More stories

  • in

    Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile

    1.Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).ADS 
    Article 

    Google Scholar 
    2.Yost, J. L. & Hartemink, A. E. How deep is the soil studied—an analysis of four soil science journals. Plant Soil 452, 5–18 (2020).CAS 
    Article 

    Google Scholar 
    3.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).Article 

    Google Scholar 
    4.Dove, N. C. et al. Continental-scale patterns of extracellular enzyme activity in the subsoil: an overlooked reservoir of microbial activity. Environ. Res. Lett. 15, 1040a1 (2020).CAS 
    Article 

    Google Scholar 
    5.Hicks Pries, C. E., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Taş, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Brewer, T. E. et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBio 10, e01318–e01319 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Sulman, B. N. et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry 141, 109–123 (2018).CAS 
    Article 

    Google Scholar 
    9.Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).CAS 
    Article 

    Google Scholar 
    10.Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Melillo, J. M. et al. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc. Natl Acad. Sci. USA 108, 9508–9512 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Feng, X., Simpson, A. J., Wilson, K. P., Dudley Williams, D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1, 836–839 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Dove, N. C., Stark, J. M., Newman, G. S. & Hart, S. C. Carbon control on terrestrial ecosystem function across contrasting site productivities: the carbon connection revisited. Ecology 100, e02695 (2019).PubMed 
    Article 

    Google Scholar 
    15.Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3, nclimate1796 (2013).Article 
    CAS 

    Google Scholar 
    16.Olander, L. P. & Vitousek, P. M. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49, 175–190 (2000).CAS 
    Article 

    Google Scholar 
    17.DeAngelis, K. M. et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. 6, 104–115 (2015).18.Cheng, L. et al. Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME J. 11, 1825–1835 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Billings, S. A. & Ballantyne, F. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Glob. Change Biol. 19, 90–102 (2013).ADS 
    Article 

    Google Scholar 
    20.Rasmussen, C., Torn, M. S. & Southard, R. J. Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. Soil Sci. Soc. Am. J. 69, 1711–1721 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Jones, D. L. et al. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biol. Biochem. 117, 72–82 (2018).CAS 
    Article 

    Google Scholar 
    22.Pold, G. et al. Carbon use efficiency and its temperature sensitivity covary in soil bacteria. mBio 11, e02293–19 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Geyer, K. M., Dijkstra, P., Sinsabaugh, R. & Frey, S. D. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biol. Biochem. 128, 79–88 (2018).24.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 
    Article 

    Google Scholar 
    26.Sullivan, B. W. et al. Assessing nutrient limitation in complex forested ecosystems: alternatives to large‐scale fertilization experiments. Ecology 95, 668–681 (2014).PubMed 
    Article 

    Google Scholar 
    27.Hart, S. C., Firestone, M. K. & Paul, E. A. Decomposition and nutrient dynamics of ponderosa pine needles in a Mediterranean-type climate. Can. J. Forest Res. 22, 306–314 (1992).CAS 
    Article 

    Google Scholar 
    28.Dijkstra, P. et al. Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol. Biochem. 43, 2023–2031 (2011).CAS 
    Article 

    Google Scholar 
    29.Don, A., Rödenbeck, C. & Gleixner, G. Unexpected control of soil carbon turnover by soil carbon concentration. Environ. Chem. Lett. 11, 407–413 (2013).CAS 
    Article 

    Google Scholar 
    30.Rodriguez-R, L. M. & Konstantinidis, K. T. Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets. Bioinformatics 30, 629–635 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Rodriguez-R, L. M. & Konstantinidis, K. T. Estimating coverage in metagenomic data sets and why it matters. ISME J. 8, 2349–2351 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).CAS 
    Article 

    Google Scholar 
    33.Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M. & Henrissat, B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 41 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Benoit, I. et al. Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genomics 13, 321 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Tveit, A. T., Urich, T. & Svenning, M. M. Metatranscriptomic analysis of arctic peat soil microbiota. Appl. Environ. Microbiol. 80, 5761–5772 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Huergo, L. F. & Dixon, R. The emergence of 2-Oxoglutarate as a master regulator metabolite. Microbiol. Mol. Biol. Rev. 79, 419–435 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Bai, X. et al. Expression of a β-mannosidase from Paenibacillus polymyxa A-8 in Escherichia coli and characterization of the recombinant enzyme. PLoS ONE 9, e111622 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Sorensen, J. W., Dunivin, T. K., Tobin, T. C. & Shade, A. Ecological selection for small microbial genomes along a temperate-to-thermal soil gradient. Nat. Microbiol. 4, 55–61 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Pold, G., Grandy, A. S., Melillo, J. M. & DeAngelis, K. M. Changes in substrate availability drive carbon cycle response to chronic warming. Soil Biol. Biochem. 110, 68–78 (2017).CAS 
    Article 

    Google Scholar 
    40.Yue, H. et al. The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. ISME J. 9, 2012–2020 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Xue, K. et al. Warming alters expressions of microbial functional genes important to ecosystem functioning. Front. Microbiol. 7, 668–681 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    42.Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Soong, J. L. et al. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Change Biol. 26, 1953–1961 (2020).ADS 
    Article 

