Monitoring the variation in the gut microbiota of captive woolly monkeys related to changes in diet during a reintroduction process
1.Amato, K. R. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. Am. J. Phys. Anthropol. 159, S196–S215 (2016).PubMed
Article
Google Scholar
2.Ley, R., Hamady, M. & Lozupone, C. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
3.Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985–4996 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
4.O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).PubMed
PubMed Central
Google Scholar
5.Redford, K. H., Segre, J. A., Salafsky, N., Del Rio, C. M. & Mcaloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).PubMed
PubMed Central
Article
Google Scholar
6.Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory towards an understanding of the human microbiome. Science 336, 1255–1262 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
7.Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).ADS
CAS
PubMed
Article
Google Scholar
8.Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).PubMed
PubMed Central
Article
Google Scholar
9.Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).CAS
PubMed
Article
Google Scholar
10.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed
PubMed Central
Article
Google Scholar
11.Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
12.Myers, S. P. & Hawrelak, J. A. The causes of intestinal dysbiosis: a review. Altern. Med. Rev. 9, 180–197 (2004).PubMed
Google Scholar
13.Knights, D. et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6, 107 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
14.Perofsky, A. C., Lewis, R. J., Abondano, L. A., Fiore, A. D. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux ’ s sifaka. Proc. R. Soc. B Biol. Sci. 248, 20172274 (2017).Article
Google Scholar
15.Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 21, 2617–2627 (2012).PubMed
Article
Google Scholar
16.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527 (2018).PubMed
Article
Google Scholar
17.Delsuc, F. et al. Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23, 1301–1317 (2014).CAS
PubMed
Article
Google Scholar
18.Lambert, J. E. Primate Nutritional Ecology: Feeding Biology and Diet at Ecological and Evolutionary Scales: Primates in Perspective (Oxford University Press, 2010).
Google Scholar
19.Gomez, A. et al. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J. 10, 514–526 (2016).CAS
PubMed
Article
Google Scholar
20.Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
21.Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, 3–10 (2010).Article
CAS
Google Scholar
22.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
23.Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Front. Microbiol. 8, 1316 (2017).PubMed
PubMed Central
Article
Google Scholar
24.Kohl, K. D. & Dearing, M. D. Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environ. Microbiol. Rep. 6, 191–195 (2014).PubMed
Article
Google Scholar
25.Xiao, Y. et al. Captivity causes taxonomic and functional convergence of gut microbial communities in bats. PeerJ 7, e6844 (2019).PubMed
PubMed Central
Article
Google Scholar
26.Prabhu, V. R., Wasimuddin, V. R., Kamalakkannan, R., Arjun, M. S. & Nagarajan, M. Consequences of domestication on gut microbiome: a comparative study between wild gaur and domestic mithun. Front. Microbiol. 11, 133 (2020).PubMed
PubMed Central
Article
Google Scholar
27.Chaves, Ó. M., Stoner, K. E. & Arroyo-Rodríguez, V. Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico. Biotropica 44, 105–113 (2012).Article
Google Scholar
28.Nakagawa, N. Determinants of the dramatic seasonal changes in the intake of energy and protein by Japanese monkeys in a cool temperate forest. Am. J. Primatol. 41, 267–288 (1997).CAS
PubMed
Article
Google Scholar
29.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2014).PubMed
Article
CAS
Google Scholar
30.Chen, T., Li, Y., Liang, J., Li, Y. & Huang, Z. Gut microbiota of provisioned and wild rhesus macaques (Macaca mulatta) living in a limestone forest in southwest Guangxi China. Microbiologyopen 9, e981 (2020).PubMed
Google Scholar
31.Mackie, R. I., Sghir, A. & Gaskins, H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69, 1035s–1045s (1999).CAS
PubMed
Article
Google Scholar
32.Donnet-hughes, A. et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc. Nutr. Soc. 69, 407–415 (2010).PubMed
Article
Google Scholar
33.Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).CAS
PubMed
Article
Google Scholar
34.Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2015).ADS
Article
Google Scholar
