More stories

  • in

    Impending anthropogenic threats and protected area prioritization for jaguars in the Brazilian Amazon

    Estes, J. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).Article 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the World’s Largest Carnivores. Science 343, 151–162 (2014).Article 
    CAS 

    Google Scholar 
    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).Article 
    CAS 

    Google Scholar 
    De La Torre, J. A., González-Maya, J. F., Zarza, H., Ceballos, G. & Medellín, R. A. The jaguar’s spots are darker than they appear: assessing the global conservation status of the jaguar (Panthera onca). Oryx 52, 300–315 (2018).Article 

    Google Scholar 
    Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).Article 

    Google Scholar 
    Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).Article 

    Google Scholar 
    Sanderson, E. W. et al. Planning to save a species: the jaguar as a model. Conserv. Biol. 16, 58–72 (2002).Article 

    Google Scholar 
    Rabinowitz, A. & Zeller, K. A. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol. Conserv. 143, 939–945 (2010).Article 

    Google Scholar 
    Woodroffe, R. Predators and people: using human densities to interpret declines of large carnivores. Anim. Conserv. 3, 165–173 (2000).Article 

    Google Scholar 
    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).Article 

    Google Scholar 
    Ferreira, A. S., Peres, C. A., Bogoni, J. A. & Cassano, C. G. Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal Rev. https://doi.org/10.1111/mam12137 (2018).Thompson, J. J. et al. Range-wide factors shaping space use and movements by the Neotropic’s flagship predator: the jaguar. Curr. Biol. https://doi.org/10.1016/jcub202106029 (2021).Sunquist, M. & Sunquist, F. Wild Cats of the World. University of Chicago Press (2002).Leader-Williams, N. & Dublin, H. T. in Priorities for The Conservation Of Mammalian Diversity: Has The Panda Had Its Day? (eds. Entwistle, A., Dunstone, N.) 53−81 (Cambridge University Press, 2000).Thornton, D. et al. Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca). Ecol. Appl. 26, 1112–1124 (2015).Article 

    Google Scholar 
    Olsoy, P. J. et al. Quantifying the effects of deforestation and fragmentation on a range-wide conservation plan for jaguars. Biol. Conserv. 203, 8–16 (2016).Article 

    Google Scholar 
    Morato, R. G., Beisiegel, B. M., Ramalho, E. E. & Boulhosa, R. L. P. Avaliação do risco de extinção da Onça-pintada Panthera onca (Linnaeus, 1758) no Brasil. Biodivers. Brasil. 3, 122–132 (2013).
    Google Scholar 
    Hunter, L. Carnivores of the World. Princeton Univ Press (2011).Morato, R. G. et al. Space use and movement of a neotropical top predator: The Endangered Jaguar. PLoS ONE 11, e0168176 (2016).Article 

    Google Scholar 
    Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology 103, e03543 (2022).Article 

    Google Scholar 
    Chapman, B. et al. in Animal Movement Across Scales 1st edn. (eds. Hansson, L-A, Akesson, S.) 11–30 (Oxford University Press, 2014).Quigley, H. et al. Panthera onca. (errata version published in 2018). The IUCN Red List of Threatened Species 2017:e.T15953A123791436. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T15953A50658693.en (2017).Paviolo, A. et al. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6, 37147 (2016).Article 
    CAS 

    Google Scholar 
    Tobler, M. W., Carillo-Perscastegui, S. E., Hartley, A. Z. & Powell, G. V. N. High jaguar densities and large population sizes in the core habitat of the southwestern Amazon. Biol. Conserv. 159, 375–381 (2013).Article 

    Google Scholar 
    Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution: application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).Article 

    Google Scholar 
    Eva, H. D. et al. A proposal for defining the geographical boundaries of Amazonia; synthesis of the results from an expert consultation workshop organized by the European Commission in collaboration with the Amazon Cooperation Treaty Organization-JRC Ispra (No 21808-EN). https://core.ac.uk/download/pdf/38630683.pdf (2005).Nepstad, D. C., Stickler, C. M., Soares-Filho, B., Merry, F. & Nin, E. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B 363, 1737–1746 (2008).Article 

    Google Scholar 
    Marques, A. A. B., Schneider, M. & Peres, C. A. Human population and socioeconomic modulators of conservation performance in 788 Amazonian and Atlantic Forest reserves. PeerJ 4, pe2206 (2016).Article 

    Google Scholar 
    Jaguar 2030 Roadmap. Regional plan to save America’s largest cat and its ecosystems. https://www.internationaljaguarday.org/jaguar-conservation-roadmap (2018).Sanderson, E. W. et al. A systematic review of potential habitat suitability for the jaguar Panthera onca in central Arizona and New Mexico, USA. Oryx 2021, 1–12 (2021).
    Google Scholar 
    Simberloff, D. Flagships, umbrellas, and keystones: is single-species management passe’ in the landscape era. Biol. Conserv. 83, 247–57 (1998).Article 

    Google Scholar 
    Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native Cerrado and exotic pasture grasses. Philos. Trans. R. Soc. B 368, 20120427 (2013).Article 

    Google Scholar 
    Brazil’s National Institute for Space Research (INPE). Banco de dados de Queimadas INPE—Programa Queimadas. http://queimadasdgiinpebr/queimadas/bdqueimadas (2020b).Silva-Jr, C. H. L. et al. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 5, 144–145 (2020).Article 

    Google Scholar 
    Walker, R. et al. Protecting the Amazon with protected areas. Proc. Natl Acad. Sci. USA 106, 10582–10586 (2009).Article 
    CAS 

    Google Scholar 
    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).Article 
    CAS 

    Google Scholar 
    Begotti, R. A. & Peres, C. A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy 96, 104694 (2020).Article 

    Google Scholar 
    Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl Acad. Sci. USA 117, 3015–3025 (2020).Article 
    CAS 

    Google Scholar 
    Moilanen, A., Arponen, A., Stokland, J. N. & Cabeza, M. Assessing replacement cost of conservation areas: How does habitat loss influence priorities? Biol. Conserv. 142, 575–585 (2009).Article 

    Google Scholar 
    Almeida-Rocha, J. A. & Peres, C. A. Nominally protected buffer zones around tropical protected areas are as highly degraded as the wider unprotected countryside. Biol. Conserv. 256, 109068 (2021).Article 

    Google Scholar 
    Terborgh, J. The role of felid predators in Neotropical Forests. Vida Silv. Neotrop. 2, 3–5 (1990).
    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    CAS 

    Google Scholar 
    Brando, P. M. et al. The gathering firestorm in southern Amazonia. Sci. Adv. 6, 1632 (2020).Convention on the Conservation of Migratory Species of Wild Animals (CMS). Proposal for the Inclusion of the Jaguar in Appendices I and II of the Convention. https://www.cms.int/en/document/proposal-inclusion-jaguar-appendices-i-and-ii-convention (2022).Ceddia, M. G., Bardsley, N. O., Gomez-y-Paloma, S. & Sedlacek, S. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl Acad. Sci. USA 111, 7242–7247 (2014).Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20, 1251–1261 (2006).Article 

    Google Scholar 
    Brancalion, P. H. S. et al. Análise crítica da Lei de Proteção da Vegetação Nativa (2012), que substituiu o antigo Código Florestal: atualizações e ações em curso. Natureza Conservação 14, 1–16 (2016).Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).Article 

    Google Scholar 
    Bogoni, J. A., Peres, C. A. & Ferraz, K. M. P. M. B. Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics. Sci. Rep. 10, 14750 (2020).Article 
    CAS 

    Google Scholar 
    Ferrante, L. & Fearnside, P. M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).Article 

    Google Scholar 
    Aragão, L. E. O. C. & Shimabukuro, Y. E. The incidence of fire in Amazonian forests with implications for REDD. Science 328, 1275–1278 (2010).Article 

    Google Scholar 
    Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. B 363, 1787 (2008).Article 

    Google Scholar 
    Michalski, F., Boulhosa, R. L. P., Faria, A. & Peres, C. A. Human–wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. Anim. Conserv. https://doi.org/10.1111/j1469-1795200600025x (2006).Article 

    Google Scholar 
    Jorge, M. L. S. P., Galetti, M., Ribeiro, M. C. & Ferraz, K. M. P. M. B. Mammal defaunation as surrogate of trophic cascades in a biodiversity hotspot. Biol. Conserv. 163, 49–57 (2013).Article 

    Google Scholar 
    Menezes, J. F. S., Tortato, F. R., Roque, F. O., Oliveira-Santos, L. G. & Morato, R. G. Deforestation, fires, and lack of governance are displacing thousands of jaguars in Brazilian Amazon. Conserv. Sci. Pract. 3, e477 (2021).Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240 (2018).Article 

    Google Scholar 
    Romero-Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2018).Romero-Muñoz, A., Morato, R. G., Tortato, F. & Kuemmerle, T. Beyond fangs: beef and soybean trade drive jaguar extinction. Front. Ecol. Environ. 18, 67–68 (2020).Article 

    Google Scholar 
    Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl Acad. Sci. USA 117, 7095–7102 (2020).Article 
    CAS 

    Google Scholar 
    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).Article 

    Google Scholar 
    Carter, N., Killion, A., Easter, T., Brandt, J. & Ford, A. Road development in Asia: assessing the range-wide risks to tigers. Sci. Adv. 6, eaaz9619 (2020).Article 

    Google Scholar 
    Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS ONE 14, e0215152 (2019).Article 
    CAS 

    Google Scholar 
    Joshi, A. R. et al. Tracking changes and preventing loss in critical tiger habitat. Sci. Adv. 2, e1501675 (2016).Article 

    Google Scholar 
    Peres, C. A. & Terborgh, J. Amazonian nature reserves: an analysis of the defensibility status of existing conservation units and design criteria for the future. Conserv. Biol. 9, 34–46 (1995).Article 

    Google Scholar 
    Sistema Nacional de Unidades de Conservação (SNUC). Lei 9985 de 18 de julho de 2000; Ministério do Meio Ambiente. (2000).Stocks, A. Too much for too few: problems of indigenous land rights in Latin America Annual. Rev. Anthropol. 34, 85–104 (2005).Article 

    Google Scholar 
    Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS ONE 3, e3700 (2008).Article 

    Google Scholar 
    Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).Article 
    CAS 

    Google Scholar 
    Miranda, E. B. P. et al. Tropical deforestation induces thresholds of reproductive viability and habitat suitability in Earth’s largest eagles. Sci. Rep. 11, 1–17 (2021).Article 

    Google Scholar 
    Bowman, K. W. et al. Environmental degradation of indigenous protected areas of the Amazon as a slow onset event. Curr. Opin. Environ. Sustain. 50, 260–271 (2021).Article 

    Google Scholar 
    Wilson, K. A., Carwardine, J. & Possingham, H. P. Setting conservation priorities. Ann. N. Y. Acad. Sci. 1162, 237–264 (2009).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).Article 
    CAS 

