Increasing availability of palatable prey induces predator-dependence and increases predation on unpalatable prey
1.Elton, C. S. Animal Ecology (Sidgwick and Jackson, 1927).
Google Scholar
2.Curio, E. The Ethology of Predation (Springer, 1976).
Google Scholar
3.Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology (The University of Chicago Press, 2007).
Google Scholar
4.Holling, C. S. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959).Article
Google Scholar
5.Hassell, M. P. & Varley, G. C. New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969).CAS
PubMed
Article
ADS
Google Scholar
6.Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).Article
Google Scholar
7.DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for tropic interaction. Ecology 56, 881–892 (1975).Article
Google Scholar
8.Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, 1986).
Google Scholar
9.Murdoch, W. W., Avery, S. & Smyth, M. E. B. Switching in predatory fish. Ecology 56, 1094–1105 (1975).Article
Google Scholar
10.Akre, B. G. & Johnson, D. M. Switching and sigmoid functional response curves by damselfly naiads with alternative prey available. J. Anim. Ecol. 48, 703–720 (1979).Article
Google Scholar
11.Benhadi-Marín, J., Pereira, J. A., Sousa, J. P. & Santos, S. A. P. Functional responses of three guilds of spiders: comparing single- and multiprey approaches. Ann. Appl. Biol. 175, 202–214 (2019).Article
Google Scholar
12.Tschanz, B., Bersier, L. F. & Bacher, S. Functional responses: a question of alternative prey and predator density. Ecology 88, 1300–1308 (2007).PubMed
Article
Google Scholar
13.Sih, A. & Christensen, B. Optimal diet theory: when does it work, and when and why does it fail?. Anim. Behav. 61, 379–390 (2001).Article
Google Scholar
14.Nakano, S., Fausch, K. D. & Kitano, S. Flexible niche partitioning via a foraging mode shift: a proposed mechanism for coexistence in stream-dwelling charrs. J. Anim. Ecol. 68, 1079–1092 (1999).Article
Google Scholar
15.Kullberg, C. Strategy of the Pygmy Owl while hunting avian and mammalian prey. Ornis Fenn. 72, 72–78 (1995).
Google Scholar
16.Oaten, A. & Murdoch, W. W. Switching, functional response, and stability in predator-prey systems. Am. Nat. 109, 299–318 (1975).Article
Google Scholar
17.Abrams, P. A. The adaptive dynamics of consumer choice. Am. Nat. 153, 83–97 (1999).PubMed
Article
Google Scholar
18.Abrams, P. A. & Kawecki, T. J. Adaptive host preference and the dynamics of host–parasitoid interactions. Theor. Popul. Biol. 56, 307–324 (1999).CAS
PubMed
MATH
Article
Google Scholar
19.van Baleen, M., Krivan, V., van Rijn, P. & Sabelis, M. Alternative food, switching predators and the persistence of predator-prey systems. Am. Nat. 157, 512–524 (2001).Article
Google Scholar
20.Formanowicz, D. R. & Bradley, P. J. Fluctuations in prey density: effects on the foraging tactics of scolopendrid centipedes. Anim. Behav. 35, 453–461 (1987).Article
Google Scholar
21.Hirvonen, H. Shifts in foraging tactics of larval damselflies: effects of prey density. Oikos 86, 443–452 (1999).Article
Google Scholar
22.Hassell, M. P. The Dynamics of Arthropod Predator–Prey Systems (Princeton University Press, 1978).
Google Scholar
23.Arditi, R. & Akçakaya, H. R. Underestimation of mutual interference of predators. Oecologia 83, 358–361 (1990).CAS
PubMed
Article
ADS
Google Scholar
24.Abrams, P. A. & Ginzburg, L. R. The nature of predation: prey dependent, ratio dependent or neither?. Trends Ecol. Evol. 15, 337–341 (2000).CAS
PubMed
Article
Google Scholar
25.Arditi, R. & Ginzburg, L. R. How Species Interact: Altering the Standard View of Trophic Ecology (Oxford University Press, 2012).
