Natural recovery of a marine foundation species emerges decades after landscape-scale mortality
1.Pandolfi, J. M. et al. Global trajectories of long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).ADS
CAS
Article
Google Scholar
2.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS
CAS
Article
Google Scholar
3.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809. https://doi.org/10.1126/science.1128035 (2006).ADS
CAS
Article
PubMed
Google Scholar
4.Dayton, P. K., Tegner, M. J., Parnell, P. E. & Edwards, P. B. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr. 62, 421–445. https://doi.org/10.2307/2937118 (1992).Article
Google Scholar
5.Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71. https://doi.org/10.1126/science.1232310 (2013).ADS
Article
PubMed
Google Scholar
6.Palumbi, S. R., McLeod, K. L. & Grunbaum, D. Ecosystems in action: Lessons from marine ecology about recovery, resistance, and reversibility. Bioscience 58, 33–42. https://doi.org/10.1641/b580108 (2008).Article
Google Scholar
7.O’Leary, J. K. et al. The resilience of marine ecosystems to climatic disturbances. Bioscience 67, 208–220. https://doi.org/10.1093/biosci/biw161 (2017).Article
Google Scholar
8.Castorani, M. C. N., Reed, D. C. & Miller, R. J. Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology 99, 2442–2454. https://doi.org/10.1002/ecy.2485 (2018).Article
PubMed
Google Scholar
9.Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13. https://doi.org/10.2307/1939452 (1984).Article
Google Scholar
10.Hillebrand, H. & Kunze, C. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecol. Lett. 23, 575–585. https://doi.org/10.1111/ele.13457 (2020).Article
PubMed
Google Scholar
11.Robblee, M. B. et al. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Mar. Ecol. Prog. Ser. 71, 297–299. https://doi.org/10.3354/meps071297 (1991).ADS
Article
Google Scholar
12.Nuttle, W. K., Fourqurean, J. W., Cosby, B. J., Zieman, J. C. & Robblee, M. B. Influence of net freshwater supply on salinity in Florida Bay. Water Resour. Res. 36, 1805–1822. https://doi.org/10.1029/1999wr900352 (2000).ADS
Article
Google Scholar
13.Hall, M. O., Durako, M. J., Fourqurean, J. W. & Zieman, J. C. Decadal changes in seagrass distribution and abundance in Florida Bay. Estuaries 22, 445–459. https://doi.org/10.2307/1353210 (1999).Article
Google Scholar
14.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Ann. Rev. Ecol. Evol. and Syst. 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 (2004).Article
Google Scholar
15.Gunderson, L. H. Managing surprising ecosystems in southern Florida. Ecol. Econ. 37, 371–378 (2001).Article
Google Scholar
16.Biggs, R., Peterson, G. D. & Rocha, J. C. The regime shifts database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. https://doi.org/10.5751/ES-10264-230309 (2018).Article
Google Scholar
17.Larkum, A. W. D., Orth, R. J. & Duarte, C. M. Seagrasses: Biology, Ecology, and Conservation. 691 p. (Springer, 2006).18.Lee, K. S., Park, S. R. & Kim, Y. K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J. Exp. Mar. Biol. Ecol. 350, 144–175. https://doi.org/10.1016/J.Jembe.2007.06.016 (2007).Article
Google Scholar
19.Johnson, A. J., Shields, E. C., Kendrick, G. A. & Orth, R. J. Recovery dynamics of the seagrass Zostera marina following mass mortalities from two extreme climatic events. Estuar. Coasts 44, 344–535. https://doi.org/10.1007/s12237-020-00816-y (2020).CAS
Article
Google Scholar