    Google Scholar 
    Sales, L. P., Galetti, M. & Pires, M. M. Climate and land‐use change will lead to a faunal “savannization” on tropical rainforests. Glob. Change Biol. 26, 7036–7044 (2020).Article 

    Google Scholar 
    da Silva, J. M. C., Dias, T. C. A. C., da Cunha, A. C. & Cunha, H. F. A. Funding deficits of protected areas in Brazil. Land Use Policy 100, 104926 (2021).Article 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).Article 
    CAS 

    Google Scholar 
    Kauano, E. E., Silva, J. M. C. & Michalski, F. Illegal use of natural resources in federal protected areas of the Brazilian Amazon. PeerJ 5, e3902 (2017).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2011).Article 

    Google Scholar 
    Instituto Brasileiro de Geografia e Estatística (IBGE). Censo demográfico Rio de Janeiro. http://www.ibge.gov.br (2020).Instituto Brasileiro de Geografia e Estatística (IBGE). Censo demográfico Rio de Janeiro. http://www.ibge.gov.br (2010).Instituto Brasileiro de Geografia e Estatística (IBGE). BC250—Base Cartográfica Contínua do Brasil—1:250,000—2017 Diretoria de Geociências—DGC / Coordenação de Cartografia—CCAR. http://www.metadadosgeoibgegovbr/geonetwork_ibge/srv/por/metadatashow?uuid=5a47e9ea-e2cd-423b-8646-53f67ff4ed2d (2017).MapBiomas. Projeto MapBiomas Coleção 5 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. https://mapbiomas.org/colecoes-mapbiomas-1 (2019).Brazil’s National Institute for Space Research (INPE). Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite. http://www.obtinpebr/OBT/assuntos/programas/amazonia/prodes (2020a).ESRI. ArcGIS Desktop: Release 10 Redlands. (Environmental Systems Research Institute, 2019).Ministério do Meio Ambiente (MMA). Cadastro Nacional de Unidades de Conservação (CNUC). https://antigo.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs/dados-georreferenciados.html (2019).Fundação Nacional dos Povos Indígenas (FUNAI). Modalidades de Terra Indígenas. http://www.funaigovbr/indexphp/indios-no-brasil/terras-indigenas (2019).Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).Article 

    Google Scholar 
    de Oliveira, T. G. et al. Red list assessment of the jaguar in Brazilian Amazonia. CatNews 7, 8–13 (2012).
    Google Scholar 
    Ramalho, F. B. L. Jaguar (Panthera Onca) Population Dynamics, Feeding Ecology, Human Induced Mortality, and Conservation in the Várzea Floodplain Forests of Amazonia. PhD Thesis. (University of São Paulo, 2012).Duarte, H. O. B., Boron, V., Carvalho, W. D. & Toledo, J. J. Amazon islands as predator refugia: jaguar density and temporal activity in Maracá-Jipioca. J. Mammal. 103, 440–446 (2022).Article 

    Google Scholar 
    Zar, J. H. Biostatistical Analysis 4th edn., (Pretince-Hall, 1999).Medellín, R. A. et al. El jaguar en el nuevo milenio. Fondo de Cultura Económica (Universidad Nacional Autónoma de México, Wildlife Conservation Society, 2002).Quigley, H. et al. Observations and preliminary testing of Jaguar depredation reduction techniques in and between core Jaguar populations. Parks 21, 63–72 (2015).Article 

    Google Scholar 
    Bogoni, J. A., Ferraz, K. M. P. M. B. & Peres, C. A. Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biol. Conserv. 272, 109635 (2022).Article 

    Google Scholar 
    Valsecchi, J., Monteiro, M. C., Alvarenga, G. C., Lemos, L. P. & Ramalho, E. E. Community-based monitoring of wild felid hunting in Central Amazonia. Animal Conser. https://zslpublications.onlinelibrary.wiley.com/doi/pdf/10.1111/acv.12811 (2022).WWF. WWF Jaguar Strategy 2020–2030. https://wwflac.awsassets.panda.org/downloads/estrategia_jaguar_2020_2030_wwf.pdf (2020).Chape, S., Harrison, J., Spalding, M. D. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 443–455 (2005).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).Souza-Jr, C. M. et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 12, 2735 (2020).Article 

    Google Scholar  More

  • in

    Fungi feed bacteria for biodegradation

    The pesticide hexachlorocyclohexane (HCH) is a toxic and persistent contaminant in the environment. Some bacteria and fungi can degrade HCH and its isomers under laboratory conditions. However, in heterogeneous environments, where many different factors are at play, the biodegradation capacity is challenged by the availability of nutrients to support degraders’ growth. As opposed to bacteria, fungi are more adapted to heterogeneous habitats, and in some cases mycelial fungi can facilitate the transport of organic substrates throughout the mycosphere, increasing their availability to promote bacterial contaminant biodegradation. However, how this occurs is not entirely understood. In this study, Khan et al. demonstrate that mycelial nutrients transferred from nutrient-rich to nutrient-deprived habitats promote co-metabolic degradation of HCH by bacteria. The authors incubated a non-HCH-degrading fungus (Fusarium equiseti K3) and a co-metabolically HCH-degrading bacterium (Sphingobium sp. S8) in a structured model ecosystem. Results from 13C isotope labelling and metaproteomics showed that fungal 13C was incorporated into bacterial proteins responsible for HCH degradation, thus illustrating the importance of synergistic fungal–bacterial interactions for contaminant biodegradation in nutrient-poor environments. More

  • in

    An ankylosaur larynx provides insights for bird-like vocalization in non-avian dinosaurs

    Reilly, S. M. & Lauder, G. V. The evolution of tetrapod feeding behavior: kinematic homologies in prey transport. Evolution 44, 1542–1557 (1990).Article 

    Google Scholar 
    Iwasaki, S. Evolution of the structure and function of the vertebrate tongue. J. Anat. 201, 1–13 (2002).Article 

    Google Scholar 
    Fitch, W. T. & Suthers, R. A. In Vertebrate Sound Production and Acoustic Communication (eds Suthers, R. A., Fitch, W. T., Fay, R. R., & Popper, A. N.) 1–18 (Springer, 2016).Carroll, R. L. The Palaeozoic ancestry of salamanders, frogs and caecilians. Zool. J. Linn. Soc. 150, 1–140 (2007).Article 

    Google Scholar 
    Schwenk, K. in Feeding: Form, Function and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) 175–291 (Academic Press, 2000).Schwenk, K. & Rubega, M. In Physiological and ecological adaptations to feeding in vertebrates, (eds. Starck, M. & Wang, T.) 1–41 (Science Pub. Inc., 2005).Schumacher, G. H. In Biology of the Reptilia, 4 (ed Gans, C.) 101–200 (Academic Press, 1973).Reese, A. M. The laryngeal region of Alligator mississippiensis. Anat. Rec. 92, 273–277 (1945).Article 

    Google Scholar 
    Riede, T., Li, Z., Tokuda, I. & Farmer, C. G. Functional morphology of the Alligator mississippiensis larynx with implications for vocal production. J. Exp. Biol. 218, 991–998 (2015).Article 

    Google Scholar 
    McLelland, J. In Form and Function in Birds, 4 (eds King, A. S. & McLelland, J.) 69–103 (Academic Press, 1989).Homberger, D. G. In The Biology of the Avian Respiratory System (ed Maina, J. N.) 27–97 (Springer, 2017).Fitch, W. T. In Encyclopedia of Language & Linguistics (ed Brown, K.) 115–121 (Elsevier, 2006).Clarke, J. A. et al. Fossil evidence of the avian vocal organ from the Mesozoic. Nature 538, 502–505 (2016).Article 

    Google Scholar 
    Kingsley, E. P. et al. Identity and novelty in the avian syrinx. Proc. Natl Acad. Sci. USA 115, 10209–10217 (2018).Article 
    CAS 

    Google Scholar 
    Riede, T., Thomson, S. L., Titze, I. R. & Goller, F. The evolution of the syrinx: an acoustic theory. PLoS Biol. 17, e2006507 (2019).Nowicki, S. Vocal tract resonances in oscine bird sound production: evidence from birdsongs in a helium atmosphere. Nature 325, 53–55 (1987).Article 
    CAS 

    Google Scholar 
    Hill, R. V. et al. A complex hyobranchial apparatus in a Cretaceous dinosaur and the antiquity of avian paraglossalia. Zool. J. Linn. Soc. 175, 892–909 (2015).Article 

    Google Scholar 
    Li, Z. H., Zhou, Z. H. & Clarke, J. A. Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs. PLoS One 13, e0198078 (2018).Article 

    Google Scholar 
    Bonaparte, J. F., Novas, F. E. & Coria, R. A. Carnotaurus sastrei Bonaparte, the horned, lightly built carnosaur from the Middle Cretaceous of Patagonia. Contrib. in Sci. Nat. Hist. Mus. L. A. 416, 1–42 (1990).Maryanska, T. Ankylosauridae (Dinosauria) from Mongolia. Palaeontol. Pol. 37, 85–151 (1977).
    Google Scholar 
    Mori, C. A comparative anatomical study on the laryngeal cartilages and laryngeal muscles of birds, and a developmental study on the larynx of the domestic fowl. Acta Med. 27, 2629–2678 (1957).
    Google Scholar 
    Siebenrock, F. Über den Kehlkopf und die Luftröhre der Schildkröten. Sitzungsberichte Der Kais. 108, 581–595 (1899).
    Google Scholar 
    Soley, J. T., Tivane, C. & Crole, M. R. Gross morphology and topographical relationships of the hyobranchial apparatus and laryngeal cartilages in the ostrich (Struthio camelus). Acta Zool. 96, 442–451 (2015).Article 

    Google Scholar 
    Olson, S. L. & Feduccia, A. Presbyornis and the origin of the Anseriformes (Aves: Charadriomorphae). Smithson. Contrib. Zool. 323, 1–24 (1980).Soley, J. T., Tivane, C. & Crole, M. R. A Gross morphology and topographical relationships of the hyobranchial apparatus and laryngeal cartilages in the ostrich (Struthio camelus). Acta Zool. 94, 442–451 (2015).Article 

    Google Scholar 
    Hogg, D. A. Ossification of the laryngeal, tracheal and syringeal cartilages in the domestic fowl. J. Anat. 134, 57–71 (1982).CAS 

    Google Scholar 
    Gaunt, A. S., Stein, R. C. & Gaunt, S. L. Pressure and air flow during distress calls of the starling, Sturnus vulgaris (Aves; Passeriformes). J. Exp. Zool. 183, 241–261 (1973).Article 

    Google Scholar 
    Sacchi, R., Galeotti, P., Fasola, M. & Gerzeli, G. Larynx morphology and sound production in three species of Testudinidae. J. Morphol. 261, 175–183 (2004).Article 