35.Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A. 102, 11070–11075 (2005).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
36.Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U. S. A. 104, 13780–13785 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
37.Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).CAS
PubMed
Article
Google Scholar
38.Jang, H. B., Choi, M. K., Kang, J. H., Park, S. I. & Lee, H. J. Association of dietary patterns with the fecal microbiota in Korean adolescents. BMC Nutr. 3, 1–11 (2017).Article
Google Scholar
39.Wang, B. et al. Comparison of the fecal microbiomes of healthy and diarrheic captive wild boar. Microb. Pathog. 147, 104377 (2020).CAS
PubMed
Article
Google Scholar
40.Tang, J. et al. Gut microbiota in reintroduction of giant panda. Ecol. Evol. 10, 1012–1028 (2020).PubMed
PubMed Central
Article
Google Scholar
41.Clayton, J. B. et al. The gut microbiome of nonhuman primates: Lessons in ecology and evolution. Am. J. Primatol. 80, e22867 (2018).PubMed
Article
Google Scholar
42.Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).PubMed
Article
CAS
Google Scholar
43.Kilkenny, C. et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
44.Vargas, S. A., León, J., Ramírez, M., Galvis, N., Cifuentes, E., & Stevenson, P. R. Population density and ecological traits of highland woolly monkeys at Cueva de los Guácharos National Park, Colombia. In High altitude primates Springer, New York. 85–102 (2014)45.Stevenson, P. R. Seed dispersal by woolly monkeys (Lagothrix lagothricha) at Tinigua National Park, Colombia: dispersal distance, germination rates, and dispersal quantity. Am. J. Primatol. Off. J. Am. Soc. Primatol. 50, 275–289 (2000).CAS
Google Scholar
46.Botero, S., Rengifo, L. Y., Bueno, M. L. & Stevenson, P. R. How many species of woolly monkeys inhabit Colombian forests?. Am. J. Primatol. 72, 1131–1140 (2020).Article
Google Scholar
47.Di Fiore, A. et al. The rise and fall of a genus: Complete mtDNA genomes shed light on the phylogenetic position of yellow-tailed woolly monkeys, Lagothrix flavicauda, and on the evolutionary history of the family Atelidae (Primates: Platyrrhini). Mol. Phylogenet. Evol. 82, 495–510 (2015).PubMed
Article
CAS
Google Scholar
48.Fooden, D. A revision of the woolly monkeys (genus Lagothrix). J. Mammal. 44, 213–247 (1963).Article
Google Scholar
49.Botero, S. & Stevenson, P. R. Coat color is not an indicator of subspecies identity in colombian woolly monkeys. The Woolly Monkey https://doi.org/10.1007/978-1-4939-0697-0 (2014).Article
Google Scholar
50.Stevenson, P. R. Activity and ranging patterns of Colombian woolly monkeys in north-western Amazonia. Primates https://doi.org/10.1007/s10329-005-0172-6 (2006).Article
PubMed
Google Scholar
51.Altmann, J. Observational study of behavior: sampling methods. Behaviuor. 49, 227–266 (1974).CAS
Article
Google Scholar
52.Caporaso, J. G. et al. Correspondence QIIME allows analysis of high-throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat. Publ. Gr 7, 335–336 (2010).CAS
Google Scholar
53.Liu, Z., Lozupone, C., Hamady, M., Bushman, F. D. & Knight, R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucl. Acids Res. 35, e120 (2007).PubMed
Article
CAS
Google Scholar
54.Liu, Z., Desantis, T. Z., Andersen, G. L. & Knight, R. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucl. Acids Res. 36, 1–11 (2008).Article
CAS
Google Scholar
55.Yang, B., Wang, Y. & Qian, P. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform. 17, 1–8 (2016).CAS
Article
Google Scholar
56.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article
Google Scholar
57.Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).58.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Google Scholar
59.Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed
PubMed Central
Article
CAS
Google Scholar
60.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
61.Amir, A. et al. Deblur rapidly resolves single-. Am. Soc. Microbiol. 2, 1–7 (2017).
Google Scholar
62.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
63.Douglas, G. M., Maffei, V. J., Zaneveld, J., Yurgel, S. N., Brown, J. R., Taylor, C. M., & Langille, M. G. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv 672295 (2020).64.McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
65.Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed
Article
Google Scholar
66.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
67.Barton, K. MuMIn: multi-model inference. (2009). http://r-forge.R-project.org/projects/mumin/.68.Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).Article
Google Scholar More