More stories

  • in

    Legacies of Indigenous land use shaped past wildfire regimes in the Basin-Plateau Region, USA

    1.Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).CAS 
    Article 

    Google Scholar 
    2.Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. BioScience 59, 593–601 (2009).Article 

    Google Scholar 
    3.Dennison, P. E., Brewer, S. C., Arnold, J. D. & Mortiz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).Article 

    Google Scholar 
    4.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 
    Article 

    Google Scholar 
    5.Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).CAS 
    Article 

    Google Scholar 
    6.Westerling, A. L. R. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Phil. Trans. R. Soc. B Biol. Sci. 371, 1–10 (2016).
    Google Scholar 
    7.Schwartz, M. W. et al. Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere 6, 1–10 (2015).Article 

    Google Scholar 
    8.Trujillo, E., Molotch, N. P., Goulden, M. L., Kelly, A. E. & Bales, R. C. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 5, 705–709 (2012).CAS 
    Article 

    Google Scholar 
    9.Trouet, V., Taylor, A. H., Wahl, E. R., Skinner, C. N. & Stephens, S. L. Fire-climate interactions in the American West since 1400 CE. Geophys. Res. Lett. 37, 1–5 (2010).Article 

    Google Scholar 
    10.Kitchen, S. G. Climate and human influences on historical fire regimes (AD 1400–1900) in the eastern Great Basin (USA). Holocene 26, 397–407 (2016).Article 

    Google Scholar 
    11.Klimaszewski-Patterson, A., Weisberg, P. J., Mensing, S. A. & Scheller, R. M. Using paleolandscape modeling to investigate the impact of native American–set fires on pre-Columbian forests in the Southern Sierra Nevada, California, USA. Ann. Am. Assoc. Geographers 108, 1635–1654 (2018).
    Google Scholar 
    12.Taylor, A. H., Trouet, V., Skinner, C. N. & Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE. Proc. Natl Acad. Sci. USA 113, 13684–13689 (2016).CAS 
    Article 

    Google Scholar 
    13.Ryan, K. C., Knapp, E. E. & Varner, J. M. Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Front. Ecol. Environ. 11, e15–e24 (2013).14.Herring, E. M., Anderson, R. S. & San Miguel, G. L. Fire, vegetation, and Ancestral Puebloans: a sediment record from Prater Canyon in Mesa Verde National Park, Colorado, USA. Holocene 24, 853–863 (2014).Article 

    Google Scholar 
    15.Liebmann, M. J. et al. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492-1900 CE. Proc. Natl Acad. Sci. USA 113, E696–E704 (2016).CAS 
    Article 

    Google Scholar 
    16.Swetnam, T. W. et al. Multiscale perspectives of fire, climate and humans in Western North America and the Jemez Mountains, USA. Phil. Trans. R. Soc. B Biol. Sci. 371, (2016).17.Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 358, 925–931 (2017).Article 
    CAS 

    Google Scholar 
    18.Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).Article 

    Google Scholar 
    19.Vale, T. R. The Pre-European landscape of the United States: Pristine or Humanized? in Fire, Native Peoples, and the Natural Landscape 1–39 (Island Press, 2002).20.Lightfoot, K. G. & Lopez, V. The study of indigenous management practices in California: an introduction. California Archaeol. 5, 209–219 (2013).Article 

    Google Scholar 
    21.Oswald, W. W. et al. Conservation implications of limited Native American impacts in pre-contact New England. Nat. Sustain. 3, 241–246 (2020).Article 

    Google Scholar 
    22.Vachula, R. S., Russell, J. M. & Huang, Y. Climate exceeded human management as the dominant control of fire at the regional scale in California’s Sierra Nevada. Environ. Res. Lett. 14, 104011 (2019).CAS 
    Article 

    Google Scholar 
    23.Baker, W. L. Indians and Fire in the Rocky Mountains: The Wilderness Hypothesis Renewed. in Fire, Native Peoples, and the Natural Landscape 41–76 (2002).24.Kimmerer, R. W. & Lake, F. K. Maintaining the Mosaic: the role of indigenous burning in land management. J. Forestry 99, 36–41 (2001).
    Google Scholar 
    25.Power, M. J. et al. Human fire legacies on ecological landscapes. Front. Earth Sci. 6, 1–6 (2018).Article 

    Google Scholar 
    26.Keeley, J. E. Native American impacts on fire regimes of the California coastal ranges. J. Biogeogr. 29, 303–320 (2002).Article 

    Google Scholar 
    27.Lightfoot, K. G., Parrish, O., Panich, L. M. & Schneider, T. D. California Indians and Their Environment: An Introduction (Univ. California Press, 2009).28.Ryan, K. C., Jones, A. T., Koerner, C. L. & Lee, K. M. Wildland Fire in Ecosystems: Effects of Fire on Cultural Resources and Archaeology. Vol. 3., 224. Rocky Mountain Research Station General Technical Report RMRS-GTR-42 (US Department of Agriculture, Forest Service, 2012).29.Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl Acad. Sci. USA 115, 8143–8148 (2018).CAS 
    Article 

    Google Scholar 
    30.Thomas, D. H. The 1981 Alta Toquima Village project: A Preliminary Report. Desert Research Institute Social Sciences and Humanities Publications Technical Report 27, 1–202 (Desert Research Institute Social Sciences and Humanities Publications, 1982).31.Benedict, J. B. Footprints in the snow: high-altitude cultural ecology of the Colorado Front Range, USA. Arctic Alpine Res. 24, 1–16 (1992).Article 

    Google Scholar 
    32.Stevens, N. E. Changes in prehistoric land use in the Alpine Sierra Nevada: a regional exploration using temperature-adjusted obsidian hydration rates. J. California Great Basin Anthropol. 25, 187–205 (2005).
    Google Scholar 
    33.Klimaszewski-Patterson, A. & Mensing, S. Paleoecological and paleolandscape modeling support for pre-Columbian burning by Native Americans in the Golden Trout Wilderness Area, California, USA. Landscape Ecol. https://doi.org/10.1007/s10980-020-01081-x (2020).34.Swetnam, T. W., Allen, C. D. & Betancourt, J. L. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).Article 

    Google Scholar 
    35.Roos, C. I., Williamson, G. J. & Bowman, D. M. Is anthropogenic pyrodiversity invisible in paleofire records? Fire 2, 42 (2019).Article 

    Google Scholar 
    36.Marlon, J. R. et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 65, 5–25 (2013).Article 

    Google Scholar 
    37.Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).Article 

    Google Scholar 
    38.Adolf, C. et al. The sedimentary and remote-sensing reflection of biomass burning in Europe. Global Ecol. Biogeogr. 27, 199–212 (2018).Article 

    Google Scholar 
    39.Vachula, R. S. A meta-analytical approach to understanding the charcoal source area problem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110111 https://doi.org/10.1016/j.palaeo.2020.110111 (2021).40.Munoz, S. E., Gajewski, K. & Peros, M. C. Synchronous environmental and cultural change in the prehistory of the northeastern United States. Proc. Natl Acad. Sci. USA 107, 22008–22013 (2010).CAS 
    Article 

    Google Scholar 
    41.Peros, M. C., Munoz, S. E., Gajewski, K. & Viau, A. E. Prehistoric demography of North America inferred from radiocarbon data. J. Archaeol. Sci. 37, 656–664 (2010).Article 

    Google Scholar 
    42.Brown, P. M., Heyerdahl, E. K., Kitchen, S. G. & Weber, M. H. Climate effects on historical fires (1630-1900) in Utah. Int. J. Wildland Fire 17, 28–39 (2008).Article 

    Google Scholar 
    43.Li, J. et al. Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Change 1, 114–118 (2011).CAS 
    Article 

    Google Scholar 
    44.Gedalof, Z. & Peterson, D. L. & Mantua, N. J. Atmospheric, climatic, and ecological controls on extreme wildfire years in the Northwestern United States. Ecol. Appl. 15, 154–174 (2005).45.Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G. & Long, D. G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 10, 329–342 (2001).Article 

    Google Scholar 
    46.Marchetti, D. W., Harris, M. S., Bailey, C. M., Cerling, T. E. & Bergman, S. Timing of glaciation and last glacial maximum paleoclimate estimates from the Fish Lake Plateau, Utah. Quat. Res. 75, 183–195 (2011).CAS 
    Article 

    Google Scholar 
    47.Kemperman, J. A. & Barnes, B. V. Clone size in American aspens. Can. J. Botany 54, 2603–2607 (1976).Article 

    Google Scholar 
    48.Mitton, J. B. & Grant, M. C. Genetic variation and the natural history of quaking Aspen. BioScience 46, 25–31 (1996).Article 

    Google Scholar 
    49.Wood, S. N. Generalized Additive Models: an Introduction with R (Chapman and Hall, 2006).50.Hastie, T. & Tibshirani, R. Generalized additive models. Stat. Sci. 1, 297–318 (1992).
    Google Scholar 
    51.Madsen, D. B. & Simms, S. R. The Fremont complex: a behavioral perspective. J. World Prehistory 12, 255–336 (1998).Article 

    Google Scholar 
    52.Massimino, J. & Metcalfe, D. New form for the formative. Utah Archaeol. 12, 1–16 (1999).
    Google Scholar 
    53.Coltrain, J. B. & Leavitt, S. W. Climate and diet in Fremont prehistory: economic variability and abandonment of maize agriculture in the Great Salt Lake Basin. Am. Antiquity 67, 453–485 (2002).Article 

    Google Scholar 
    54.Magargal, K. E., Parker, A. K., Vernon, K. B., Rath, W. & Codding, B. F. The ecology of population dispersal: modeling alternative basin-plateau foraging strategies to explain the Numic expansion. Am. J. Hum. Biol. 29, 1–14 (2017).
    Google Scholar 
    55.Thomson, M. J., Balkovič, J., Krisztin, T. & MacDonald, G. M. Simulated impact of paleoclimate change on Fremont Native American maize farming in Utah, 850–1449 CE, using crop and climate models. Quat. Int. 507, 95–107 (2019).Article 

    Google Scholar 
    56.Finley, J. B., Robinson, E., Derose, R. J. & Hora, E. Multidecadal climate variability and the florescence of Fremont societies in Eastern Utah. American Antiquity 85, 93–112 (2020).Article 

    Google Scholar 
    57.Janetski, J. C. Archaeology and Native American history at Fish Lake, Central Utah. vol. 16 (Museum of Peoples and Cultures, Brigham Young University, 2010).58.Fowler, C. S. in Handbook of North American Indians (eds. Sturtevant, W. C. & D’Azevedo, W. L.) vol. 11, 64–97 (Smithsonian Institution, 1986).59.Sullivan, A. P. & Mink, P. B. Theoretical and socioecological consequences of fire foodways. Am. Antiquity 83, 619–638 (2018).Article 

    Google Scholar 
    60.Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).CAS 
    Article 

    Google Scholar 
    61.Woodhouse, C. A., Meko, D. M., MacDonald, G. M., Stahle, D. W. & Cook, E. R. A 1,200-year perspective of 21st century drought in southwestern North America. Proc. Natl Acad. Sci. USA 107, 21283–21288 (2010).CAS 
    Article 

    Google Scholar 
    62.Meko, D. M. et al. Medieval drought in the upper Colorado River Basin. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    63.Salzer, M. W. & Kipfmueller, K. F. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau, U.S.A. Clim. Change 70, 465–487 (2005).CAS 
    Article 

    Google Scholar 
    64.Knight, T. A., Meko, D. M. & Baisan, C. H. A bimillennial-length tree-ring reconstruction of precipitation for the Tavaputs Plateau, Northeastern Utah. Quat. Res. 73, 107–117 (2010).Article 

    Google Scholar 
    65.Margolis, E. Q. & Swetnam, T. W. Historical fire-climate relationships of upper elevation fire regimes in the south-western United States. Int. J. Wildland Fire 22, 588–598 (2013).Article 

    Google Scholar 
    66.Calder, W. J., Parker, D., Stopka, C. J., Jiménez-Moreno, G. & Shuman, B. N. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc. Natl Acad. Sci. USA 112, 13261–13266 (2015).CAS 
    Article 

    Google Scholar 
    67.Bliege, R. B., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).Article 

    Google Scholar 
    68.Parisien, M. A. et al. The spatially varying influence of humans on fire probability in North America. Environ. Res. Lett. 11, 075005 (2016).Article 

    Google Scholar 
    69.Codding, B. F. et al. Socioecological dynamics structuring the spread of farming in the North American Basin-Plateau Region. Environ. Archaeol. (in review).70.Robinson, E., Nicholson, C. & Kelly, R. L. The importance of spatial data to open-access national archaeological databases and the development of paleodemography research. Adv. Archaeol. Pract. 7, 395–408 (2019).Article 

