More stories

  • in

    Finding Nemo’s clock reveals switch from nocturnal to diurnal activity

    1.Thresher, R. E., Colin, P. L. & Bell, L. J. Planktonic duration, distribution and population structure of western and Central Pacific Damselfishes (Pomacentridae). Copeia 420–434, 1989. https://doi.org/10.2307/1445439 (1989).Article 

    Google Scholar 
    2.Leis, J. M. Behaviour as input for modelling dispersal of fish larvae: Behaviour, biogeography, hydrodynamics, ontogeny, physiology and phylogeny meet hydrography. Mar. Ecol. Prog. Ser. 347, 185–194. https://doi.org/10.3354/meps06977 (2007).Article 
    ADS 

    Google Scholar 
    3.Fisher, R., Leis, J. M., Clark, D. L. & Wilson, S. K. Critical swimming speeds of late-stage coral reef fish larvae: Variation within species, among species and between locations. Mar. Biol. 147, 1201–1212. https://doi.org/10.1007/s00227-005-0001-x (2005).Article 

    Google Scholar 
    4.Stobutzki, I. & Bellwood, D. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35–41. https://doi.org/10.3354/meps149035 (1997).Article 
    ADS 

    Google Scholar 
    5.Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P. & Miller-Sims, V. Smelling home can prevent dispersal of reef fish larvae. Proc. Natl. Acad. Sci. 104, 858–863. https://doi.org/10.1073/pnas.0606777104 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    6.Almany, G. R., Berumen, M. L., Thorrold, S. R., Planes, S. & Jones, G. P. Local Replenishment of Coral Reef fish populations in a Marine Reserve. Science 316, 742–744. https://doi.org/10.1126/science.1140597 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    7.Jones, G. P., Planes, S. & Thorrold, S. R. Coral Reef Fish Larvae Settle Close to Home. Curr. Biol. 15, 1314–1318. https://doi.org/10.1016/j.cub.2005.06.061 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Kingsford, M. J. et al. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70, 309–340 (2002).
    Google Scholar 
    9.Mouritsen, H., Atema, J., Kingsford, M. J. & Gerlach, G. Sun compass orientation helps coral reef fish larvae return to their natal reef. PLoS ONE. https://doi.org/10.1371/journal.pone.0066039 (2013).10.Dufour, V. & Galzin, R. Colonization patterns of reef fish larvae to the lagoon at Moorea Island, French Polynesia. Mar. Ecol. Prog. Ser. 102, 143–152. https://doi.org/10.3354/meps102143 (1993).Article 
    ADS 

    Google Scholar 
    11.Holbrook, S. & Schmitt, R. Settlement patterns and process in a coral reef damselfish: In situ nocturnal observations using infrared video. In Proceedings of the 8th International Coral Reef Symposium, Vol. 2, 1143–1148 (1997).12.Leis, J. M. & Carson-Ewart, B. M. Complex behaviour by coral-reef fish larvae in open-water and near-reef pelagic environments. Environ. Biol. Fishes 53, 259–266. https://doi.org/10.1023/A:1007424719764 (1998).Article 

    Google Scholar 
    13.Litsios, G. et al. Mutualism with sea anemones triggered the adaptive radiation of clownfishes. BMC Evol. Biol. 12, 212. https://doi.org/10.1186/1471-2148-12-212 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Bridge, T., Scott, A. & Steinberg, D. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia. Coral Reefs 31, 1057–1062. https://doi.org/10.1007/s00338-012-0916-x (2012).Article 
    ADS 

    Google Scholar 
    15.Mariscal, R. N. Behavior of symbiotic fishes and sea anemones. In Winn, H. E. & Olla, B. L. (eds.) Behavior of Marine Animals, 327–360 (Springer US, 1972). https://doi.org/10.1007/978-1-4684-0910-9_4.16.Tauber, E., Last, K. S., Olive, P. J. & Kyriacou, C. P. Clock gene evolution and functional divergence. J. Biol. Rhythm. 19, 445–458. https://doi.org/10.1177/0748730404268775 (2004).CAS 
    Article 

    Google Scholar 
    17.Emran, F., Rihel, J., Adolph, A. R. & Dowling, J. E. Zebrafish larvae lose vision at night. Proc. Natl. Acad. Sci. 107, 6034–6039. https://doi.org/10.1073/pnas.0914718107 (2010).Article 
    PubMed 
    ADS 

    Google Scholar 
    18.Cahill, G. M., Hurd, M. W. & Batchelor, M. M. Circadian rhythmicity in the locomotor activity of larval zebrafish. NeuroReport 9, 3445–3449. https://doi.org/10.1097/00001756-199810260-00020 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Ceinos, R. M. et al. Mutations in blind cavefish target the light-regulated circadian clock gene, period 2. Sci. Rep. 8, 8754. https://doi.org/10.1038/s41598-018-27080-2 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    20.Frøland Steindal, I. & Whitmore, D. Circadian clocks in fish—What have we learned so far?. Biology 8, 17. https://doi.org/10.3390/biology8010017 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    21.Vatine, G., Vallone, D., Gothilf, Y. & Foulkes, N. S. It’s time to swim! Zebrafish and the circadian clock. FEBS Lett. 585, 1485–1494. https://doi.org/10.1016/j.febslet.2011.04.007 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Banaszak, A. T. & Lesser, M. P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8, 1276. https://doi.org/10.1039/b902763g (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Häder, D.-P., Kumar, H. D., Smith, R. C. & Worrest, R. C. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 6, 267–285. https://doi.org/10.1039/B700020K (2007).Article 
    PubMed 

    Google Scholar 
    24.Eckes, M., Siebeck, U., Dove, S. & Grutter, A. Ultraviolet sunscreens in reef fish mucus. Mar. Ecol. Prog. Ser. 353, 203–211. https://doi.org/10.3354/meps07210 (2008).CAS 
    Article 
    ADS 

    Google Scholar 
    25.Kienzler, A., Bony, S. & Devaux, A. DNA repair activity in fish and interest in ecotoxicology: A review. Aquat. Toxicol. 134–135, 47–56. https://doi.org/10.1016/j.aquatox.2013.03.005 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Hoogenboom, I., Daan, S., Dallinga, J. H. & Schoenmakers, M. Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis. Oecologia 61, 18–31. https://doi.org/10.1007/BF00379084 (1984).27.Tan, M. H. et al. Finding Nemo: Hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly. GigaScience. https://doi.org/10.1093/gigascience/gix137 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Cavallari, N. et al. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001142 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Vallone, D., Gondi, S. B., Whitmore, D. & Foulkes, N. S. E-box function in a period gene repressed by light. Proc. Natl. Acad. Sci. 101, 4106–4111. https://doi.org/10.1073/pnas.0305436101 (2004).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    30.Vatine, G. et al. Light directs Zebrafish period2 expression via conserved D and E boxes. PLOS Biol. https://doi.org/10.1371/journal.pbio.1000223 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Mracek, P. et al. Regulation of per and cry Genes Reveals a Central Role for the D-Box Enhancer in Light-Dependent Gene Expression. PLOS ONE https://doi.org/10.1371/journal.pone.0051278 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Zhao, H. et al. Modulation of DNA repair systems in blind cavefish during evolution in constant darkness. Curr. Biol. 28, 3229-3243.e4. https://doi.org/10.1016/j.cub.2018.08.039 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Tolimieri, N., Haine, O., Jeffs, A., McCauley, R. & Montgomery, J. Directional orientation of pomacentrid larvae to ambient reef sound. Coral Reefs 23, 184–191. https://doi.org/10.1007/s00338-004-0383-0 (2004).Article 

    Google Scholar 
    34.Fisher, R. & Bellwood, D. Undisturbed swimming behaviour and nocturnal activity of coral reef fish larvae. Mar. Ecol. Prog. Ser. 263, 177–188. https://doi.org/10.3354/meps263177 (2003).Article 
    ADS 

    Google Scholar 
    35.Elliott, J. K. & Mariscal, R. N. Ontogenetic and interspecific variation in the protection of anemonefishes from sea anemones. J. Exp. Mar. Biol. Ecol. 208, 57–72. https://doi.org/10.1016/S0022-0981(96)02629-9 (1997).Article 

    Google Scholar 
    36.Fautin, D. G. The anemonefish symbiosis: What is known and what is not. Symbiosis 10, 23–46 (1991).
    Google Scholar 
    37.Di Rosa, V., Frigato, E., López-Olmeda, J. F., Sánchez-Vázquez, F. J. & Bertolucci, C. The light wavelength affects the ontogeny of clock gene expression and activity rhythms in zebrafish larvae. PLOS ONE https://doi.org/10.1371/journal.pone.0132235 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Idda, M. L. et al. Chapter 3—Circadian clocks: Lessons from fish. In Kalsbeek, A., Merrow, M., Roenneberg, T. & Foster, R. G. (eds.) The Neurobiology of Circadian Timing, vol. 199 of Progress in Brain Research, 41–57, DOI: https://doi.org/10.1016/B978-0-444-59427-3.00003-4 (Elsevier, 2012).39.Patiño, M. A. L., Rodríguez-Illamola, A., Conde-Sieira, M., Soengas, J. L. & Míguez, J. M. Daily rhythmic expression patterns of Clock1a, Bmal1, and Per1 genes in retina and hypothalamus of the rainbow trout, Oncorhynchus Mykiss. Chronobiol. Int. 28, 381–389. https://doi.org/10.3109/07420528.2011.566398 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Vera, L. M. et al. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Chronobiol. Int. 30, 649–661. https://doi.org/10.3109/07420528.2013.775143 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Martín-Robles, A. J., Whitmore, D., Sánchez-Vázquez, F. J., Pendón, C. & Muñoz-Cueto, J. A. Cloning, tissue expression pattern and daily rhythms of Period1, Period2, and Clock transcripts in the flatfish Senegalese sole,Solea senegalensis. J. Comp. Physiol. B 182, 673–685. https://doi.org/10.1007/s00360-012-0653-z (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Park, J.-G., Park, Y.-J., Sugama, N., Kim, S.-J. & Takemura, A. Molecular cloning and daily variations of the Period gene in a reef fish Siganus guttatus. J. Comp. Physiol. A 193, 403–411. https://doi.org/10.1007/s00359-006-0194-6 (2007).CAS 
    Article 