Google Scholar
26.Chan, K. et al. Improving the assessment of predator functional responses by considering alternate prey and predator interactions. Ecology 98, 1787–1796 (2017).CAS
PubMed
Article
Google Scholar
27.Tyutyunov, Y. V. & Titova, L. I. From Lotka-Volterra to Arditi-Ginzbug: 90 years of evolving trophic functions. Biol. Bull. Rev. 10, 167–185 (2020).Article
Google Scholar
28.Novak, M. & Stouffer, D. B. Systematic bias in studies of consumer functional responses. Ecol. Lett. 24, 580–593 (2020).PubMed
Article
Google Scholar
29.Schenk, D., Bersier, L. F. & Bacher, S. An experimental test of the nature of predation: neither prey- nor ratio-dependent. J. Anim. Ecol. 74, 86–91 (2005).Article
Google Scholar
30.Hossie, T. J. & Murray, D. L. Spatial arrangement of prey affects the shape of ratio-dependent functional responses in strongly antagonistic predators. Ecology 97, 834–841 (2016).PubMed
Article
Google Scholar
31.Pulliam, H. R. On the theory of optimal diets. Am. Nat. 108, 59–74 (1974).Article
Google Scholar
32.Charnov, E. L. Optimal foraging: attack strategy of a mantid. Am. Nat. 110, 141–151 (1976).Article
Google Scholar
33.Baudrot, V., Perasso, A., Fritsch, C., Giraudoux, P. & Raoul, F. The adaptation of generalist predators’ diet in a multi-prey context: insights from new functional responses. Ecology 97, 1832–1841 (2016).PubMed
Article
Google Scholar
34.Palma, L., Beja, P., Pais, M. & Da Fonseca, L. C. Why do raptors take domestic prey? The case of Bonelli’s eagles and pigeons. J. Appl. Ecol. 43, 1075–1086 (2006).Article
Google Scholar
35.Hossie, T. J. & Murray, D. L. You can’t run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae. Oecologia 163, 395–404 (2010).PubMed
Article
ADS
Google Scholar
36.Hossie, T. J. & Murray, D. L. Assessing behavioural and morphological responses of frog tadpoles to temporal variability in predation risk. J. Zool. 288, 275–282 (2012).Article
Google Scholar
37.Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 541–554 (2001).Article
Google Scholar
38.Hossie, T. J., Landolt, K. & Murray, D. L. Determinants and co-expression of anti-predator responses in amphibian tadpoles: a meta-analysis. Oikos 126, 20. https://doi.org/10.1111/oik.03305 (2017).Article
Google Scholar
39.Relyea, R. A. The relationship between predation risk and antipredator responses in larval anurans. Ecology 82, 541–554 (2001).Article
Google Scholar
40.Shine, R. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Quart. Rev. Biol. 85, 253–291 (2010).PubMed
Article
Google Scholar
41.Üveges, B. et al. Age- and environment-dependent changes in chemical defences of larval and post-metamorphic toads. BMC Evol. Biol. 17, 137 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
42.Jeschke, J. M. Density-dependent effect of prey defences and predator offences. J. Theor. Biol. 242, 900–907 (2006).MathSciNet
PubMed
MATH
Article
Google Scholar
43.Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).MathSciNet
CAS
PubMed
Article
Google Scholar
44.Chaneton, E. J. & Bonsall, M. B. Enemy-mediated apparent competition: empirical patterns and the evidence. Oikos 88, 380–394 (2000).Article
Google Scholar
45.Holt, R. D. & Kotler, B. P. Short-term apparent competition. Am. Nat. 130, 412–430 (1987).Article
Google Scholar
46.Abrams, P. A. Effect of increased productivity on the abundances of trophic levels. Am. Nat. 141, 351–371 (1993).Article
Google Scholar
47.Jara, F. G. & Perotti, M. G. Toad tadpole responses to predator risk: ontogenetic change between constitutive and inducible defenses. J. Herpetol. 43, 82–88 (2009).Article
Google Scholar
48.Murdoch, W. W. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969).Article