    Google Scholar 
    71.Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, 535–543 (2012).Article 

    Google Scholar 
    72.Kent McAdoo, J., Schultz, B. W. & Swanson, S. R. Aboriginal precedent for active management of sagebrush-perennial grass communities in the Great Basin. Rangeland Ecol. Manag. 66, 241–253 (2013).Article 

    Google Scholar 
    73.Heyerdahl, E. K., Brown, P. M., Kitchen, S. G. & Weber, M. H. Multicentury Fire and Forest Histories at 19 sites in Utah and Eastern Nevada. Rocky Mountain Research Station General Technical Report RMRS-GTR-261WWW, 192 (US Department of Agriculture, Forest Service, 2011).74.Charles, K. Long-term Vegetation Change on Utah’s Fishlake National Forest: A Study in Repeat Photography (Utah State Univ., 2003).75.USDA Forest Service. Fishlake National Forest (N.F.), Salina Planning Unit: Environmental Impact Statement. 1–125 (USDA Forest Service, 1976).76.Morris, J. L., Brunelle, A., Munson, A. S., Spencer, J. & Power, M. J. Holocene vegetation and fire reconstructions from the Aquarius Plateau, Utah, USA. Quat. Int. 310, 111–123 (2013).Article 

    Google Scholar 
    77.MTBS Data Access: Fire Level Geospatial Data. (2020, November – last revised). MTBS Project (USDA Forest Service/U.S. Geological Survey). Available online: http://mtbs.gov/direct-download [2020, December 15].78.Kitzberger, T., Falk, D. A., Westerling, A. L. & Swetnam, T. W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12, e0188486 (2017).Article 
    CAS 

    Google Scholar 
    79.Dean, W. E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparision with other methods. J. Sediment. Petrol. 44, 242–248 (1974).CAS 

    Google Scholar 
    80.Reimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal Bp. Radiocarbon 55, 1869–1887 (2013).CAS 
    Article 

    Google Scholar 
    81.Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).Article 

    Google Scholar 
    82.Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S. & Brown, T. A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monographs 79, 201–219 (2009).Article 

    Google Scholar 
    83.Crema, E. R., Bevan, A. & Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 87, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    84.Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. Proc. Natl Ac. Sci. USA 110, 443–447 (2013).CAS 
    Article 

    Google Scholar 
    85.Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat Commun. 4, 31–34 (2013).Article 
    CAS 

    Google Scholar 
    86.Bevan, A. & Crema, E. rcarbon v1. 2.0: Methods for calibrating and analysing radiocarbon dates, https://cran.r-project.org/web/packages/rcarbon/index.html (2018).87.Contreras, D. A. & Meadows, J. Summed radiocarbon calibrations as a population proxy: A critical evaluation using a realistic simulation approach. J. Archaeol. Sci. 52, 591–608 (2014).Article 

    Google Scholar 
    88.Wood, S. N. Package ‘mgvc,’ https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (2017). More

  • in

    Nitrogen isotope effects can be used to diagnose N transformations in wastewater anammox systems

    Variation in the N isotope effect imparted by ammonium oxidationWhile the ammonium isotope effect, 15ε(NH4+), varies by over 13‰ across all experiments, it exhibits a narrower range for a specific experimental setting with distinct cultivation conditions (mainstream, enrichment, sidestream), it exhibits a broader range across all experiments (Fig. 2). There are a number of possible physiological and experimental conditions that differ among experiments, including reaction rate, temperature, and initial concentration of substrates. As shown in Fig. 6, there is a systematic decrease in 15ε(NH4+) at decreasing initial ammonium concentration, while at the highest ammonium concentrations, the value of 15ε(NH4+) appears to plateau at a value near 32‰, close to the maximum value (32.7 ± 0.7‰) observed by Kobayashi and coworkers in chemostat experiments with enriched cultures19. Typically, the isotope effect imparted into a substrate pool by a kinetic process is set at the first irreversible step; any isotope effects that occur before this point can be expressed, while any that occur after it are concealed37,38. Substrate supply limitations can decrease the reversibility of a given step, and thereby let it modulate the net isotope effect of a multi-step process. This behavior has been proposed to play important roles in controlling the isotopic signatures of microbial sulfate39,40 and nitrate41,42 reduction.Figure 615ε(NH4+) for each individual experiment, compared to the concentration of ammonium at the start of that experiment. Mainstream experiments are plotted in yellow circles, sidestream experiments in blue squares, and enrichment experiments in grey diamonds.Full size imageIn the case of anammox bacteria, this pattern suggests that the relative kinetics of ammonium uptake and oxidation control the observed value of 15ε(NH4+). The typical path of an ammonium molecule through an anammox cell requires crossing several cell membranes to the eventual site of reaction, inside the anammoxosome43,44. When ammonium concentrations are relatively high and ammonium oxidation is not uptake-limited, 15ε(NH4+) is set at the hydrazine synthase (Hzs) enzyme, at which ammonium binds and is subsequently oxidized to hydrazine43. The maximum observed value of 15ε(NH4+) would then be the expression of all isotope effects up to, and including, this bond-breaking step. But if, at relatively low ammonium concentrations in the external medium, the rate of ammonium oxidation is limited by its uptake, then active transport or passive diffusion of ammonium will become the first irreversible step and thereby set the observed value of 15ε(NH4+). Indeed, for assimilatory uptake by a marine bacterium, 15ε(NH4+) has been shown to depend on the external ammonium concentration, varying from 3.8 to 26.5‰ across an ammonium concentration range of 0.3 to 316 mg-N/L, as the first irreversible step changes from active transport at low NH4+ concentrations to diffusion at intermediate concentrations and the enzymatic reaction associated with assimilation at high concentrations18.In the process of NH4+ uptake by anammox bacteria, a number of steps could imaginably impact the isotope effect imparted on the ammonium pool. Prior to oxidation within the anammoxosome, ammonium must cross three membranes to reach the Hzs enzyme44. This is distinct from many other respiratory processes in the N cycle, including aerobic ammonia oxidation, where ammonia is thought to be oxidized in the periplasm45,46. Metagenomic characterization of anammox bacteria in the mainstream system used in these experiments reveals the presence of genes for amt ammonium transporters in these species23, while past studies of Ca. Kuenenia stuttgartiensis shows that anammox bacteria feature a number of genes homologous to those that express AmtB ammonium transporters in other bacteria47,48. These transporters could function to transport ammonium across two membranes, first into the cytoplasm and then into the anammoxosome49. In addition, passive, diffusive influx of ammonium into the cell could play a role, especially at relatively high external ammonium concentrations. Therefore, it is easily imaginable that under different physiological conditions, the observed value of 15ε(NH4+) could reflect (1) free motion of ammonium into the anammoxosome and the full expression of the isotope effect associated with NH4+ oxidation, (2) irreversibility in either of two active transport steps, or (3) irreversibility of diffusive transport of ammonium into the periplasm.We do not know the N isotope effects for ammonium diffusion into the cell and ammonium transport to the anammoxosome. But in analogy to considerations made for the diffusion and active transport of nitrate and active transport into the cells of denitrifying bacteria41, we conclude that it is reasonable to expect the N isotope effects for both passive ammonium diffusion and active transport to be much smaller that the enzyme-level N isotope effect associated with the actual ammonium oxidation. Therefore, when external ammonium is relatively low, and NH4+ transport becomes the rate-limiting step in anaerobic ammonium oxidation, the overall N isotope effect will approach that associated with NH4+ uptake or transport, and will likely be lower than under NH4+-replete conditions, where the full expression of the isotope effect associated with NH4+ oxidation may be expressed. This also supports the observation (Fig. 6) of decreasing 15ε(NH4+) under decreasing ammonium availability.Importantly, in a different microbial setting, e.g., in an oceanic environment, which has anammox bacteria with different (e.g., higher) affinities for ammonium uptake and oxidation, we predict that the same endmember values of 15ε(NH4+) that are seen in these experiments will be observed, but with the relationship between them unfolding at different (e.g., lower) values of ammonium concentration, cell densities, and in turn different cell-specific anammox rates. It is also important to note that the cell-specific anammox rate, not the bulk reaction rate, is the essential parameter for understanding the balance between the different processes at work. Unfortunately, because of the biofilm-dwelling nature of the anammox communities in this study, it is challenging to estimate accurately the number of anammox cells present, and so we were not able to determine the cell-specific anammox rate in our experimental setup. Yet, even at substrate concentrations that are much higher than those typically found in the natural environment, NH4+ uptake can be limiting if the bacterial cell density is high, as is the case in this study.For understanding the role that the balance between ammonium uptake and oxidation may play in controlling 15ε(NH4+), it is useful to compare anammox bacteria to aerobic ammonia oxidizing bacteria (AOB) and archaea (AOA). It is notable that the range of 15ε(NH4+) is similar for anammox bacteria and aerobic ammonia oxidizers; the AOB and AOA express values of 15ε(NH4+) between 14 and 42‰14–17. AOB and AOA perform catabolic ammonia oxidation using the ammonia monooxygenase enzyme. In AOB, this enzyme is located in the periplasm45,46, not in an internal cell structure like the anammoxosome, and so it is unlikely that active transport controls observed isotope effects. Instead, it has been proposed that variations in 15ε(NH4+) for the AOB are related to sequence variations in ammonia monooxygenase16. But recent results from Kobayashi and coworkers suggest that 15ε(NH4+) for anammox bacteria is species-independent; for the three different species tested under similar experimental conditions, the N isotope effects were consistent19. In our experiments, variations in the 15ε(NH4+) values were observed in mainstream and enrichment experiments, where the anammox bacteria population is expected to be similar, which also argues against species dependence. Indeed, the Hzs enzyme seems well conserved across anammox clades50, and, therefore, the ammonium N isotope effect variation observed here cannot be attributed to sequence variations, and is more likely due to the changing experimental conditions (NH4+ concentrations), as discussed above.Irrespective of the explanations for the observed N-isotope effect variability for both ammonium oxidation modes, the overlap in the ranges of values for 15ε(NH4+) for anammox and aerobic ammonia oxidation suggests that in a system that might be either aerobic or anaerobic, the mechanism of ammonium oxidation cannot necessarily be identified based on the ammonium N isotope signature. That is, an enrichment in 15 N associated with ammonium consumption cannot be attributed to ammonia oxidizing bacteria or anammox bacteria based on this measurement alone. Further work to compare the responses of both aerobic ammonia oxidizers and anammox bacteria to changing concentrations and cell-specific reaction rates would be helpful for identifying the overall environmental controls on 15ε(NH4+) under both oxic and anoxic conditions.
    15ε(NO2
    –) reflects a mixture of processesThe parameter 15ε(NO2–) reflects the weighted sum of the isotope effects for the consumption of nitrite by reduction to N2 and by oxidation to nitrate, and so its value depends on these two processes, as well as upon the stoichiometric ratio between them. For considering the physiology of anammox and its role in a biogeochemical N cycling network, it is of limited use, but in a system where the δ15N of nitrite can be readily measured it is valuable to know how to interpret it. It exhibits relatively little variation across the experimental conditions described here, and is also consistent with the result reported by Brunner and coworkers for Ca. K. stuttgartiensis enrichment cultures (Fig. 3)10, but our results differ from 15ε(NO2–) values for other anammox species by Kobayashi and coworkers19. The principal cause of the constancy of 15ε(NO2–) in these experiments is likely the stability of 15ε(NO2––N2) across all experiments, and is discussed in the sections that follow.The N isotope effect associated with the reduction of nitrite by anammox, 15ε(NO2
    ––N2), reflects the microbial communityThe N isotope effect associated with the reduction of nitrite to N2 in anammox, 15ε(NO2––N2), is consistent across all three experimental settings (Fig. 5), which is notable when compared to the broad range in 15ε(NO2––N2) observed in previous pure culture experiments with members of the genera Ca. Kuenenia, Ca. Scalindua, Ca. Jettenia, and Ca. Brocadia10,19, as well as in anammox incubation experiments20. This consistancy is also striking in light of the variation of 15ε(NH4+) observed in this study, and suggests that variations in substrate concentrations, reaction rates, or other physiological conditions are not strong controls on 15ε(NO2––N2). Instead, the identity of the anammox bacteria, and in turn its biochemical processing of nitrite, appears to exert control over this isotope effect. In the mainstream system used for these experiments, it has been shown that species in the genus Ca. Brocadia are the principal members of the anammox community present, but that Ca. Kuenenia and Ca. Jettenia are also represented (Table S1)23. Indeed, using the metagenomic characterization of the mainstream system reported by Niederdorfer and coworkers23, as well as the observed values of 15ε(NO2––N2) from previous studies10,19, we calculate an expected value of 15ε(NO2––N2) for the mainstream system of 7.5‰ ± 5.5‰ (1 s.d.). This result is close to, but distinct from, the observed value, and leads to the conclusion that 15ε(NO2––N2) in these systems is the result of a stable mixture of different anammox species, but that the contribution of different species to anammox activity under a specific set of experimental conditions may not directly reflect their cellular abundance. Likewise, although we do not yet know the microbial community composition of the material used in the sidestream experiment, we predict, based on its consistent value for 15ε(NO2––N2), that it is similar to that seen in the mainstream and enrichment settings, and we speculate that this microbial community has been stable over the course of the ~ 5 years between 2014 and 2019.The distinct values of 15ε(NO2––N2) observed for different species can be connected to key variations in the anammox metabolism. Although the canonical anammox mechanism includes the reduction of nitrite to NO by a nitrite reductase enzyme51, genomes of anammox bacteria of the Genus Ca. Brocadia52,53, including 5 of 6 metagenome-assembled genomes for bacteria in the mainstream system used in this study23, typically lack any canonical nitrite reductase in their genomes. Instead, it has been proposed that Ca. Brocadia do not produce NO and instead have hydroxylamine as the intermediate between nitrite and hydrazine52. This hypothesis is supported further by the nature of Hzs, which has two catalytic centers, one of which reduces NO to hydroxylamine, while the second conproportionates hydroxylamine and ammonia to generate hydrazine54; it is possible that Ca. Brocadia can bypass NO entirely and deliver hydroxylamine directly to Hzs.In contrast, Ca. Kuenenia, Ca. Scalindua, and Ca. Jettenia all include a canonical nitrite reductase in their genomes. Indeed, Kobayashi and coworkers19 observed that the offset in 15ε(NO2––N2) between measured values for Ca. Kuenenia and Ca. Scalindua, which have the iron-bearing nitrite reductase NirS, and Ca. Jettenia, which has the copper-bearing nitrite reductase NirK, corresponds to that observed for NirK and NirS in bacterial denitrifiers55. This interpretation is complicated by the observation that the genes for these canonical nitrite reductases are often not expressed49,56 or translated57 under environmental conditions. Nevertheless, the differences in N isotopic discrimination of nitrite among anammox clades appear to correspond to fundamental differences in the conversion of nitrite, but the molecular mechanisms of these steps remain poorly understood.Inverse isotope effect imparted in 15ε(NO2
    ––NO3
    –) by nitrite oxidationA pronounced inverse isotope effect, in which nitrate becomes enriched in 15 N relative to nitrite from which it is produced, was observed in all experimental settings. Such an inverse isotope effect appears to be a signature feature of microbial nitrite oxidation to nitrate, both under oxic and anoxic (i.e., anammox) conditions58,59 In culture-based experiments with nitrite oxidizing bacteria (NOB), 15ε(NO2––NO3–) has been found to vary between − 7.8‰ and − 23.6‰59,60, while anammox bacteria have been shown to express 15ε(NO2––NO3–) values in pure or highly-enriched cultures between − 30 and − 45‰10,19, with values as low as − 78‰ in a wastewater incubation experiment20. In our experiments, we found N isotope effects that cover nearly this whole range (Fig. 4). In both anammox and the NOB, nitrite oxidation is thought to be performed by the enzyme nitrate:nitrite oxidoreductase (Nxr)25,43,59, which is also closely related to bacterial membrane-bound and periplasmic nitrate reductases61,62. The structural details of the Nxr enzyme family are not yet well explored, especially in light of its diverse metabolic roles63, and so it remains unclear what metabolic or microbial processes are responsible for the observed and reported variation in 15ε(NO2––NO3–). At least for anammox bacteria, the inverse kinetic N isotope effect associated with the enzymatic oxidation of nitrite to nitrate may be superposed in part by a relatively large equilibrium N isotope effect between nitrite and nitrate10, perhaps promoted by the reversibility of the enzymatic nitrite oxidation reaction64. It is notable that the most negative end of the observed range for 15ε(NO2––NO3–) in this study approaches the theoretical limit for the isotope effect set by the N isotope equilibrium between nitrite and nitrate, which at 20 °C is – 54.6‰59, and which the NOB have not been observed to approach. This suggests that under the metabolic conditions of anammox, the Nxr enzyme is more likely to catalyze reversible reactions, and so the corresponding N isotope effect is closer to the equilibrium limit, than in aerobic nitrite oxidation. However, the great range observed in 15ε(NO2––NO3–) for anammox makes it difficult to predict a priori how much fractionation anammox will impart on a nitrate pool.On the other hand, observations in this study and elsewhere10,19 (Fig. 4) of values of 15ε(NO2––NO3–) falling near − 30‰ for nitrate generated by anammox match a prediction from water column measurements of N isotope ratios in nitrate and nitrite in the Peru oxygen deficient zone (ODZ)65. The large and variable magnitude of this inverse isotope effect means that even though only ~ 25% of the nitrite oxidized by anammox is converted to nitrate, it can have an outsize effect on nitrate and nitrite pools that can be mistaken for either nitrite oxidation by NOB or nitrite generation by denitrification.Implications for N isotope measurements in natural and engineered environmentsTaken together, the results measured in this study suggest both potential and pitfalls for the application of N isotope measurements to disentangle the systematics of microbial N cycling processes. By its interaction with the nitrate, nitrite, ammonium, and N2 pools, anammox already complicates analysis of the N cycle in any setting where it acts; not only does it impact the stable isotope pools of these molecules, but also its effects on each of these pools can vary greatly depending on physiological or metabolic variables or the identity of the dominant anammox bacteria species. In the context of a wastewater treatment process, measurements of δ15N alone may not be able to directly diagnose what processes are occurring, but when coupled to rate and stoichiometry measurements, may provide insights into the efficiency or limitations of those processes.The removal of 15 N-depleted N by anammox may partly explain the heavy N isotope values ( > 15‰) for nitrate in ODZs that have been formerly attributed to denitrification alone. It remains uncertain, however, what the exact expression of the range of N isotope effects reported here is under natural and variable substrate concentrations. First, as shown here for ammonium, concentration levels will have an effect on the relative kinetics of uptake and oxidation, and in turn on the cell-specific N isotope effect. Second, ammonium concentrations are generally at or below detection in the interior of OMZs, indicating that ammonium supplied by degradation of organic matter may be quantitatively oxidized to N2 by anammox. Under these conditions, the N isotope effect associated with the conversion of ammonium to N2 will be suppressed. Previously published estimates of the overall N isotope effect of dissolved inorganic N (DIN) elimination to N2 in ODZs based on comparing nitrate δ15N values to observed water-column nitrate deficits has inherently included any potential non-fractionating loss of ammonium, and has thus implicitly represented a community N loss isotope effect that depends on the balance between anammox and canonical denitrification. The overall expression on DIN lost by the combined processes of denitrification and anammox in sediments, however, may be completely different. In contrast to nitrate and nitrite66, ammonium is usually not limiting in sediments and its fractional loss to overlying waters allows the N isotope effect of ammonium oxidation to N2 by benthic anammox to be expressed.In both natural and engineered systems where anammox is known to be occurring, measurements of 15ε(NH4+) may be able to diagnose substrate limitations or other physiological limitations. And in the case where ammonium is observed to be consumed by an unknown pathway, it can be expected that isotope effects will fall into a similar range for both aerobic and anaerobic ammonium oxidation; on the other hand, 15ε(NH4+) is of little use for distinguishing ammonium consumption by AOB and anammox. We have also found that despite the great possibility for variation in 15ε(NO2––N2) amongst different anammox species, values of 15ε(NO2––N2) remain relatively stable in a given system that has a stable microbial community, and so this parameter has some potential to be used in monitoring such microbial community stability. Further work is needed to explore how metabolic variation amongst anammox species is related to variations in this parameter, but it appears that subtle changes in the mix of anammox species present, which have no observed effect on anammox rates or stoichiometry can lead to major changes in 15ε(NO2––N2). Finally, this study expands the range of 15ε(NO2––NO3–) for anammox bacteria. On one hand, this result lends further support to the observation that through a strong manifestation of the inverse isotope effect associated with nitrite oxidation, anammox can produce nitrate strongly enriched in 15 N, thereby complicating N mass balances based on tracking the nitrate pool. But we also find that anammox can have 15ε(NO2––NO3–) values much closer to 0‰, falling in the same range as for NOB bacteria, so the contribution of anammox to the δ15N composition of the nitrate pool can in fact vary greatly. Finally, we find that there are no systematic relationships among 15ε(NH4+), 15ε(NO2––N2), 15ε(NO2––NO3–), which is consistent with the conclusion that each of these parameters is controlled at a distinct point in the anammox metabolism. More