    Google Scholar 
    43.Martín-Robles, A. J., Isorna, E., Whitmore, D., Muñoz-Cueto, J. A. & Pendón, C. The clock gene Period3 in the nocturnal flatfish Solea senegalensis: Molecular cloning, tissue expression and daily rhythms in central areas. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159, 7–15. https://doi.org/10.1016/j.cbpa.2011.01.015 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Whitmore, D., Foulkes, N. S., Strähle, U. & Sassone-Corsi, P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat. Neurosci. 1, 701–707. https://doi.org/10.1038/3703 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685. https://doi.org/10.1126/science.288.5466.682 (2000).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    46.Yagita, K. et al. Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc. Natl. Acad. Sci. 107, 3846–3851. https://doi.org/10.1073/pnas.0913256107 (2010).Article 
    PubMed 
    ADS 

    Google Scholar 
    47.Challet, E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648–5655. https://doi.org/10.1210/en.2007-0804 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.del Pozo, A., Montoya, A., Vera, L. M. & Sánchez-Vázquez, F. J. Daily rhythms of clock gene expression, glycaemia and digestive physiology in diurnal/nocturnal European seabass. Physiol. Behav. 106, 446–450. https://doi.org/10.1016/j.physbeh.2012.03.006 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Job, S. & Shand, J. Spectral sensitivity of larval and juvenile coral reef fishes: Implications for feeding in a variable light environment. Mar. Ecol. Prog. Ser. 214, 267–277. https://doi.org/10.3354/meps214267 (2001).Article 
    ADS 

    Google Scholar 
    50.Buston, P. M. & García, M. B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish Biol. 70, 1710–1719. https://doi.org/10.1111/j.1095-8649.2007.01445.x (2007).Article 

    Google Scholar 
    51.Godwin, J. & Fautin, D. G. Defense of host actinians by anemonefishes. Copeia 902–908, 1992. https://doi.org/10.2307/1446171 (1992).Article 

    Google Scholar 
    52.Roopin, M. & Chadwick, N. E. Benefits to host sea anemones from ammonia contributions of resident anemonefish. J. Exp. Mar. Biol. Ecol. 370, 27–34. https://doi.org/10.1016/j.jembe.2008.11.006 (2009).CAS 
    Article 

    Google Scholar 
    53.Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: Direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602. https://doi.org/10.1007/s00227-010-1583-5 (2011).Article 

    Google Scholar 
    54.Verde, E. A., Cleveland, A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis II: Direct evidence for the transfer of nutrients from host anemone and zooxanthellae to anemonefish. Mar. Biol. 162, 2409–2429. https://doi.org/10.1007/s00227-015-2768-8 (2015).CAS 
    Article 

    Google Scholar 
    55.da Silva, K. B. & Nedosyko, A. Sea Anemones and Anemonefish: A Match Made in Heaven. In Goffredo, S. & Dubinsky, Z. (eds.) The Cnidaria, Past, Present and Future, 425–438 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-31305-4_27.56.Vallone, D., Santoriello, C., Gondi, S. B. & Foulkes, N. S. Basic protocols for zebrafish cell lines. In Rosato, E. (ed.) Circadian Rhythms: Methods and Protocols, 429–441. https://doi.org/10.1007/978-1-59745-257-1_35 (Humana Press, 2007).57.Dekens, M. P. S., Foulkes, N. S. & Tessmar-Raible, K. Instrument design and protocol for the study of light controlled processes in aquatic organisms, and its application to examine the effect of infrared light on zebrafish. PLoS ONE 12. https://doi.org/10.1371/journal.pone.0172038 (2017).58.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020).60.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Use R! (Springer, 2009).61.Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythm. 29, 391–400. https://doi.org/10.1177/0748730414553029 (2014).Article 

    Google Scholar 
    62.Kõressaar, T. et al. Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics 34, 1937–1938. https://doi.org/10.1093/bioinformatics/bty036 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115. https://doi.org/10.1093/nar/gks596 (2012).64.Kõressaar, T. & Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291. https://doi.org/10.1093/bioinformatics/btm091 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma 13, 134. https://doi.org/10.1186/1471-2105-13-134 (2012).CAS 
    Article 

    Google Scholar 
    66.Wit, P. D. et al. The simple fool’s guide to population genomics via RNA-Seq: An introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067. https://doi.org/10.1111/1755-0998.12003 (2012).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    First observation of seasonal variations in the meat and co-products of the snow crab (Chionoecetes opilio) in the Barents Sea

