 
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.CAS 

    Google Scholar 
    Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.CAS 

    Google Scholar 
    Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA‐targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 1993;14:136–43.CAS 

    Google Scholar 
    Stahl DA, Amann R. Development and application of nucleic acid probes in bacterial systematics. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E, Goodfellow M, editors. Chichester, UK: John Wiley & Sons Ltd; 1991. pp. 205–48.Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. Syst Appl Microbiol. 1992;15:593–600.
    Google Scholar 
    Eilers H, Pernthaler J, Glöckner FO, Amann R. Culturability and in situ abundance of pelagic Bacteria from the North Sea. Appl Environ Microbiol. 2000;66:3044–51.CAS 

    Google Scholar 
    Syutsubo K, Kishira H, Harayama S. Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol. 2001;3:371–9.CAS 

    Google Scholar 
    Morris RM, Rappé MS, Urbach E, Connon SA, Giovannoni SJ. Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Environ Microbiol. 2004;70:2836–42.CAS 

    Google Scholar 
    Bushnell B BBMap (version 35.14). 2015. https://sourceforge.net/projects/bbmap/.Andrews S. FastQC: A quality control tool for high throughput sequence data. Babraham Bioinforma. 2010; http://www.bioinformatics.babraham.ac.uk/projects/.Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: Fast estimation of metagenomic coverage and sequence diversity. mSystems 2018;3:e00039–18.
    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:1–9.
    Google Scholar 
    Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012;28:3211–7.CAS 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.CAS 

    Google Scholar 
    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–5.CAS 

    Google Scholar 
    Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 

    Google Scholar 
    Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol. 2021;6:3–6.CAS 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 

    Google Scholar 
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotech. 2017;35:725–31.CAS 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925–7.
    Google Scholar 
    Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9.CAS 

    Google Scholar 
    Priest T, Heins A, Harder J, Amann R, Fuchs BM. Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group. ISME J. 2022;16:1570–82.CAS 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.CAS 

    Google Scholar 
    Karthikeyan S, Rodriguez‐R LM, Heritier‐Robbins P, Hatt JK, Huettel M, Kostka JE, et al. Genome repository of oil systems: An interactive and searchable database that expands the catalogued diversity of crude oil‐associated microbes. Environ Microbiol. 2020;22:2094–106.CAS 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.CAS 

    Google Scholar 
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.CAS 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 

    Google Scholar 
    Gomes AÉI, Stuchi LP, Siqueira NMG, Henrique JB, Vicentini R, Ribeiro ML, et al. Selection and validation of reference genes for gene expression studies in Klebsiella pneumoniae using Reverse Transcription Quantitative real-time PCR. Sci Rep. 2018;8:1–4.
    Google Scholar 
    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 2016;532:465–70.CAS 

    Google Scholar 
    Duarte CM. Seafaring in the 21st century: the Malaspina 2010 circumnavigation expedition. Limnol Oceanogr Bull. 2015;24:11–4.
    Google Scholar 
    Anantharaman K, Breier JA, Dick GJ. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. ISME J. 2016;10:225–39.CAS 

    Google Scholar 
    Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682.
    Google Scholar 
    Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Addendum: Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl.nov.). Front Microbiol. 2017;9:772.
    Google Scholar 
    Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJS. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol. 2004;47:345–57.CAS 

    Google Scholar 
    Ramasamy KP, Rajasabapathy R, Lips I, Mohandass C, James RA. Genomic features and copper biosorption potential of a new Alcanivorax sp. VBW004 isolated from the shallow hydrothermal vent (Azores, Portugal). Genomics 2020;112:3268–73.CAS 

    Google Scholar 
    Barbato M, Scoma A, Mapelli F, De Smet R, Banat IM, Daffonchio D, et al. Hydrocarbonoclastic Alcanivorax isolates exhibit different physiological and expression responses to N-dodecane. Front Microbiol. 2016;7:2056.
    Google Scholar 
    Sevilla E, Yuste L, Rojo F. Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes. Micro Biotechnol. 2015;8:693–706.CAS 