  • in

    Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA

    High-throughput sequencing resultsA total of 26 million COI reads, 19 million raw 18S V1-V2 reads,, 14 million 18S V4 reads, and 17 million 16S V4–V5 reads were obtained from three Illumina HiSeq runs of amplicon libraries built from pooled triplicate PCRs of 22 environmental samples, 2 extraction blanks, and 4–6 PCR blanks (Supplementary Table S4 online). The in situ pump yielded less raw reads for COI and 16S (Supplementary Fig. S1 online, F = 4.02–14.4, p = 0.0003–0.03), while more raw reads were recovered from both water sampling methods with 18S V4 (F = 6.5, p = 0.007). Water samples generally yielded fewer raw clusters (F = 5.1–35.1, p = 3.2 × 10−6–0.02), except for 18S V4 where numbers were comparable across sample types (Supplementary Fig. S1 online).Bioinformatic processing (quality filtering, error correction, chimera removal, and clustering for metazoans) reduced read numbers to 20 million for COI, 12 million for 18S V1–V2, 11 million for 18S V4, and 10 million for 16S V4–V5, resulting in 10,351 and 17,608 raw OTUs for COI and 18S V1–V2 respectively; 35,538 raw 18S V4 ASVs, and 62,646 raw 16S ASVs (Supplementary Table S4 online). For eukaryote markers, 17–55% of the raw reads remained in PCR blanks after bioinformatic processing, while 50–75% remained in extraction blanks and 52–87% in true samples. In contrast, with 16S, these values were at 87% for PCR blanks, 67% for extraction blanks, and 29–73% for true samples. Thus, negative control samples accounted for 7–13% of bioinformatically processed reads with eukaryotes, compared to 27% with prokaryotes. The vast majority of 16S reads generated by negative controls belonged to a common contaminant of Phusion polymerase kits, which is well amplified in low concentration samples such as negative controls. These reads however accounted for  20 µm size class, and the sampling box targeting both the 2–20 µm and the 0.2–2 µm size classes, detected different community assemblages. For protists, the in situ pump detected higher proportions of ASVs for Bacillariophyta, Ciliophora, Labyrinthulea, or Phaeodarea, while the sampling box detected more cryptophytes, haptophytes, MAST, and telonemians (Fig. 3 18S V4). For prokaryotes, the sampling box detected more diversity in the Alphaproteobacteria, Chloroflexi, or Marinimicrobia (Fig. 3 16S V4–V5). More

  • in

    Global climate and nutrient controls of photosynthetic capacity

    1.De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).Article 

    Google Scholar 
    2.Smith, N. G. & Keenan, T. F. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from least‐cost optimality theory. Global Change Biol. 26, 5202–5216 (2020).Article 

    Google Scholar 
    3.Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Wullschleger, S. D. Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 Species. J. Exp. Bot. 44, 907–920 (1993).CAS 
    Article 

    Google Scholar 
    5.Lloyd, J., Bloomfield, K., Domingues, T. F. & Farquhar, G. D. Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol. 199, 311–321 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    7.Ferreira Domingues, T. et al. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia 178, 659–672 (2015).PubMed Central 
    Article 

    Google Scholar 
    8.Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell Environ. 33, 959–980 (2010).CAS 
    Article 

    Google Scholar 
    9.Walker, A. P. et al. The relationship of leaf photosynthetic traits -VcmaxandJmax- to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evol. 4, 3218–3235 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Smith, N. G. et al. Global photosynthetic capacity is optimized to the environment. Ecol. Lett. 22, 506–517 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Givnish, T. J. On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Vol. 6 (Cambridge University Press, 1986).14.Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).Article 