    Collection of crabsMale snow crabs of legal size and with hard shells were caught by the commercial SC vessel Northeastern (Opilio AS) using traditional SC pots in the NEAFC area (N 75° 49.2 E 37° 39.2). SCs were stored live onboard the vessel and subsequently delivered to Nofima’s facilities in Tromsø (N 69° 39). The crabs were caught in June, and September 2016, February, April, and December 2017 and will only be referred to by month. Upon slaughtering, data from individual crabs was obtained by recording the weight of the whole animal, clusters + claws, hemolymph, hepatopancreas, and gills (n = 56 September, n = 45 December, n = 29 February, n = 66 April, n = 50 June). Subsequently, different fractions were pooled and analysed as outlined below.Biochemical- and meat content-analysesThe biochemical analyses were performed on each month of analysis (September, December, February, April, and June) and consisted of water, protein, lipid, and ash contents. All analyses were performed on meat (i.e., main product) and the different co-products divided in the following ways: pooled internal organs (mainly hemolymph, hepatopancreas and gonads) with and without added carapace, hemolymph alone and hepatopancreas alone. Lipid class and fatty acid analyses were performed on the lipid storage organ hepatopancreas. Each biochemical analysis consisted of co-products from 10 randomly selected animals. All biochemical analyses (water-, ash-, lipid and protein-content) were determined by Toslab (9266 Tromsø, Norway), lipid classes and fatty acid identifications were performed by Biolab (5141 Fyllingsdalen, Norway). Both are commercial laboratories accredited according to ISO 17025.Water and dry matter content3–5 g of material was weighed in a marked porcelain crucible. The crucible was placed in a preheated drying cabinet at 103 °C ± 1 °C. After precisely 4 h 30 min, the crucible was allowed to cool down in a desiccator before being weighed. Water and dry matter contents were calculated according to Eqs. (1) and (2) respectively:$$Waterleft(%right)=frac{left(a-bright)}{w}times 100$$
    (1)
    $$Dry;matter;content left(%right)=frac{left(b-cright)}{w}times 100$$
    (2)
    where a = weight (g) of crucible with weighed sample; b = weight (g) of crucible with dried sample; c = weight (g) of crucible; w = weight (g) of weighed sample9.Ash content3–5 g of material was weighed in a marked porcelain crucible. The crucible was placed in a preheated muffle furnace at 550 °C ± 20 °C. After 16 h, the crucible was allowed to cool down in a desiccator before being weighed. The ash content was calculated according to Eq. (3):$$Ash left(%right)=frac{left(d-cright)}{{w}^{^{prime}}}times 100$$
    (3)
    where d = weight (g) of crucible with calcinated sample; c = weight (g) of crucible; w′ =  weight (g) of dry matter sample10.Fat contentThe fat in the samples was extracted with a polar solvent consisting of CHCl3, MeOH and H2O in a mixing ratio of 1:2:0.8 to give a single-phase system. 5–20 g of material was weighed into a 250 ml test tube. H2O was added so that water content plus added material corresponded to 16 ml. MeOH (40 ml) and CHCl3 (20 ml) were added. The mix was homogenized for 60 s. CHCl3 (20 ml) was again added and the mix was homogenized for 30 s H2O (20 ml) was added, and the mix was homogenized again for 30 s. The test tube was sealed and cooled in a water bath with ice. The emulsion was quickly filtered out through a small cotton ball in a funnel. The upper layer of the collected liquid consisting of MeOH and H2O was removed by suction. 5–20 ml of the remaining CHCl3 phase was transferred to a tared evaporation dish with a positive displacement pipette. The solvent was evaporated with an infrared lamp. The dish was cooled in a desiccator and weighed. The fat content was calculated according to the Eq. (4):$$Fat;content left(%right)=frac{dtimes b}{W times left(c-frac{d}{mathrm{0,92}}right)}times 100$$
    (4)
    where b = ml CHCl3 added; c = ml CHCl3 transferred; d = weight of fat in evaporation dish (g); 0.92 = specific gravity for fat, g/ml; w = weight (g) of the sample11.Protein contentProtein content analysis was performed with a fully automated Kjeltec 8400 (Foss Analytics, Denmark). 0.5–1 g of nitrogen free paper of previously dried sample was allowed to be digested in a digestion unit with concentrated H2SO4 (17.5 ml) and two catalyser tablets for 2 h 20 min at 420 °C. The digested liquid was transferred to the titration unit after cooling and was titrated fully automated by the equipment.Blanking was performed only with nitrogen free paper, titration with standardized HCl solution and 1% (w/w) boric acid solution containing a pH sensitive indicator. The protein content was calculated according to the Eq. (5):$$Protein;content left(%right)=frac{mathrm{14,007}times N times f times left(a-bright)}{wtimes 1000}times 100$$
    (5)
    where 14.007 = atomic weight of Nitrogen; N = Normality of the titration solution; f = protein factor (6.25); w = weight (g) of weighed sample; a = ml of HCl consumed for sample titration; b = ml of HCl consumed for blank titration12.
    Cis-fatty acid and trans-fatty acids compositionThis method was designed to determine the fatty acid composition of marine oils and marine oil esters in relative (area-%) values, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in absolute (g/100 g) values using a bonded polyglycol liquid phase in a flexible fused silica capillary column. C23:0 fatty acid was used as an internal standard.For methyl esterification of oil samples for the analysis of cis-fatty acids, two drops of the oil sample were weighed and transferred to a 15 ml test tube with a screw cap. The test amount should be between 20 and 35 mg. Exactly 900 µl of the internal standard solution was added. The solvent was evaporated by nitrogen on a heating block at 80 °C. NaOH solution (1.5 ml, 0.5 N) was added. The mix was incubated in boiling water for 5 min and cooled in cold water. A 15% BF3-solution (2 ml) was added. The mix was again incubated in boiling water for 30 min and cooled to 30–40 °C. Isooctane (1 ml) was added. A cork was set, and the mixture grated with gentle movements for 30 s. Saturated NaCl (5 ml) was added immediately. A cork was set, and the mixture was again grated with gentle movements for 30 s. The isooctane phase was transferred to a test tube with a lid. The test tube was centrifuged at 3000 rpm if phase separation was difficult to achieve. Another 1 ml of isooctane was added to the test tube. A cork was set, and the mixture grated with gentle movements for 30 s. The isooctane phase was transferred to the same test tube with a lid. 5 µl of this transferred isooctane phase was diluted into a new test tube with 1 ml of isooctane.The procedure for methyl esterification of trans-fatty acids was identical to that for methyl esterification of cis-fatty acids, with one exception: incubation time after the addition of BF3-solution was 5 min.For the GC analysis an analytical capillary column (60 m × 0.25 mm × 0.25 µm-70% Cyanopropyl Polysilphenylene-siloxane) was used. (P/N: 054623, manufacturer: SGE). During the analysis the gas valves on the wall panel for synthetic air and hydrogen were left open.Two different GC programs were used for the analysis (Table 1).Table 1 GC-program for analysis of fatty acids.Full size tableThe identification of the different fatty acid methyl esters was performed by comparing the pattern and relative retention times by chromatography of different standards. Empirical response factor was used in quantifying fatty acids, based on calibration solution analysis with equal amounts of included fatty acid methyl esters (GLC-793, Nu-Chek-Prep Inc. Elysian MN, USA). It was calculated according to the Eq. (6):$${RF}_{em }=frac{{A}_{23:0}}{{A}_{FS}}$$
    (6)
    The absolute amount of each fatty acid, calculated as fatty acid methyl ester was calculated according to the Eq. (7):$${C}_{FS}(g/100)=left(frac{{A}_{FS }times {IS}_{W} times {RF}_{em} }{ {A}_{23:0} times W}right)times 100$$
    (7)
    where AFS = Area of the fatty acid A23:0 = Area of internal standard; ISW = Number of milligrams (mg) internal standard added; RFem = Empirical response factor to the fatty acid with reference to 23:0; W = Weighed sample amount in milligrams (mg); 100 = Factor for conversion to g/100 g13,14,15.Lipid classesThe dominant lipid classes were separated by HPLC equipped with a LiChroCART 125-4, diol 5 µm column and a Charged Aerosol Detector (CAD), using a tertiary gradient mobile phase composition. The fat was extracted as previously described (“Fat content”). A suitable amount of CH3Cl was added to the fat sample, the mix was pipetted into a tared test tube and evaporated on a heating block under nitrogen. The temperature of the heating block must be at 60 °C. The test tube with the evaporated sample was weighed and the weight of the fat calculated. The sample was diluted with an appropriate amount of CH3Cl. Prior to injection the CAD detector was programmed with these settings: range = 500, Filter = Med, Offset = 5, T = 30 °C. The gradient profile is shown Table 2.Table 2 Gradient profile for separation of lipid classes.Full size tableThe quantification was based on external standards with a purity ≥ 98%. Triacylglycerols (TAG) in natural marine oils have a large elution range compared to the other lipid classes, therefore a standard control oil (fish oil) for the preparation of the TAG standard curve was used. This provides a better adaptation to real samples compared to a pure TAG compound.Meat contentMeat content was measured on cooked clusters from the middle of the merus on the first walking leg as an area-percentage of meat-to-shell using an elliptic area formula; Internal height and width of shells and external height and width of muscle was measured, width (w) and height (h) were multiplied to each other and π to calculate the elliptical areas (n = 56 September, n = 45 December, n = 29 February, n = 66 April, n = 50 June). The meat content (MC) was defined as the percentage of space occupied by meat according to the Eq. (8) and the hepatopancreas index (HI) was calculated according to the Eq. (9):$$MCleft(%right)=frac{h;muscletimes w;muscletimes pi }{h;shelltimes w;shelltimes pi }times 100$$
    (8)
    $$HIleft(%right)=frac{{W}_{hept}}{{W}_{live}}times 100$$
    (9)
    where Whept is the weight of the hepatopancreas and Wlive is the live weight of the crab (n = 56 September, n = 50 December, n = 70 February, n = 70 April, n = 50 June).Graphs, ordinary one-way ANOVA, and linear regressions were made using GraphPad Prism version 7.03 (CA, USA). Meat content data failed the normality test (Shapiro–Wilk) and was analysed using Kruskal–Wallis One Way Analyses of Variance on Ranks and statistical significance was assumed when P  More

  • in

    Reply to: Old-growth forest carbon sinks overestimated

    1.Gundersen, P. Old-growth forest carbon sinks overestimated. Nature https://doi.org/10.1038/s41586-021-03266-z (2021).2.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Yang, Y., Luo, Y. & Finzi, A. C. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol. 190, 977–989 (2011).CAS 
    Article 

    Google Scholar 
    4.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Houlton, B. Z. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 62, 58–62 (2018).ADS 
    Article 

    Google Scholar 
    7.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).CAS 
    Article 

    Google Scholar 
    8.Hyvönen, R. et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol. 173, 463–480 (2006).Article 

    Google Scholar 
    9.Clark, D. A. et al. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).Article 

    Google Scholar 
    10.Wharton, S. & Falk, M. Climate indices strongly influence old-growth forest carbon exchange. Environ. Res. Lett. 11, 044016 (2016).ADS 
    Article 

    Google Scholar 
    11.Campioli, M. et al. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nat. Commun. 7, 13717 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Luyssaert, S. et al. Toward a consistency cross-check of eddy covariance flux-based and biometric estimates of ecosystem carbon balance. Glob. Biogeochem. Cycles 23, https://doi.org/10.1029/2008GB003377 (2009).13.Nord-Larsen, T., Vesterdal, L., Bentsen, N. S. & Larsen, J. B. Ecosystem carbon stocks and their temporal resilience in a semi-natural beech-dominated forest. For. Ecol. Manage. 447, 67–76 (2019).Article 

    Google Scholar 
    14.Kwon, H., Law, B. E., Thomas, C. K. & Johnson, B. G. The influence of hydrological variability on inherent water use efficiency in forests of contrasting composition, age, and precipitation regimes in the Pacific Northwest U.S. Agric. For. Meteorol. 249, 488–500 (2018).ADS 
    Article 

    Google Scholar 
    15.Law, B. E. & Berner, L. T. NACP TERRA-PNW: Forest Plant Traits, NPP, Biomass, and Soil Properties 1999–2014 https://doi.org/10.3334/ORNLDAAC/1292 (ORNL DAAC, 2015).16.Falk, M., Wharton, S., Schroeder, M., Ustin, S. L. & Paw, U. K. T. Flux partitioning in an old-growth forest: seasonal and interannual dynamics. Tree Physiol. 28, 509–520 (2008).CAS 
    Article 

    Google Scholar 
    17.FLUXNET2015 Dataset: Data Processing https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/ (Fluxnet, accessed 25 April 2020).18.Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).ADS 
    Article 

    Google Scholar 
    19.Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849–851 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Zhou, G. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Chang. 3, 792–796 (2013).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    A trade-off between plant and soil carbon storage under elevated CO2

    1.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 

    Google Scholar 
    2.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Keenan, T. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Baig, S., Medlyn, B. E., Mercado, L. M. & Zaehle, S. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob. Change Biol. 21, 4303–4319 (2015).ADS 

    Google Scholar 
    5.Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long‐term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    6.Norby, R. J. et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl Acad. Sci. USA 102, 18052–18056 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. & Hungate, B. A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344, 508 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).ADS 

    Google Scholar 
    9.Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).ADS 
    CAS 

    Google Scholar 
    10.Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).ADS 
    CAS 

    Google Scholar 
    11.Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 6, 751–758 (2016).ADS 

    Google Scholar 
    12.Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Chang. 9, 684–689 (2019).ADS 
    CAS 

    Google Scholar 
    13.Reich, P. B., Hungate, B. A. & Luo, Y. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu. Rev. Ecol. Evol. Syst. 37, 611–636 (2006).
    Google Scholar 
    14.Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. 42, 181–203 (2011).
    Google Scholar 
    15.Terrer, C. et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol. 217, 507–522 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).
    Google Scholar 
    17.Hungate, B. A. et al. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta‐analyses. Glob. Change Biol. 15, 2020–2034 (2009).ADS 