    Google Scholar 
    Titze, I. R. The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83, 1536–1552 (1988).Article 
    CAS 

    Google Scholar 
    Russell, A. P., Hood, H. A. & Bauer, A. M. Laryngotracheal and cervical muscular anatomy in the genus Uroplatus (Gekkota: Gekkonidae) in relation to distress call emission. Afr. J. Herpetol. 63, 127–151 (2014).Article 

    Google Scholar 
    Russell, A. P., Rittenhouse, D. R. & Bauer, A. M. Laryngotracheal morphology of Afro‐Madagascan Geckos: a comparative survey. J. Morphol. 245, 241–268 (2000).Article 
    CAS 

    Google Scholar 
    Gans, C. & Maderson, P. F. Sound producing mechanisms in recent reptiles: review and comment. Am. Zool. 13, 1195–1203 (1973).Article 

    Google Scholar 
    Galeotti, P., Sacchi, R., Fasola, M. & Ballasina, D. Do mounting vocalisations in tortoises have a communication function? A comparative analysis. Herpetol. J. 15, 61–71 (2005).
    Google Scholar 
    Fletcher, N. H. Bird song—a quantitative acoustic model. J. Theor. Biol. 135, 455–481 (1988).Article 

    Google Scholar 
    Vergne, A. L., Pritz, M. B. & Mathevon, N. Acoustic communication in crocodilians: from behaviour to brain. Biol. Rev. 84, 391–411 (2009).Article 
    CAS 

    Google Scholar 
    Marler, P. R. & Slabbekoorn, H. Nature’s music: The science of birdsong (Academic Press, San Diego, USA, 2004).White, S. S. In Sisson and Grossman’s The Anatomy of the Domestic Animals. 2 (ed Getty, R.) 1891–1897 (Saunders, Philadelphia, USA 975).Kirchner, J. A. The vertebrate larynx: adaptations and aberrations. Laryngoscope 103, 1197–1201 (1993).Article 
    CAS 

    Google Scholar 
    Mackelprang, R. & Goller, F. Ventilation patterns of the songbird lung/air sac system during different behaviors. J. Exp. Biol. 216, 3611–3619 (2013).
    Google Scholar 
    Brocklehurst, R. J., Schachner, E. R. & Sellers, W. I. Vertebral morphometrics and lung structure in non-avian dinosaurs. R. Soc. Open Sci. 5, 180983 (2018).Article 

    Google Scholar 
    Cerda, I. A., Salgado, L. & Powell, J. E. Extreme postcranial pneumaticity in sauropod dinosaurs from South America. Paläontol. Z. 86, 441–449 (2012).Article 

    Google Scholar 
    Sereno, P. C. et al. Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. PLoS One 3, e3303 (2008).Chiari, Y., Cahais, V., Galtier, N. & Delsuc, F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 10, 65 (2012).Article 

    Google Scholar  More

  • in

    Two odorant receptors regulate 1-octen-3-ol induced oviposition behavior in the oriental fruit fly

    Insect rearingWT B. dorsalis were collected from Haikou, Hainan province, China, in 2008. They were maintained at the Key Laboratory of Entomology and Pest Control Engineering in Chongqing at 27 ± 1 °C, 70 ± 5% relative humidity, with a 14-h photoperiod. Adult flies were reared on an artificial diet containing honey, sugar, yeast powder, and vitamin C. Newly hatched larvae were transferred to an artificial diet containing corn and wheat germ flour, yeast powder, agar, sugar, sorbic acid, linoleic acid, and filter paper.Behavioral assaysDouble trap lure assays were set up to compare the olfactory preferences of gravid and virgin females in a 20 × 20 × 20 cm transparent cage with evenly distributed holes (diameter = 1.5 mm) on the side walls. The traps were refitted from inverted 50-mL centrifuge tubes and were placed along the diagonal of the cage. The top of each trap was pierced with a 1-mL pipette tip, which was shortened to ensure flies could access the trap from the pipette. For the olfactory preference assay with mango, one trap was loaded with 60 mg mango flesh and the other trap with 20 μL MO in the cap of a 200-μL PCR tube. For the olfactory preference assay with 1-octen-3-ol (≥98%, sigma, USA), one trap was loaded with 20 μL 10% (v/v) 1-octen-3-ol diluted in MO, and the other with 20 μL MO. A cotton ball soaked in water was placed at the center of the cage to provide water for the flies. Groups of 30 female flies were introduced into the cage for each experiment, and each experiment was repeated to provide eight biological replicates. All experiments commenced at 10 am to ensure circadian consistency. The number of flies in each trap was counted every 2 h for 24 h. We compared the preferences of 3-day-old immature females, 15-day-old virgin females, and 15-day-old mated females. The olfactory preference index was calculated using the following formula41: (number of flies in mango/odorant trap – number of flies in control trap)/total number of flies.Oviposition behavior was monitored in a 10 × 10 × 10 cm transparent cage with evenly distributed holes on the side walls as above. A 9-cm Petri dish filled with 1% agar was served as an oviposition substrate, and the mango flesh, 10% (v/v) 1-octen-3-ol or MO were added at opposite edges of the dish. We tested the preference of flies for different substrates: (1) ~60 mg of mango flesh on one edge and 20 μL of MO on the other; (2) 20 μL of 1-octen-3-ol on one edge and 20 μL of MO on the other; (3) ~60 mg mango flesh on one edge and 20 μL of 1-octen-3-ol on the other; and (4) ~60 mg mango flesh plus 20 μL 1-octen-3-ol on one side and ~60 mg of mango flesh plus 20 μL MO on the other. The agar disc was covered in a pierced plastic wrap to mimic fruit skin, encouraging flies extend their ovipositor into the plastic wrap to lay eggs. The agar disc was placed at the center of the cage, and we introduced eight 15-day-old gravid females. Two Sony FDR-AX40 cameras recorded the behavior of the flies for 24 h, one fixed above the cage to record the tracks and the other placed in front of the cage to record the oviposition behavior. Based on the results from double traps luring assays, a 3 h duration (6–9 h) of the videos was selected to analyze the tracks and spent time of all flies in observed area (the surface of Petri dish). The videos were analyzed using EthoVision XT v16 (Noldus Information Technology) to determine the total time of all flies spent on each side in seconds and the total distance of movement in centimeters, and the tracks were visualized in the form of heat maps17. The number of eggs laid by the eight flies in each experiment was counted under a CNOPTEC stereomicroscope, and each experimental group comprised 7–16 replicates.Annotation of B. dorsalis OR genesD. melanogaster amino acid sequences downloaded from the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) were used as BLASTP queries against the B. dorsalis amino acid database with an identity cut-off of 30%. The candidate OR genes were compared with deep transcriptome data from B. dorsalis antennae42, maxillary palps and proboscis, and other tissues.Cloning of candidate B. dorsalis OR genesHigh-fidelity PrimerSTAR Max DNA polymerase (TaKaRa, Dalian, China) was used to amplify the full open reading frame of BdorOR genes by nested PCR using primers (Supplementary Table 2) designed according to B. dorsalis genome data. Each 25-μL reaction comprised 12.5 μL 2 × PrimerSTAR Max Premix (TaKaRa), 10.5 μL ultrapure water, 1 μL of each primer (10 μM), and 1 μL of the cDNA template. An initial denaturation step at 98 °C for 2 min was followed by 35 cycles of 10 s at 98 °C, 15 s at 55 °C and 90 s at 72 °C, and a final extension step of 10 min at 72 °C. Purified PCR products were transferred to the vector pGEM-T Easy (Promega, Madison, WI) for sequencing (BGI, Beijing, China).Transcriptional profilingTotal RNA was extracted from (i) male and female antennae, maxillary palps, head cuticle (without antenna, maxillary palps, and proboscis), proboscis, legs, wings and ovipositors, and (ii) from the heads of 15-day-old virgin and mated females using TRIzol reagent (Invitrogen, Carlsbad, CA). Genomic DNA was eliminated with RNase-free DNase I (Promega) and first-strand cDNA was synthesized from 1 µg total RNA using the PrimeScript RT reagent kit (TaKaRa). Standard curves were used to evaluate primer efficiency (Supplementary Table 3) with fivefold serial dilutions of cDNA. Quantitative real-time PCR (qRT-PCR) was carried out using a CFX Connect Real-Time System (Bio-Rad, Hercules, CA) in a total reaction volume of 10 µL containing 5 μL SYBR Supermix (Novoprotein, Shanghai, China), 3.9 μL nuclease-free water, 0.5 μL cDNA (~200 ng/μL) and 0.3 μL of the forward and reverse primers (10 μM). We used α-tubulin (GenBank: GU269902) and ribosomal protein S3 (GenBank: XM_011212815) as internal reference genes. Four biological replicates were prepared for each experiment. Relative expression levels were determined using the 2−∆∆Ct method43, and data were analyzed using SPSS v20.0 (IBM).Two-electrode voltage clamp electrophysiological recordingsVerified PCR products representing candidate B. dorsalis OR genes and BdorOrco were transferred to vector pT7Ts for expression in oocytes. The plasmids were linearized for the synthesis of cRNAs using the mMESSAGE mMACHINE T7 Kit (Invitrogen, Lithuania). The purified cRNA was diluted to 2 µg/µL and ~60 ng cRNA was injected into X. laevis oocytes. The oocytes were pre-treated with 1.5 mg/mL collagenase I (GIBCO, Carlsbad, CA) in washing buffer (96 mM NaCl, 5 mM MgCl2, 2 mM KCl, 5 mM HEPES, pH 7.6) for 30–40 min at room temperature before injection. After incubation for 2 days at 18 °C in Ringer’s solution (96 mM NaCl, 5 mM MgCl2, 2 mM KCl, 5 mM HEPES, 0.8 mM CaCl2), the oocytes were exposed to different concentrations of 1-octen-3-ol diluted in Ringer’s solution from a 1 M stock in DMSO. Odorant-induced whole-cell inward currents were recorded from injected oocytes using a two-electrode voltage clamp and an OC-725C amplifier (Warner Instruments, Hamden, CT) at a holding potential of –80 mV. The signal was processed using a low-pass filter at 50 Hz and digitized at 1 kHz. Oocytes injected with nuclease-free water served as a negative control. Data were acquired using a Digidata 1550 A device (Warner Instruments, Hamden, CT) and analyzed using pCLAMP10.5 software (Axon Instruments Inc., Union City, CA).Calcium imaging assayVerified PCR products representing candidate B. dorsalis OR genes and BdorOrco were transferred to vector pcDNA3.1(+) along with an mCherry tag that confers red fluorescence to confirm transfection. High-quality plasmid DNA was prepared using the Qiagen plasmid MIDIprep kit (QIAgen, Düsseldorf, Germany). The B. dorsalis OR and BdorOrco plasmids were co-transfected into HEK 293 cell using TransIT-LT1 transfection reagent (Mirus Bio LLC, Japan) in 96-well plates. The fluorescent dye Fluo-4 AM (Invitrogen) was prepared as a 1 mM stock in DMSO and diluted to 2.5 μM in Hanks’ balanced salt solution (HBSS, Invitrogen, Lithuania) to serve as a calcium indicator. The cell culture medium was removed 24–30 h after transfection and cells were rinsed three times with HBSS before adding Fluo 4-AM and incubating the cells for 1 h in the dark. After three rinses in HBSS, 99 μL of fresh HBSS was added to each well before testing in the dark with 1 μL of diluted 1-octen-3-ol. Fluorescent images were acquired on a laser scanning confocal microscope (Zeiss, Germany). Fluo 4-AM was excited at 488 nm and mCherry at 555 nm. The relative change in fluorescence (ΔF/F0) was used to represent the change in Ca2+, where F0 is the baseline fluorescence and ΔF is the difference between the peak fluorescence induced by 1-octen-3-ol stimulation and the baseline. The healthy and successfully transfected cells (red when excited at 555 nm) were used for analysis. The final concentration of 10−4 M was initially used to screen corresponding ORs, and then to determine the response of screened ORs to stimulation with different concentrations of 1-octen-3-ol. Each concentration of 1-octen-3-ol was tested in triplicate. Concentration–response curves were prepared using GraphPad Prism v8.0 (GraphPad Software).Genome editingThe exon sequences of BdorOR7a-6 and BdorOR13a were predicted using the high-quality B. dorsalis genome assembly. Each gRNA sequence was 20 nucleotides in length plus NGG as the protospacer adjacent motif (PAM). The potential for off-target mutations was evaluated by using CasOT to screen the B. dorsalis genome sequence. Each gRNA was synthesized using the GeneArt Precision gRNA Synthesis Kit (Invitrogen) and purified using the GeneArt gRNA Clean-up Kit (Invitrogen). Embryos were microinjected as previously described20. Purified gRNA and Cas9 protein from the GeneArt Platinum Cas9 Nuclease Kit (Invitrogen) were mixed and diluted to final concentrations of 600 and 500 ng/µL, respectively. Fresh eggs (laid within 20 min) were collected and exposed to 1% sodium hypochlorite for 90 s to soften the chorion. The eggs were fixed on glass slides and injected with the mix of gRNA and Cas9 protein at the posterior pole using an IM-300 device (Narishige, Tokyo, Japan) and needles prepared using a Model P-97 micropipette puller (Sutter Instrument Co, Novato, CA). Eggs were injected with nuclease-free water as a negative control. Injection was completed within 2 h. The injected embryos were cultured in a 27 °C incubator and mortality was recorded during subsequent development.G0 mutants were screened as previously described20. G0 adult survivors were individually backcrossed to WT flies (single pair) to collect G1 offspring. Genomic DNA was extracted from G0 individuals after oviposition using the DNeasy Blood & Tissue Kit (Qiagen). The region surrounding each gRNA target was amplified by PCR using the extracted DNA as a template, the specific primers listed in Supplementary Table 2, and 2 × Taq PCR MasterMix (Biomed, Beijing, China). PCR products were analyzed by capillary electrophoresis using the QIAxcel DNA High Resolution Kit (Qiagen). PCR products differing from the WT alleles were purified and transferred to the vector pGEM-T Easy for sequencing. To confirm the mutation was inherited, genomic DNA was also extracted from one mesothoracic leg of G1 flies using InstaGene Matrix (Bio-Rad, Hercules, CA) and was analyzed as above. To avoid potential off-target mutations, heterozygous G1 mutants were backcrossed to WT flies more than 10 generations before self-crossing to generate homozygous mutant flies.Electroantennogram (EAG) recordingThe antennal responses of 15-day-old B. dorsalis adults to 1-octen-3-ol were determined by EAG recording (Syntech, the Netherlands) as previously reported20. Briefly, antennae were fixed to two electrodes using Spectra 360 electrode gel (Parker, Fairfield, NJ, USA). The signal response was amplified using an IDAC4 device and collected using EAG-2000 software (Syntech). Before each experiment, 1-octen-3-ol and other three volatiles (ethyl tiglate, ethyl acetate, ethyl butyrate) were diluted to 10%, 1% and 0.1% (v/v) with MO to serve as the electrophysiological stimulus, and MO was used as a negative control. A constant air flow (100 mL/min) was produced using a controller (Syntech) to stimulate the antenna. We then placed 10 µL of each dilution or MO onto a piece of filter paper (5 × 1 cm), and the negative control (MO) was applied before and after the diluted odorants to calibrate the response signal. The EAG responses at each concentration were recorded for 15–20 antennae, and each concentration was recorded twice. Each test lasted 1 s, and the interval between tests was 30 s. EAG response data from WT and mutant flies for the diluted odorants were analyzed using Student’s t test with SPSS v20.0.Molecular docking and site-directed mutagenesisThe three dimensional-structures of BdorOR7a-6 and BdorOR13a were modeled using AlphaFold 2.044. The quality and rationality of each protein structure was evaluated online using a PROCHECK Ramachandran plot in SAVES 6.0 (https://saves.mbi.ucla.edu/). AutoDock Vina 1.1.2 was used for docking analysis, and the receptor protein structure and ligand molecular structure were pre-treated using AutoDock 4.2.6. The docking parameters were set according to the protein structure and active sites, and the optimal docking model was selected based on affinity (kcal/mol). Docking models were imported into Pymol and Discovery Studio 2016 Client for analysis and image processing. Based on the molecular docking data, three residues (Asn86 in OR7a-6, Asp320, and Lys323 in OR13a) were replaced with alanine by site-directed mutagenesis45 using the primers listed in Supplementary Table 2. Calcium imaging assays and molecular docking of mutated proteins were then carried out as described above.Statistics reproducibilityAll of the olfactory preference assays, oviposition bioassays, expression profiles analysis, EAG recording assays were analyzed using Student’s t-test (*p  More