    Google Scholar 
    15.Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Ali, A. A. et al. A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geosci. Model Dev. 9, 587–606 (2016).Article 

    Google Scholar 
    17.Dewar, R. et al. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol. 217, 571–585 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Caldararu, S., Thum, T., Yu, L. & Zaehle, S. Whole-plant optimality predicts changes in leaf nitrogen under variable CO 2 and nutrient availability. New Phytol. 225, 2331–2346 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Wang, H. et al. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99, 500–500 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Wang, H. et al. Photosynthetic responses to altitude: an explanation based on optimality principles. New Phytol. 213, 976–982 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Lavergne, A. et al. Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytol. 225, 2484–2497 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Fürstenau Togashi, H. et al. Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis. Biogeosciences 15, 3461–3474 (2018).Article 
    CAS 

    Google Scholar 
    25.Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 222, 768–784 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).Article 

    Google Scholar 
    27.Rogers, A. The use and misuse of V c,max in earth system models. Photosynth. Res. 119, 15–29 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14, 481–495 (2017).CAS 
    Article 

    Google Scholar 
    29.Reich, P. B. & Schoettle, A. W. Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. Oecologia 77, 25–33 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Raaimakers, D., Boot, R. G. A., Dijkstra, P. & Pot, S. Photosynthetic rates in relation to leaf phosphorus content in pioneer versus climax tropical rainforest trees. Oecologia 102, 120–125 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).CAS 
    Article 

    Google Scholar 
    32.Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Reich, P. B., Walters, M. B., Ellsworth, D. S. & Uhl, C. Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia 97, 62–72 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biol. 15, 976–991 (2009).Article 

    Google Scholar 
    36.Evans, J. R. & Clarke, V. C. The nitrogen cost of photosynthesis. J. Exp. Bot. 70, 7–15 (2018).Article 
    CAS 

    Google Scholar 
    37.Marschner, H. in Mineral Nutrition of Higher Plants, 405–435 (Elsevier, 1995).38.Niinemets, Ü., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol. 214, 1019–1032 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    40.Wang, H. et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Global Change Biol. 26, 2573–2583 (2020).Article 

    Google Scholar 
    41.Peng, Y., Bloomfield, K. J. & Prentice, I. C. A theory of plant function helps to explain leaf-trait and productivity responses to elevation. New Phytol. 226, 1274–1284, (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gvozdevaite, A. et al. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiol. 38, 1912–1925 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Terrer, C. et al. Nitrogen and phosphorus constrain the CO 2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).CAS 
    Article 

    Google Scholar 
    44.Meir, P. et al. in Advances in Photosynthesis and Respiration, 89–105 (Springer International Publishing, 2017).45.Luo, X. & Keenan, T. F. Global evidence for the acclimation of ecosystem photosynthesis to light. Nat. Ecol. Evol. 4, 1351–1357 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).Article 

    Google Scholar 
    47.Lavergne, A., Sandoval, D., Hare, V. J., Graven, H. & Prentice, I. C. Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: insights from stable carbon isotope data. Global Change Biol. 26, 7158–7172 (2020).48.Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G. & Prentice, I. C. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. For. Meteorol. 182-183, 204–214 (2013).Article 

    Google Scholar 
    49.Zhou, S. et al. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. Tree Physiol. 34, 1035–1046 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Katul, G., Manzoni, S., Palmroth, S. & Oren, R. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann. Bot. 105, 431–442 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Manzoni, S. et al. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct. Ecol. 25, 456–467 (2011).Article 

    Google Scholar 
    52.Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biol. 17, 2134–2144 (2011).Article 

    Google Scholar 
    53.Crous, K. Y. et al. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Global Change Biol. 19, 3790–3807 (2013).Article 

    Google Scholar 
    54.Zhou, S.-X., Medlyn, B. E. & Prentice, I. C. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. Ann. Bot. 117, 133–144 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Smith, N. G. & Dukes, J. S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. Global Change Biol. 23, 4840–4853 (2017).Article 

    Google Scholar 
    56.Katul, G., Leuning, R. & Oren, R. Relationship between plant hydraulic and biochemical properties derived from a steady‐state coupled water and carbon transport model. Plant, Cell Environ. 26, 339–350 (2003).CAS 
    Article 

    Google Scholar 
    57.Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Kattge, J. & Knorr, W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell Environ. 30, 1176–1190 (2007).CAS 
    Article 

    Google Scholar 
    59.van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Quesada, M. et al. Succession and management of tropical dry forests in the Americas: review and new perspectives. For. Ecol. Manag. 258, 1014–1024 (2009).Article 

    Google Scholar 
    61.Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol. 206, 507–521 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    63.Conroy, J. P., Smillie, R. M., Küppers, M., Bevege, D. I. & Barlow, E. W. Chlorophyll a fluorescence and photosynthetic and growth responses of pinus radiata to phosphorus deficiency, drought stress, and high CO2. Plant Physiol. 81, 423–429 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Loustau, D., Brahim, M. B., Gaudillere, J. P. & Dreyer, E. Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiol. 19, 707–715 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Warren, C. R. & Adams, M. A. Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster. Tree Physiol. 22, 11–19 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Bloomfield, K. J., Farquhar, G. D. & Lloyd, J. Photosynthesis–nitrogen relationships in tropical forest tree species as affected by soil phosphorus availability: a controlled environment study. Funct. Plant Biol. 41, 820–832 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Crous, K. Y., Ósvaldsson, A. & Ellsworth, D. S. Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth. Plant Soil 391, 293–305 (2015).CAS 
    Article 

    Google Scholar 
    68.Sivak, M. N. & Walker, D. A. Photosynthesis in vivo can be limited by phosphate supplY. New Phytol. 102, 499–512 (1986).CAS 
    Article 

    Google Scholar 
    69.Kiirats, O., Cruz, J. A., Edwards, G. E. & Kramer, D. M. Feedback limitation of photosynthesis at high CO2 acts by modulating the activity of the chloroplast ATP synthase. Funct. Plant Biol. 36, 893–901 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Ellsworth, D. S., Crous, K. Y., Lambers, H. & Cooke, J. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant, Cell Environ. 38, 1142–1156 (2015).CAS 
    Article 

    Google Scholar 
    71.Zhang, S. & Dang, Q. L. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings. Tree Physiol. 26, 1457–1467 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Lambers, H. et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytol. 196, 1098–1108 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol. 192, 277–287 (2007).Article 

    Google Scholar 
    74.Kull, O. Acclimation of photosynthesis in canopies: models and limitations. Oecologia 133, 267–279 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Field, C. & Mooney, H. in On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Evolutionary Constraints on Primary Productivity, Adaptive Patterns of Energy Capture in Plants, Harvard Forest, August 1983 (Cambridge University Press, 1986).76.Niinemets, Ü. Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).Article 

    Google Scholar 
    77.Lloyd, J. et al. Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7, 1833–1859 (2010).CAS 
    Article 

    Google Scholar 
    78.Anten, N. P. R. Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Ann. Bot. 95, 495–506 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Alton, P. B. & North, P. Interpreting shallow, vertical nitrogen profiles in tree crowns: a three-dimensional, radiative-transfer simulation accounting for diffuse sunlight. Agric. For. Meteorol. 145, 110–124 (2007).Article 

    Google Scholar 
    80.Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 213, 22–42 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Tosens, T. & Laanisto, L. Mesophyll conductance and accurate photosynthetic carbon gain calculations. J. Exp. Bot. 69, 5315–5318 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Niinemets, Ü., Díaz-Espejo, A., Flexas, J., Galmés, J. & Warren, C. R. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J. Exp. Bot. 60, 2271–2282 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 9, 121–137 (1982).CAS 
    Article 

    Google Scholar 
    84.Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. Jr & Long, S. P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ. 24, 253–259 (2001).CAS 
    Article 

    Google Scholar 
    85.Bernacchi, C. J., Pimentel, C. & Long, S. P. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell Environ. 26, 1419–1430 (2003).CAS 
    Article 

    Google Scholar 
    86.Scafaro, A. P. et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. Global Change Biol. 23, 2783–2800 (2017).Article 

    Google Scholar 
    87.Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Team, R. C. R.: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).89.Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Bahar, N. H. A. et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytol. 214, 1002–1018 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    91.Bloomfield, K. J. et al. The validity of optimal leaf traits modelled on environmental conditions. New Phytol. 221, 1409–1423 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    92.Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M. & Turner, B. L. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).Article 

    Google Scholar 
    93.Xu, H. Y., et al. Predictability of leaf traits with climate and elevation: a case study in Gongga Mountain, China. Tree Physiol. https://doi.org/10.1093/treephys/tpab003 (2021).94.Walker, A. P., et al. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area (Oak Ridge National Laboratory Distributed Active Archive Center, 2014). https://doi.org/10.3334/ORNLDAAC/1224.95.Kattge, J. et al. TRY–a global database of plant traits. Global Change Biol. 17, 2905–2935 (2011).Article 

    Google Scholar 
    96.Collatz, G. J., Ribas-Carbo, M. & Berry, J. A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19, 519 (1992).Article 

    Google Scholar 
    97.Rogers, A., Serbin, S. P., Ely, K. S., Sloan, V. L. & Wullschleger, S. D. Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic. New Phytol. 216, 1090–1103 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Burnett, A. C., Davidson, K. J., Serbin, S. P. & Rogers, A. The “one‐point method” for estimating maximum carboxylation capacity of photosynthesis: a cautionary tale. Plant, Cell Environ. 42, 2472–2481 (2019).CAS 
    Article 

    Google Scholar 
    99.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2013).Article 

    Google Scholar 
    100.Jones, H. G. Plants and Microclimate (Cambridge University Press, 2009).101.Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    102.Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).Article 

    Google Scholar 
    103.Berberan-Santos, M. N., Bodunov, E. N. & Pogliani, L. On the barometric formula. Am. J. Phys. 65, 404–412 (1997).Article 

    Google Scholar 
    104.Peng, Y., et al. Dataset of Global Climate and Nutrient Controls of Photosynthetic Capacity (Zenodo, 2021). https://doi.org/10.5281/zenodo.4568148. More

  • in

    Corrosion and transformation of solution combustion synthesized Co, Ni and CoNi nanoparticles in synthetic freshwater with and without natural organic matter

    1.Inshakova, E. & Inshakova, A. Nanomaterials and nanotechnology: prospects for technological re-equipment in the power engineering industry. IOP Conference Series: Materials Science and Engineering 709, 033020. https://doi.org/10.1088/1757-899x/709/3/033020 (2020).CAS 
    Article 

    Google Scholar 
    2.Grassian, V. H. When size reallymatters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C 112, 18303–18313. https://doi.org/10.1021/jp806073t (2008).CAS 
    Article 

    Google Scholar 
    3.Jayathilaka, W. et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 31, e1805921. https://doi.org/10.1002/adma.201805921 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Pokhrel, S. & Mädler, L. Flame made particles for sensors, catalysis and energy storage applications. Energy Fuels https://doi.org/10.1021/acs.energyfuels.0c02220 (2020).Article 
    PubMed 

    Google Scholar 
    5.Anthony, L. S., Perumal, V., Mohamed, N. M., Saheed, M. S. M. & Gopinath, S. C. B. in Nanomaterials for Healthcare, Energy and Environment Advanced Structured Materials Ch. Chapter 3, 51–69 (2019).
    Google Scholar 
    6.Sharma, N., Ojha, H., Bharadwaj, A., Pathak, D. P. & Sharma, R. K. Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 5, 53381–53403. https://doi.org/10.1039/c5ra06778b (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Xin, Y. et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306. https://doi.org/10.1021/acscatal.0c03617 (2020).CAS 
    Article 

    Google Scholar 
    8.Wu, W. Inorganic nanomaterials for printed electronics: a review. Nanoscale 9, 7342–7372. https://doi.org/10.1039/c7nr01604b (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Abdalla, A. M. et al. Nanomaterials for solid oxide fuel cells: a review. Renew. Sustain. Energy Rev. 82, 353–368. https://doi.org/10.1016/j.rser.2017.09.046 (2018).CAS 
    Article 

    Google Scholar 
    10.Choudhary, N. et al. Asymmetric supercapacitor electrodes and devices. Adv. Mater. https://doi.org/10.1002/adma.201605336 (2017).Article 
    PubMed 

    Google Scholar 
    11.Yu, Z., Tetard, L., Zhai, L. & Thomas, J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730. https://doi.org/10.1039/c4ee03229b (2015).CAS 
    Article 

    Google Scholar 
    12.Das, S., Sen, B. & Debnath, N. Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ. Sci. Pollut. Res. Int. 22, 18333–18344. https://doi.org/10.1007/s11356-015-5491-6 (2015).Article 
    PubMed 