    Google Scholar 
    18.Kuzyakov, Y., Horwath, W. R., Dorodnikov, M. & Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 128, 66–78 (2019).CAS 

    Google Scholar 
    19.Tian, H. et al. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions. Glob. Biogeochem. Cycles 29, 775–792 (2015).ADS 
    CAS 

    Google Scholar 
    20.Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).ADS 

    Google Scholar 
    21.Nie, M., Lu, M., Bell, J., Raut, S. & Pendall, E. Altered root traits due to elevated CO2: a meta‐analysis. Glob. Ecol. Biogeogr. 22, 1095–1105 (2013).
    Google Scholar 
    22.Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).CAS 

    Google Scholar 
    23.Treseder, K. K. A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).
    Google Scholar 
    24.Jastrow, J. D. et al. Elevated atmospheric carbon dioxide increases soil carbon. Glob. Change Biol. 11, 2057–2064 (2005).ADS 

    Google Scholar 
    25.Carrillo, Y., Dijkstra, F. A., LeCain, D. & Pendall, E. Mediation of soil C decomposition by arbuscular mycorrizhal fungi in grass rhizospheres under elevated CO2. Biogeochemistry 127, 45–55 (2016).CAS 

    Google Scholar 
    26.Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).CAS 

    Google Scholar 
    27.Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).ADS 

    Google Scholar 
    28.Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).ADS 
    CAS 

    Google Scholar 
    29.Craig, M. E. et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob. Change Biol. 24, 3317–3330 (2018).ADS 

    Google Scholar 
    30.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
    Google Scholar 
    32.Sokol, N. W., Kuebbing, S. E., Karlsen‐Ayala, E. & Bradford, M. A. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol. 221, 233–246 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Evans, R. D. et al. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nat. Clim. Chang. 4, 394–397 (2014).ADS 
    CAS 

    Google Scholar 
    34.Walker, A. P. et al. FACE-MDS Phase 2: Model Output https://www.osti.gov/dataexplorer/biblio/dataset/1480327 (2018).35.Wieder, W. R. et al. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models. Glob. Change Biol. 24, 1563–1579 (2018).ADS 

    Google Scholar 
    36.Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).ADS 
    CAS 

    Google Scholar 
    37.Shi, M., Fisher, J. B., Brzostek, E. R. & Phillips, R. P. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Glob. Change Biol. 22, 1299–1314 (2016).ADS 

    Google Scholar 
    38.Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    40.Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Chang. 3, 909–912 (2013).ADS 
    CAS 

    Google Scholar 
    41.Terrer, C. Report of Mutualistic Associations, Nutrients, and Carbon Under eCO2 (ROMANCE) v1.0 Dataset. https://doi.org/10.6084/m9.figshare.11704491.v7 (2020).42.Dieleman, W. I. J. et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Change Biol. 18, 2681–2693 (2012).ADS 

    Google Scholar 
    43.Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. in Introduction to Meta‐Analysis 225–238 (John Wiley & Sons, 2009).44.Del Re, A. C. & Hoyt, W. T. MAd: meta-analysis with mean differences. R Package Version 08-2 https://cran.r-project.org/package=MAd (2014).45.Song, J. & Wan, S. A Global Database Of Plant Production And Carbon Exchange From Global Change Manipulative Experiments https://doi.org/10.6084/m9.figshare.7442915.v9 (2020).46.Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, https://doi.org/10.18637/jss.v036.i03 (2010).47.Osenberg, C. W., Sarnelle, O., Cooper, S. D. & Holt, R. D. Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology 80, 1105–1117 (1999).
    Google Scholar 
    48.Rubin, D. B. & Schenker, N. Multiple imputation in health‐are databases: an overview and some applications. Stat. Med. 10, 585–598 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Lajeunesse, M. J. Facilitating systematic reviews, data extraction and meta‐analysis with the METAGEAR package for R. Methods Ecol. Evol. 7, 323–330 (2016).
    Google Scholar 
    50.Van Lissa, C. J. MetaForest: exploring heterogeneity in meta-analysis using random forests. Preprint at https://psyarxiv.com/myg6s/ (2017).51.Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, https://doi.org/10.18637/jss.v028.i05 (2008).52.Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, https://doi.org/10.18637/jss.v034.i12 (2010).53.van Groenigen, K. J. et al. Element interactions limit soil carbon storage. Proc. Natl Acad. Sci. USA 103, 6571–6574 (2006).ADS 

    Google Scholar 
    54.Wang, B. & Qiu, Y. L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299–363 (2006).CAS 

    Google Scholar 
    55.Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K. & McGlinn, D. J. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Nat. 188, E113–E125 (2016).
    Google Scholar 
    56.Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).ADS 
    CAS 

    Google Scholar 
    57.Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Chang. 5, 528–534 (2015).ADS 

    Google Scholar 
    58.Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free‐Air CO2 Enrichment studies. New Phytol. 202, 803–822 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.De Kauwe, M. G. et al. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 203, 883–899 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    60.Walker, A. P. et al. Comprehensive ecosystem model‐data synthesis using multiple data sets at two temperate forest free‐air CO2 enrichment experiments: model performance at ambient CO2 concentration. J. Geophys. Res. Biogeosci. 119, 937–964 (2014).ADS 
    CAS 

    Google Scholar 
    61.Walker, A. P. et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 10, 454 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Schlesinger, W. et al. in Managed Ecosystems and CO2 197–212 (2006).63.Hungate, B. A. et al. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland. New Phytol. 200, 753–766 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Jordan, D. N. et al. Biotic, abiotic and performance aspects of the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Glob. Change Biol. 5, 659–668 (1999).ADS 

    Google Scholar 
    65.Carrillo, Y., Dijkstra, F., LeCain, D., Blumenthal, D. & Pendall, E. Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecol. Lett. 21, 1639–1648 (2018).
    Google Scholar 
    66.Mueller, K. E. et al. Impacts of warming and elevated CO2 on a semi‐arid grassland are non‐additive, shift with precipitation, and reverse over time. Ecol. Lett. 19, 956–966 (2016).CAS 

    Google Scholar 
    67.Zak, D. R., Pregitzer, K. S., Kubiske, M. E. & Burton, A. J. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade‐long net primary productivity enhancement by CO2. Ecol. Lett. 14, 1220–1226 (2011).
    Google Scholar 
    68.Oleson, K. et al. Technical Description of Version 4.5 of the Community Land Model (CLM) Report NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M (2013).69.Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).ADS 

    Google Scholar 
    70.Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, https://doi.org/10.1029/2003GB002199 (2005).71.Haverd, V. et al. A new version of the CABLE land surface model (subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).ADS 
    CAS 

    Google Scholar 
    72.Lawrence, D. M. et al. The Community Land Model Version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).ADS 

    Google Scholar 
    73.Meiyappan, P., Jain, A. K. & House, J. I. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change. Glob. Biogeochem. Cycles 29, 1524–1548 (2015).ADS 
    CAS 

    Google Scholar 
    74.Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).ADS 

    Google Scholar 
    75.Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).ADS 
    CAS 

    Google Scholar 
    76.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).ADS 

    Google Scholar 
    77.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high‐resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 
    78.Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    80.Batjes, N. H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269, 61–68 (2016).ADS 
    CAS 

    Google Scholar 
    81.Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 6, 249–263 (2014).ADS 

    Google Scholar  More

  • in

    Effects of rising CO2 levels on carbon sequestration are coordinated above and below ground

    In a paper in Nature, Terrer et al.1 reveal an unexpected trade-off between the effects of rising atmospheric carbon dioxide levels on plant biomass and on stocks of soil carbon. Contrary to the assumptions encoded in most computational models of terrestrial ecosystems, the accrual of soil carbon is not positively related to the amount of carbon taken up by plants for biomass growth when CO2 concentrations increase. Instead, the authors show that carbon accumulates in soils when there is a small boost in plant biomass growth in response to CO2, and declines when the growth of biomass is high. Terrer et al. propose that associations of plants with mycorrhizal soil fungi are a key factor in this relationship between the above- and below-ground responses to elevated CO2 levels.
    Read the paper: A trade-off between plant and soil carbon storage under elevated CO2
    Rising levels of atmospheric CO2 are thought to have driven an increase in the amount of carbon absorbed globally by land ecosystems over the past few decades, a phenomenon known as the CO2 fertilization effect2. This occurs because, at the scale of leaves, higher CO2 levels enhance photosynthesis and the efficiency with which resources (water, light and nutrients such as nitrogen) are used to assimilate CO2 and support biomass growth3. Evidence supporting the existence of the CO2 fertilization effect has been observed in experiments in which the atmosphere around plants or plant communities is enriched with CO2. But at the level of whole ecosystems, responses to CO2 enrichment are more difficult to track, because the effects are diluted throughout a chain of connected processes. Constraining estimates of the response of the global land carbon sink to rising CO2 levels therefore remains a major challenge (see go.nature.com/3vgvhj).Changes in soil carbon are inherently difficult to detect, and studies that assess the effects of elevated CO2 levels on soil-carbon stocks have been equivocal4. Terrer and colleagues set out to investigate these effects by carrying out a meta-analysis of 108 CO2-enrichment experiments. The authors estimate that, in these studies, soil-carbon stocks increased in non-forest sites but remained almost unchanged in forests. By evaluating the effects of multiple environmental variables, the authors found that, surprisingly, the best explanation for the observed patterns is that the changes in soil carbon stocks are inversely related to the changes in above-ground plant biomass: high accumulation of carbon in biomass was associated with soil-carbon loss, whereas low biomass accumulation was associated with soil-carbon gain. This relationship was evident only in experiments in which no nutrients had been added to the studied systems, leading the authors to propose that plant nutrient-acquisition strategies are responsible — which, in turn, depend on the mycorrhizal soil fungi associated with the plants.
    Soils linked to climate change
    A previous study reported5 that only a small increase in above-ground biomass occurs in CO2-enriched plants that associate with a particular family of mycorrhizae (arbuscular mycorrhizae; AM). AM-associated plants benefit from the fungi’s extensive network of hyphae (branching filaments that aid vegetative growth), which support the plants’ uptake of nitrogen from the soil solution. However, AM have only a limited ability to ‘mine’ nitrogen from organic matter in the soil. The availability of soil nitrogen therefore limits the increase of biomass growth of AM-associated plants in response to elevated CO2 levels. By contrast, plant species that associate with a different group of soil fungi (the ectomycorrhizae; ECM) exhibit a greater increase in above-ground biomass in CO2-enrichment studies, because some of their carbon is allocated to ECM that can mine for nitrogen5. Mining for nutrients by ECM is, however, thought to accelerate the decomposition of organic matter in soil.Terrer et al. now find that AM-associated plants produce a bigger increase in soil-carbon stocks in CO2-enrichment experiments than do ECM-associated plants. The authors suggest that this is because AM-associated plants allocate more carbon to fine roots and to compounds exuded by the roots, resulting in soil-carbon accrual (Fig. 1a). By contrast, nutrient acquisition by ECM-associated plants results in increased turnover — and therefore loss — of soil organic matter (Fig. 1b). Overall, this would lead to an ecosystem-scale trade-off between the amount of carbon sequestered in plants and that sequestered in soil, in a CO2-enriched atmosphere.