    Google Scholar 
    45.Chapin, F. S., Matson, P. A. & Vitousek, P. Principles of Terrestrial Ecosystem Ecology (Springer Science & Business Media, 2011).46.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Oliverio, A. M., Bradford, M. A. & Fierer, N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob. Change Biol. 23, 2117–2129 (2017).ADS 
    Article 

    Google Scholar 
    48.Pold, G. et al. Long-term warming alters carbohydrate degradation potential in temperate forest soils. Appl. Environ. Microbiol. 82, 6518–6530 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Morrison, E. W. et al. Warming alters fungal communities and litter chemistry with implications for soil carbon stocks. Soil Biol. Biochem. 132, 120–130 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Bai, W., Wang, G., Xi, J., Liu, Y. & Yin, P. Short-term responses of ecosystem respiration to warming and nitrogen addition in an alpine swamp meadow. Eur. J. Soil Biol. 92, 16–23 (2019).CAS 
    Article 

    Google Scholar 
    51.Tilman, D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl Acad. Sci. USA 101, 10854–10861 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Sharrar, A. M. et al. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. mBio 11, e00416–e00420 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Qi, J. et al. Drying-wetting cycles: effect on deep soil carbon. Soil Syst. 2, 3 (2018).CAS 
    Article 

    Google Scholar 
    54.Butcher, K. R., Nasto, M. K., Norton, J. M. & Stark, J. M. Physical mechanisms for soil moisture effects on microbial carbon-use efficiency in a sandy loam soil in the western United States. Soil Biol. Biochem. 150, 107969 (2020).CAS 
    Article 

    Google Scholar 
    55.Zhou, W. P., Shen, W. J., Li, Y. E. & Hui, D. F. Interactive effects of temperature and moisture on composition of the soil microbial community. Eur. J. Soil Biol. 68, 909–918 (2017).CAS 

    Google Scholar 
    56.Spohn, M., Klaus, K., Wanek, W. & Richter, A. Microbial carbon use efficiency and biomass turnover times depending on soil depth—Implications for carbon cycling. Soil Biol. Biochem. 96, 74–81 (2016).CAS 
    Article 

    Google Scholar 
    57.Saifuddin, M., Bhatnagar, J. M., Segrè, D. & Finzi, A. C. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat. Commun. 10, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    58.Geyer, K. M., Kyker-Snowman, E., Grandy, A. S. & Frey, S. D. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188 (2016).CAS 
    Article 

    Google Scholar 
    59.Dove, N. C., Safford, H. D., Bohlman, G. N., Estes, B. L. & Hart, S. C. High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests. Ecol. Appl. 30, e02072 (2020).PubMed 
    Article 

    Google Scholar 
    60.Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).PubMed 
    Article 

    Google Scholar 
    61.Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009–e00015 (2016).PubMed 
    Article 

    Google Scholar 
    62.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    67.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. No. LBNL-7065E (Ernest Orlando Lawrence Berkeley National Laboratory, 2014).74.Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Xue, Y., Jonassen, I., Øvreås, L. & Taş, N. Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost. FEMS Microbiol Ecol. 96, fiaa057 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).
    Google Scholar 
    83.Aziz, R. K. et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 1–15 (2008).Article 
    CAS 

    Google Scholar 
    84.Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Zhou, Z., Tran, P., Liu, Y., Kieft, K. & Anantharaman, K. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. bioRxiv https://doi.org/10.1101/761643 (2019).86.Emiola, A. & Oh, J. High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage. Nat. Commun. 9, 1–8 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    87.Binkley, D. & Hart, S. C. in Advances in Soil Science (ed. Stewart, B. A.) 57–112 (Springer New York, 1989).88.Fox, J. & Weisberg, S. An R companion to applied regression Ch.4. (Sage, 2019).89.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    90.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    92.Oksanen, J. et al. vegan: Community Ecology Package. https://cran.r-project.org/web/packages/vegan/index.html (2013).93.Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Bruns, T. D., White, T. J. & Taylor, J. W. Fungal molecular systematics. Annu. Rev. Ecol. Evol. Syst. 22, 525–564 (1991).Article 

    Google Scholar  More

  • in

    Six caveats to valuing ecosystem services

    We agree that economic valuations of the ecosystem services provided by natural environments can be a powerful tool to aid conservation (see Nature 591, 178; 2021), but we suggest that they are subject to six caveats.First, they are automatically weighted towards countries with strong currencies and high gross domestic products, undervaluing ecosystems and people in low-income nations. Second, current protocols (see P. Dasgupta The Economics of Biodiversity: the Dasgupta Review; HM Treasury, 2021) are incomplete and should take into account mental health, which has cash consequences for employers, insurers, governments and societies (R. Buckley et al. Nature Commun. 10, 5005; 2019). Third, they apply at different scales, physically and politically: global or cross-border for some, but local for most. Fourth, they are most powerful for ecosystem services that are scarce, in demand, rival (one user prevents others from using it) and excludable (it is possible to stop someone from using it). Fifth, their political power depends on the focus and distribution of costs and benefits: health outweighs conservation, for instance. Finally, they depend on human institutions, such as carbon prices.Protocols to account for ecosystem services should therefore be scalable, to match political decisions, and modular, allowing for future adjustments. It would be premature to solidify standards now. More