    Google Scholar 
    Tivey MK. Black and white smokers. In: Harff J, Meschede M, Petersen S, Thiede Jö, editors. Encyclopedia of Marine Geosciences. Dordrecht: Springer Netherlands; 2016. p. 58–62.Djurhuus A, Mikalsen SO, Giebel HA, Rogers AD. Cutting through the smoke: The diversity of microorganisms in deep-sea hydrothermal plumes. R Soc Open Sci. 2017;4:160829.
    Google Scholar 
    Leahy JG, Colwell RR. Microbial degradation of hydrocarbons in the environment. Microbiol Rev. 1990;54:305–15.CAS 

    Google Scholar 
    Atlas R, Bragg J. Bioremediation of marine oil spills: When and when not – The Exxon Valdez experience. Micro Biotechnol. 2009;2:213–21.CAS 

    Google Scholar 
    Reva ON, Hallin PF, Willenbrock H, Sicheritz-Ponten T, Tümmler B, Ussery DW. Global features of the Alcanivorax borkumensis SK2 genome. Environ Microbiol. 2008;10:614–25.CAS 

    Google Scholar 
    Gregory GJ, Morreale DP, Carpenter MR, Kalburge SS, Boyd EF. Quorum sensing regulators AphA and OpaR control expression of the operon responsible for biosynthesis of the compatible solute ectoine. Appl Environ Microbiol. 2019;85:e01543–19.CAS 

    Google Scholar 
    Richter AA, Mais CN, Czech L, Geyer K, Hoeppner A, Smits SHJ, et al. Biosynthesis of the stress-protectant and chemical chaperon ectoine: biochemistry of the transaminase EctB. Front Microbiol. 2019;10:2811.
    Google Scholar 
    Schneiker S, Dos Santos VAPM, Bartels D, Bekel T, Brecht M, Buhrmester J, et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol. 2006;24:997–1004.CAS 

    Google Scholar 
    Wang W, Shao Z. Enzymes and genes involved in aerobic alkane degradation. Front Microbiol. 2013;4:116.
    Google Scholar 
    Barclay W, Rodd JA, Pflueger JC, Havard KR, Helu SP. Oil plays in the kingdom of Tonga, Southwest Pacific. PESA J. 1993;21:79–92.
    Google Scholar 
    Chadwick WW, Rubin KH, Merle SG, Bobbitt AM, Kwasnitschka T, Embley RW. Recent eruptions between 2012-2018 discovered at West Mata submarine volcano (NE Lau Basin, SW Pacific) and characterized by new ship, AUV, and ROV data. Front Mar Sci. 2019;6:495.
    Google Scholar 
    Baumberger T, Lilley MD, Lupton JE, Baker ET, Resing JA, Buck NJ, et al. Dissolved gas and metal composition of hydrothermal plumes from a 2008 submarine eruption on the Northeast Lau Spreading Center. Front Mar Sci. 2020;7:171.
    Google Scholar 
    Lupton J, Rubin KH, Arculus R, Lilley M, Butterfield D, Resing J, et al. Helium isotope, C/3 He, and Ba‐Nb‐Ti signatures in the northern Lau Basin: Distinguishing arc, back‐arc, and hotspot affinities. Geochem Geophys. 2015;16:1133–55.CAS 