  • in

    Balancing the bloom

    Algal blooms that form because of phytoplankton proliferation have key roles in marine ecology and carbon fixation. When the blooms die, most of the fixed carbon is transferred to higher trophic levels, and a small fraction sinks into the deep sea. Viral infection is one of the causes of bloom termination, but its effect on the fate and flow of carbon in the ocean is unknown. In this study, Vincent et al. perform a mesocosm experiment to analyse the bloom dynamics of the coccolithophore microalga Emiliania huxleyi and the impact of viral infection on surrounding bacterial communities and the carbon cycle. The authors observed that viral infection was not only the main cause of phytoplankton mortality, but it also shaped the composition of free-living bacterial and eukaryotic species in the blooms. On viral infection of E. huxleyi, the authors found a comparable biomass of eukaryotic and bacterial heterotrophic recyclers, as well as increased organic and inorganic carbon release that contributed to carbon sinking into the deep ocean. Altogether, these results highlight the impact of viruses on the microbial communities of blooms and the consequences on carbon cycling. More

  • in

    The degree of urbanisation reduces wild bee and butterfly diversity and alters the patterns of flower-visitation in urban dry grasslands

    Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971. https://doi.org/10.1016/j.cub.2019.06.069 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).Article 
    PubMed 

    Google Scholar 
    Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 (2017).Article 

    Google Scholar 
    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).Article 
    PubMed 

    Google Scholar 
    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).Article 

    Google Scholar 
    Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Pollinator declines. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362. https://doi.org/10.1126/science.1257259 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanization is driving pollinator diversity and pollination—A systematic review. Biol. Conserv. 241, 108321. https://doi.org/10.1016/j.biocon.2019.108321 (2020).Article 

    Google Scholar 
    Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. R. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 31, 26–37. https://doi.org/10.1111/1365-2435.12809 (2017).Article 

    Google Scholar 
    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429. https://doi.org/10.1111/geb.13107 (2020).Article 

    Google Scholar 
    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126. https://doi.org/10.1111/geb.12404 (2016).Article 

    Google Scholar 
    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Evol. 17, 225–231. https://doi.org/10.1002/fee.2032 (2019).Article 

    Google Scholar 
    Lynch, L. et al. Changes in land use and land cover along an urban-rural gradient influence floral resource availability. Curr. Landsc. Ecol. Rep. 6, 46–70. https://doi.org/10.1007/s40823-021-00064-1 (2021).Article 

    Google Scholar 
    Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29. https://doi.org/10.1111/cobi.12840 (2017).Article 
    PubMed 

    Google Scholar 
    Buchholz, S. & Egerer, M. H. Functional ecology of wild bees in cities: Towards a better understanding of trait-urbanization relationships. Biodivers. Conserv. 29, 2779–2801. https://doi.org/10.1007/s10531-020-02003-8 (2020).Article 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576. https://doi.org/10.1038/s41467-020-14496-6 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khalifa, S. A. M. et al. Overview of bee pollination and its economic value for crop production. Insects https://doi.org/10.3390/insects12080688 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doyle, T. et al. Pollination by hoverflies in the Anthropocene. Proc. Biol. Sci. 287, 20200508. https://doi.org/10.1098/rspb.2020.0508 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. USA. 113, 146–151. https://doi.org/10.1073/pnas.1517092112 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Persson, A. S., Ekroos, J., Olsson, P. & Smith, H. G. Wild bees and hoverflies respond differently to urbanisation, human population density and urban form. Landsc. Urban Plan. 204, 103901. https://doi.org/10.1016/j.landurbplan.2020.103901 (2020).Article 

    Google Scholar 
    Gathof, A. K., Grossmann, A. J., Herrmann, J. & Buchholz, S. Who can pass the urban filter? A multi-taxon approach to disentangle pollinator trait-environmental relationships. Oecologia 199, 165–179. https://doi.org/10.1007/s00442-022-05174-z (2022).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. Biol. Sci. 282, 20142849. https://doi.org/10.1098/rspb.2014.2849 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramírez-Restrepo, L. & MacGregor-Fors, I. Butterflies in the city: A review of urban diurnal Lepidoptera. Urban Ecosyst. 20, 171–182. https://doi.org/10.1007/s11252-016-0579-4 (2017).Article 

    Google Scholar 
    Kuussaari, M. et al. Butterfly species’ responses to urbanization: Differing effects of human population density and built-up area. Urban Ecosyst. 24, 515–527. https://doi.org/10.1007/s11252-020-01055-6 (2020).Article 

    Google Scholar 
    Theodorou, P. The effects of urbanisation on ecological interactions. Curr. Opin. Insect. Sci. 52, 100922. https://doi.org/10.1016/j.cois.2022.100922 (2022).Article 
    PubMed 