  • in

    Functional traits linked to pathogen prevalence in wild bee communities

    1.Wong, M. K., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022. https://doi.org/10.1111/brv.12488 (2019).Article 
    PubMed 

    Google Scholar 
    2.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).Article 
    PubMed 

    Google Scholar 
    3.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x (2007).Article 

    Google Scholar 
    4.Forrest, J. R. K., Thorp, R. W., Kremen, C. & Williams, N. M. Contrasting patterns in species and functional-trait diversity of bees in an agricultural landscape. J. Appl. Ecol. 52, 706–715. https://doi.org/10.1111/1365-2664.12433 (2015).Article 

    Google Scholar 
    5.Williams, N. M. et al. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143, 2280–2291. https://doi.org/10.1016/j.biocon.2010.03.024 (2010).Article 

    Google Scholar 
    6.Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481. https://doi.org/10.1038/s41467-019-09393-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B 282, 20142620. https://doi.org/10.1098/rspb.2014.2620 (2015).Article 
    PubMed 

    Google Scholar 
    8.Bartomeus, I., Cariveau, D. P., Harrison, T. & Winfree, R. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127, 306–315. https://doi.org/10.1111/oik.04507 (2018).Article 

    Google Scholar 
    9.Paull, S. H. et al. From superspreaders to disease hotspots: Linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82. https://doi.org/10.1890/110111 (2012).Article 
    PubMed 

    Google Scholar 
    10.Perkins, S. E., Cattadori, I. M., Tagliapietra, V., Rizzoli, A. P. & Hudson, P. J. Empirical evidence for key hosts in persistence of a tick-borne disease. Int. J. Parasitol. 33, 909–917. https://doi.org/10.1016/s0020-7519(03)00128-0 (2003).Article 
    PubMed 

    Google Scholar 
    11.Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58. https://doi.org/10.1016/j.jip.2014.08.007 (2014).Article 
    PubMed 

    Google Scholar 
    13.Evison, S. E. F. et al. Pervasiveness of parasites in pollinators. PLoS ONE 7, e30641. https://doi.org/10.1371/journal.pone.0030641 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Dolezal, A. G. et al. Honey bee viruses in wild bees: viral prevalence, loads, and experimental inoculation. PLoS ONE 11, e0166190. https://doi.org/10.1371/journal.pone.0166190 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240. https://doi.org/10.1016/j.virusres.2013.06.013 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Figueroa, L. L. et al. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecol. Lett. 23, 1212–1222. https://doi.org/10.1111/ele.13521 (2020).Article 
    PubMed 

    Google Scholar 
    17.Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367. https://doi.org/10.1038/s41559-020-1247-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596. https://doi.org/10.1007/s00442-007-0752-9 (2007).ADS 
    Article 
    PubMed 

    Google Scholar 
    19.Figueroa, L. L. et al. Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proc. R. Soc. B 286, 20190603. https://doi.org/10.1098/rspb.2019.0603 (2019).Article 
    PubMed 

    Google Scholar 
    20.Palmer-Young, E. C., Calhoun, A. C., Mirzayeva, A. & Sadd, B. M. Effects of the floral phytochemical eugenol on parasite evolution and bumble bee infection and preference. Sci. Rep. 8, 2074. https://doi.org/10.1038/s41598-018-20369-2 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Manson, J. S., Otterstatter, M. C. & Thomson, J. D. Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162, 81–89. https://doi.org/10.1007/s00442-009-1431-9 (2010).ADS 
    Article 
    PubMed 

    Google Scholar 
    22.Otterstatter, M. C. & Thomson, J. D. Within-host dynamics of an intestinal pathogen of bumble bees. Parasitology 133, 749–761. https://doi.org/10.1017/S003118200600120X (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Rutrecht, S. T. & Brown, M. J. F. Within colony dynamics of Nosema bombi infections: disease establishment, epidemiology and potential vertical transmission. Apidologie 39, 504–514. https://doi.org/10.1051/apido:2008031 (2008).Article 

    Google Scholar 
    24.Roberts, K. E., Evison, S. E. F., Baer, B. & Hughes, W. O. H. The cost of promiscuity: Sexual transmission of Nosema microsporidian parasites in polyandrous honey bees. Sci. Rep. 5, 10982. https://doi.org/10.1038/srep10982 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Schmid-Hempel, P. Parasites in Social Insects (Princeton University Press, Princeton, 1998).
    Google Scholar 
    26.Wuellner, C. T. Nest site preference and success in a gregarious, ground-nesting bee Dieunomia triangulifera. Ecol. Entomol. 24, 471–479. https://doi.org/10.1046/j.1365-2311.1999.00215.x (1999).Article 

    Google Scholar 
    27.Potts, S. & Willmer, P. Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecol. Entomol. 22, 319–328. https://doi.org/10.1046/j.1365-2311.1997.00071.x (1997).Article 