    Google Scholar 
    Graham DW. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. In: Porcelli D, Wieler R, Ballentine C, editors. Noble gases in Geochemistry and cosmochemistry, Rev Mineral Geochem. Vol 47. Washington D.C.: Mineral Soc. Of Am; 2002. p. 247–318.Lupton JE, Arculus RJ, Greene RR, Evans LJ, Goddard CI. Helium isotope variations in seafloor basalts from the Northwest Lau Backarc Basin: Mapping the influence of the Samoan hotspot. Geophys Res Lett. 2009;36:L17313.
    Google Scholar 
    Gordon GW. Naturally occurring organohalogen compounds – A comprehensive survey. Prog Chem Org Nat Prod. 1996;68:1–423.
    Google Scholar 
    Spietz RL, Butterfield DA, Buck NJ, Larson BI, Chadwick WW, Walker SL, et al. Deep-sea volcanic eruptions create unique chemical and biological linkages between the subsurface lithosphere and the oceanic hydrosphere. Oceanography. 2018;31:128–35.
    Google Scholar 
    Huber JA, Butterfield DA, Baross JA. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol. 2003;43:393–409.CAS 

    Google Scholar  More

  • in

    Artificial lighting affects the landscape of fear in a widely distributed shorebird

    Brown, J. S., Laundre, J. W. & Gurung, M. The ecology of fear: optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999).
    Google Scholar 
    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the ‘landscape of fear’ in Yellowstone National Park, US.A. Can. J. Zool. 79, 1401–1409 (2001).
    Google Scholar 
    Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).CAS 

    Google Scholar 
    Laundre, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).
    Google Scholar 
    Loggins, A. A., Shrader, A. M., Monadjem, A. & McCleery, R. A. Shrub cover homogenizes small mammals’ activity and perceived predation risk. Sci. Rep. 9, 16857 (2019).
    Google Scholar 
    Whittingham, M. J. & Evans, K. L. The effects of habitat structure on predation risk of birds in agricultural landscapes. Ibis 146, 210–220 (2004).
    Google Scholar 
    Marshall, K. L. A., Philpot, K. E. & Stevens, M. Microhabitat choice in island lizards enhances camouflage against avian predators. Sci. Rep. 6, 19815 (2016).CAS 

    Google Scholar 
    Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K. & Spottiswoode, C. N. Improvement of individual camouflage through background choice in ground-nesting birds. Nat. Ecol. Evol. 1, 1325–1333 (2017).
    Google Scholar 
    Wilson-Aggarwal, J. K., Troscianko, J. T., Stevens, M. & Spottiswoode, C. N. Escape distance in ground-nesting birds differs with individual level of camouflage. Am. Nat. 188, 231–239 (2016).
    Google Scholar 
    Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 19966 (2016).CAS 