    Google Scholar 
    13.Santhosh, C. et al. Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137. https://doi.org/10.1016/j.cej.2016.08.053 (2016).CAS 
    Article 

    Google Scholar 
    14.Riley, M. K. & Vermerris, W. Recent advances in nanomaterials for gene delivery-a review. Nanomater. (Basel) https://doi.org/10.3390/nano7050094 (2017).Article 

    Google Scholar 
    15.Dasari Shareena, T. P., McShan, D., Dasmahapatra, A. K. & Tchounwou, P. B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett. https://doi.org/10.1007/s40820-018-0206-4 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M. H. & Kim, J. H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomater. (Basel) https://doi.org/10.3390/nano9121719 (2019).Article 

    Google Scholar 
    17.Abazari, S., Shamsipur, A., Bakhsheshi-Rad, H. R., Ramakrishna, S. & Berto, F. Graphene family nanomaterial reinforced magnesium-based matrix composites for biomedical application: a comprehensive review. Metals https://doi.org/10.3390/met10081002 (2020).Article 

    Google Scholar 
    18.Siddique, S. & Chow, J. C. L. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomater. (Basel) https://doi.org/10.3390/nano10091700 (2020).Article 

    Google Scholar 
    19.Mayakrishnan, G., Elayappan, V., Kim, I. S. & Chung, I. M. Sea-island-like morphology of cuni bimetallic nanoparticles uniformly anchored on single layer graphene oxide as a highly efficient and noble-metal-free catalyst for cyanation of aryl halides. Sci. Rep. 10, 677. https://doi.org/10.1038/s41598-020-57483-z (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    20.Sheikh-Mohseni, M. A., Hassanzadeh, V. & Habibi, B. Reduced graphene oxide supported bimetallic Ni–Co nanoparticles composite as an electrocatalyst for oxidation of methanol. Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2019.106022 (2019).Article 

    Google Scholar 
    21.Khort, A., Romanovski, V., Leybo, D. & Moskovskikh, D. CO oxidation and organic dyes degradation over graphene–Cu and graphene–CuNi catalysts obtained by solution combustion synthesis. Sci. Rep. https://doi.org/10.1038/s41598-020-72872-0 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Wang, D. et al. Nickel-cobalt layered double hydroxide nanosheets with reduced graphene oxide grown on carbon cloth for symmetric supercapacitor. Appl. Surf. Sci. 483, 593–600. https://doi.org/10.1016/j.apsusc.2019.03.345 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    23.Khort, A. et al. Graphene@metal nanocomposites by solution combustion synthesis. Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.0c00673 (2020).Article 
    PubMed 

    Google Scholar 
    24.Xu, L. et al. The crucial role of environmental coronas in determining the biological effects of engineered nanomaterials. Small https://doi.org/10.1002/smll.202003691 (2020).Article 
    PubMed 

    Google Scholar 
    25.Wang, X., Odnevall Wallinder, I. & Hedberg, Y. Bioaccessibility of nickel and cobalt released from occupationally relevant alloy and metal powders at simulated human exposure scenarios. Ann. Work Expo. Health https://doi.org/10.1093/annweh/wxaa042 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Atapour, M., Wang, X., Färnlund, K., Odnevall Wallinder, I. & Hedberg, Y. Corrosion and metal release investigations of selective laser melted 316L stainless steel in a synthetic physiological fluid containing proteins and in diluted hydrochloric acid. Electrochim. Acta 354, 136748. https://doi.org/10.1016/j.electacta.2020.136748 (2020).CAS 
    Article 

    Google Scholar 
    27.Mei, N., Hedberg, J., Odnevall Wallinder, I. & Blomberg, E. Influence of biocorona formation on the transformation and dissolution of cobalt nanoparticles under physiological conditions. ACS Omega 4, 21778–21791. https://doi.org/10.1021/acsomega.9b02641 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Ekvall, M. T., Hedberg, J., Odnevall Wallinder, I., Hansson, L. A. & Cedervall, T. Long-term effects of tungsten carbide (WC) nanoparticles in pelagic and benthic aquatic ecosystems. Nanotoxicology 12, 79–89. https://doi.org/10.1080/17435390.2017.1421274 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Hedberg, J., Ekvall, M. T., Hansson, L.-A., Cedervall, T. & Odnevall Wallinder, I. Tungsten carbide nanoparticles in simulated surface water with natural organic matter: dissolution, agglomeration, sedimentation and interaction with Daphnia magna. Environ. Sci. Nano 4, 886–894. https://doi.org/10.1039/c6en00645k (2017).CAS 
    Article 

    Google Scholar 
    30.Hedberg, J., Blomberg, E. & Odnevall Wallinder, I. In the search for nanospecific effects of dissolution of metallic nanoparticles at freshwater-like conditions: a critical review. Environ. Sci. Technol. 53, 4030–4044. https://doi.org/10.1021/acs.est.8b05012 (2019).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    31.Cappellini, F. et al. Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology 12, 602–620. https://doi.org/10.1080/17435390.2018.1470694 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Varma, A., Mukasyan, A. S., Rogachev, A. S. & Manukyan, K. V. Solution combustion synthesis of nanoscale materials. Chem Rev 116, 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Khort, A., Podbolotov, K., Serrano-García, R. & Gunko, Y. One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: the fuel effect. J. Solid State Chem. https://doi.org/10.1016/j.jssc.2017.05.043 (2017).Article 

    Google Scholar 
    34.Podbolotov, K. B. et al. Solution combustion synthesis of copper nanopowders: the fuel effect. Combust. Sci. Technol. 189, 1878–1890. https://doi.org/10.1080/00102202.2017.1334646 (2017).CAS 
    Article 

    Google Scholar 
    35.Khort, A., Podbolotov, K., Serrano-Garcia, R. & Gun’ko, Y. One-step solution combustion synthesis of cobalt nanopowder in air atmosphere: the fuel effect. Inorg. Chem. 57, 1464–1473. https://doi.org/10.1021/acs.inorgchem.7b02848 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Yermekova, Z., Roslyakov, S. I., Kovalev, D. Y., Danghyan, V. & Mukasyan, A. S. One-step synthesis of pure γ-FeNi alloy by reactive sol–gel combustion route: mechanism and properties. J. Sol-Gel Sci. Technol. https://doi.org/10.1007/s10971-020-05252-9 (2020).Article 

    Google Scholar 
    37.Khort, A. A. & Podbolotov, K. B. Preparation of BaTiO3 nanopowders by the solution combustion method. Ceram. Int. 42, 15343–15348. https://doi.org/10.1016/j.ceramint.2016.06.178 (2016).CAS 
    Article 

    Google Scholar 
    38.Xiang, H.-Z., Xie, H.-X., Mao, A., Jia, Y.-G. & Si, T.-Z. Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis. Int. J. Mater. Res. https://doi.org/10.3139/146.111874 (2020).Article 

    Google Scholar 
    39.Mukasyan, A. S., Rogachev, A. S. & Aruna, S. T. Combustion synthesis in nanostructured reactive systems. Adv. Powder Technol. 26, 954–976. https://doi.org/10.1016/j.apt.2015.03.013 (2015).CAS 
    Article 

    Google Scholar 
    40.Pradhan, S. et al. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles—a tentative exposure scenario. PLoS ONE 13, e0192553. https://doi.org/10.1371/journal.pone.0192553 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 18, 285. https://doi.org/10.1007/s11051-016-3597-5 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    42.Malloy, A. & Carr, B. NanoParticle tracking analysis—the haloTM system. Part. Part. Syst. Charact. 23, 197–204. https://doi.org/10.1002/ppsc.200601031 (2006).Article 

    Google Scholar 
    43.Patil, K. C., Hegde, M. S., Rattan, T. & Aruna, S. T. Chemistry of Nanocrystalline Oxide Materials. Combustion Synthesis, Properties and Applications (World Scientific Publishing Co. Pte. Ltd., 2008).44.Sdobnyakov, N. et al. Solution combustion synthesis and Monte Carlo simulation of the formation of CuNi integrated nanoparticles. Comput. Mater. Sci. 184, 109936. https://doi.org/10.1016/j.commatsci.2020.109936 (2020).CAS 
    Article 

    Google Scholar 
    45.Niu, B. et al. Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Sci. Rep. 7, 3421. https://doi.org/10.1038/s41598-017-03644-6 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    46.Cheng, M. et al. Core@shell CoO@Co 3 O 4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors. Chem. Eng. J. 327, 100–108. https://doi.org/10.1016/j.cej.2017.06.042 (2017).CAS 
    Article 

    Google Scholar 
    47.Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    48.Dubey, P., Kaurav, N., Devan, R. S., Okram, G. S. & Kuo, Y. K. The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv. 8, 5882–5890. https://doi.org/10.1039/c8ra00157j (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    49.Preda, I. et al. Surface contributions to the XPS spectra of nanostructured NiO deposited on HOPG. Surf. Sci. 606, 1426–1430. https://doi.org/10.1016/j.susc.2012.05.005 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    50.Lynch, I., Dawson, K. A., Lead, J. R. & Valsami-Jones, E. In Nanoscience and the Environment Vol. 7 (eds Jamie R. Lead & Eugenia Valsami-Jones) Ch. 4, 127–156 (Elsiver, 2014).51.Lefevre, G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid Interface Sci. 107, 109–123. https://doi.org/10.1016/j.cis.2003.11.002 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Hay, M. B. & Myneni, S. C. B. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta 71, 3518–3532. https://doi.org/10.1016/j.gca.2007.03.038 (2007).CAS 
    Article 
    ADS 

    Google Scholar 
    53.Mudunkotuwa, I. A. & Grassian, V. H. Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid. Environ. Sci. Nano 2, 429–439. https://doi.org/10.1039/c4en00215f (2015).CAS 
    Article 

    Google Scholar 
    54.Li, H. et al. The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis. Combust. Flame 215, 389–400. https://doi.org/10.1016/j.combustflame.2020.02.004 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Xu, C. et al. One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries. Carbon 142, 51–59. https://doi.org/10.1016/j.carbon.2018.10.016 (2019).CAS 
    Article 

    Google Scholar 
    56.Trusov, G. V. et al. Spray solution combustion synthesis of metallic hollow microspheres. J. Phys. Chem. C 120, 7165–7171. https://doi.org/10.1021/acs.jpcc.6b00788 (2016).CAS 
    Article 

    Google Scholar 
    57.Hedberg, Y. S. & Odnevall Wallinder, I. Metal release from stainless steel in biological environments: a review. Biointerphases 11, 018901. https://doi.org/10.1116/1.4934628 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Dale, A. L., Lowry, G. V. & Casman, E. A. Accurate and fast numerical algorithms for tracking particle size distributions during nanoparticle aggregation and dissolution. Environ. Sci. Nano 4, 89–104. https://doi.org/10.1039/c6en00330c (2017).CAS 
    Article 

    Google Scholar 
    59.He, D., Bligh, M. W. & Waite, T. D. Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. Environ. Sci. Technol. 47, 9148–9156. https://doi.org/10.1021/es400391a (2013).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    60.Korshin, G. V., Perry, S. A. L. & Ferguson, J. F. Influence of NOM on copper corrosion. J. Am. Water Works Assoc. 88, 36–47. https://doi.org/10.1002/j.1551-8833.1996.tb06583.x (1996).CAS 
    Article 

    Google Scholar 
    61.Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980. https://doi.org/10.1038/s41467-018-07160-7 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    62.Pei, Z., Yin, J., Hawk, J. A., Alman, D. E. & Gao, M. C. Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume-Rothery rules. npj Comput. Mater. https://doi.org/10.1038/s41524-020-0308-7 (2020).Article 

    Google Scholar 
    63.Balasubramanian, K., Khare, S. V. & Gall, D. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides. Acta Mater. 152, 175–185. https://doi.org/10.1016/j.actamat.2018.04.033 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    64.Moskovskikh, D. et al. Extremely hard and tough high entropy nitride ceramics. Sci. Rep. 10, 19874. https://doi.org/10.1038/s41598-020-76945-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    65.Sangiovanni, D. G., Hultman, L. & Chirita, V. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Mater. 59, 2121–2134. https://doi.org/10.1016/j.actamat.2010.12.013 (2011).CAS 
    Article 
    ADS 

    Google Scholar  More

  • in

    Trees outside forests are an underestimated resource in a country with low forest cover

    1.Turner, W. R., Nakamura, T. & Dinetti, M. Global urbanization and the separation of humans from nature. Bioscience 54, 585–590 (2004).Article 