    Google Scholar 
    28.Cane, J. H. Soils of ground-nesting bees (Hymenoptera: Apoidea): texture, moisture, cell depth and climate. J. Kans. Entomol. Soc. 64, 406–413 (1991).
    Google Scholar 
    29.Leonard, R. J. & Harmon-Threatt, A. N. Methods for rearing ground-nesting bees under laboratory conditions. Apidologie 50, 689–703. https://doi.org/10.1007/s13592-019-00679-8 (2019).CAS 
    Article 

    Google Scholar 
    30.Folly, A. J., Koch, H., Stevenson, P. C. & Brown, M. J. F. Larvae act as a transient transmission hub for the prevalent bumblebee parasite Crithidia bombi. J. Invertebr. Pathol. 148, 81–85. https://doi.org/10.1016/j.jip.2017.06.001 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Kappeler, P. M., Cremer, S. & Nunn, C. L. Sociality and health: impacts of sociality on disease susceptibility and transmission in animal and human societies. Philos. T. R. Soc. B 370, 20140116. https://doi.org/10.1098/rstb.2014.0116 (2015).Article 

    Google Scholar 
    32.Stow, A. et al. Antimicrobial defences increase with sociality in bees. Biol. Lett. 3, 422–424. https://doi.org/10.1098/rsbl.2007.0178 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Spivak, M. & Reuter, G. S. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32, 555–565. https://doi.org/10.1051/apido:2001103 (2001).Article 

    Google Scholar 
    34.Pinilla-Gallego, M. S. et al. Within-colony transmission of microsporidian and trypanosomatid parasites in honey bee and bumble bee colonies. Environ. Entomol. https://doi.org/10.1093/ee/nvaa112 (2020).Article 
    PubMed 

    Google Scholar 
    35.Nunn, C. L., Jordán, F., McCabe, C. M., Verdolin, J. L. & Fewell, J. H. Infectious disease and group size: more than just a numbers game. Philos. T. R. Soc. B 370, 20140111. https://doi.org/10.1098/rstb.2014.0111 (2015).Article 

    Google Scholar 
    36.Adler, L. S., Barber, N. A., Biller, O. M. & Irwin, R. E. Flowering plant composition shapes pathogen infection intensity and reproduction in bumble bee colonies. Proc. Natl. Acad. Sci. USA 117, 11559–11565. https://doi.org/10.1073/pnas.2000074117 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Adler, L. S. et al. Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545. https://doi.org/10.1002/ecy.2503 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Koch, H., Brown, M. J. F. & Stevenson, P. C. The role of disease in bee foraging ecology. Curr. Opin. Insect Sci. 21, 60–67. https://doi.org/10.1016/j.cois.2017.05.008 (2017).Article 
    PubMed 

    Google Scholar 
    39.Giacomini, J. J. et al. Medicinal value of sunflower pollen against bee pathogens. Sci. Rep. 8, 14394. https://doi.org/10.1038/s41598-018-32681-y (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.LoCascio, G. M., Aguirre, L., Irwin, R. E. & Adler, L. S. Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. R. Soc. Open Sci. 6, 190279. https://doi.org/10.1098/rsos.190279 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Does parasitic infection impair the ability of bumblebees to learn flower-handling techniques?. Anim. behav. 70, 209–215. https://doi.org/10.1016/j.anbehav.2004.09.025 (2005).Article 

    Google Scholar 
    42.Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B 273, 1073–1078. https://doi.org/10.1098/rspb.2005.3423 (2006).Article 
    PubMed 

    Google Scholar 
    43.Goulson, D., O’Connor, S. & Park, K. J. The impacts of predators and parasites on wild bumblebee colonies. Ecol. Entomol. 43, 168–181. https://doi.org/10.1111/een.12482 (2018).Article 

    Google Scholar 
    44.Graystock, P., Meeus, I., Smagghe, G., Goulson, D. & Hughes, W. O. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 143, 358–365. https://doi.org/10.1017/S0031182015001614 (2016).Article 
    PubMed 

    Google Scholar 
    45.Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119. https://doi.org/10.1016/j.jip2013.06.005 (2013).Article 
    PubMed 

    Google Scholar 
    46.Otti, O. & Schmid-Hempel, P. Nosema bombi: a pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96, 118–124. https://doi.org/10.1016/j.jip.2007.03.016 (2007).Article 
    PubMed 

    Google Scholar 
    47.Bramke, K., Müller, U., McMahon, D. P. & Rolff, J. Exposure of larvae of the solitary bee Osmia bicornis to the honey bee pathogen Nosema ceranae affects life history. Insects 10, 380. https://doi.org/10.3390/insects10110380 (2019).Article 
    PubMed Central 