Google Scholar
49.Chesson, P. L. Variable predators and switching behavior. Theor. Popul. Biol. 26, 1–26 (1984).MathSciNet
MATH
Article
Google Scholar
50.Gende, S. M., Quinn, T. P. & Willson, M. F. Consumption choice by bears feeding on salmon. Oecologia 127, 372–382 (2001).CAS
PubMed
Article
ADS
Google Scholar
51.Skelhorn, J. & Rowe, C. Predator avoidance learning of prey with secreted or stored defences and the evolution of insect defences. Anim. Behav. 72, 827–834 (2006).Article
Google Scholar
52.Vucetich, J. A., Vucetich, L. M. & Peterson, R. O. The causes and consequences of partial prey consumption by wolves preying on moose. Behav. Ecol. Sociobiol. 66, 295–303 (2012).Article
Google Scholar
53.Sih, A. Optimal foraging: partial consumption of prey. Am. Nat. 116, 281–290 (1980).Article
Google Scholar
54.Lucas, J. R. & Grafen, A. Partial prey consumption by ambush predators. Theor. Popul. Biol. 113, 455–473 (1985).MathSciNet
Article
Google Scholar
55.Halliday, D. C. et al. Cane toad toxicity: an assessment of extracts from early developmental stages and adult tissues using MDCK cell culture. Toxicon 53, 385–391 (2009).CAS
PubMed
Article
Google Scholar
56.Toledo, R. C. & Jared, C. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 111, 1–29 (1995).Article
Google Scholar
57.Parrott, M. L., Doody, J. S., McHenry, C. & Clulow, S. Eat your heart out: choice and handling of novel toxic prey by predatory water rats. Aust. Mammal. 42, 235–239 (2019).Article
Google Scholar
58.Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry 2nd edn. (Oxford University Press, 2018).
Google Scholar
59.Sherratt, T. N. The optimal strategy for sampling unfamiliar prey. Evolution 65, 2114–2025 (2011).Article
Google Scholar
60.Skelhorn, J. & Rowe, C. Predators’ toxin burdens influence their strategic decisions to eat toxic prey. Curr. Biol. 17, 1479–1483 (2007).CAS
PubMed
Article
Google Scholar
61.Barnett, C. A., Skelhorn, J., Bateson, M. & Rowe, C. Educated predators make strategic decisions to eat defended prey according to their toxin content. Behav. Ecol. 23, 418–424 (2012).Article
Google Scholar
62.Nonacs, P. Foraging in a dynamic mimicry complex. Am. Nat. 126, 165–180 (1985).Article
Google Scholar
63.Sherratt, T. N. State-dependent risk-taking by predators in systems with defended prey. Oikos 103, 93–100 (2003).Article
Google Scholar
64.Jeschke, J. M., Kopp, M. & Tollrian, R. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79, 337–349 (2004).PubMed
Article
Google Scholar
65.Wilbur, H. M. Density-dependent aspects of growth and metamorphosis in Bufo americanus. Ecology 58, 196–200 (1977).Article
Google Scholar
66.Loman, J. Density regulation in tadpoles of Rana temporaria: a full pond experiment. Ecology 85, 1611–1618 (2004).Article
Google Scholar
67.Yagi, K. T. & Green, D. M. Mechanisms of denity-dependent growth and survival in tadpoles of Fowler’s Toad, Anaxyrus fowleri: volume vs. abundance. Copeia 104, 942–951 (2016).Article
Google Scholar
68.Marshal, J. P. & Boutin, S. Power analysis of wolf-moose functional responses. J. Wild. Manag. 63, 396–402 (1999).Article
Google Scholar
69.Novak, M. & Stouffer, D. B. Systematic bias of consumer functional responses. Ecol. Lett. 24, 580–593 (2020).PubMed
Article
Google Scholar
70.Hossie, T. J. & Murray, D. L. Effects of structural refuge and density on foraging behaviour and mortality of hungry tadpoles subject to predation risk. Ethology 117, 777–785 (2011).Article
Google Scholar
71.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
Google Scholar
72.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019). More