    Google Scholar 
    2.Schnell, S., Kleinn, C. & Ståhl, G. Monitoring trees outside forests: a review. Environ. Monitor. Assess. 187, 600 (2015).Article 

    Google Scholar 
    3.Ahmed, P. Trees outside forests (TOF): a case study of wood production and consumption in Haryana. Int. For. Rev. 10, 165–172 (2008).
    Google Scholar 
    4.Krishnankutty, C. N., Thampi, K. B. & Chundamannil, M. Trees outside forests (TOF): a case study of the wood productionconsumption situation in Kerala. Int. For. Rev. 10, 156–164 (2008).
    Google Scholar 
    5.Smeets, E. M. W. & Faaij, A. P. C. Bioenergy potentials from forestry in 2050: an assessment of the drivers that determine the potentials. Clim. Change 81, 353–390 (2007).CAS 
    Article 
    ADS 

    Google Scholar 
    6.Schnell, S., Altrell, D., Ståhl, G. & Kleinn, C. The contribution of trees outside forests to national tree biomass and carbon stocks-a comparative study across three continents. Environ. Monitor. Assess. 187, 4197 (2015).Article 

    Google Scholar 
    7.Zomer, R. J. et al. Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. World Agroforestry Center Working Paper 179 (2014).8.Ghosh, M. & Sinha, B. Policy analysis for realizing the potential of timber production from trees outside forests (TOF) in India. Int. For. Rev. 20, 89–103 (2018).
    Google Scholar 
    9.Pain-Orcet, M. & Bellefontaine, R. Trees outside the forest: a new perspective on the management of forest resources in the tropics. Beyond tropical deforestation: from tropical deforestation to forest cover dynamics and forest development, 423–430 (2004)10.Bellefontaine, R., Petit, S., Pain Orcet, M., Deleporte, P. & Bertault, J.G. Trees outside forests: towards better awareness. Food and Agriculture Organization, 216 (Rome, 2002)11.Kleinn, C. On large-area inventory and assessment of trees outside forests. UNASYLVA-FAO- 3–10 (2000).12.FAO. Global forest resources assessment 2005: Progress towards sustainable forest management. Food and Agriculture Organization of the United Nations (2006).13.Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC guidelines for national greenhouse gas inventories Vol. 5 (Institute for Global Environmental Strategies Hayama, Japan, 2006).14.FAO. World Urbanization Prospects the Revision 2012 (Technical Report, 2011).15.Tewari, V. P., Sukumar, R., Kumar, R. & Gadow, K. Forest observational studies in India: past developments and considerations for the future. For. Ecol. Manag. 316, 32–46 (2014).Article 

    Google Scholar 
    16.Nath, T. K. & Inoue, M. Impacts of participatory forestry on livelihoods of ethnic people: experience from Bangladesh. Soc. Nat. Resour. 23, 1093–1107 (2010).Article 

    Google Scholar 
    17.Islam, S.S. Stratified Two-Stage Sampling (Self-Weighted) for assessment of village forest resources. J. Trop. For. Sci., 9–16 (2004)18.Zashimuddin, M. Community forestry for poverty reduction in Bangladesh. For. Poverty Reduct. Commun. For. Make Money, 81–94 (2004).19.FAO. Global Forest Resources Assessment 2015. Technical Report, Rome (2015).20.Muhammed, N., Koike, M. & Haque, F. Forest policy and sustainable forest management in Bangladesh: an analysis from national and international perspectives. New For. 36, 201–216 (2008).Article 

    Google Scholar 
    21.Manning, A. D., Fischer, J. & Lindenmayer, D. B. Scattered trees are keystone structures-implications for conservation. Biol. Conserv. 132, 311–321 (2006).Article 

    Google Scholar 
    22.Potapov, P. et al. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000–2014. Environ. Res. Lett. 12, 104015 (2017).Article 
    ADS 

    Google Scholar 
    23.Schumacher, J. & Nord-Larsen, T. Wall-to-wall tree type classification using airborne lidar data and CIR images. Int. J. Remote Sens. 35, 3057–3073 (2014).Article 
    ADS 

    Google Scholar 
    24.Ouma, Y. O. & Tateishi, R. Urban-trees extraction from Quickbird imagery using multiscale spectex-filtering and non-parametric classification. ISPRS J. Photogramm. Remote Sens. 63, 333–351 (2008).Article 
    ADS 

    Google Scholar 
    25.Levin, N. et al. Mapping forest patches and scattered trees from SPOT images and testing their ecological importance for woodland birds in a fragmented agricultural landscape. Int. J. Remote Sens. 30, 3147–3169 (2009).Article 
    ADS 

    Google Scholar 
    26.Sandberg, G., Ulander, L. M. H., Wallerman, J. & Fransson, J. E. S. Measurements of forest biomass change using P-band synthetic aperture radar backscatter. IEEE Trans. Geosci. Remote Sens. 52, 6047–6061 (2014).Article 
    ADS 

    Google Scholar 
    27.Mitchard, E. T. A. et al. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: overcoming problems of high biomass and persistent cloud. Biogeosciences 9, 179–191 (2012).Article 
    ADS 

    Google Scholar 
    28.Minh, D. H. T. et al. Relating P-band synthetic aperture radar tomography to tropical forest biomass. IEEE Trans. Geosci. Remote Sens. 52, 967–979 (2013).Article 

    Google Scholar 
    29.Stovall, A. E. L., Shugart, H. & Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 10, 1–6 (2019).Article 

    Google Scholar 
    30.Swatantran, A., Tang, H., Barrett, T., DeCola, P. & Dubayah, R. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar. Sci. Rep. 6, 28277 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    31.Stovall, A. E. L. & Shugart, H. H. Improved biomass calibration and validation with terrestrial LiDAR: implications for future LiDAR and SAR missions. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11, 3527–3537 (2018).Article 
    ADS 

    Google Scholar 
    32.Hansen, M.C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    33.Martone, M. et al. The global forest/non-forest map from TanDEM-X interferometric SAR data. Remote Sens. Environ. 205, 352–373 (2018).Article 
    ADS 

    Google Scholar 
    34.Lang, N., Schindler, K. & Wegner, J. D. Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sens. Environ. 233, 111347 (2019).Article 
    ADS 

    Google Scholar 
    35.UNFAO. The State of World fisheries and Aquaculture 2014, vol. 24 (2014).36.Reddy, C. S., Pasha, S. V., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Development of national database on long-term deforestation (1930–2014) in Bangladesh. Glob. Planet. Change 139, 173–182 (2016).Article 
    ADS 

    Google Scholar 
    37.Long, A. J. & Nair, P. K. R. Trees outside forests: agro-, community, and urban forestry. In Planted Forests: Contributions to the Quest for Sustainable Societies, 145–174 (Springer, 1999).38.Muhammed, N., Masum, M. F. H., Hossain, M. M., Chakma, S. & Oesten, G. Economic dependence of rural people on homestead forestry in Mymensingh, Bangladesh. J. For. Res. 24, 591–597 (2013).Article 

    Google Scholar 
    39.Motiur, R. M., Furukawa, Y., Kawata, I., Rahman, M. M. & Alam, M. Role of homestead forests in household economy and factors affecting forest production: a case study in southwest Bangladesh. J. For. Res. 11, 89–97 (2006).Article 

    Google Scholar 
    40.Salam, M. A., Noguchi, T. & Koike, M. Understanding why farmers plant trees in the homestead agroforestry in Bangladesh. Agrofor. Syst. 50, 77–93 (2000).Article 

    Google Scholar 
    41.Rossi, J.-P. & Rousselet, J. The spatial distribution of trees outside forests in a large open-field region and its potential impact on habitat connectivity for forest insects. Türkiye Ormancılık Dergisi 17, 62–64 (2016).Article 

    Google Scholar 
    42.Kabir, M. E. & Webb, E. L. Can homegardens conserve biodiversity in Bangladesh?. Biotropica 40, 95–103 (2008).
    Google Scholar 
    43.Gibbons, P. et al. The future of scattered trees in agricultural landscapes. Conserv. Biol. 22, 1309–1319 (2008).CAS 
    Article 

    Google Scholar 
    44.World Bank. No Title (2018).45.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on eartha new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    46.Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31. https://doi.org/10.1016/j.rse.2014.04.014 (2014).Article 
    ADS 

    Google Scholar 
    47.GDAL/OGR contributors (2019). GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. https://gdal.org.48.Montesano, P. M., Sun, G., Dubayah, R. & Ranson, K. J. The uncertainty of plot-scale forest height estimates from complementary spaceborne observations in the taiga-tundra ecotone. Remote Sens. 6, 10070–10088 (2014).Article 
    ADS 

    Google Scholar 
    49.Montesano, P. M., Sun, G., Dubayah, R. O. & Ranson, K. J. Spaceborne potential for examining taiga-tundra ecotone form and vulnerability. Biogeosciences 13, 3847–3861 (2016).Article 
    ADS 

    Google Scholar 
    50.Montesano, P. M. et al. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies. Remote Sens. Environ. 196, 76–88 (2017).Article 
    ADS 

    Google Scholar 
    51.Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).Article 
    ADS 

    Google Scholar  More

  • in

    On species delimitation, hybridization and population structure of cassava whitefly in Africa

    1.Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. T. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U.S.A. 101, 14812–14817. https://doi.org/10.1073/pnas.0406166101 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    2.Saez, A. G. & Lozano, E. Body doubles. Nature 433, 111. https://doi.org/10.1038/433111a (2005).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    3.Vyskočilová, S., Tay, W. T., van Brunschot, S., Seal, S. & Colvin, J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci. Rep. 8, 10886. https://doi.org/10.1038/s41598-018-29305-w (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    4.Liu, S. S. et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318, 1769–1772. https://doi.org/10.1126/science.1149887 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    5.Vyskocilova, S., Seal, S. & Colvin, J. Relative polyphagy of “Mediterranean” cryptic Bemisia tabaci whitefly species and global pest status implications. J. Pest Sci. 92, 1071–1088. https://doi.org/10.1007/s10340-019-01113-9 (2019).Article 

    Google Scholar 
    6.Behere, G. T., Tay, W. T., Russell, D. A. & Batterham, P. Molecular markers to discriminate among four pest species of Helicoverpa (Lepidoptera: Noctuidae). Bull. Entomol. Res. 98, 599–603. https://doi.org/10.1017/S0007485308005956 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Elfekih, S., Tay, W. T., Gordon, K., Court, L. N. & De Barro, P. J. Standardized molecular diagnostic tool for the identification of cryptic species within the Bemisia tabaci complex. Pest Manag. Sci. 74, 170–173. https://doi.org/10.1002/ps.4676 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Walsh, T. K. et al. Mitochondrial DNA genomes of five major Helicoverpa pest species from the Old and New Worlds (Lepidoptera: Noctuidae). Ecol. Evol. 9, 2933–2944. https://doi.org/10.1002/ece3.4971 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Anderson, C. J., Tay, W. T., McGaughran, A., Gordon, K. & Walsh, T. K. Population structure and gene flow in the global pest, Helicoverpa armigera. Mol. Ecol. 25, 5296–5311. https://doi.org/10.1111/mec.13841 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Elfekih, S. et al. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories. PLoS ONE 13, e0190555. https://doi.org/10.1371/journal.pone.0190555 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Anderson, C. J. et al. Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. Proc. Natl. Acad. Sci. U.S.A. 115, 5034–5039. https://doi.org/10.1073/pnas.1718831115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.FAOSTAT. http://www.fao.org/faostat/en/#data/QC/visualize (2017).13.Legg, J. P. et al. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Res. 186, 61–75. https://doi.org/10.1016/j.virusres.2013.11.018 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: Actual knowledge and perspectives. Mol. Plant Pathol. 10, 685–701. https://doi.org/10.1111/j.1364-3703.2009.00559.x (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Macfadyen, S. et al. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: A review of the factors determining abundance. Bull. Entomol. Res. 108, 565–582. https://doi.org/10.1017/S0007485318000032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Minato, N. et al. Surveillance for Sri Lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS ONE 14, e0212780. https://doi.org/10.1371/journal.pone.0212780 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Wang, H. L. et al. First Report of Sri Lankan cassava mosaic virus Infecting Cassava in Cambodia. Plant Dis. 100, 1029–1029. https://doi.org/10.1094/Pdis-10-15-1228-Pdn (2016).Article 

    Google Scholar 
    18.De Barro, P. J., Liu, S. S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56, 1–19. https://doi.org/10.1146/annurev-ento-112408-085504 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Hopkinson, J. et al. Insecticide resistance status of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) in Australian cotton production valleys. Austral Entomol. 59, 202–214 (2020).Article 