    Google Scholar 
    48.Eiri, D. M., Suwannapong, G., Endler, M. & Nieh, J. C. Nosema ceranae can infect honey bee larvae and reduces subsequent adult longevity. PLoS ONE 10, e0126330. https://doi.org/10.1371/journal.pone.0126330 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Mitchell, T. B. Bees of the Eastern United States: volume I. N. C. Agric. Exp. Sta. Tech. Bull 1, 1–538 (1960).
    Google Scholar 
    50.Mitchell, T. B. Bees of the Eastern United States: volume II. N. C. Agric. Exp. Sta. Tech. Bull II, 1–557 (1962).
    Google Scholar 
    51.LaBerge, W. E. A revision of the bees of the genus Andrena of the Western Hemisphere. Part XII. Subgenera Leucandrena, Ptilandrena, Scoliandrena and Melandrena. Trans. Am. Entomol. Soc. 112, 191–248 (1986).
    Google Scholar 
    52.Gibbs, J. Revision of the metallic Lasioglossum (Dialictus) of Eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 3073, 1–216 (2011).Article 

    Google Scholar 
    53.Rehan, S. M. & Sheffield, C. S. Morphological and molecular delineation of a new species in the Ceratina dupla species-group (Hymenoptera: Apidae: Xylocopinae) of Eastern North America. Zootaxa 2873, 35–50 (2011).Article 

    Google Scholar 
    54.Gibbs, J., Packer, L., Dumesh, S. & Danforth, B. N. Revision and reclassification of Lasioglossum (Evylaeus), L. (Hemihalictus) and L. (Sphecodogastra) in Eastern North America (Hymenoptera: Apoidea: Halictidae). Zootaxa 3672, 1–117 (2013).Article 

    Google Scholar 
    55.Coutinho, J. G. D. E., Garibaldi, L. A. & Viana, B. F. The influence of local and landscape scale on single response traits in bees: A meta-analysis. Agr. Ecosyst. Environ. 256, 61–73. https://doi.org/10.1016/j.agee.2017.12.025 (2018).Article 

    Google Scholar 
    56.Bartomeus, I. et al. Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. USA 110, 4656–4660. https://doi.org/10.1073/pnas.1218503110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    57.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    58.Stevenson, M. et al. epiR: Tools for the analysis of epidemiological data. R package version 0.9–62 (2015).59.Teder, T. & Tammaru, T. Sexual size dimorphism within species increases with body size in insects. Oikos 108, 321–334. https://doi.org/10.1111/j.0030-1299.2005.13609.x (2005).Article 

    Google Scholar 
    60.Müller, U., McMahon, D. P. & Rolff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agric. For. Entomol. 65, 191–199. https://doi.org/10.1111/afe.12338 (2019).Article 

    Google Scholar 
    61.Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int. J. Parasitol. 49, 605–613. https://doi.org/10.1016/j.ijpara.2019.03.006 (2019).Article 
    PubMed 

    Google Scholar 
    62.Ngor, L. et al. Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology 147, 1–62. https://doi.org/10.1017/S0031182020001018 (2020).Article 

    Google Scholar 
    63.Figueroa, L. L., Grincavitch, C. & McArt, S. H. Crithidia bombi can infect two solitary bee species while host survivorship depends on diet. Parasitology 148, 435–442. https://doi.org/10.1017/S0031182020002218 (2021).Article 
    PubMed 

    Google Scholar 
    64.Rhodes, J. R., McAlpine, C. A., Zuur, A., Smith, G. & Ieno, E. Mixed Effects Models and Extensions in Ecology with R Statistics for Biology and Health 469–492 (Springer, New York, 2009).
    Google Scholar 
    65.Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).MathSciNet 
    Article 

    Google Scholar 
    66.Ruiz-González, M. X. et al. Dynamic transmission, host quality, and population structure in a multi-host parasite of bumblebees. Evolution 66, 3053–3066. https://doi.org/10.1111/j.1558-5646.2012.01655.x (2012).Article 
    PubMed 

    Google Scholar 
    67.Cook-Patton, S. C., McArt, S. H., Parachnowitsch, A. L., Thaler, J. S. & Agrawal, A. A. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92, 915–923. https://doi.org/10.1890/10-0999.1 (2011).Article 
    PubMed 

    Google Scholar 
    68.Goulson, D. & Sparrow, K. R. Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J. Insect Conserv. 13, 177–181. https://doi.org/10.1007/s10841-008-9140-y (2009).Article 

    Google Scholar 
    69.Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154. https://doi.org/10.1111/1365-2664.13456 (2019).Article 

    Google Scholar 
    70.Renauld, M., Hutchinson, A., Loeb, G., Poveda, K. & Connelly, H. Landscape smplification constrains adult size in a native ground-nesting bee. PLoS ONE 11, e0150946. https://doi.org/10.1371/journal.pone.0150946 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Persson, A. S. & Smith, H. G. Bumblebee colonies produce larger foragers in complex landscapes. Basic Appl. Ecol. 12, 695–702. https://doi.org/10.1016/j.baae.2011.10.002 (2011).Article 

    Google Scholar 
    72.Bommarco, R. et al. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. R. Soc. B 277, 2075–2082. https://doi.org/10.1098/rspb.2009.2221 (2010).Article 
    PubMed 

    Google Scholar 
    73.Yerushalmi, S., Bodenhaimer, S. & Bloch, G. Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. J. Exp. Biol. 209, 1044–1051. https://doi.org/10.1242/jeb.02125 (2006).Article 
    PubMed 