    Figure 1 | Proposed effects of elevation of atmospheric carbon dioxide levels. Terrer et al.1 suggest that associations of plants with different types of mycorrhizal soil fungi affect plant and soil responses to increases in atmospheric carbon dioxide levels. a, Plants that associate with arbuscular mycorrhizal fungi (grasses and some trees, in this study) do not ‘mine’ nitrogen (N, a nutrient) from the soil, and therefore do not produce much extra above-ground biomass when CO2 levels rise. Instead, they allocate carbon to fine roots and to root-exuded substances, resulting in soil-carbon accrual. Carbon dioxide produced from the respiration of soil microorganisms returns carbon to the atmosphere. b, Plants that associate with ectomycorrhizal fungi (only trees in this study) mine the soil for nitrogen, the uptake of which supports a bigger increase in biomass growth than in a. However, nutrient mining increases the rate of decomposition of organic matter in soil. The amount of carbon in the soil therefore decreases in response to elevated CO2 levels; microbial soil respiration is greater than in a.

    Most Earth-system models that account for land carbon-cycling processes assume that rising levels of atmospheric CO2 will increase plant growth, thus producing more plant litter and thereby increasing stocks of soil carbon6. The authors compared the changes in soil carbon and above-ground plant biomass predicted by various models, both in simulations of six open-air CO2-enrichment experiments, and in global simulations of historical and future increases in atmospheric CO2. None of the models reproduced the negative relationship between carbon sequestration by soil and growth in plant biomass that was observed in the current study.Terrer and co-workers’ findings thus provide another urgent warning that current climate models overestimate the amount of carbon that will be sequestered by land ecosystems as atmospheric CO2 levels increase — not only because the models largely ignore the effects of nutrient limitations, but also because they overestimate the amount of carbon that could be sequestered in soil, particularly in forest ecosystems7. But the new study also reveals that grasslands, shrublands and other ecosystems that already have high soil-carbon stocks have great potential to accumulate more soil carbon as CO2 levels increase. These results thus add weight to previous calls to protect existing soil-carbon stocks to mitigate the effects of climate change8.
    Carbon dioxide loss from tropical soils increases on warming
    There are some limitations to the set of CO2-enrichment experiments included in Terrer and colleagues’ meta-analysis. The experiments are biased towards temperate systems, and most of the forests studied are associated with ECM, whereas the grasslands are all AM-associated. The authors did not find that the type of ecosystem had a substantial effect on the observed responses to CO2, but it remains to be seen whether the reported trade-off between above- and below-ground carbon sequestration for AM- compared with ECM-associated plants applies to forests alone9. Further experiments, especially in tropical ecosystems, are now needed to address these issues.Tropical ecosystems are large contributors to the global terrestrial carbon sink10, but they are notoriously under-studied. Field observations are scarce and few manipulation experiments — such as CO2 enrichment or nutrient additions — have been carried out in these ecosystems11,12. Below-ground processes are particularly challenging to assess in the tropics, where the effects of multiple nutrient scarcities often come into play12. Terrer and colleagues’ study provides a promising framework that can be elaborated to describe diverse plant–soil interactions in various terrestrial ecosystems in the future.CO2-enrichment experiments generally last for just a few years, or just over a decade at most13. Such timescales are unlikely to capture the effects of elevated CO2 levels on plant mortality, plant-species composition and soil-carbon turnover time, all of which can affect the sequestration of carbon by ecosystems in different ways in the longer term. Mechanistic understanding gained from experiments about the coupling between carbon and nutrient cycling can, however, be integrated into computational models. And this will allow us to constrain estimates of the size of the terrestrial carbon sink in the coming decades. The interactions between plants and their associated soil fungi, as well as other crucial below-ground agents and processes such as microbial communities, are already stirring up modelling efforts14,15. Terrer and colleagues’ study now invites researchers to test hypotheses about the processes that drive coordinated above- and below-ground responses to rising CO2 levels. Such studies could be a real step forwards in our understanding of the fate of the terrestrial carbon sink. More

  • in

    Old-growth forest carbon sinks overestimated

    1.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Ciais, P. et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).5.Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 
    6.Global Soil Organic Carbon Map (GSOCmap) Technical Report http://www.fao.org/3/I8891EN/i8891en.pdf (FAO/ITPS, 2018).7.Belyea, L. R. & Malmer, N. Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob. Change Biol. 10, 1043–1052 (2004).ADS 
    Article 

    Google Scholar 
    8.Zhang, J. et al. C:N:P stoichiometry in China’s forests: from organs to ecosystems. Funct. Ecol. 32, 50–60 (2018).Article 

    Google Scholar 
    9.Fang, Y. et al. Atmospheric deposition and leaching of nitrogen in Chinese forest ecosystems. J. For. Res. 16, 341–350 (2011).CAS 
    Article 

    Google Scholar 
    10.Fenn, M. E. et al. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol. Appl. 8, 706–733 (1998).Article 

    Google Scholar 
    11.MacDonald, J. A. et al. Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob. Change Biol. 8, 1028–1033 (2002).ADS 
    Article 

    Google Scholar 
    12.Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob. Biogeochem. Cycles 20, GB4003 (2006).ADS 
    Article 

    Google Scholar 
    13.Yang, Y., Luo, Y. & Finzi, A. C. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol. 190, 977–989 (2011).CAS 
    Article 

    Google Scholar 
    14.Moffat, A. M. et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric. For. Meteorol. 147, 209–232 (2007).ADS 
    Article 

    Google Scholar 
    15.Wu, J. et al. Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest. Agric. For. Meteorol. 181, 94–107 (2013).ADS 
    Article 

    Google Scholar 
    16.Soloway, A. D., Amiro, B. D., Dunn, A. L. & Wofsy, S. C. Carbon neutral or a sink? Uncertainty caused by gap-filling long-term flux measurements for an old-growth boreal black spruce forest. Agric. For. Meteorol. 233, 110–121 (2017).ADS 
    Article 

    Google Scholar 
    17.McHugh, I. D. et al. Interactions between nocturnal turbulent flux, storage and advection at an “ideal” eucalypt woodland site. Biogeosciences 14, 3027–3050 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Campioli, M. et al. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nat. Commun. 7, 13717 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Kang, M. et al. New gap-filling strategies for long-period flux data gaps using a data-driven approach. Atmosphere 10, 568 (2019).ADS 
    Article 

    Google Scholar 
    20.Hayek, M. N. et al. A novel correction for biases in forest eddy covariance carbon balance. Agric. For. Meteorol. 250–251, 90–101 (2018).ADS 
    Article 

    Google Scholar 
    21.Wirth, C., Messier, C., Bergeron, Y., Frank, D. & Fankhänel, A. Old-growth forest definitions: a pragmatic view. In Old‐Growth Forests (eds Wirth, C. et al.) Ecological Studies Vol. 207, 1–33 (Springer, 2009).22.Luyssaert, S., Inglima, I. & Jung, M. Global Forest Ecosystem Structure and Function Data for Carbon Balance Research https://doi.org/10.3334/ORNLDAAC/949 (Oak Ridge National Laboratory Distributed Active Archive Center, 2009). More

  • in

    Multi-decadal trends in contingent mixing of Atlantic mackerel (Scomber scombrus) in the Northwest Atlantic from otolith stable isotopes

    1.Tsukamoto, K., Nakai, I. & Tesch, W.-V. Do all freshwater eels migrate?. Nature 396, 635–636 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Fromentin, J.-M. & Powers, J. E. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish. Fish. 6, 281–306 (2005).Article 

    Google Scholar 
    3.Kerr, L. A. & Secor, D. H. Bioenergetic trajectories underlying partial migration in Patuxent River (Chesapeake Bay) white perch (Morone americana). Can. J. Fish. Aquat. Sci. 66, 602–612 (2009).Article 