    Google Scholar 
    20.Hadjistylli, M., Roderick, G. K. & Gauthier, N. First report of the Sub-Saharan Africa 2 species of the Bemisia tabaci complex in the Southern France. Phytoparasitica 43, 679–687. https://doi.org/10.1007/s12600-015-0480-3 (2015).Article 

    Google Scholar 
    21.Lee, W., Park, J., Lee, G. S., Lee, S. & Akimoto, S. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS ONE 8, e63817. https://doi.org/10.1371/journal.pone.0063817 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Mugerwa, H. et al. African ancestry of New World, Bemisia tabaci-whitefly species. Sci. Rep. 8, 2734. https://doi.org/10.1038/s41598-018-20956-3 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Martin, J. H. An identification guide to common whitefly pest species of the world (Homopt Aleyrodidae). Int. J. Pest Manag. 334, 298–322. https://doi.org/10.1080/09670878709371174 (1987).Article 

    Google Scholar 
    24.Martin, J. H. & Mound, L. A. An annotated check list of the world’s whiteflies (Insecta: Hemiptera: Aleyrodidae). Zootaxa 1492, 1–84 (2007).Article 

    Google Scholar 
    25.Mound, L. A. Host-correlated variation in Bemisia tabaci (Gennadius). Proc. R. Entomol. Soc. Lond. A38, 171–180 (1963).ADS 

    Google Scholar 
    26.Tay, W. T. et al. Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens. Sci. Rep. https://doi.org/10.1038/s41598-017-00528-7 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Tay, W. T., Evans, G. A., Boykin, L. M. & De Barro, P. J. Will the real Bemisia tabaciplease stand up?. PLoS ONE https://doi.org/10.1371/journal.pone.0050550 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Dinsdale, A., Cook, L., Riginos, C., Buckley, Y. M. & De Barro, P. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am. 103, 196–208. https://doi.org/10.1603/An09061 (2010).Article 

    Google Scholar 
    29.Kunz, D., Tay, W. T., Elfekih, S., Gordon, K. H. J. & De Barro, P. J. Take out the rubbish – Removing NUMTs and pseudogenes from the Bemisia tabacicryptic species mtCOI database. bioRxiv. https://doi.org/10.1101/724765 (2019).Article 

    Google Scholar 
    30.Wongnikong, W., van Brunschot, S. L., Hereward, J. P., De Barro, P. J. & Walter, G. H. Testing mate recognition through reciprocal crosses of two native populations of the whitefly Bemisia tabaci (Gennadius) in Australia. Bull. Entomol. Res. 110, 328–339. https://doi.org/10.1017/S0007485319000683 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Mugerwa, H., Wang, H.-L., Sseruwagi, P., Seal, S. & Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. https://doi.org/10.1111/1744-7917.12881 (2020).Article 
    PubMed 

    Google Scholar 
    32.Delatte, H. et al. A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. Bull. Entomol. Res. 95, 29–35. https://doi.org/10.1079/Ber2004337 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Boykin, L. M., Savill, A. & De Barro, P. Updated mtCOI reference dataset for the Bemisia tabaci species complex. F1000Research 6, 1835. https://doi.org/10.12688/f1000research.12858.1 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Liu, S. S., Colvin, J. & De Barro, P. J. Species concepts as applied to the whitefly Bemisia tabaci systematics: How many species are there?. J Integr Agr 11, 176–186. https://doi.org/10.1016/S2095-3119(12)60002-1 (2012).Article 

    Google Scholar 
    35.Tay, W. T. et al. The trouble with MEAM2: Implications of pseudogenes on species delimitation in the globally invasive Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex. Genome Biol. Evol. 9, 2732–2738. https://doi.org/10.1093/gbe/evx173 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Kunz, D. et al. Draft mitochondrial DNA genome of a 1920 Barbados cryptic Bemisia tabaci “New World” species (Hemiptera: Aleyrodidae). Mitochondrial DNA B 4, 1183–1184. https://doi.org/10.1080/23802359.2019.1591197 (2019).Article 

    Google Scholar 
    37.Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. U.S.A. 113, 7575–7579. https://doi.org/10.1073/pnas.1602205113 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Wosula, E. N., Chen, W. B., Fei, Z. J. & Legg, J. P. Unravelling the genetic diversity among cassava Bemisia tabaci whiteflies using NextRAD sequencing. Genome Biol. Evol. 9, 2958–2973. https://doi.org/10.1093/gbe/evx219 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Thresh, J. M., Fargette, D. & Otim-Nape, G. W. Effects of African cassava mosaic geminivirus on the yield of cassava. Trop. Sci. 34, 26–42 (1994).
    Google Scholar 
    40.Legg, J. et al. A global alliance declaring war on cassava viruses in Africa. Food Secur. 6, 231–248. https://doi.org/10.1007/s12571-014-0340-x (2014).Article 

    Google Scholar 
    41.Legg, J. P. et al. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag. Sci. 70, 1446–1453. https://doi.org/10.1002/ps.3793 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Berry, S. D. et al. Molecular evidence for five distinct Bemisia tabaci (Homoptera: Aleyrodidae) geographic haplotypes associated with cassava plants in sub-Saharan Africa. Ann. Entomol. Soc. Am. 97, 852–859. https://doi.org/10.1603/0013-8746(2004)097[0852:Meffdb]2.0.Co;2 (2004).CAS 
    Article 

    Google Scholar 
    43.Mugerwa, H., Rey, M. E. C., Tairo, F., Ndunguru, J. & Sseruwagi, P. Two sub-Saharan Africa 1 populations of Bemisia tabaci exhibit distinct biological differences in fecundity and survivorship on cassava. Crop Prot. 117, 7–14. https://doi.org/10.1016/j.cropro.2018.11.011 (2019).Article 

    Google Scholar 
    44.Ghosh, S., Bouvaine, S. & Maruthi, M. N. Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa. BMC Microbiol. https://doi.org/10.1186/s12866-015-0425-5 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population-structure. Evolution 38, 1358–1370. https://doi.org/10.2307/2408641 (1984).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Ghosh, S., Bouvaine, S., Richardson, S. C. W., Ghanim, M. & Maruthi, M. N. Fitness costs associated with infections of secondary endosymbionts in the cassava whitefly species Bemisia tabaci. J. Pest Sci. 91, 17–28. https://doi.org/10.1007/s10340-017-0910-8 (2018).Article 

    Google Scholar 
    47.Elfekih, S. et al. Evolutionary genomics of Bemisia tabaci and characterization of its endosymbiont metacommunities using nextRAD sequencing. International Plant and Animal Genome Asia, Singapore 23–25 July 2015 (2015).48.Elfekih, S. et al. Genome-wide SNPs Decipher Global Incursion pathways in the Bemisia tabaci species complex. International Plant and Animal Genome Conferences San Diego, 9–13 January 2016 (2016).49.Elfekih, S. et al. Genome-wide scans unravel fine-scale invasion routes in the Bemisia tabaci species complex. 2nd International Whitefly Symposium, Arusha, Tanzania. p38, 14–19 February 2016 (2016).50.Boykin, L. M., Bell, C. D., Evans, G., Small, I. & De Barro, P. J. Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)? Dating, diversification and biogeographic evidence revealed. BMC Evol. Biol. 13, 228. https://doi.org/10.1186/1471-2148-13-228 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Boykin, L. M. et al. Review and guide to a future naming system of African Bemisia tabaci species. Syst. Entomol. 43, 427–433. https://doi.org/10.1111/syen.12294 (2018).Article 

    Google Scholar 
    52.Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).CAS 
    Article 

    Google Scholar 
    53.Hanemaaijer, M. J. et al. Mitochondrial genomes of Anophelesarabiensis, An. gambiae and An. coluzzii show no clear species division [version 2; peer review: 2 approved]. F1000Research 7, 347. https://doi.org/10.12688/f1000research.13807.2 (2019).Article 
    PubMed Central 

    Google Scholar 
    54.Tabachnick, W. J. Culicoides variipennis and bluetongue-virus epidemiology in the United States. Annu. Rev. Entomol. 41, 23–43. https://doi.org/10.1146/annurev.en.41.010196.000323 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Legg, J. P., French, R., Rogan, D., Okao-Okuja, G. & Brown, J. K. A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Mol. Ecol. 11, 1219–1229. https://doi.org/10.1046/j.1365-294X.2002.01514.x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Colvin, J., Omongo, C. A., Maruthi, M. N., Otim-Nape, G. W. & Thresh, J. M. Dual begomovirus infections and high Bemisia tabaci populations: Two factors driving the spread of a cassava mosaic disease pandemic. Plant Pathol. 53, 577–584. https://doi.org/10.1111/j.1365-3059.2004.01062.x (2004).Article 

    Google Scholar 
    57.Polston, J. E., De Barro, P. & Boykin, L. M. Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Manag. Sci. 70, 1547–1552. https://doi.org/10.1002/ps.3738 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Ally, H. M. et al. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades?. Sci. Rep. https://doi.org/10.1038/s41598-019-50259-0 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Kalyebi, A. et al. Within-season changes in land use impact pest abundance in smallholder African cassava production systems. Insects (2021) (Revised Submitted).60.Kalyebi, A. et al. African cassava whitefly, Bemisia tabaci, cassava colonization preferences and control implications. PLoS ONE 13, e0204862. https://doi.org/10.1371/journal.pone.0204862 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Macfadyen, S. et al. Landscape factors and how they influence whitefly pests in cassava fields across East Africa. Landsc. Ecol. 36, 45–67. https://doi.org/10.1007/s10980-020-01099-1 (2021).Article 

    Google Scholar 
    62.Tay, W. T. et al. A high-throughput amplicon sequencing approach for population-wide species diversity and composition survey. bioRxiv https://doi.org/10.1101/2020.10.12.336545 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Manani, D. M., Ateka, E. M., Nyanjom, S. R. G. & Boykin, L. M. Phylogenetic relationships among whiteflies in the Bemisia tabaci(Gennadius) species complex from major cassava growing areas in Kenya. Insects https://doi.org/10.3390/insects8010025 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Gottelli, D., Marino, J., Sillero-Zubiri, C. & Funk, S. M. The effect of the last glacial age on speciation and population genetic structure of the endangered Ethiopian wolf (Canis simensis). Mol. Ecol. 13, 2275–2286. https://doi.org/10.1111/j.1365-294X.2004.02226.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15, 407–420. https://doi.org/10.1111/j.1365-294X.2005.02761.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Lehmann, T. et al. The rift valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. J. Hered. 90, 613–621. https://doi.org/10.1093/jhered/90.6.613 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Schmidt, H. et al. Transcontinental dispersal of Anopheles gambiae occurred from West African origin via serial founder events. Commun. Biol. 2, 473. https://doi.org/10.1038/s42003-019-0717-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Mairal, M. et al. Geographic barriers and Pleistocene climate change shaped patterns of genetic variation in the Eastern Afromontane biodiversity hotspot. Sci. Rep. 7, 45749. https://doi.org/10.1038/srep45749 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    69.Freilich, X. et al. Comparative Phylogeography of Ethiopian anurans: Impact of the Great Rift Valley and Pleistocene climate change. BMC Evol. Biol. 16, 206. https://doi.org/10.1186/s12862-016-0774-1 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Huhndorf, M. H., Peterhans, J. C. K. & Loew, S. S. Comparative phylogeography of three endemic rodents from the Albertine Rift, east central Africa. Mol. Ecol. 16, 663–674. https://doi.org/10.1111/j.1365-294X.2007.03153.x (2007).Article 
    PubMed 

    Google Scholar 
    71.Matsubayashi, K. W., Ohshima, I. & Nosil, P. Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 134, 1–27. https://doi.org/10.1111/j.1570-7458.2009.00916.x (2010).Article 

    Google Scholar 
    72.Malka, O. et al. Species-complex diversification and host-plant associations in Bemisia tabaci: A plant-defence, detoxification perspective revealed by RNA-Seq analyses. Mol. Ecol. 27, 4241–4256. https://doi.org/10.1111/mec.14865 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Chen, W. B. et al. The draft genome of whitefly Bemisia tabaciMEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. https://doi.org/10.1186/s12915-016-0321-y (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Xie, W. et al. The invasive MED/Q Bemisia tabaci genome: A tale of gene loss and gene gain. BMC Genomics 19, 68. https://doi.org/10.1186/s12864-018-4448-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595. https://doi.org/10.1093/bioinformatics/btp698 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Eaton, D. A. R. PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30, 1844–1849. https://doi.org/10.1093/bioinformatics/btu121 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Zheng, X. W. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328. https://doi.org/10.1093/bioinformatics/bts606 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. https://doi.org/10.1093/bioinformatics/btl446 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002967 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Decker, J. E. et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 10, e1004254. https://doi.org/10.1371/journal.pgen.1004254 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Gompert, Z. et al. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants. Mol. Ecol. 23, 4555–4573. https://doi.org/10.1111/mec.12811 (2014).Article 
    PubMed 