    Google Scholar 
    74.McNeil, D. J. et al. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci. Rep. 10, 22306. https://doi.org/10.1038/s41598-020-78119-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568. https://doi.org/10.1038/ncomms9568 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Williams, N. M., Minckley, R. L. & Silveira, F. A. Variation in native bee faunas and its implications for detecting community changes. Conserv. Ecol. 5, 7 (2001).
    Google Scholar 
    77.Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl. Acad. Sci. USA 108, 20645–20649. https://doi.org/10.1073/pnas.1115559108 (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    78.Stemkovski, M. et al. Bee phenology is predicted by climatic variation and functional traits. Ecol. Lett. 23, 1589–1598. https://doi.org/10.1111/ele.13583 (2020).Article 
    PubMed 

    Google Scholar  More

  • in

    Modeling biomass allocation strategy of young planted Zelkova serrata trees in Taiwan with component ratio method and seemingly unrelated regressions

    1.UNFCCC. Adoption of the Paris Agreement. 32 (2015).2.Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002. https://doi.org/10.1088/1748-9326/aabf9f (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    3.Lawrence, M. G. et al. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 9, 3734. https://doi.org/10.1038/s41467-018-05938-3 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    4.Matovic, D. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy 36, 2011–2016. https://doi.org/10.1016/j.energy.2010.09.031 (2011).CAS 
    Article 

    Google Scholar 
    5.Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M. & Rooney, D. W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01133-3 (2020).Article 

    Google Scholar 
    6.Clough, B. J. et al. Testing a new component ratio method for predicting total tree aboveground and component biomass for widespread pine and hardwood species of eastern US. Forestry 91, 575–588. https://doi.org/10.1093/forestry/cpy016 (2018).Article 

    Google Scholar 
    7.Lam, T. Y., Li, X., Kim, R. H., Lee, K. H. & Son, Y. M. Bayesian meta-analysis of regional biomass factors for Quercus mongolica forests in South Korea. J. For. Res. 26, 875–885. https://doi.org/10.1007/s11676-015-0089-x (2015).CAS 
    Article 

    Google Scholar 
    8.Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254. https://doi.org/10.1016/j.foreco.2014.06.026 (2014).Article 

    Google Scholar 
    9.Ver Planck, N. R. & MacFarlane, D. W. A vertically integrated whole-tree biomass model. Trees 29, 449–460, https://doi.org/10.1007/s00468-014-1123-x (2015).10.Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49, 12–35. https://doi.org/10.1093/forestscience/49.1.12 (2003).Article 

    Google Scholar 
    11.Parresol, B. R. Additivity of nonlinear biomass equations. Can. J. For. Res. 31, 865–878. https://doi.org/10.1139/x00-202 (2001).Article 

    Google Scholar 
    12.Parresol, B. R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 45, 573–593, https://doi.org/10.1093/forestscience/45.4.573 (1999).13.Radtke, P. et al. Improved accuracy of aboveground biomass and carbon estimates for live trees in forests of the eastern United States. Forestry 90, 32–46. https://doi.org/10.1093/forestry/cpw047 (2017).Article 

    Google Scholar 
    14.Woodall, C. W., Heath, L. S., Domke, G. M. & Nichols, M. C. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. 30, https://doi.org/10.2737/NRS-GTR-88 (2011).15.Chiou, L.-W., Huang, C.-H., Wu, J.-C. & Hsieh, H.-R. Report of the 4th National Forest Resource Inventory in Taiwan. Taiwan For. J. 41, 3–13 (2015).
    Google Scholar 
    16.Yang, T.-R., Lam, T. Y. & Kershaw, J. A. Jr. Developing relative stand density index for structurally complex mixed species cypress and pine forests. For. Ecol. Manag. 409, 425–433. https://doi.org/10.1016/j.foreco.2017.11.043 (2018).Article 

    Google Scholar 
    17.Taiwan Forestry Bureau. The Fourth National Forest Resource Inventory. Vol. 78 (2017).18.Ko, S.-H. Study on the Biomass and Carbon Storage in the Zelkova serrata Plantation. MSc. Thesis, National Chung-Hsing University, https://doi.org/10.6845/NCHU.2006.00871 (2006).19.Lin, J.-C., Jeng, M.-R., Liu, S.-F. & Lee, K. J. Economic benefit evaluation of the potential CO2 sequestration by the National Reforestation Program. Taiwan J. For. Sci. 17, 311–321, https://doi.org/10.7075/TJFS.200209.0311 (2002).20.Lin, K.-C., Huang, C.-M. & Duh, C.-T. Study on estimate of carbon storages and sequestration of planted trees in Zelkova serrata plantations, Taiwan. J. Natl. Park 18, 45–58 (2008).CAS 

    Google Scholar 
    21.Liao, S.-H. & Wang, Y.-N. Study on carbon dioxide fixation efficiency of Cinnamomum camphora and Zelkova serrata in understory planting. Q. J. Chin. For. 35, 361–373 (2002).
    Google Scholar 
    22.Lambert, M. C., Ung, C. H. & Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 35, 1996–2018. https://doi.org/10.1139/x05-112 (2005).Article 