    Google Scholar 
    Martins, K. T., Gonzalez, A. & Lechowicz, M. J. Patterns of pollinator turnover and increasing diversity associated with urban habitats. Urban Ecosyst. 20, 1359–1371. https://doi.org/10.1007/s11252-017-0688-8 (2017).Article 

    Google Scholar 
    Theodorou, P. et al. The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct. Ecol. 31, 838–847. https://doi.org/10.1111/1365-2435.12803 (2017).Article 

    Google Scholar 
    Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along a gradient of urbanisation. PLoS ONE 8, e63421. https://doi.org/10.1371/journal.pone.0063421 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Udy, K. L., Reininghaus, H., Scherber, C. & Tscharntke, T. Plant–pollinator interactions along an urbanization gradient from cities and villages to farmland landscapes. Ecosphere https://doi.org/10.1002/ecs2.3020 (2020).Article 

    Google Scholar 
    Jędrzejewska-Szmek, K. & Zych, M. Flower-visitor and pollen transport networks in a large city: Structure and properties. Arthropod. Plant Interact. 7, 503–516. https://doi.org/10.1007/s11829-013-9274-z (2013).Article 

    Google Scholar 
    von der Lippe, M., Buchholz, S., Hiller, A., Seitz, B. & Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 12, 2565. https://doi.org/10.3390/su12062565 (2020).Article 

    Google Scholar 
    Dylewski, Ł, Maćkowiak, Ł & Banaszak-Cibicka, W. Are all urban green spaces a favourable habitat for pollinator communities? Bees, butterflies and hoverflies in different urban green areas. Ecol. Entomol. 44, 678–689. https://doi.org/10.1111/een.12744 (2019).Article 

    Google Scholar 
    Grossmann, A. J., Herrmann, J., Buchholz, S. & Gathof, A. K. Dry grassland within the urban matrix acts as favourable habitat for different pollinators including endangered species. Insect Conserv. Divers. https://doi.org/10.1111/icad.12607 (2022).Article 

    Google Scholar 
    Settele, J., Steiner, R., Feldmann, R. & Hermann, G. Schmetterlinge. Die Tagfalter Deutschlands: 720 Farbfotos. 3rd ed. (2015).Amiet, F. Hymenoptera Apidae, 1. Teil. Allgemeiner Teil, Gattungsschlüssel – Die Gattungen Apis, Bombus und Psithyrus (Centre Suisse de Cartographie de la Faune, 1996).
    Google Scholar 
    Amiet, F., Müller, A. & Neumeyer, R. Apidae 2. Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha (Fauna Helvetica, 1999).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 3. Halictus, Lasioglossum (Centre Suisse de Cartographie de la Faune, 2001).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 4. Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis (Centre Suisse de Cartographie de la Faune, 2004).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 5. Ammobates, Ammobatoides, Anthophora, Biastes, Ceratina, Dasypoda, Epeoloides, Epeolus, Eucera, Macropis, Melecta, Melitta, Nomada, Pasites, Tetralonia, Thyreus, Xylocopa (Centre Suisse de Cartographie de la Faune, 2007).
    Google Scholar 
    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 6. Andrena, Melliturga, Panurginus, Panurgus (Centre Suisse de Cartographie de la Faune, 2010).
    Google Scholar 
    Gokcezade, J. F., Gereben-Krenn, B.-A., Neumayer, J. & Krenn, H. W. Feldbestimmungsschlüssel für die Hummeln Österreichs, Deutschlands und der Schweiz (Hymenoptera, Apidae). Linzer biologische Beiträge 47, 5–42 (2015).
    Google Scholar 
    Bartsch, H. Tvåvingar: Blomflugor. Diptera: Syrphidae: Syrphinae: denna volym omfattar samtliga nordiska arter (ArtDatabanken Sveriges lantbruksuniversitet, 2009).
    Google Scholar 
    Bartsch, H. Tvåvingar: Blomflugor. Diptera: Syrphidae: Eristalinae & Microdontinae: denna volym omfattar samtliga nordiska arter (ArtDatabanken Sveriges lantbruksuniversitet, 2009).
    Google Scholar 
    Bot, S. & van de Meutter, F. Veldgids zweefvliegen (KNNV Uitgeverij, 2019).
    Google Scholar 
    Jäger, E. J. Rothmaler-Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband 20th edn. (Springer Spektrum, 2011).
    Google Scholar 
    Senate Department for Urban Development and Housing. Berlin Environmental Atlas. 06.01 Actual Use of Built-up Areas/06.02 Inventory of Green and Open Spaces 2010 (2011).Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Bioscience 54, 227. https://doi.org/10.1641/0006-3568(2004)054[0227:DTSSOS]2.0.CO;2 (2004).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Berlin Environmental Atlas. 05.08 Biotope Types (2014).Hanski, I. A practical model of metapopulation dynamics. J. Anim. Ecol. 63, 151. https://doi.org/10.2307/5591 (1994).Article 

    Google Scholar 
    Hanski, I. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87, 209. https://doi.org/10.2307/3546736 (1999).Article 

    Google Scholar 
    Senate Department for Urban Development and Housing. Berlin Environmental Atlas. 06.10 Building and Vegetation Heights (2014).Saura, S. & Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 24, 135–139. https://doi.org/10.1016/j.envsoft.2008.05.005 (2009).Article 

    Google Scholar 
    Saure, C. Rote Liste und Gesamtartenliste der Bienen und Wespen (Hymenoptera part.) von Berlin mit Angaben zu den Ameisen. In Rote Listen der gefährdeten Pflanzen und Tiere von Berlin.Speight, M. C. D. Species Accounts of European Syrphidae (Diptera) (Syrph the Net Publications, 2014).
    Google Scholar 
    Middleton-Welling, J. et al. A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea. Sci. Data 7, 351. https://doi.org/10.1038/s41597-020-00697-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24. https://doi.org/10.2174/1874213000902010007 (2009).Article 

    Google Scholar 
    Kaiser-Bunbury, C. N. & Blüthgen, N. Integrating network ecology with applied conservation: A synthesis and guide to implementation. AoB Plants https://doi.org/10.1093/aobpla/plv076 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos 117, 1227–1239. https://doi.org/10.1111/J.0030-1299.2008.16644.X (2008).Article 

    Google Scholar 
    Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98. https://doi.org/10.1111/2041-210X.12139 (2014).Article 

    Google Scholar 
    Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9. https://doi.org/10.1186/1472-6785-6-9 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patefield, W. M. Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. J. Appl. Stat. 30, 91. https://doi.org/10.2307/2346669 (1981).Article 
    MATH 

    Google Scholar 
    Stein, K. et al. Plant–pollinator networks in Savannas of Burkina Faso, West Africa. Diversity 13, 1. https://doi.org/10.3390/d13010001 (2021).Article 
    ADS 

    Google Scholar 
    Escobedo-Kenefic, N. et al. Disentangling the effects of local resources, landscape heterogeneity and climatic seasonality on bee diversity and plant–pollinator networks in tropical highlands. Oecologia 194, 333–344. https://doi.org/10.1007/s00442-020-04715-8 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    Renaud, E., Baudry, E. & Bessa-Gomes, C. Influence of taxonomic resolution on mutualistic network properties. Ecol. Evol. 10, 3248–3259. https://doi.org/10.1002/ece3.6060 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ropars, L., Dajoz, I., Fontaine, C., Muratet, A. & Geslin, B. Wild pollinator activity negatively related to honey bee colony densities in urban context. PLoS ONE 14, e0222316. https://doi.org/10.1371/journal.pone.0222316 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egerer, M. & Kowarik, I. Confronting the modern gordian knot of urban beekeeping. Trends Ecol. Evol. 35, 956–959. https://doi.org/10.1016/j.tree.2020.07.012 (2020).Article 
    PubMed 

    Google Scholar 
    Zuur, A. F., Ieono, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Bartón, K. MuMIn. multi-model inference, R package version 1.42.1 (2018).Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wood, T. J., Kaplan, I. & Szendrei, Z. Wild bee pollen diets reveal patterns of seasonal foraging resources for honey bees. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00210 (2018).Article 

    Google Scholar 
    Proske, A., Lokatis, S. & Rolff, J. Impact of mowing frequency on arthropod abundance and diversity in urban habitats: A meta-analysis. Urban For Urban Green 76, 127714. https://doi.org/10.1016/j.ufug.2022.127714 (2022).Article 

    Google Scholar 
    Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6, e23459. https://doi.org/10.1371/journal.pone.0023459 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geslin, B. et al. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecol. Evol. 6, 6599–6615. https://doi.org/10.1002/ece3.2374 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Birdshire, K. R., Carper, A. L. & Briles, C. E. Bee community response to local and landscape factors along an urban-rural gradient. Urban Ecosyst. 23, 689–702. https://doi.org/10.1007/s11252-020-00956-w (2020).Article 

    Google Scholar 
    Goddard, M. A., Benton, T. G. & Dougill, A. J. Beyond the garden fence: Landscape ecology of cities. Trends Ecol. Evol. 25, 202–203. https://doi.org/10.1016/j.tree.2009.12.007 (2010).Article 

    Google Scholar 
    Theodorou, P. et al. Bumble bee colony health and performance vary widely across the urban ecosystem. J. Anim. Ecol. 91, 2135–2148. https://doi.org/10.1111/1365-2656.13797 (2022).Article 
    PubMed 

    Google Scholar 
    Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities?. Ecology 84, 2628–2642. https://doi.org/10.1890/02-0136 (2003).Article 

    Google Scholar 
    Ebeling, A., Klein, A.-M., Schumacher, J., Weisser, W. W. & Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos 117, 1808–1815. https://doi.org/10.1111/j.1600-0706.2008.16819.x (2008).Article 

    Google Scholar 
    Theodorou, P. et al. Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity. Sci. Rep. 10, 21756. https://doi.org/10.1038/s41598-020-78736-x (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85. https://doi.org/10.1111/j.0307-6946.2005.00662.x (2005).Article 

    Google Scholar 
    Fründ, J., Linsenmair, K. E. & Blüthgen, N. Pollinator diversity and specialization in relation to flower diversity. Oikos 119, 1581–1590. https://doi.org/10.1111/j.1600-0706.2010.18450.x (2010).Article 

    Google Scholar 
    Fornoff, F. et al. Functional flower traits and their diversity drive pollinator visitation. Oikos 126, 1020–1030. https://doi.org/10.1111/oik.03869 (2017).Article 
    CAS 

    Google Scholar 
    Hofmann, M. M. & Renner, S. S. One-year-old flower strips already support a quarter of a city’s bee species. J. Hymenopt. Res. 75, 87–95. https://doi.org/10.3897/jhr.75.47507 (2020).Article 