20.van Tussenbroek, B. I. et al. The biology of Thalassia: paradigms and recent advances in research in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D., Orth, R. J. & Duarte, C. M.) 409–439 (Springer, 2006).21.Walker, D. I., Kendrick, G. A. & McComb, A. J. Decline and recovery of seagrass ecosystems – the dynamics of change in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D., Orth, R. J., & Duarte, C. M.) 551–565 (Springer, 2006).22.Phlips, E. J., Badylak, S. & Lynch, T. C. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol. Oceanogr. 44, 1166–1175 (1999).ADS
Article
Google Scholar
23.Williams, S. L. Experimental studies of Caribbean seagrass bed development. Ecol. Monogr. 60, 449–469. https://doi.org/10.2307/1943015 (1990).Article
Google Scholar
24.Kenworthy, W. J., Hall, M. O., Hammerstrom, K. K., Merello, M. & Schwartzschild, A. Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading. Ecol. Eng. 112, 72–81. https://doi.org/10.1016/j.ecoleng.2017.12.008 (2018).Article
Google Scholar
25.Rasheed, M. A. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. J. Exp. Mar. Biol. Ecol. 310, 13–45. https://doi.org/10.1016/j.jembe.2004.03.022 (2004).Article
Google Scholar
26.Rollon, R. N., Van Steveninck, E. D. D. R., Van Vierssen, W. & Fortes, M. D. Contrasting recolonization strategies in multi-species seagrass meadows. Mar. Pollut. Bull. 37, 450–459. https://doi.org/10.1016/S0025-326X(99)00105-8 (1999).Article
Google Scholar
27.Olesen, B., Marba, N., Duarte, C. M., Savela, R. S. & Fortes, M. D. Recolonization dynamics in a mixed seagrass meadow: the role of clonal versus sexual processes. Estuaries 27, 770–780. https://doi.org/10.1007/BF02912039 (2004).Article
Google Scholar
28.Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 106, 12377–12381 (2009).ADS
CAS
Article
Google Scholar
29.Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605. https://doi.org/10.1016/j.tree.2011.07.008 (2011).Article
PubMed
Google Scholar
30.Lavorel, S. Ecological diversity and resilience of Mediterranean vegetation to disturbance. Divers. Distrib. 5, 3–13. https://doi.org/10.1046/j.1472-4642.1999.00033.x (1999).Article
Google Scholar
31.Zhang, J.-Z., Fischer, C. J. & Ortner, P. B. Potential availability of sedimentary phosphorus to sediment resuspension in Florida Bay. Glob. Biogeochem. Cycles 18, 15–25. https://doi.org/10.1029/2004gb002255 (2004).Article
Google Scholar
32.Koch, M. S., Schopmeyer, S. A., Nielsen, O. I., Kyhn-Hansen, C. & Madden, C. J. Conceptual model of seagrass die-off in Florida Bay: links to biogeochemical processes. J. Exp. Mar. Biol. Ecol. 350, 73–88. https://doi.org/10.1016/j.jembe.2007.05.031 (2007).CAS
Article
Google Scholar
33.Birch, W. R. & Birch, M. Succession and pattern of tropical intertidal seagrasses in Cockle Bay, Queensland, Australia: a decade of observations. Aquat. Bot. 19, 343–367. https://doi.org/10.1016/0304-3770(84)90048-2 (1984).Article
Google Scholar
34.Fraser, M. W. et al. Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J. Ecol. 102, 1528–1536. https://doi.org/10.1111/1365-2745.12300 (2014).Article
Google Scholar
35.Winters, G. et al. The tropical seagrass Halophila stipulacea: reviewing what we know from its native and invasive habitats, alongside identifying knowledge gaps. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00300 (2020).Article
Google Scholar
36.Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 370, 20130269. https://doi.org/10.1098/rstb.2013.0269 (2014).Article
Google Scholar
37.Stafford, N. B. & Bell, S. S. Space competition between seagrass and Caulerpa prolifera (Forsskaal) Lamouroux following simulated disturbances in Lassing Park, FL. J. Exp. Mar. Biol. Ecol. 333, 49–57. https://doi.org/10.1016/j.jembe.2005.11.025 (2006).Article
Google Scholar