    Google Scholar 
    23.Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 57, 348–368. https://doi.org/10.2307/2281644 (1962).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    24.Henningsen, A. & Hamann, J. D. systemfit: A package for estimating systems of simultaneous equations in R. J. Stat. Softw. 23, 1–40, https://doi.org/10.18637/jss.v023.i04 (2007).25.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).26.Nelson, A. S., Weiskittel, A. R., Wagner, R. G. & Saunders, M. R. Development and evaluation of aboveground small tree biomass models for naturally regenerated and planted species in eastern Maine, U.S.A. Biomass Bioenergy 68, 215–227, https://doi.org/10.1016/j.biombioe.2014.06.015 (2014).27.Poudel, K. P., Temesgen, H., Radtke, P. J. & Gray, A. N. Estimating individual-tree aboveground biomass of tree species in the western U.S.A. Can. J. For. Res. 49, 701–714, https://doi.org/10.1139/cjfr-2018-0361 (2019).28.Carvalho, J. P. & Parresol, B. R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 179, 269–276, https://doi.org/10.1016/S0378-1127(02)00549-2 (2003).29.He, H. et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE 13, e0186226. https://doi.org/10.1371/journal.pone.0186226 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Cheng, C.-H., Huang, Y.-H., Menyailo, O. V. & Chen, C.-T. Stand development and aboveground biomass carbon accumulation with cropland afforestation in Taiwan. Taiwan J. For. Sci. 31, 105–118 (2016).
    Google Scholar 
    31.Lee, J.-H., Ko, Y. & McPherson, E. G. The feasibility of remotely sensed data to estimate urban tree dimensions and biomass. Urban For. Urban Green. 16, 208–220. https://doi.org/10.1016/j.ufug.2016.02.010 (2016).Article 

    Google Scholar 
    32.Park, J. H., Baek, S. G., Kwon, M. Y., Je, S. M. & Woo, S. Y. Volumetric equation development and carbon storage estimation of urban forest in Daejeon, Korea. For. Sci. Technol. 14, 97–104. https://doi.org/10.1080/21580103.2018.1452799 (2018).Article 

    Google Scholar 
    33.Yoon, T. K. et al. Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For. Urban Green. 12, 344–349. https://doi.org/10.1016/j.ufug.2013.03.006 (2013).Article 

    Google Scholar 
    34.Chiu, C. M., Lo-Cho, C.-N. & Suen, M.-Y. Pruning method and knot wound analysis of Taiwan zelkova (Zelkova serrata Hay.) plantations. Taiwan J. For. Sci. 17, 503–513, https://doi.org/10.7075/TJFS.200212.0503 (2002).35.Lo-Cho, C.-N., Chung, H.-H. & Chiu, C.-M. Effects of pruning on the growth and the branch occlusion tendency of Taiwan Zelkova (Zelkova serrata Hay.) young plantations. Bull. Taiwan For. Res. Inst. 10, 315–323, https://doi.org/10.7075/BTFRI.199509.0315 (1995).36.Shepherd, K. R. Plantation Silviculture (Springer, 1986).
    Google Scholar 
    37.Chiou, C.-R., Lin, J.-C. & Liu, W.-Y. The carbon benefit of thinned wood for bioenergy in Taiwan. Forests 10, 255. https://doi.org/10.3390/f10030255 (2019).Article 

    Google Scholar 
    38.Liu, W.-Y., Lin, C.-C. & Su, K.-H. Modelling the spatial forest-thinning planning problem considering carbon sequestration and emissions. For. Policy Econ. 78, 51–66. https://doi.org/10.1016/j.forpol.2017.01.002 (2017).Article 

    Google Scholar 
    39.Rais, A., Poschenrieder, W., van de Kuilen, J.-W.G. & Pretzsch, H. Impact of spacing and pruning on quantity, quality and economics of Douglas-fir sawn timber: Scenario and sensitivity analysis. Eur. J. For. Res. 139, 747–758. https://doi.org/10.1007/s10342-020-01282-8 (2020).Article 

    Google Scholar 
    40.Kershaw, J. A., Ducey, M. J., Beers, T. W. & Husch, B. Forest Mensuration. (John Wiley & Sons Ltd, 2016). More

  • in

    Testing average wind speed using sampling plan for Weibull distribution under indeterminacy

    1.Ajayi, O. O., Fagbenle, R. O., Katende, J., Aasa, S. A. & Okeniyi, J. O. Wind profile characteristics and turbine performance analysis in Kano, north-western Nigeria. Int. J. Energy Environ. Eng. 4, 1–15 (2013).Article 

    Google Scholar 
    2.Yan, A., Liu, S. & Dong, X. Variables two stage sampling plans based on the coefficient of variation. J. Adv. Mech. Des. Syst. Manuf. 10, JAMDSM0002 (2016).Article 

    Google Scholar 
    3.Yen, C.-H., Lee, C.-C., Lo, K.-H., Shiue, Y.-R. & Li, S.-H. A rectifying acceptance sampling plan based on the process capability index. Mathematics 8, 141 (2020).Article 

    Google Scholar 
    4.Akpinar, E. K. & Akpinar, S. A statistical analysis of wind speed data used in installation of wind energy conversion systems. Energy Convers. Manag. 46, 515–532 (2005).Article 