    Google Scholar 
    4.Cadrin, S. X. et al. Population structure of beaked redfish, Sebastes mentella: evidence of divergence associated with different habitats. ICES J. Mar. Sci. 67, 1617–1630 (2010).Article 

    Google Scholar 
    5.Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Tilman, D., Lehman, C. L. & Bristow, C. E. Diversity-stability relationships: statistical inevitability or ecological consequence?. Am. Nat. 151, 277–282 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Secor, D. H., Kerr, L. A. & Cadrin, S. X. Connectivity effects on productivity, stability, and persistence in a herring metapopulation model. ICES J. Mar. Sci. 66, 1726–1732 (2009).Article 

    Google Scholar 
    8.Cadrin, S. X. & Secor, D. H. Accounting for spatial population structure in stock assessment: past, present, and future. In The Future of Fisheries Science in North America (eds Beamish, R. J. & Rothschild, B. J.) 405–426 (Springer, 2009).
    Google Scholar 
    9.Secor, D. H. The unit stock concept: bounded fish and fisheries. In Stock Identification Methods: Applications in Fishery Science 2nd edn (eds Cadrin, S. X. et al.) 7–28 (Elsevier, 2014).
    Google Scholar 
    10.Ricker, W. E. Maximum sustained yields from fluctuating environments and mixed stocks. J. Fish. Res. Board Can. 15, 991–1006 (1958).Article 

    Google Scholar 
    11.Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722 (2017).Article 

    Google Scholar 
    12.Kerr, L. A., Cadrin, S. X. & Kovach, A. I. Consequences of a mismatch between biological and management units on our perception of Atlantic cod off New England. ICES J. Mar. Sci. 71, 1366–1381 (2014).Article 

    Google Scholar 
    13.Goethel, D. R. & Berger, A. M. Accounting for spatial complexities in the calculation of biological reference points: effects of misdiagnosing population structure for stock status indicators. Can. J. Fish. Aquat. Sci. 74, 1878–1894 (2017).Article 

    Google Scholar 
    14.Van Beveren, E., Duplisea, D. E., Brosset, P. & Castonguay, M. Assessment modelling approaches for stocks with spawning components, seasonal and spatial dynamics, and limited resources for data collection. PLoS ONE 14, e0222472 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Cadrin, S. X. Defining spatial structure for fishery stock assessment. Fish. Res. 221, 105397 (2020).Article 

    Google Scholar 
    16.Sette, O. E. Biology of the Atlantic mackerel (Scomber scombrus) of North America. Part II:migration and habits. Fish. Bull. 51, 251–358 (1950).
    Google Scholar 
    17.Moores, J. A., Winters, G. H. & Parsons, L. S. Migrations and biological characteristics of Atlantic mackerel (Scomber scombrus) occurring in Newfoundland waters. J. Fish. Res. Board Can. 32, 1347–1357 (1975).Article 

    Google Scholar 
    18.Redding, S. G., Cooper, L. W., Castonguay, M., Wiernicki, C. & Secor, D. H. Northwest Atlantic mackerel population structure evaluated using otolith δ18O composition. ICES J. Mar. Sci. 77, 2582–2589 (2020).Article 

    Google Scholar 
    19.Overholtz, W. J., Link, J. S. & Suslowicz, L. E. Consumption of important pelagic fish and squid by predatory fish in the northeastern USA shelf ecosystem with some fishery comparisons. ICES J. Mar. Sci. 57, 1147–1159 (2000).Article 

    Google Scholar 
    20.Tyrrell, M. C., Link, J. S., Moustahfid, H. & Overholtz, W. J. Evaluating the effect of predation mortality on forage species population dynamics in the Northeast US continental shelf ecosystem using multispecies virtual population analysis. ICES J. Mar. Sci. 65, 1689–1700 (2008).Article 

    Google Scholar 
    21.Jansen, T. & Gislason, H. Population structure of Atlantic mackerel (Scomber scombrus). PLoS ONE 8, e64744 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Nøttestad, L. et al. Quantifying changes in abundance, biomass, and spatial distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic seas from 2007 to 2014. ICES J. Mar. Sci. 73, 359–373 (2016).Article 

    Google Scholar 
    23.Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep-Sea. Res. Part II 159, 152–168 (2019).Article 

    Google Scholar 
    24.FAO. The state of world fisheries and aquaculture 2020. Sustainability in action. 244 http://www.fao.org/documents/card/en/c/ca9229en (2020). Accessed on 23 July 2020.25.NEFSC. 64th Northeast Regional Stock Assessment Workshop (64th SAW) Assessment Report. 536 (2018).26.DFO. Assessment of the Atlantic mackerel stock for the Northwest Atlantic (Subareas 3 and 4) in 2018. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2019/035: 14 (2019).27.Secor, D. H. Specifying divergent migrations in the concept of stock: the contingent hypothesis. Fish. Res. 43, 13–34 (1999).Article 

    Google Scholar 
    28.Sette, O. E. Biology of the Atlantic mackerel (Scomber scombrus) of North America. Part I: early life history, including the growth, drift, and mortality of the egg and larval populations. Fish. Bull. 50, 149–237 (1943).
    Google Scholar 
    29.Berrien, P. L. Eggs and larvae of Scomber scombrus and Scomber japonicus in continental shelf waters between Massachusetts and Florida. Fish. Bull. 76, 95–115 (1978).
    Google Scholar 
    30.Overholtz, W. J., Hare, J. A. & Keith, C. M. Impacts of interannual environmental forcing and climate change on the distribution of Atlantic mackerel on the U.S. Northeast continental shelf. Mar. Coast. Fish. 3, 219–232 (2011).Article 

    Google Scholar 
    31.McManus, M. C., Hare, J. A., Richardson, D. E. & Collie, J. S. Tracking shifts in Atlantic mackerel (Scomber scombrus) larval habitat suitability on the Northeast U.S. Continental Shelf. Fish. Oceanogr. 27, 49–62 (2018).Article 

    Google Scholar 
    32.Richardson, D. E., Carter, L., Curti, K. L., Marancik, K. E. & Castonguay, M. Changes in the spawning distribution and biomass of Atlantic mackerel (Scomber scombrus) in the western Atlantic Ocean over 4 decades. Fish. Bull. 118, 120–134 (2020).Article 

    Google Scholar 
    33.Moura, A. et al. Population structure and dynamics of the Atlantic mackerel (Scomber scombrus) in the North Atlantic inferred from otolith chemical and shape signatures. Fish. Res. 230, 105621 (2020).Article 

    Google Scholar 
    34.Rooker, J. et al. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser. 368, 231–239 (2008).ADS 
    Article 

    Google Scholar 
    35.Clarke, L. M., Munch, S. B., Thorrold, S. R. & Conover, D. O. High connectivity among locally adapted populations of a marine fish (Menidia menidia). Ecology 91, 3526–3537 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Wells, R. J. D. et al. Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific. ICES J. Mar. Sci. 72, 2118–2127 (2015).Article 

    Google Scholar 
    37.Moreira, C. et al. Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry. Fish. Res. 197, 113–122 (2018).Article 

    Google Scholar 
    38.Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Kalish, J. M. 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar. Ecol. Prog. Ser. 75, 191–203 (1991).ADS 
    Article 

    Google Scholar 
    41.Solomon, C. T. et al. Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can. J. Fish. Aquat. Sci. 63, 79–89 (2006).CAS 
    Article 

    Google Scholar 
    42.Tohse, H. & Mugiya, Y. Sources of otolith carbonate: experimental determination of carbon incorporation rates from water and metabolic CO2, and their diel variations. Aquat. Biol. 1, 259–268 (2008).Article 

    Google Scholar 
    43.Chung, M.-T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E. & Grønkjær, P. Field metabolic rates of teleost fishes are recorded in otolith carbonate. Commun. Biol. 2, 24 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Rooker, J. R. & Secor, D. H. Microchemistry: migration and ecology of Atlantic bluefin tuna. In The Future of Bluefin Tunas: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) (Johns Hopkins University Press, 2019).
    Google Scholar 
    45.Uriarte, A. et al. Spatial pattern of migration and recruitment of North East Atlantic mackerel. ICES CM 2001/O:17 (2001).46.Mendiola, D., Alvarez, P., Cotano, U. & Martínez de Murguía, A. Early development and growth of the laboratory reared north-east Atlantic mackerel (Scomber scombrus) L. J. Fish. Biol. 70, 911–933 (2007).Article 

    Google Scholar 
    47.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    48.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models (2020).50.Kerr, L. A. et al. Mixed stock origin of Atlantic bluefin tuna in the U.S. rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fish. Res. 224, 105461 (2020).Article 

    Google Scholar 
    51.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    52.Smith, A. D. et al. Atlantic mackerel (Scomber scombrus L.) in NAFO Subareas 3 and 4 in 2018. DFO Can. Sci. Advis. Sec. Res. Doc. 2020/013. iv + 37 p. (2020).53.Lambrey de Souza, J., Sévigny, J.-M., Chanut, J.-P., Barry, W. F. & Grégoire, F. High genetic variability in the mtDNA control region of a Northwestern Atlantic teleost, Scomber scombrus L. Can. Tech. Rep. Fish. Aquat. Sci. 2625, vi+25 (2006).
    Google Scholar 
    54.Radlinski, M. K., Sundermeyer, M. A., Bisagni, J. J. & Cadrin, S. X. Spatial and temporal distribution of Atlantic mackerel (Scomber scombrus) along the northeast coast of the United States, 1985–1999. ICES J. Mar. Sci. 70, 1151–1161 (2013).Article 