    Google Scholar 
    Verboven, H. A., Uyttenbroeck, R., Brys, R. & Hermy, M. Different responses of bees and hoverflies to land use in an urban–rural gradient show the importance of the nature of the rural land use. Landsc. Urban Plan. 126, 31–41. https://doi.org/10.1016/j.landurbplan.2014.02.017 (2014).Article 

    Google Scholar 
    Luder, K., Knop, E. & Menz, M. H. M. Contrasting responses in community structure and phenology of migratory and non-migratory pollinators to urbanization. Divers. Distrib. 24, 919–927. https://doi.org/10.1111/ddi.12735 (2018).Article 

    Google Scholar 
    Merckx, T. & van Dyck, H. Urbanization-driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects. Glob. Ecol. Biogeogr. 28, 1440–1455. https://doi.org/10.1111/geb.12969 (2019).Article 

    Google Scholar 
    Tzortzakaki, O., Kati, V., Panitsa, M., Tzanatos, E. & Giokas, S. Butterfly diversity along the urbanization gradient in a densely-built Mediterranean city: Land cover is more decisive than resources in structuring communities. Landsc. Urban Plan. 183, 79–87. https://doi.org/10.1016/j.landurbplan.2018.11.007 (2019).Article 

    Google Scholar 
    Krauss, J., Steffan-Dewenter, I. & Tscharntke, T. How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies?. J. Biogeogr. 30, 889–900. https://doi.org/10.1046/j.1365-2699.2003.00878.x (2003).Article 

    Google Scholar 
    Cozzi, G., Müller, C. B. & Krauss, J. How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution on fragmented wetlands?. Landsc. Ecol. 23, 269–283. https://doi.org/10.1007/s10980-007-9178-3 (2008).Article 

    Google Scholar 
    He, M. et al. Effects of landscape and local factors on the diversity of flower-visitor groups under an urbanization gradient, a case study in Wuhan, China. Diversity 14, 208. https://doi.org/10.3390/d14030208 (2022).Article 

    Google Scholar 
    Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I. & Fischer, L. K. Wild bees in urban grasslands: Urbanisation, functional diversity and species traits. Landsc. Urban Plan. 196, 103731. https://doi.org/10.1016/j.landurbplan.2019.103731 (2020).Article 

    Google Scholar 
    Chapman, R. E. & Bourke, A. F. G. The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4, 650–662. https://doi.org/10.1046/j.1461-0248.2001.00253.x (2001).Article 

    Google Scholar 
    Gaertner, M. et al. Non-native species in urban environments: Patterns, processes, impacts and challenges. Biol. Invasions 19, 3461–3469. https://doi.org/10.1007/s10530-017-1598-7 (2017).Article 

    Google Scholar 
    Kowarik, I. On the role of alien species in urban flora and vegetation. In Urban Ecology. An International Perspective on the Interaction Between Humans and Nature (ed. Marzluff, J. M.) 321–338 (2008).Lorenz, S. & Stark, K. Saving the honeybees in Berlin? A case study of the urban beekeeping boom. Environ. Sociol. 1, 116–126. https://doi.org/10.1080/23251042.2015.1008383 (2015).Article 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 104, 19891–19896. https://doi.org/10.1073/pnas.0706375104 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856. https://doi.org/10.1126/science.1188321 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dormann, C. F., Fründ, J. & Schaefer, H. M. Identifying causes of patterns in ecological networks: Opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48, 559–584. https://doi.org/10.1146/annurev-ecolsys-110316-022928 (2017).Article 

    Google Scholar 
    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279. https://doi.org/10.1016/j.biocon.2009.12.004 (2010).Article 

    Google Scholar 
    Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031. https://doi.org/10.1038/ncomms12031 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host-parasitoid networks. Nat. Ecol. Evol 2, 1408–1417. https://doi.org/10.1038/s41559-018-0631-2 (2018).Article 
    PubMed 

    Google Scholar 
    Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227. https://doi.org/10.1038/nature21071 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bommarco, R. et al. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. Biol. Sci. 277, 2075–2082. https://doi.org/10.1098/rspb.2009.2221 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807. https://doi.org/10.1111/j.0030-1299.2008.16987.x (2008).Article 

    Google Scholar 
    Dupont, Y. L., Padrón, B., Olesen, J. M. & Petanidou, T. Spatio-temporal variation in the structure of pollination networks. Oikos 118, 1261–1269. https://doi.org/10.1111/j.1600-0706.2009.17594.x (2009).Article 

    Google Scholar 
    Santamaría, S. et al. Landscape effects on pollination networks in Mediterranean gypsum islands. Plant Biol. 20(Suppl 1), 184–194. https://doi.org/10.1111/plb.12602 (2018).Article 
    PubMed 

    Google Scholar  More

  • in

    Impact of test, vaccinate or remove protocol on home ranges and nightly movements of badgers a medium density population

    DEFRA. Strategy for Achieving Officially Bovine Tuberculosis Free Status for England: The ‘edge area’ strategy. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/300447/pb14088-bovine-tb-strategy-140328.pdf (2014).Campbell, E. L. et al. Interspecific visitation of cattle and badgers to fomites: A transmission risk for bovine tuberculosis?. Ecol. Evol. 9(15), 8479–8489 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts, T., O’Connor, C., Nuñez-Garcia, J., De La Rua-Domenech, R. & Smith, N. H. Unusual cluster of Mycobacterium bovis infection in cats. Vet. Rec. 174(13), 326–326 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phipps, E. et al. Bovine tuberculosis in working foxhounds: Lessons learned from a complex public health investigation. Epidemiol. Infect. 147, 1–6 (2019).Article 

    Google Scholar 
    Delahay, R. J., De Leeuw, A. N. S., Barlow, A. M., Clifton-Hadley, R. S. & Cheeseman, C. L. The status of Mycobacterium bovis infection in UK wild mammals: A review. Vet. J. 164(2), 90–105 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fitzgerald, S. D. & Kaneene, J. B. Wildlife reservoirs of bovine tuberculosis worldwide: Hosts, pathology, surveillance, and control. Vet. Pathol. 50(3), 488–499 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Skuce, R. A., Allen, A. R. & McDowell, S. W. J. Herd-level risk factors for bovine tuberculosis: A literature review. Vet Med Int 2012, 621210 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayele, W. Y., Neill, S. D., Zinsstag, J., Weiss, M. G. & Pavlik, I. Bovine tuberculosis: An old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 8(8), 924–937 (2004).CAS 
    PubMed 

    Google Scholar 
    Gallagher, J. & Clifton-Hadley, R. S. Tuberculosis in badgers; a review of the disease and its significance for other animals. Res. Vet. 69(3), 203–217 (2000).Article 
    CAS 

    Google Scholar 
    Allen, A. et al. Genome epidemiology of Mycobacterium bovis infection in contemporaneous, sympatric badger and cattle populations in Northern Ireland. Access Microbiol. 1(1A), 385 (2019).Article 

    Google Scholar 
    APHA. Bovine Tuberculosis in England in 2020—Epidemiological analysis of the 2020 data and historical trends. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1027591/tb-epidemiological-report-2020.pdf (2021).DAERA. Tuberculosis disease statistics in Northern Ireland 2022. https://www.daera-ni.gov.uk/publications/tuberculosis-disease-statistics-northern-ireland-2022 (2022).Woodroffe, R. et al. Effects of culling on badger Meles meles spatial organization: Implications for the control of bovine tuberculosis. J. Appl. Ecol. 43(1), 1–10 (2006).Article 

    Google Scholar 
    Byrne, A. W., Paddy Sleeman, D., O’Keeffe, J. & Davenport, J. The ecology of the European badger (Meles meles) in Ireland: A review. Biol. Environ. 112, 105–132 (2012).Article 

    Google Scholar 
    McDonald, J., Robertson, A. & Silk, M. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population. J. Anim. Ecol. 87(1), 101–112 (2017).Article 
    PubMed 

    Google Scholar 
    Macdonald, D. W., Newman, C. & Buesching, C. D. Badgers in the rural landscape—conservation paragon or farmland pariah? Lessons from the Wytham Badger Project. Wildlife conservation on farmland 2, 65–95 (2015).
    Google Scholar 
    Judge, J., Wilson, G. J., Macarthur, R., McDonald, R. A. & Delahay, R. J. Abundance of badgers (Meles meles) in England and Wales. Sci. Rep. 7(1), 1–8 (2017).Article 
    CAS 

    Google Scholar 
    Feore, S. & Montgomery, W. I. Habitat effects on the spatial ecology of the European badger (Meles meles). J. Zool. 247(4), 537–549 (1999).Article 

    Google Scholar 
    Reid, N., Etherington, T. R., Wilson, G. J., Montgomery, W. I. & McDonald, R. A. Monitoring and population estimation of the European badger Meles meles in Northern Ireland. Wildlife Biol. 18(1), 46–57 (2012).Article 

    Google Scholar 
    DAERA. Farm animal populations: Cattle populations in Northern Ireland from 1981 to 2019. https://www.daera-ni.gov.uk/publications/farm-animal-population-data (2019).DEFRA. Livestock numbers in the UK (data to December 2019). https://www.gov.uk/government/statistical-data-sets/structure-of-the-livestock-industry-in-england-at-december.39 (2020).DEFRA. Setting the minimum and maximum numbers in badger cull areas in 2021—Advice to Natural England. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1015421/tb-min-max-numbers-2021.pdf (2021).Griffin, J. M. et al. The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Prev. Vet. Med. 67(4), 237–266 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ham, C., Donnelly, C. A., Astley, K. L., Jackson, S. Y. B. & Woodroffe, R. Effect of culling on individual badger Meles meles behaviour: Potential implications for bovine tuberculosis transmission. J. Appl. Ecol. 56(11), 2390–2399 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olea-Popelka, F. J. et al. Targeted badger removal and the subsequent risk of bovine tuberculosis in cattle herds in county Laois, Ireland. Prev. Vet. Med. 88(3), 178–184 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Donnelly, C. A. et al. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439(7078), 843–846 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Byrne, A. W., White, P. W., McGrath, G., O’Keeffe, J. & Martin, S. W. Risk of tuberculosis cattle herd breakdowns in Ireland: Effects of badger culling effort, density and historic large-scale interventions. Vet. Res. 45(1), 1–10 (2014).Article 

    Google Scholar 
    Wright, D. M. et al. Herd-level bovine tuberculosis risk factors: Assessing the role of low-level badger population disturbance. Sci. Rep. 5, 1–11 (2015).Article 