    Google Scholar  More

  • in

    Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population

    1.Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat. Int. 217, 10–29 (2010).Article 

    Google Scholar 
    2.Broughton, J. M. & Weitzel, E. M. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat. Commun. 9, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    3.Haynes, G. in The Encyclopedia of the Anthropocene 1 (eds. DellaSala, D. A., & Goldstein, M. I.) 219–226 (Springer, 2018).4.Wolfe, A. L. & Broughton, J. M. A foraging theory perspective on the associational critique of North American Pleistocene overkill. J. Archaeol. Sci. 119, 105162 (2020).Article 

    Google Scholar 
    5.Rothschild, B. M. & Laub, R. Hyperdisease in the late Pleistocene: validation of an early 20th century hypothesis. Naturwissenschaften 93, 557–564 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Borrero, L. A. in American megafaunal extinctions at the end of the Pleistocene (ed. Haynes, G.) 145–168 (Springer, 2009).7.Cione, A. L., Tonni, E. P., & Soibelzon, L. in American megafaunal extinctions at the end of the Pleistocene (ed. Haynes, G.) 125–144 (Springer, 2009).8.Lima-Ribeiro, M. S., Nogués-Bravo, D., Terribile, L. C., Batra, P. & Diniz-Filho, J. A. F. Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 546–556 (2013).Article 

    Google Scholar 
    9.Grayson, D. K. & Meltzer, D. J. A requiem for North American overkill. J. Archaeol. Sci. 30, 585–593 (2003).Article 

    Google Scholar 
    10.Firestone, R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. PNAS 104, 16016–16021 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Waters, M. R. & Stafford, T. W. in Paleoamerican Odyssey (eds. Graf, K. E., Ketron, C. V. & Waters, M.) 543–562 (Texas A&M University Press, 2013).12.Politis, G., Prado, J. L., & Beukens, R. P. in Ancient Peoples and Landscapes (ed. Johnson, E.) 187–205 (Tech University Press, 1995).13.Martin, P. S. The Discovery of America: The first Americans may have swept the Western Hemisphere and decimated its fauna within 1000 years. Science 179, 969–974 (1973).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Fiedel, S. J. in Paleoamerican origins: beyond Clovis (eds. Bonnichsen, R., Lepper, B. T., Stanford, D. & Waters M. R.) 97–102 (Texas A&M University Press, 2005).15.Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. PNAS 113, 886–891 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Pedro, J. B. et al. Southern Ocean deep convection as a driver of Antarctic warming events. Geophys. Res. Lett. 43, 2192–2199 (2016).ADS 
    Article 

    Google Scholar 
    17.Politis, G. in Clovis. Origins and Adaptations (eds Bonnichsen, R. & Turnmire, K.) 287–301 (Texas A&M University Press, 1991).18.Nami, H. G. Fishtailed projectile points in the Americas: Remarks and hypotheses on the peopling of northern South America and beyond. Quat. Int., in press (2020).19.Waters, M. R., Amorosi, T. & Stafford, T. W. Redating Fell’s cave, Chile and the chronological placement of the Fishtail projectile point. Am. Antiq. 80, 376–386 (2015).Article 

    Google Scholar 
    20.Loponte, D., Carbonera, M. & Silvestre, R. Fishtail projectile points from South America: the Brazilian record. Archaeol. Discov. 3, 85 (2015).Article 

    Google Scholar 
    21.Nami, H. G. & Yataco Capcha, J. Further Data on Fell Points from the Southern Cone of South America. PaleoAmerica 6, 379–386 (2020).Article 

    Google Scholar 
    22.Weitzel, C., Mazzia, N. & Flegenheimer, N. Assessing Fishtail points distribution in the southern Cone. Quat. Int. 473, 161–172 (2018).Article 

    Google Scholar 
    23.Martínez, G., Gutiérrez, M. A. & Tonni, E. P. Paleoenvironments and faunal extinctions: analysis of the archaeological assemblages at the Paso Otero locality (Argentina) during the Late Pleistocene–Early Holocene. Quat. Int 299, 53–63 (2013).Article 

    Google Scholar 
    24.Prates, L., Politis, G. G. & Perez, S. I. Rapid radiation of humans in South America after the last glacial maximum: a radiocarbon-based study. PLoS ONE 15, e0236023 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Buchanan, B., Collard, M., Hamilton, M. J. & O’Brien, M. J. Points and prey: a quantitative test of the hypothesis that prey size influences early Paleoindian projectile point form. J. Archaeol. Sci. 38, 852–864 (2011).Article 

    Google Scholar 
    27.Timpson, A. et al. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J. Archaeol. Sci. 52, 549–557 (2014).Article 

    Google Scholar 
    28.Crema, E. R., Habu, J., Kobayashi, K. & Madella, M. Summed probability distribution of 14C dates suggests regional divergences in the population dynamics of the Jomon period in eastern Japan. PLoS ONE 11, e0154809 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    30.Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    31.d’Amen, M. et al. Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models. J. Biogeog. 42, 1255–1266 (2015).Article 

    Google Scholar 
    32.McCulloch, R. D. et al. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J. Quat. Sci.: Published Quat. Res. Assoc. 15, 409–417 (2000).Article 

    Google Scholar 
    33.Moreno, P. I., Villa-Martínez, R., Cárdenas, M. L. & Sagredo, E. A. Deglacial changes of the southern margin of the southern westerly winds revealed by terrestrial records from SW Patagonia (52 S). Quat. Sci. Rev. 41, 1–21 (2012).ADS 
    Article 

    Google Scholar 
    34.Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. PNAS 113, 856–861 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Politis, G. & Messineo, P. The Campo Laborde site: New evidence for the Holocene survival of Pleistocene megafauna in the Argentine Pampas. Quat. Int. 191, 98–114 (2008).Article 

    Google Scholar 
    36.Politis, G. G., Messineo, P. G., Stafford, T. W. & Lindsey, E. L. Campo Laborde: a Late Pleistocene giant ground sloth kill and butchering site in the Pampas. Sci. Adv. 5, eaau4546 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open‐source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    38.Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358 (2017).Article 

    Google Scholar 
    39.Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 1–9 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    40.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).41.Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Tonni, E. P., Carlini, A. A., Yané, G. J. S. & Figini, A. J. Cronología radiocarbónica y condiciones climáticas en la “Cueva del Milodón” (sur de Chile) durante el Pleistoceno Tardío. Ameghiniana 40, 609–615 (2003).
    Google Scholar 
    43.Tonni, E. P. & Carlini, A. A. Neogene vertebrates from Argentine Patagonia: their relationship with the most significant climatic changes. Dev. Quat. Sci. 11, 269–283 (2008).
    Google Scholar 
    44.Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F. & Birnbaum, P. ssdm: an r package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 8, 1795–1803 (2017).Article 

    Google Scholar 
    45.Mothé, D. et al. An artifact embedded in an extinct proboscidean sheds new light on human-megafaunal interactions in the quaternary of South America. Quat. Sci. Rev. 229, 106125 (2020).Article 

    Google Scholar 
    46.Jaimes, A. Condiciones tafonómicas, huesos modificados y comportamiento humano en los sitios de matanza de El Vano (Tradición El Jobo) y Lange/Ferguson (Tradición Clovis). Bol. Antropol. Am. 41, 159–184 (2005).
    Google Scholar 
    47.Moreno, P. I. et al. Renewed glacial activity during the Antarctic Cold reversal and persistence of cold conditions until 11.5 ka in SW Patagonia. Geology 37, 375–378 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Obase, T. & Abe‐Ouchi, A. Abrupt Bølling‐Allerød warming simulated under gradual forcing of the last deglaciation. Geophys. Res. Lett. 46, 11397–11405 (2019).ADS 
    Article 

    Google Scholar 
    49.de Porras, M. E. et al. Environmental and climatic changes in central Chilean Patagonia since the late glacial (Mallín El Embudo, 44 S). Clim 10, 1063–1078 (2014).ADS 

    Google Scholar 
    50.Mendelová, M., Hein, A. S., Rodes, A., Smedley, R. K. & Xu, S. Glacier expansion in central Patagonia during the Antarctic Cold Reversal followed by retreat and stabilisation during the Younger Dryas. Quat. Sci. Rev. 227, 106047 (2020).Article 

    Google Scholar 
    51.Villavicencio, N. A. et al. Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography 39, 125–140 (2016).Article 

    Google Scholar 
    52.Prieto, A. R. Vegetational History of the Late glacial-holocene transition in the grasslands of Eastern Argentina. Palaeogr. Palaeoclimatol. Palaeoecol. 157, 167–188 (2000).ADS 
    Article 

    Google Scholar 
    53.Miotti, L., Tonni, E. & Marchionni, L. What happened when the Pleistocene megafauna became extinct? Quat. Int. 473, 173–189 (2018).Article 

    Google Scholar 
    54.Méndez, C. et al. J. L. Human effects in Holocene fire dynamics of central Western Patagonia (~ 44° S, Chile). Front. Ecol. Evol. 4, 100 (2016).Article 

    Google Scholar 
    55.Pires, M. M. et al. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc. R. Soc. Lon. [Biol.] 282, 20151367 (2015).
    Google Scholar 
    56.Pires, M. et al. Before, during and after megafaunal extinctions: human impact on Pleistocene-Holocene trophic networks in South Patagonia. Quat. Sci. Rev. 250, 106296 (2020).Article 

    Google Scholar 
    57.Haynes, G. & Klimowicz, J. Recent elephant-carcass utilization as a basis for interpreting mammoth exploitation. Quat. Int. 359, 19–37 (2015).Article 

    Google Scholar 
    58.Surovell, T. A. & Grund, B. S. The associational critique of quaternary overkill and why it is largely irrelevant to the extinction debate. Am. Antiq. 77, 672–687 (2012).Article 

    Google Scholar 
    59.Rindel, D. D., Moscardi, B. F., & Perez, S. I. The distribution of the guanaco (Lama guanicoe) in Patagonia during Late Pleistocene–Holocene and its importance for prehistoric human diet. Holocene, https://doi.org/10.1177/0959683620981689 (2020).60.Metcalf, J. L. et al. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Sci. Adv. 2, e1501682 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Villavicencio, N. A., Corcoran, D. & Marquet, P. A. Assessing the causes behind the late quaternary extinction of Hhorses in South america using species distribution models. Fron. Ecol. Evol. 7, 226 (2019).Article 

    Google Scholar 
    62.Prado, J. L., & Alberdi, M. T. Fossil Horses of South America. Phylogeny, Systemics and Ecology. (Springer, 2017).63.Varela, L. & Fariña, R. A. Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene. Quat. Res. 85, 66–74 (2016).Article 

    Google Scholar 
    64.R-Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).65.Menegaz, A. N., Goin, F. J. & Jaureguizar, E. O. Análisis morfológico y morfométrico multivariado de los representantes fósiles y vivientes del género Lama (Artiodactyla, Camelidae). Sus implicancias sistemáticas, biogeográficas, ecológicas y biocronológicas. Ameghiniana 26, 153–172 (1989).
    Google Scholar 
    66.Scherer, C. S. Os Camelidae Lamini (Mammalia, Artiodactyla) do plesistoceno da América do Sul: aspectos taxonômicos e filogenéticos. Unpublished PhD Thesis, Universidade Federal do Rio Grande do Sul. (2009).67.Weinstock, J. et al. The Late Pleistocene distribution of vicuñas (Vicugna vicugna) and the “extinction” of the gracile llama (“Lama gracilis”): new molecular data. Quat. Sci. Rev. 28, 1369–1373 (2009).ADS 
    Article 

    Google Scholar 
    68.Mothé, D., Avilla, L. S. & Cozzuol, M. A. The south American gomphotheres (Mammalia, Proboscidea, Gomphotheriidae): taxonomy, phylogeny, and biogeography. J. Mamm. Evol. 20, 23–32 (2013).Article 

    Google Scholar 
    69.Prado, J. L. & Alberdi, M. T. Global evolution of equidae and gomphotheriidae from South America. Integ. Zool. 9, 434–443 (2014).Article 

    Google Scholar  More