    Google Scholar 
    Gaston, K. J., Duffy, J. P., Gaston, S., Bennie, J. & Davies, T. W. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176, 917–931 (2014).
    Google Scholar 
    Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).
    Google Scholar 
    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).
    Google Scholar 
    Gaston, K. J. et al. Pervasiveness of biological impacts of artificial light at night. Integr. Comp. Biol. 61, 1098–1110 (2021).
    Google Scholar 
    Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5, 74–81 (2021).
    Google Scholar 
    Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160248 (2017).
    Google Scholar 
    Underwood, C. N., Davies, T. W. & Queir Os, A. M. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 86, 781–789 (2017).
    Google Scholar 
    Burger, J., Howe, M. A., Hahn, D. C. & Chase, J. Effects of tide cycles on habitat selection and habitat partitioning by migrating shorebirds. Auk 94, 743–758 (1977).
    Google Scholar 
    Granadeiro, J. P., Dias, M. P., Martins, R. C. & Palmeirim, J. M. Variation in numbers and behaviour of waders during the tidal cycle: implications for the use of estuarine sediment flats. Acta Oecologica 29, 293–300 (2006).
    Google Scholar 
    Lourenço, P. M. et al. The energetic importance of night foraging for waders wintering in a temperate estuary. Acta Oecologica 34, 122–129 (2008).
    Google Scholar 
    McNeil, R., Drapeau, P. & Goss-Custard, J. D. The occurrence and adaptive significance of nocturnal habits in waterfowl. Biol. Rev. 67, 381–419 (1992).
    Google Scholar 
    Martin, G. R. Visual fields and their functions in birds. J. Ornithol. 148, 547–562 (2007).
    Google Scholar 
    Martin, G. R. What is binocular vision for? A birds’ eye view. J. Vis. 9, 1–19 (2009).
    Google Scholar 
    Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12, 347–355 (2014).
    Google Scholar 
    Leopold, M. F., Philippart, C. J. M. & Yorio, P. Nocturnal feeding under artificial light conditions by Brown-hooded Gull (Larus maculipennis) in Puerto Madryn harbour (Chubut Province, Argentina). Hornero 25, 55–60 (2010).
    Google Scholar 
    Pugh, A. R. & Pawson, S. M. Artificial light at night potentially alters feeding behaviour of the native southern black-backed gull (Larus dominicanus). Notornis 63, 37–39 (2016).
    Google Scholar 
    Santos, C. D. et al. Effects of artificial illumination on the nocturnal foraging of waders. Acta Oecologica 36, 166–172 (2010).
    Google Scholar 
    Montevecchi, W. A. Influences of Artificial Light on Marine Birds. in Ecological Consequences of Artificial Night Lighting (eds. Rich, C. & Longcore, T.) 94–113 (Island Press, 2006).Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82, 478–485 (2013).
    Google Scholar 
    Blumstein, D. T. Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).
    Google Scholar 
    Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627–2634 (2005).
    Google Scholar 
    Caro, T. Antipredator Defenses in Birds and Mammals. (University of Chicago Press, 2005).Tillmann, J. E. Fear of the dark: night-time roosting and anti-predation behaviour in the grey partridge (Perdix perdix L.). Behaviour 146, 999–1023 (2009).
    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2022-1. https://www.iucnredlist.org/species/22693190/117917038 (2022).Brown, D. et al. The Eurasian Curlew—the most pressing bird conservation priority in the UK? Br. Birds 108, 660–668 (2015).
    Google Scholar 
    Franks, S. E., Douglas, D. J. T., Gillings, S. & Pearce-Higgins, J. W. Environmental correlates of breeding abundance and population change of Eurasian Curlew Numenius arquata in Britain. Bird. Study 64, 393–409 (2017).
    Google Scholar 
    Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).
    Google Scholar 
    Clarke, J. A. Moonlight’s influence on predator/prey interactions between short-eared owls (Asio flammeus) and Deermice (Peromyscus maniculatus). Behav. Ecol. Sociobiol. 13, 205–209 (1983).
    Google Scholar 
    Mandelik, Y., Jones, M. & Dayan, T. Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol. Ecol. Res. 5, 501–515 (2003).
    Google Scholar 
    Alexander, R. D. The Evolution of Social Behavior | Annual Review of Ecology, Evolution, and Systematics. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).
    Google Scholar 
    Pulliam, H. R. On the advantages of flocking. J. Theor. Biol. 38, 419–422 (1973).CAS 

    Google Scholar 
    Barnard, C. J. Flock feeding and time budgets in the house sparrow (Passer domesticus L.). Anim. Behav. 28, 295–309 (1980).
    Google Scholar 
    Cooper, W. E. Jr. et al. Effects of risk, cost, and their interaction on optimal escape by nonrefuging Bonaire whiptail lizards, Cnemidophorus murinus. Behav. Ecol. 14, 288–293 (2003).
    Google Scholar 
    Lagos, P. A. et al. Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Can. J. Zool. 87, 1016–1023 (2009).
    Google Scholar 
    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).
    Google Scholar 
    Tucker, V. A., Tucker, A. E., Akers, K. & Enderson, J. H. Curved flight paths and sideways vision in peregrine falcons (Falco peregrinus). J. Exp. Biol. 203, 3755–3763 (2000).CAS 