38.Raniello, R., Mollo, E., Lorenti, M., Gavagnin, M. & Buia, M. C. Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemical. Biol. Invasions 9, 361–368. https://doi.org/10.1007/s10530-006-9044-2 (2007).Article
Google Scholar
39.Molina Hernández, A. L. & van Tussenbroek, B. I. Patch dynamics and species shifts in seagrass communities under moderate and high grazing pressure by green sea turtles. Mar. Ecol. Prog. Ser. 517, 143–157 (2014).ADS
Article
Google Scholar
40.Armitage, A. R. & Fourqurean, J. W. The short-term influence of herbivory near patch reefs varies between seagrass species. J. Exp. Mar. Biol. Ecol. 339, 65–74. https://doi.org/10.1016/j.jembe.2006.07.013 (2006).Article
Google Scholar
41.Thrush, S. F. et al. Forecasting the limits of resilience: integrating empirical research with theory. Proc. R. Soc. B 276, 3209–3217. https://doi.org/10.1098/rspb.2009.0661 (2009).Article
PubMed
Google Scholar
42.MacNeil, M. A. et al. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 3, 620–627. https://doi.org/10.1038/s41559-019-0832-3 (2019).Article
PubMed
Google Scholar
43.Zieman, J. C., Fourqurean, J. W. & Frankovich, T. A. Reply to B.E. Lapointe and P.J. Barile (2004). Comment on J. C. Zieman, J. W. Fourqurean, and T. A Frankovich 1999 Seagrass die-off in Florida Bay: long-term trends in abundance and growth of turtle grass Thalassia testudinum. Estuaries 27, 165–172, https://doi.org/10.1007/Bf02803570 (2004)44.Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, e2003355. https://doi.org/10.1371/journal.pbio.2003355 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
45.Bricker, E., Waycott, M., Calladine, A. & Zieman, J. C. High connectivity across environmental gradients and implications for phenotypic plasticity in a marine plant. Mar. Ecol. Prog. Ser. 423, 57–67. https://doi.org/10.3354/meps08962 (2011).ADS
Article
Google Scholar
46.Fourqurean, J. W. & Robblee, M. B. Florida Bay: a history of recent ecological changes. Estuaries 22, 345–357. https://doi.org/10.2307/1353203 (1999).CAS
Article
Google Scholar
47.Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629. https://doi.org/10.1126/science.1059199 (2001).CAS
Article
PubMed
Google Scholar
48.Tabb, D. C., Dubrow, D. L. & Manning, R. B. The ecology of northern Florida Bay and adjacent esturaries. (Florida State Board of Conservation, Technical Series No. 39, 1962).49.Schmidt, T. W. & Davis, G. E. A summary of estuarine and marine water quality information collected in Everglades National Park, Biscayne National Monument, and adjacent estuaries from 1879 to 1977. 79 pp. (U.S. National Park Service, South Florida Research Center, Everglades National Park, Homestead, FL, Report T-519, 1978).50.Hall, M. O., Furman, B. T., Merello, M. & Durako, M. J. Recurrence of Thalassia testudinum seagrass die-off in Florida Bay, USA: initial observations. Mar. Ecol. Prog. Ser. 560, 243–249. https://doi.org/10.3354/meps11923 (2016).ADS
Article
Google Scholar
51.Zieman, J. C., Fourqurean, J. W. & Frankovich, T. A. Seagrass die-off in Florida Bay: long-term trends in abundance and growth of turtle grass Thalassia testudinum. Estuaries 22, 460–470. https://doi.org/10.2307/1353211 (1999).Article
Google Scholar
52.Zieman, J. C., Fourqurean, J. W. & Iverson, R. L. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay. Bull. Mar. Sci. 44, 292–311 (1989).
Google Scholar
53.Durako, M. J. Seagrass die-off in Florida Bay (USA): changes in shoot demographic characteristics and population dynamics in Thalassia testudinum. Mar. Ecol. Prog. Ser. 110, 59–66. https://doi.org/10.3354/Meps110059 (1994).ADS
Article
Google Scholar More