    Google Scholar 
    Jenkins, H. E., Woodroffe, R. & Donnelly, C. A. The duration of the effects of repeated widespread badger culling on cattle tuberculosis following the cessation of culling. PLoS ONE 5(2), e9090 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuyttens, F. A. M. et al. Spatial perturbation caused by a badger (Meles meles) culling operation: Implications for the function of territoriality and the control of bovine tuberculosis (Mycobacterium bovis). J. Anim. Ecol. 69(5), 815–828 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carter, S. P. et al. Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: An analysis of a critical problem in applied ecology. Proc. R. Soc. B. 274(1626), 2769–2777 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donnelly, C. A. et al. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426(6968), 834–837 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vicente, J., Delahay, R. J., Walker, N. J. & Cheeseman, C. L. Social organization and movement influence the incidence of bovine tuberculosis in an undisturbed high-density badger Meles meles population. J Anim Ecol. 76(2), 348–360 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Riordan, P., Delahay, R. J., Cheeseman, C., Johnson, P. J. & Macdonald, D. W. Culling-induced changes in badger (Meles meles) behaviour, social organisation and the epidemiology of bovine tuberculosis. PLoS ONE 6(12), e28904 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowalczyk, R., Jȩdrzejewska, B. & Zalewski, A. Annual and circadian activity patterns of badgers (Meles meles) in Białowieża Primeval Forest (eastern Poland) compared with other palaearctic populations. J. Biogeogr. 30(3), 463–472 (2003).Article 

    Google Scholar 
    Smith, G. C., Delahay, R. J., McDonald, R. A. & Budgey, R. Model of selective and non-selective management of badgers (Meles meles) to control bovine tuberculosis in badgers and cattle. PLoS ONE 11(11), e0167206 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garnett, B. T., Delahay, R. J. & Roper, T. J. Ranging behaviour of European badgers (Meles meles) in relation to bovine tuberculosis (Mycobacterium bovis) infection. Appl. Anim. Behav. Sci. 94(3–4), 331–340 (2005).Article 

    Google Scholar 
    Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. 23(20), 915–916 (2013).Article 

    Google Scholar 
    Ellwood, S. A. et al. An active-radio-frequency-identification system capable of identifying co-locations and social-structure: Validation with a wild free-ranging animal. Methods Ecol. Evol. 8(12), 1822–1831 (2017).Article 

    Google Scholar 
    Noonan, M. et al. A new Magneto-Inductive tracking technique to uncover subterranean activity: what do animals do underground?. Methods Ecol. Evol. 6(5), 510–520 (2015).Article 

    Google Scholar 
    Schütz, K. et al. Behavioral and physiological responses of trap-induced stress in European badgers. J. Wildl. Manag. 70(3), 884–891 (2006).Article 

    Google Scholar 
    Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27(6), 1826–1832 (2016).
    Google Scholar 
    Bidder, O. R. et al. Step by step: Reconstruction of terrestrial animal movement paths by dead-reckoning. Mov. Ecol. https://doi.org/10.1186/s40462-015-0055-4 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunner, R. M. et al. Dead-reckoning animal movements in R: a reappraisal using Gundog. Tracks. Anim. Biotelem. 9(1), 1–37 (2021).
    Google Scholar 
    McClune, D. W., Marks, N. J., Delahay, R. J., Montgomery, W. I. & Scantlebury, D. M. Behaviour-time budget and functional habitat use of a free-ranging European badger (Meles meles). Anim. Biotelem. 3(7), 1–7 (2015).
    Google Scholar 
    McClune, D. et al. Tri-axial accelerometers quantify behaviour in the Eurasian badger (Meles meles): towards an automated interpretation of field data. Anim. Biotelem. 2(1), 1–6 (2014).Article 

    Google Scholar 
    Gaughran, A. et al. Dispersal patterns in a medium-density Irish badger population: Implications for understanding the dynamics of tuberculosis transmission. Ecol. Evol. 9(23), 13142–13152 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelly, D. J. et al. Extra Territorial Excursions by European badgers are not limited by age, sex or season. Sci. Rep. 10(1), 1–2 (2020).Article 

    Google Scholar 
    Macdonald, D. W., Newman, C., Buesching, C. D. & Johnson, P. J. Male-biased movement in a high-density population of the Eurasian badger (Meles meles). J. Mammal. 89(5), 1077–1086 (2008).Article 

    Google Scholar 
    Courcier, E. A. et al. Evaluating the application of the dual path platform VetTB test for badgers (Meles meles) in the test and vaccinate or remove (TVR) wildlife research intervention project in Northern Ireland. Res. Vet. Sci. 130, 170–178 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Menzies, F. D. et al. Test and vaccinate or remove: Methodology and preliminary results from a badger intervention research project. Vet. Rec. 189, e248 (2021).Article 
    PubMed 

    Google Scholar 
    O’Hagan, M. J. H. et al. Effect of selective removal of badgers (Meles meles) on ranging behaviour during a “test and Vaccinate or Remove” intervention in Northern Ireland. Epidemiol. Infect. 149(1), e125 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roper, T. J. The structure and function of badger setts. J. Zool. 227(4), 691–698 (1992).Article 

    Google Scholar 
    DAERA. The Test and Vaccinate or Remove (TVR) Wildlife Intervention Research Project. Year 1 Report—2014. https://www.daera-ni.gov.uk/sites/default/files/publications/dard/tvr-year-1-report.pdf (2014).Brown, E., Cooney, R. & Rogers, F. Veterinary guidance on the practical use of the BadgerBCG tuberculosis vaccine. In Pract. 35(3), 143–146 (2013).Article 

    Google Scholar 
    Magowan, E. A. et al. Dead-reckoning elucidates fine-scale habitat use by European badgers Meles meles. Anim. Biotelem. 10(1), 1–11 (2022).Article 

    Google Scholar 
    McGill, K. et al. Seroconversion against antigen MPB83 in badgers (Meles meles) vaccinated with multiple doses of BCG strain Sofia. Res. Vet. Sci. 149, 119–124. https://doi.org/10.1016/j.rvsc.2022.06.011 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gaughran, A. et al. Super-ranging. A new ranging strategy in European badgers. PLoS ONE 13(2), e0191818 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, H. J. et al. Identification of animal movement patterns using tri-axial magnetometry. Mov. Ecol. 5(1), 6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brendel C, Helder R, Chevallier D, Zaytoon J, Georges JY, and Handrich Y. Testing a global positioning system on free ranging badgers Meles meles. Mammal Notes, The Mammal Society, Southampton. https://www.mammal.org.uk/wp-content/uploads/2016/04/Note–Brendel-MN-2012-1.pdf (2012).Börger, L. et al. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75(6), 1393–1405 (2006).Article 
    PubMed 

    Google Scholar 
    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197(3–4), 516–519 (2006).Article 

    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7(9), 1124–1132 (2016).Article 

    Google Scholar 
    QGIS.org. QGIS Geographic Information System. QGIS Association. https://qgis.org/en/site/ (2021).Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96(5), 1182–1188 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fleming, C. H. et al. Estimating where and how animals travel: An optimal framework for path reconstruction from autocorrelated tracking data. Ecology 97(3), 576–582 (2016).CAS 
    PubMed 

    Google Scholar 
    Fleming, C. H. et al. Correcting for missing and irregular data in home-range estimation. Ecol. Appl. 28(4), 1003–1010 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gula, R. & Theuerkauf, J. The need for standardization in wildlife science: Home range estimators as an example. Eur. J. Wildl. Res. 59, 713–718 (2013).Article 

    Google Scholar 
    Schuler, K. L., Schroeder, G. M., Jenks, J. A. & Kie, J. G. Ad hoc smoothing parameter performance in kernel estimates of GPS-derived home ranges. Wildl. Biol. 20(5), 259–266 (2014).Article 

    Google Scholar 
    Huck, M., Davison, J. & Roper, T. J. Comparison of two sampling protocols and four home-range estimators using radio-tracking data from urban badgers Meles meles. Wildl. Biol. 14(4), 467–477 (2008).Article 

    Google Scholar 
    Scull, P., Palmer, M., Frey, F. & Kraly, E. A comparison of two home range modeling methods using Ugandan mountain gorilla data. Int. J. Geogr. Inf. Sci. 26(11), 2111–2121 (2012).Article 

    Google Scholar 
    Woodroffe, R. et al. Ranging behaviour of badgers Meles meles vaccinated with Bacillus Calmette Guerin. J. Appl. Ecol. 54(3), 718–725 (2017).Article 

    Google Scholar 
    Signer, J. & Fieberg, J. R. A fresh look at an old concept: Home-range estimation in a tidy world. PeerJ 9, e11031 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodroffe, R. et al. Badgers prefer cattle pasture but avoid cattle: implications for bovine tuberculosis control. Ecology 19(10), 1201–1208 (2016).
    Google Scholar 
    Hijmans RJ. Introduction to the geosphere package (version 1 .5–10). Cran (2019).Dewhirst, O. P. et al. Improving the accuracy of estimates of animal path and travel distance using GPS drift-corrected dead reckoning. Ecol. Evol. 6(17), 6210–6222 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    QGIS.org. Working with vector data. QGIS Desktop 3.16 User Guide. pp 304. https://docs.qgis.org/3.22/en/docs/user_manual/index.html (2022).Qasem, L. et al. Tri-axial acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector?. PLoS ONE 7(2), e31187 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies; a reappraisal. J anim Ecol. 89(1), 161–172 (2020).Article 
    PubMed 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Barton K. Package “MuMin”. Cran (2018).Rogers, L. M., Cheeseman, C. L., Mallinson, P. J. & Clifton-Hadley, R. The demography of a high-density badger (Meles meles) population in the west of England. J. Zool. 242(4), 705–728 (1997).Article 

    Google Scholar 
    Macdonald, D. W. & Newman, C. Population dynamics of badgers (Meles meles) in Oxfordshire, UK: Numbers, density and cohort life histories, and a possible role of climate change in population growth. J. Zool. 256(1), 121–138 (2002).Article 

    Google Scholar 
    Kruuk, H., & MacDonald, D. Group territories of carnivores: empires and enclaves. In 25th Symposium of the British Ecological Society (1985).Roper, T. J., Shepherdson, D. J. & Davies, J. M. Scent marking with faeces and anal secretion in the European badger (Meles meles): seasonal and spatial characteristics of latrine use in relation to territoriality. Behaviour 97(1–2), 94–117 (1986).
    Google Scholar 
    Sleeman, D. P. et al. How many Eurasian badgers Meles meles L. are there in the republic of Ireland?. Eur. J. Wildl. Res. 55(4), 333–344 (2009).Article 

    Google Scholar 
    Carter, S. P. et al. BCG vaccination reduces risk of tuberculosis infection in vaccinated badgers and unvaccinated badger cubs. PLoS ONE 7(12), e49833 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Byrne, A., Parnell, A., O’Keeffe, J. & Madden, J. The challenge of estimating wildlife populations at scale: the case of the European badger (Meles meles) in Ireland. Eur. J. Wildl. Res. 67(5), 1–10 (2021).Article 

    Google Scholar 
    Minta, S. C. Sexual differences in spatio-temporal interaction among badgers. Oecologia 96(3), 402–409 (1993).Article 
    PubMed 