    Google Scholar 
    Carr, J. M. & Lima, S. L. Wintering birds avoid warm sunshine: predation and the costs of foraging in sunlight. Oecologia 174, 713–721 (2014).
    Google Scholar 
    van den Hout, P. J. & Martin, G. R. Extreme head-tilting in shorebirds: predator detection and sun avoidance. Wader Study Group Bull. 118, 18–21 (2011).
    Google Scholar 
    Ferguson, J. W. H., Galpin, J. S. & de Wet, M. J. Factors affecting the activity patterns of black-backed jackals Canis mesomelas. J. Zool. 214, 55–69 (1988).
    Google Scholar 
    Pyke, G. H. Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst. 15, 523–575 (1984).
    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory. (Princeton University Press, 1986).Mouritsen, K. N. Predator avoidance in night-feeding dunlins calidris alpina: a matter of concealment. Ornis Scand. 23, 195–198 (1992).
    Google Scholar 
    Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manag. 67, 852–857 (2003).
    Google Scholar 
    Troscianko, J. OSpRad; an open-source, low-cost, high-sensitivity spectroradiometer (p. 2022.12.09.519768). bioRxiv https://doi.org/10.1101/2022.12.09.519768 (2022).Article 

    Google Scholar 
    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.4. http://florianhartig.github.io/DHARMa/ (2022).Core Team, R. R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2022).
    Google Scholar  More

  • in

    Elevated alpha diversity in disturbed sites obscures regional decline and homogenization of amphibian taxonomic, functional and phylogenetic diversity

    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 

    Google Scholar 
    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropogene. Trends Ecol. Evol. 30, 104–113 (2015).
    Google Scholar 
    Bradshaw, C. J. A., Sodhi, N. S. & Brook, B. W. Tropical turmoil: A biodiversity tragedy in progress. Front. Ecol. Environ. 7, 79–87 (2009).
    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
    CAS 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 

    Google Scholar 
    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).
    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 

    Google Scholar 
    Pasari, J. R., Levi, T., Zavaleta, E. S. & Tilman, D. Several scales of biodiversity affect ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 110, 10219–10222 (2013).ADS 
    CAS 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
    Google Scholar 
    Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).
    Google Scholar 
    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).ADS 
    CAS 

    Google Scholar 
    de Coster, G., Banks-Leite, C. & Metzger, J. P. Atlantic forest bird communities provide different but not fewer functions after habitat loss. Proc. R. Soc. B 282, 20142844 (2015).
    Google Scholar 
    Riemann, J. C., Ndriantsoa, S. H., Rödel, M.-O. & Glos, J. Functional diversity in a fragmented landscape—habitat alterations affect functional trait composition of frog assemblages in Madagascar. Global Ecol. Conserv. 10, 173–183 (2017).
    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).CAS 

    Google Scholar 
    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).
    Google Scholar 
    van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multi-functionality. Proc. Natl. Acad. Sci. U.S.A. 113, 3557–3562 (2016).ADS 

    Google Scholar 
    Mori, A. S., Isbell, F. & Seidl, R. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).
    Google Scholar 
    Dehling, J. M. & Dehling, D. M. Conserving ecological functions of frog communities in Borneo requires diverse forest landscapes. Global Ecol. Conserv. 26, e01481 (2021).
    Google Scholar 
    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).ADS 
    CAS 

    Google Scholar 
    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).ADS 
    CAS 

    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. U.S.A. 100, 12765–12770 (2003).ADS 
    CAS 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 

    Google Scholar 
    Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. U.S.A. 117, 28140–28149 (2020).ADS 
    CAS 

    Google Scholar 
    Tilman, D. Functional diversity in Encyclopedia of biodiversity, Vol. 3. (ed. Levin S. A.) 109–120 (Academic Press, 2001)Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
    Google Scholar 
    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem function relationships. Ecology 92, 1573–1581 (2011).
    Google Scholar 
    Lean, C. & Maclaurin, J. The value of phylogenetic diversity in Biodiversity conservation and phylogenetic systematics. Topics in Biodiversity and Conservation 14. (eds. Pellens, R., Grandcolas, P.) 19–38 (Springer, 2016).Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).ADS 