    Google Scholar 
    55.Castonguay, M., Plourde, S., Robert, D., Runge, J. A. & Fortier, L. Copepod production drives recruitment in a marine fish. Can. J. Fish. Aquat. Sci. 65, 1528–1531 (2008).Article 

    Google Scholar 
    56.McManus, M. C. Atlantic Mackerel (Scomber scombrus) Population and Habitat Trends in the Northwest Atlantic (University of Rhode Island, 2017).
    Google Scholar 
    57.Schloesser, R. W., Rooker, J. R., Louchuoarn, P., Neilson, J. D. & Secord, D. H. Interdecadal variation in seawater δ13C and δ18O recorded in fish otoliths. Limnol. Oceanogr. 54, 1665–1668 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Schloesser, R. W., Neilson, J. D., Secor, D. H. & Rooker, J. R. Natal origin of Atlantic bluefin tuna (Thunnus thynnus) from Canadian waters based on otolith δ13C and δ18O. Can. J. Fish. Aquat. Sci. 67, 563–569 (2010).CAS 
    Article 

    Google Scholar 
    59.Thorrold, S. R., Campana, S. E., Jones, C. M. & Swart, P. K. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta. 61, 2909–2919 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Campana, S. E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans 121, 118–132 (2016).ADS 
    Article 

    Google Scholar 
    63.Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Brickman, D., Hebert, D. & Wang, Z. Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada. Cont. Shelf. Res. 156, 11–22 (2018).ADS 
    Article 

    Google Scholar 
    65.Thorrold, S. R., Latkoczy, C., Swart, P. K. & Jones, C. M. Natal homing in a marine fish metapopulation. Science 291, 297–299 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Gillanders, B. M. Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuar. Coast. Shelf. Sci. 64, 47–57 (2005).ADS 
    Article 

    Google Scholar 
    67.Høie, H., Andersson, C., Folkvord, A. & Karlsen, Ø. Precision and accuracy of stable isotope signals in otoliths of pen-reared cod (Gadus morhua) when sampled with a high-resolution micromill. Mar. Biol. 144, 1039–1049 (2004).Article 

    Google Scholar 
    68.Martino, J. C., Doubleday, Z. A., Chung, M.-T. & Gillanders, B. M. Experimental support towards a metabolic proxy in fish using otolith carbon isotopes. J. Exp. Biol. 223, jeb217091 (2020).PubMed 
    Article 

    Google Scholar 
    69.Manel, S., Gaggiotti, O. E. & Waples, R. S. Assignment methods: matching biological questions with appropriate techniques. Trends Ecol. Evol. 20, 136–142 (2005).PubMed 
    Article 

    Google Scholar 
    70.Siskey, M. R., Wilberg, M. J., Allman, R. J., Barnett, B. K. & Secor, D. H. Forty years of fishing: changes in age structure and stock mixing in northwestern Atlantic bluefin tuna (Thunnus thynnus) associated with size-selective and long-term exploitation. ICES J. Mar. Sci. 73, 2518–2528 (2016).Article 

    Google Scholar 
    71.Kerr, L. A., Cadrin, S. X. & Secor, D. H. The role of spatial dynamics in the stability, resilience, and productivity of an estuarine fish population. Ecol. Appl. 20, 497–507 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Goethel, D. R., Quinn, T. J. & Cadrin, S. X. Incorporating spatial structure in stock assessment: movement modeling in marine fish population dynamics. Rev. Fish. Sci. 19, 119–136 (2011).Article 

    Google Scholar 
    73.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
    Google Scholar  More

  • in

    Coastal road mortality of land crab during spawning migration

    1.Firth, L. B. et al. Ocean sprawl: Challenges and opportunities for biodiversity management in a changing world. Oceanogr. Mar. Biol. Annu. Rev. 54, 193–269 (2016).
    Google Scholar 
    2.Forman, R. T. T. et al. Road Ecology: Science and Solutions (Island Press, 2003).
    Google Scholar 
    3.Bishop, M. J. et al. Effects of ocean sprawl on ecological connectivity: Impacts and solutions. J. Exp. Mar. Biol. Ecol. 492, 7–30. https://doi.org/10.1016/j.jembe.2017.01.021 (2017).Article 

    Google Scholar 
    4.Sobocinski, K. L., Cordell, J. R. & Simenstad, C. A. Effects of shoreline modifications on supratidal macroinvertebrate fauna on Puget Sound, Washington beaches. Estuar. Coast 33, 699–711. https://doi.org/10.1007/s12237-009-9262-9 (2010).CAS 
    Article 

    Google Scholar 
    5.Carlton, J. T. & Hodder, J. Maritime mammals: Terrestrial mammals as consumers in marine intertidal communities. Mar. Ecol. Prog. Ser. 256, 271–286. https://doi.org/10.3354/meps256271 (2003).ADS 
    Article 

    Google Scholar 
    6.Levin, L. A. et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, 430–451. https://doi.org/10.1007/s10021-001-0021-4 (2001).CAS 
    Article 

    Google Scholar 
    7.Lee, Y. Study on Changes in the Coastal Environment Due to Human Interference: A Case Study of Sand Beach Coast in Gangneung. Master’s Thesis. Korea National University of Education, Cheongju (2011).8.Son, S. et al. Analysis of Influential factors of roadkill occurrence—A case study of Seorak national park. J. Korean Inst. Landsc. Arch. 44, 1–12. https://doi.org/10.9715/KILA.2016.44.3.001 (2016).ADS 
    Article 

    Google Scholar 
    9.Carr, L. W. & Fahrig, L. Effect of road traffic on two amphibian species of differing vagility. Conserv. Biol. 15, 1071–1078. https://doi.org/10.1046/j.1523-1739.2001.0150041071.x (2001).Article 

    Google Scholar 
    10.Coffin, A. W. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 15, 396–406. https://doi.org/10.1016/j.jtrangeo.2006.11.006 (2007).Article 

    Google Scholar 
    11.Zielin, S. B., Littlejohn, J., de Rivera, C. E., Smith, W. P. & Jacobson, S. L. Ecological investigations to select mitigation options to reduce vehicle-caused mortality of a threatened butterfly. J. Insect Conserv. 20, 845–854. https://doi.org/10.1007/s10841-016-9916-4 (2016).Article 

    Google Scholar 
    12.Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: Dispersal and mortality in snakes. Biol. Conserv. 89, 39–50. https://doi.org/10.1016/S0006-3207(98)00140-2 (1999).Article 

    Google Scholar 
    13.Fahrig, L., Pedlar, J. H., Pope, S. E., Taylor, P. D. & Wegner, J. F. Effect of road traffic on amphibian density. Biol. Conserv. 73, 177–182. https://doi.org/10.1016/0006-3207(94)00102-V (1995).Article 

    Google Scholar 
    14.Hobday, A. J. & Minstrell, M. L. Distribution and abundance of roadkill on Tasmanian highways: Human management options. Wildl. Res. 35, 712–726. https://doi.org/10.1080/15627020.2015.1021161 (2008).Article 

    Google Scholar 
    15.Finder, R. A., Roseberry, J. L. & Woolf, A. Site and landscape conditions at white-tailed deer/vehicle collision locations in Illinois. Landsc. Urban Plan. 44, 77–85. https://doi.org/10.1016/S0169-2046(99)00006-7 (1999).Article 

    Google Scholar 
    16.Glista, D. J., DeVault, T. L. & DeWoody, J. A. Vertebrate road mortality predominantly impacts amphibians. Herpetol. Conserv. Biol. 3, 77–87 (2008).
    Google Scholar 
    17.Grilo, C., Bissonette, J. A. & Cramer, P. C. Mitigation measures to reduce impacts on biodiversity. In Highways: Construction (ed. Jones, S. R.) 73–114 (Management and Maintenance. Nova Science Publishers, 2010).
    Google Scholar 
    18.Baine, M. et al. The development of management options for the black land crab (Gecarcinus ruricola) catchery in the San Andres Archipelago, Colombia. Ocean Coast Manage. 50, 564–589. https://doi.org/10.1016/j.ocecoaman.2007.02.007 (2007).Article 

    Google Scholar 
    19.Kantola, T., Tracy, J. L., Baum, K. A., Quinn, M. A. & Coulson, R. N. Spatial risk assessment of eastern monarch butterfly road mortality during autumn migration within the southern corridor. Biol. Conserv. 231, 150–160. https://doi.org/10.1016/j.biocon.2019.01.008 (2019).Article 

    Google Scholar 
    20.Koivula, M. J. & Vermeulen, H. J. W. Highways and forest fragmentation—Effects on carabid beetles (Coleoptera, Carabidae). Landsc. Ecol. 20, 911–926. https://doi.org/10.1007/s10980-005-7301-x (2005).Article 

    Google Scholar 
    21.Costa, L. L., Mothé, N. A. & Zalmon, I. R. Light pollution and ghost crab road-kill on coastal habitats. Reg. Stud. Mar. Sci. 39, 101457. https://doi.org/10.1016/j.rsma.2020.101457 (2020).Article 

    Google Scholar 
    22.Hübner, L., Pennings, S. C. & Zimmer, M. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: A multi-parameter approach. Oecologia 178, 999–1015. https://doi.org/10.1007/s00442-015-3271-0 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    23.Burggren, W. W. & McMahon, B. R. Biology of the Terrestrial Crabs (Cambridge University Press, 1988).
    Google Scholar 
    24.Micheli, F., Gherardi, F. & Vannini, M. Feeding and burrowing ecology of two East African mangrove crabs. Mar. Biol. 111, 247–254. https://doi.org/10.1007/BF01319706 (1991).Article 