    Google Scholar 
    Annavi, G. et al. Neighbouring-group composition and within-group relatedness drive extra-group paternity rate in the European badger (Meles meles). J. Evol. Biol. 27(10), 2191–2203 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DEFRA. Monitoring regional changes in badger numbers. Research Project Final Report. http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=14237. Accessed 07 February 2023 (2009).Johnson, D. D., Jetz, W. & Macdonald, D. W. Environmental correlates of badger social spacing across Europe. J. Biogeogr. 29(3), 411–425 (2002).Article 

    Google Scholar 
    Kruuk, H. Spatial organization and territorial behaviour of the European badger Meles meles. J Zool. 184(1), 1–19 (1978).Article 

    Google Scholar 
    Macdonald, D., Newman, C., Dean, J., Buesching, C. & Johnson, P. The distribution of Eurasian badger, Meles meles, setts in a high-density area: field observations contradict the sett dispersion hypothesis. Oikos 106(2), 295–307 (2004).Article 

    Google Scholar 
    Sleeman, D. P. & Mulcahy, M. F. Loss of territoriality in a local badger Meles meles population at Kilmurry, Co Cork, Irealnd. Irish Nat. J. 28(1), 11–19 (2005).
    Google Scholar 
    Byrne, A. W., O’Keeffe, J., Buesching, C. D. & Newman, C. Push and pull factors driving movement in a social mammal: Context dependent behavioral plasticity at the landscape scale. Curr. Zool. 65(5), 517–525 (2019).Article 
    PubMed 

    Google Scholar 
    Cheeseman, C. L., Cresswell, W. J., Harris, S. & Mallinson, P. J. Comparison of dispersal and other movements in two Badger (Meles meles) populations. Mamm. Rev. 18(1), 51–59 (1988).Article 

    Google Scholar 
    Seebacher, F. & Krause, J. Epigenetics of social behaviour. TREE 34(9), 818–830 (2019).PubMed 

    Google Scholar 
    Allen, A. et al. European badger (Meles meles) responses to low-intensity, selective culling: Using mark–recapture and relatedness data to assess social perturbation. Ecol. Solut. Evid. 3(3), e12165 (2022).Article 

    Google Scholar 
    Loureiro, F., Rosalino, L. M., Macdonald, D. W. & Santos-Reis, M. Path tortuosity of Eurasian badgers (Meles meles) in a heterogeneous Mediterranean landscape. Ecol. Res. 22(5), 837–844 (2007).Article 

    Google Scholar 
    Sun, Q., Stevens, C., Newman, C., Buesching, C. & Macdonald, D. Cumulative experience, age-class, sex and season affect the behavioural responses of European badgers (Meles meles) to handling and sedation. Anim Welf. 24(4), 373–385 (2015).Article 

    Google Scholar 
    Conlan, A. et al. Potential benefits of cattle vaccination as a supplementary control for bovine tuberculosis. PLoS Comput. Biol. 11(2), e1004038 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gormley, E. et al. Oral vaccination of free-living badgers (Meles meles) with Bacille Calmette Guérin (BCG) vaccine confers protection against tuberculosis. PLoS ONE 12(1), e0168851 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benton, C. H. et al. Badger vaccination in England: Progress, operational effectiveness and participant motivations. People Nat. 2(3), 761–775 (2020).Article 

    Google Scholar  More

  • in

    Playing “hide and seek” with the Mediterranean monk seal: a citizen science dataset reveals its distribution from molecular traces (eDNA)

    Shaw, J., Weyrich, L. & Cooper, A. Using environmental (e)DNA sequencing for aquatic biodiversity surveys: A beginner’s guide. Mar. Freshw. Res. 68, 68 (2016).
    Google Scholar 
    Smith, K. J. et al. Stable isotope analysis of specimens of opportunity reveals ocean-scale site fidelity in an elusive whale species. Front. Conserv. Sci. 2, 1–11 (2021).Article 

    Google Scholar 
    Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS One 5, (2010).Cavanagh, R. D. & Gibson, C. Overview of the conservation status of cartilaginous fishes (Chondrichthyans) in the Mediterranean Sea. https://doi.org/10.2305/iucn.ch.2007.mra.3.en (2007).Pace, D. S., Tizzi, R. & Mussi, B. Cetaceans value and conservation in the Mediterranean Sea. Journal Biodivers. Endanger. Species S1:
    S1.004 (2015).Carlucci, R. et al. Modeling the spatial distribution of the striped dolphin (Stenella coeruleoalba) and common bottlenose dolphin (Tursiops truncatus) in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Ecol. Indic. 69, 707–721 (2016).Article 

    Google Scholar 
    Boldrocchi, G. et al. Distribution, ecology, and status of the white shark, Carcharodon carcharias, in the Mediterranean Sea. Rev. Fish Biol. Fish. 27, 515–534 (2017).Article 

    Google Scholar 
    Karamanlidis, A. A. et al. The Mediterranean monk seal Monachus monachus: Status, biology, threats, and conservation priorities. Mammal Review 46, 92–105. https://doi.org/10.1111/mam.12053 (2016).Article 

    Google Scholar 
    Johnson, W. M. The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century Monk Seals in Post-Classical History. (2004).Johnson, W. M. & Lavigne, D. M. The Mediterranean Monk Seal (Monachus monachus) in Ancient History and Literature Monk Seals in Antiquity. (1999).Israëls, l. D. Thirty Years of Mediterranean Monk Seal Protection – A Review. Netherlands Com- Mission Int. Nat. Prot. Inst. voor Taxon. Zoölogie/Zoölogische Museum, Univ. van Amsterdam, Amsterdam, Netherlands. Meded. No. 281–65. (1992).Stringer, C. B. et al. Neanderthal exploitation of marine mammals in Gibraltar. Proc. Natl. Acad. Sci. U. S. A. 105, 14319–14324 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    La Mesa, G., Lauriano, G., Mo, G., Paglialonga, A. & Tunesi, L. Assessment of the conservation status of marine species of the Habitats Directive (92/43/EEC) in Italy: results, drawbacks and perspectives of the fourth national report (2013–2018). Biodivers Conserv (2021).Adamantopoulou, S., Karamanlidis, A. A., Dendrinos, P. & Gimenez, O. Citizen science indicates significant range recovery and defines new conservation priorities for Earth’s most endangered pinniped in Greece. Anim. Conserv. https://doi.org/10.1111/acv.12806 (2022).Article 

    Google Scholar 
    Nicolaou, H., Dendrinos, P., Marcou, M., Michaelides, S. & Karamanlidis, A. A. Re-establishment of the Mediterranean monk seal Monachus monachus in Cyprus: Priorities for conservation. Oryx 55, 526–528 (2021).Article 

    Google Scholar 
    Tenan, S. et al. Evaluating mortality rates with a novel integrated framework for nonmonogamous species. Conserv. Biol. 30, 1307–1319 (2016).Article 
    PubMed 

    Google Scholar 
    Vanpe, C. et al. Estimating abundance of a recovering transboundary brown bear population with capture- recapture models. Peer Community Journal, 2, e71. (2022).Lecaudey, L. A., Schletterer, M., Kuzovlev, V. V., Hahn, C. & Weiss, S. J. Fish diversity assessment in the headwaters of the Volga River using environmental DNA metabarcoding. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1785–1800 (2019).Article 

    Google Scholar 
    Itakura, H. et al. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river-basin scale. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 361–373 (2019).Article 

    Google Scholar 
    Closek, C. J. et al. Marine vertebrate biodiversity and distribution within the central California current using environmental DNA (eDNA) metabarcoding and ecosystem surveys. Front. Mar. Sci. Vol. 6. (2019).Boldrocchi, G. & Storai, T. Data-mining social media platforms highlights conservation action for the Mediterranean Critically Endangered blue shark Prionace glauca. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 3087–3099 (2021).Article 

    Google Scholar 
    Thiel, M. et al. Citizen scientists and marine research: Volunteer participants, their contributions, and projection for the future. Oceanogr. Mar. Biol. An Annu. Rev. 52, 257–314 (2014).
    Google Scholar 
    Araujo, G. et al. Citizen science sheds light on the cryptic ornate eagle ray Aetomylaeus vespertilio. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 2012–2018 (2020).Article 

    Google Scholar 
    Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 24, 467–471 (2009).Article 
    PubMed 

    Google Scholar 
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, (2014).Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).Article 

    Google Scholar 
    Eichmiller, J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.5b05672 (2016).Article 
    PubMed 

    Google Scholar 
    Mächler, E., Osathanunkul, M. & Altermatt, F. Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms. PLoS ONE 13, 1–15 (2018).Article 

    Google Scholar 
    Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mauvisseau, Q. et al. The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environ. Sci. Technol. 56, 5322–5333 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valsecchi, E. et al. A species – specific qPCR assay provides novel insight into range expansion of the Mediterranean monk seal (Monachus monachus ) by means of eDNA analysis. Biodivers. Conserv. 31, 1175–1196 (2022).Article 

    Google Scholar 
    Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. https://doi.org/10.1038/s42003-018-0192-6 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, B., P.M., B. & Timbros, K. The particle size distribution of environmental DNA varies with species and degradation. Sci. Total Environ. 797, 149175 (2021).Würtz, M. Mediterranean submarine canyons. in Ecology and Governance (ed. IUCN) 192 (2012).Valsecchi, E. et al. Ferries and environmental DNA: Underway sampling from commercial vessels provides new opportunities for systematic genetic surveys of marine biodiversity. Front. Mar. Sci. 8, 1–17 (2021).Article 

    Google Scholar 
    Bustin, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 622, 611–622 (2009).Article 

    Google Scholar 
    Klymus, K. E. et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ. DNA 1–12. https://doi.org/10.1002/edn3.29 (2019).Goldberg, G. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 1299–1307. https://doi.org/10.1111/2041-210X.12595 (2016).Farrell, J. A. et al. Detection and population genomics of sea turtle species via noninvasive environmental DNA analysis of nesting beach sand tracks and oceanic water. Mol. Ecol. Resour. (2022).Shamblin, B. M. et al. Loggerhead turtle eggshells as a source of maternal nuclear genomic DNA for population genetic studies. Mol. Ecol. Resour. 11, 110–115 (2011).Article 
    PubMed 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).Article 

    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 37–41 (1999).Akaike, H. Information theory and an extension of the maximum likelihood principle in Breakthroughs in Statistics, Vol.I, Foundations and Basic Theory, (eds. Kotz, S. and Johnson, N.L.) 610–624 (Springer-Verlag, New York, 1992).Adamantopoulou, S. et al. Movements of Mediterranean Monk Seals (Monachus monachus) in the Eastern Mediterranean Sea. Aquat. Mamm. 37, 256–261 (2011).Article 

    Google Scholar  More