    Google Scholar 
    Gumbs, R., Williams, R. C., Lowney, A. M. & Smith, D. Spatial and species-level metrics reveal global patterns of irreplaceable and imperiled gecko phylogenetic diversity. Israel J. Ecol. Evolut. 66, 239–252 (2020).
    Google Scholar 
    Brooks, D. R., Mayden, R. L. & McLennan, D. A. Phylogeny and biodiversity: Conserving our evolutionary legacy. Trends Ecol. Evol. 7, 55–59 (1992).CAS 

    Google Scholar 
    Phillimore, A. B. et al. Biogeographical basis of recent phenotypic divergence among birds: a global study of subspecies richness. Evolution 61, 942–957 (2007).
    Google Scholar 
    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).ADS 
    CAS 

    Google Scholar 
    Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).
    Google Scholar 
    Tucker, C. M. et al. Assessing the utility of conserving evolutionary history. Biol. Rev. 94, 1740–1760 (2019).
    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).
    Google Scholar 
    Villéger, S., Miranda, J. R., Hernández, D. F. & Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20, 1512–1522 (2010).Gibbons, J. W. et al. Remarkable amphibian biomass and abundance in an isolated wetland: Implications for wetland conservation. Conserv. Biol. 20, 1457–1465 (2006).
    Google Scholar 
    Hocking, D. J. & Babbitt, K. J. Amphibian contributions to ecosystem services. Herpetol. Conserv. Biol. 9, 1–17 (2014).
    Google Scholar 
    Beebee, T. J. C. Amphibian breeding and climate change. Nature 374, 219–220 (1995).ADS 
    CAS 

    Google Scholar 
    Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681–684 (2001).ADS 
    CAS 

    Google Scholar 
    Cheng, T. L., Rovito, S. M., Wake, D. B. & Vredenburg, V. T. Coincident mass extirpation of neotropical amphibians with the emergence of the infection fungal pathogen Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. U.S.A. 108, 9502–9507 (2011).ADS 
    CAS 

    Google Scholar 
    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. U.S.A. 105, 11466–11473 (2008).ADS 
    CAS 

    Google Scholar 
    Ernst, R. & Rödel, M.-O. Patterns of community composition in two tropical tree frog assemblages: Separating spatial structure and environmental effects in disturbed and undisturbed forests. J. Trop. Ecol. 24, 111–120 (2008).
    Google Scholar 
    Gardner, T. A. et al. The value of primary, secondary, and plantation forests for a Neotropical Herpetofauna. Conserv. Biol. 21, 775–787 (2007).
    Google Scholar 
    Gardner, T. A., Fitzherbert, E. B., Drewes, R. C., Howell, K. M. & Caro, T. Spatial and temporal patterns of abundance and diversity of an East African leaf litter amphibian fauna. Biotropica 39, 105–113 (2007).
    Google Scholar 
    Gillespie, G. R. et al. Conservation of amphibians in Borneo: relative value of secondary tropical forest and non-forest habitats. Biol. Cons. 152, 136–144 (2012).
    Google Scholar 
    Angarita-M., O., Montes-Correa, A. C. & Renjifo, J. M. Amphibians and reptiles of an agroforestry system in the Colombian Caribbean. Amphibian & Reptile Conservation 8, 33–52 (2015).Jiménez-Robles, O., Guayasamin, J. M., Ron, S. R. & De la Riva, I. Reproductive traits associated with species turnover of amphibians in Amazonia and its Andean slopes. Ecol. Evol. 7, 2489–2500 (2017).
    Google Scholar 
    Ernst, R., Linsenmair, K. E. & Rödel, M.-O. Diversity erosion beyond the species level: dramatic loss of functional diversity after selective logging in two tropical amphibian communities. Biol. Cons. 133, 143–155 (2006).
    Google Scholar 
    Oda, F. H. et al. Anuran species richness, composition, and breeding habitat preferences: a comparison between forest remnants and agricultural landscapes in Southern Brazil. Zool. Stud. 55, 34 (2016).
    Google Scholar 
    Sinsch, U., Lümkemann, K., Rosar, K., Schwarz, C. & Dehling, J. M. Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). African Zool. 47, 60–73 (2012).
    Google Scholar 
    Tumushimire, L., Mindje, M., Sinsch, U. & Dehling, J. M. The anuran diversity of cultivated wetlands in Rwanda: Melting pot of generalists?. Salamandra 56, 99–112 (2020).
    Google Scholar 
    REMA. Rwanda State of Environment and Outlook Report 2017 – Achieving Sustainable Urbanization. (Rwanda Environment Management Authority, Government of Rwanda, 2017).Su, J. C., Debinski, D. M., Jakubauskas, M. E. & Kindscher, K. Beyond species richness: Community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv. Biol. 18, 167–173 (2004).
    Google Scholar 
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).ADS 
    CAS 