    Google Scholar 
    25.Green, P. T., O’Dowd, D. J. & Lake, P. S. Recruitment dynamics in a rainforest seedling community: Context independent impact of a keystone consumer. Oecologia 156, 373–385. https://doi.org/10.1007/s00442-008-0992-3 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    26.Suzuki, S. The life history of Sesarma haematocheirin the Miura peninsula. Res. Crust 11, 51–65. https://doi.org/10.18353/rcustacea.11.0_51 (1981).Article 

    Google Scholar 
    27.Adamczewska, A. M. & Morris, S. Ecology and behavior of Gecarcoideanatalis, the Christmas Island red crab, during the annual breeding migration. Biol. Bull. 200, 305–320. https://doi.org/10.2307/1543512 (2001).Article 

    Google Scholar 
    28.Le Galliard, J.-F., Fitze, P. S., Ferriere, R. & Clobert, J. Sex ratio bias, male aggression, and population collapse in lizards. Proc. Natl. Acad. Sci. 102, 18231–18236. https://doi.org/10.1073/pnas.0505172102 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer Associates, 2001).
    Google Scholar 
    30.Aresco, M. J. The effect of sex-specific terrestrial movements and roads on the sex ratio of freshwater turtles. Biol. Conserv. 123, 37–44. https://doi.org/10.1016/j.biocon.2004.10.006 (2005).Article 

    Google Scholar 
    31.Mumme, R. L., Schoech, S. J., Woolfenden, G. E. & Fitzpatrick, J. W. Life and death in the fast lane: Demographic consequences of road mortality in the Florida scrub-jay. Conserv. Biol. 14, 501–512. https://doi.org/10.1046/j.1523-1739.2000.98370.x (2000).Article 

    Google Scholar 
    32.Kioko, J., Kiffner, C., Jenkins, N. & Collinson, W. J. Wildlife roadkill patterns on a major highway in northern Tanzania. Afr. Zool. 50, 17–22. https://doi.org/10.1080/15627020.2015.1021161 (2015).Article 

    Google Scholar 
    33.Seo, C., Thorne, J. H., Choi, T., Kwon, H. & Park, C. H. Disentangling roadkill: The influence of landscape and season on cumulative vertebrate mortality in South Korea. Landsc. Ecol. Eng. 11, 87–99. https://doi.org/10.1007/s11355-013-0239-2 (2015).Article 

    Google Scholar 
    34.Beebee, T. J. C. Effects of road mortality and mitigation measures on amphibian populations. Conserv. Biol. 27, 657–668. https://doi.org/10.1111/cobi.12063 (2013).Article 
    PubMed 

    Google Scholar 
    35.Zhang, W. et al. Daytime driving decreases amphibian roadkill. PeerJ 6, e5385. https://doi.org/10.7717/peerj.5385 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Saigusa, M. & Hidaka, T. Semilunar rhythm in the zoea-release activity of the terrestrial crabs Sesarma. Oecologia 37, 163–176. https://doi.org/10.1007/BF00344988 (1978).ADS 
    Article 
    PubMed 

    Google Scholar 
    37.Hartnoll, R. G. et al. Reproduction in the land crab Johngarthialagostoma on Ascension Island. J. Crust. Biol. 30, 83–92. https://doi.org/10.1651/09-3143.1 (2010).Article 

    Google Scholar 
    38.Schmidt, A. J., Bemvenutia, C. E. & Dieleet, K. Effects of geophysical cycles on the rhythm of mass mate searching of a harvested mangrove crab. Anim. Behav. 84, 333–340. https://doi.org/10.1016/j.anbehav.2012.04.023 (2012).Article 

    Google Scholar 
    39.Saigusa, M. Ecological distribution of three species of the genus Sesarma in winter season. Zool. Mag. 87, 142–150 (1978).
    Google Scholar 
    40.Saigusa, M. Adaptive significance of a semilunar rhythm in the terrestrial crab Sesarma. Biol. Bull. 160, 311–321. https://doi.org/10.2307/1540891 (1981).Article 

    Google Scholar 
    41.Saigusa, M., Terajima, M. & Yamamoto, M. Structure, formation, mechanical properties, and disposal of the embryo attachment system of an estuarine crab, Sesarma haematocheir. Biol. Bull. 203, 289–306. https://doi.org/10.2307/1543572 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Saigusa, M. Hatching of an estuarine crab, sesarma haematochier: Factors affecting the timing of hatching in detached embryos, and enhancement of hatching synchrony by the female. J. Oceanogr. 56, 93–102. https://doi.org/10.1023/A:1011118726283 (2000).Article 

    Google Scholar 
    43.Saigusa, M. Larval release rhythm coinciding with solar day and tidal cycles in the terrestrial crab Sesarma-harmony with the semilunar timing and its adaptive significance. Biol. Bull. 162, 371–386. https://doi.org/10.2307/1540990 (1982).Article 

    Google Scholar 
    44.Forward, R. B. Larval release rhythms of decapod crustaceans: An overview. Bull. Mar. Sci. 41, 165–176 (1987).
    Google Scholar 
    45.Hicks, J. W. The breeding behaviour and migrations of the terrestrial crab Gecarcoideanatalis (Decapoda: Brachyura). Aust. J. Zool. 33, 127–142. https://doi.org/10.1071/ZO9850127 (1985).Article 

    Google Scholar 
    46.Morgan, S. G. & Christy, J. H. Adaptive significance of the timing of larval release by crabs. Am. Nat. 145, 457–479. https://doi.org/10.1086/285749 (1995).Article 

    Google Scholar 
    47.Paula, J. Rhythms of larval release of decapod crustaceans in the Mira Estuary, Portugal. Mar. Biol. 100, 309–312. https://doi.org/10.1007/BF00391144 (1989).Article 

    Google Scholar 
    48.Bergin, M. E. Hatching rhythms in Ucapugilator (Decapoda: Brachyura). Mar. Biol. 63, 151–158. https://doi.org/10.1007/BF00406823 (1981).Article 

    Google Scholar 
    49.Christy, J. H. Adaptive significance of semilunar cycles of larval release in fiddler crabs (Genus Uca): Test of a hypothesis. Biol. Bull. 163, 251–263. https://doi.org/10.2307/1541264 (1982).Article 

    Google Scholar 
    50.Quintero-Angel, A., Osorio-Dominguez, D., Vargas-Salinas, F. & Saavedra-Rodriguez, C. A. Roadkill rate of snakes in a disturbed landscape of central Andes of Columbia. Herpetol. Notes 5, 99–105 (2012).
    Google Scholar 
    51.Orłowski, G. Roadside hedgerows and trees as factors increasing road mortality of birds: Implications for management of roadside vegetation in rural landscapes. Landsc. Urban Plan. 86, 153–161. https://doi.org/10.1016/j.landurbplan.2008.02.003 (2008).Article 

    Google Scholar 
    52.Saeki, M. & Macdonald, D. W. The effects of traffic on the raccoon dog (Nyctereutes procyonoides viverrinus) and other mammals in Japan. Biol. Conserv. 118, 559–571. https://doi.org/10.1016/j.biocon.2003.10.004 (2004).Article 

    Google Scholar 
    53.Costa, L. L., Secco, H., Arueira, V. F. & Zalmon, I. R. Mortality of the Atlantic ghost crab Ocypode quadrata (Fabricius, 1787) due to vehicle traffic on sandy beaches: A road ecology approach. J. Environ. Manage. 260, 110168. https://doi.org/10.1016/j.jenvman.2020.110168 (2020).Article 
    PubMed 

    Google Scholar 
    54.Tsai, J. R., Hsieh, Y. T., Lin & H. C. The effect of dike types on terrestrial crab passage through the access road: The predicament of terrestrial crab conservation in Gaomei Wetland. In Proceedings of the 39th Oceans Engineering Conference in Taiwan Hungkuang University, November (2017)55.Bellis, M. A., Jackson, S. D., Griffin, C. R., Warren, P. S. & Thompson, A. O. Utilizing a multi-technique, multi-taxa approach to monitoring wildlife passageways in southern Vermont. Oecol. Aust. 17, 111–128. https://doi.org/10.4257/oeco.2013.1701.10 (2007).Article 

    Google Scholar 
    56.Song, J. et al. Roadkill of amphibians in the Korea national park. Korean J. Environ. Ecol. 23, 187–193 (2009).
    Google Scholar 
    57.Ryu, M. & Kim, J. G. Influence of roadkill during breeding migration on the sex ratio of land crab (Sesarma haematoche). J. Environ. Ecol. 44, 23. https://doi.org/10.1186/s41610-020-00167-6 (2020).Article 

    Google Scholar 
    58.Mizuta, T. Moonlight-related mortality: Lunar conditions and roadkill occurrence in the Amami woodcock Scolopax mira. Wilson J. Ornithol. 126, 544–552. https://doi.org/10.1676/13-159.1 (2014).Article 

    Google Scholar 
    59.Gibbs, J. P. & Steen, D. A. Trends in sex ratios of turtles in the United States: Implications of road mortality. Conserv. Biol. 19, 552–556. https://doi.org/10.1111/j.1523-1739.2005.000155.x (2005).Article 

    Google Scholar 
    60.Rytwinski, T. & Fahrig, L. Do species life history traits explain population responses to roads? A meta-analysis. Biol. Conserv. 147, 87–98. https://doi.org/10.1016/j.biocon.2011.11.023 (2012).Article 

    Google Scholar 
    61.Korea Astronomy and Space Science Institute. Korean Astronomical Almanac (Korea Astronomy and Space Science Institute, 2017).
    Google Scholar  More