    Google Scholar 
    Zimkus, B. M., Rödel, M.-O. & Hillers, A. Complex patterns of continental speciation: Molecular phylogenetics and biogeography of sub-Saharan puddle frogs (Phrynobatrachus). Mol. Phylogenet. Evol. 55, 883–900 (2010).
    Google Scholar 
    Dehling, J. M. & Sinsch, U. Partitioning of morphospace in larval and adult reed frogs (Anura: Hyperoliidae: Hyperolius) of the Central African Albertine Rift. Zool. Anz. 280, 65–77 (2019).
    Google Scholar 
    Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).ADS 

    Google Scholar 
    Haddad, C. F. B. & Prado, C. P. A. Reproductive modes and their unexpected diversity in the Atlantic forest of Brazil. Bioscience 55, 207–217 (2005).
    Google Scholar 
    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).ADS 
    CAS 

    Google Scholar 
    Alroy, J. Effects of habitat disturbance on tropical forest biodiversity. Proc. Natl. Acad. Sci. U.S.A. 114, 6056–6061 (2017).ADS 
    CAS 

    Google Scholar 
    Dehling, J. M. & Sinsch, U. Diversity of Ptychadena in Rwanda and taxonomic status of P. chrysogaster Laurent, 1954 (Amphibia, Anura, Ptychadenidae). ZooKeys 356, 69–102 (2013).IUCN. The IUCN Red List of Threatened Species. Version 2020–1. https://www.iucnredlist.org (2020).Portillo, F., Greenbaum, E., Menegon, M., Kusamba, C. & Dehling, J. M. Phylogeography and species boundaries of Leptopelis (Anura: Arthroleptidae) from the Albertine Rift. Mol. Phylogenet. Evol. 82, 75–86 (2015).
    Google Scholar 
    Channing, A., Dehling, J. M., Lötters, S. & Ernst, R. Species boundaries and taxonomy of the African River Frogs (Anura: Pyxicephalidae: Amietia). Zootaxa 4155, 1–76 (2016).CAS 

    Google Scholar 
    Rödel, M.-O. & Ernst, R. Measuring and monitoring amphibian diversity in tropical forests. I. An evaluation of methods with recommendations for standardization. Ecotropica 10, 1–14 (2004).Channing, A. & Howell, K. M. Amphibians of East Africa. (Chimaira, 2006).Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evolut. 2, 850–858 (2018).
    Google Scholar 
    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).
    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Cons. 61, 1–10 (1992).
    Google Scholar 
    Dehling, D. M. et al. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37, 1047–1055 (2014).
    Google Scholar 
    Baselga, A. et al. betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.5.6. https://CRAN.R-project.org/package=betapart (2022).Dehling, D. M. et al. Specialists and generalists fulfil important and complementary functional roles in ecological processes. Funct. Ecol. 35, 1810–1821 (2021).CAS 

    Google Scholar 
    Dehling, D. M., Barreto, E. & Graham, C. H. The contribution of mutualistic interactions to functional and phylogenetic diversity. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.05.006 (2022).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2021). More