    Google Scholar 
    5.Yilmaz, V. & Çelik, H. E. A statistical approach to estimate the wind speed distribution: the case of Gelibolu region. Doğuş Üniversitesi Dergisi 9, 122–132 (2011).
    Google Scholar 
    6.Ali, S., Lee, S.-M. & Jang, C.-M. Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island-Incheon, South Korea. Renew. Energy 123, 652–663 (2018).Article 

    Google Scholar 
    7.Arias-Rosales, A. & Osorio-Gómez, G. Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy. Appl. Energy 228, 980–998 (2018).Article 

    Google Scholar 
    8.Akgül, F. G. & Şenoğlu, B. Comparison of wind speed distributions: a case study for Aegean coast of Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18 (2019).9.Ozay, C. & Celiktas, M. S. Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region. Energy Convers. Manag. 121, 49–54 (2016).Article 

    Google Scholar 
    10.Qing, X. Statistical analysis of wind energy characteristics in Santiago island, Cape Verde. Renew. Energy 115, 448–461 (2018).Article 

    Google Scholar 
    11.Mahmood, F. H., Resen, A. K. & Khamees, A. B. Wind Characteristic Analysis Based on Weibull Distribution of Al-Salman site (Iraq, 2019).
    Google Scholar 
    12.Campisi-Pinto, S., Gianchandani, K. & Ashkenazy, Y. Statistical tests for the distribution of surface wind and current speeds across the globe. Renew. Energy 149, 861–876 (2020).Article 

    Google Scholar 
    13.ul Haq, M. A., Rao, G. S., Albassam, M. & Aslam, M. Marshall-Olkin Power Lomax distribution for modeling of wind speed data. Energy Rep. 6, 1118–1123 (2020).Article 

    Google Scholar 
    14.Bludszuweit, H., Domínguez-Navarro, J. A. & Llombart, A. Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. 23, 983–991 (2008).ADS 
    Article 

    Google Scholar 
    15.Brano, V. L., Orioli, A., Ciulla, G. & Culotta, S. Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renew. Energy 36, 1026–1039 (2011).Article 

    Google Scholar 
    16.Katinas, V., Gecevicius, G. & Marciukaitis, M. An investigation of wind power density distribution at location with low and high wind speeds using statistical model. Appl. Energy 218, 442–451 (2018).Article 

    Google Scholar 
    17.Zaman, B., Lee, M. H. & Riaz, M. An improved process monitoring by mixed multivariate memory control charts: an application in wind turbine field. Comput. Ind. Eng. 142, 106343 (2020).Article 

    Google Scholar 
    18.Jamkhaneh, E. B., Sadeghpour-Gildeh, B. & Yari, G. Important criteria of rectifying inspection for single sampling plan with fuzzy parameter. Int. J. Contemp. Math. Sci. 4, 1791–1801 (2009).MATH 

    Google Scholar 
    19.Jamkhaneh, E. B., Sadeghpour-Gildeh, B. & Yari, G. Inspection error and its effects on single sampling plans with fuzzy parameters. Struct. Multidiscip. Optim. 43, 555–560 (2011).MATH 
    Article 

    Google Scholar 
    20.Sadeghpour Gildeh, B., Baloui Jamkhaneh, E. & Yari, G. Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 8, 47–55 (2011).MathSciNet 
    MATH 

    Google Scholar 
    21.Afshari, R. & Sadeghpour Gildeh, B. Designing a multiple deferred state attribute sampling plan in a fuzzy environment. Am. J. Math. Manag. Sci. 36, 328–345 (2017).MATH 

    Google Scholar 
    22.Tong, X. & Wang, Z. Fuzzy acceptance sampling plans for inspection of geospatial data with ambiguity in quality characteristics. Comput. Geosci. 48, 256–266 (2012).ADS 
    Article 

    Google Scholar 
    23.Uma, G. & Ramya, K. Impact of fuzzy logic on acceptance sampling plans–a review. Autom. Auton. Syst. 7, 181–185 (2015).
    Google Scholar 
    24.Smarandache, F. Neutrosophy. Neutrosophic probability, set, and logic, proquest information & learning. Ann Arbor, Michigan, USA 105, 118–123 (1998).25.Smarandache, F. & Khalid, H. E. Neutrosophic Precalculus and Neutrosophic Calculus. (Infinite Study, 2015).26.Peng, X. & Dai, J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput. Appl. 29, 939–954 (2018).Article 

    Google Scholar 
    27.Abdel-Basset, M., Mohamed, M., Elhoseny, M., Chiclana, F. & Zaied, A.E.-N.H. Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif. Intell. Med. 101, 101735 (2019).PubMed 
    Article 

    Google Scholar 
    28.Nabeeh, N. A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H. A. & Aboelfetouh, A. An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access 7, 29734–29744 (2019).Article 

    Google Scholar 
    29.Pratihar, J., Kumar, R., Dey, A. & Broumi, S. In Neutrosophic Graph Theory and Algorithms 180–212 (IGI Global, 2020).30.Pratihar, J., Kumar, R., Edalatpanah, S. & Dey, A. Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex Intell. Syst. 7, 1–12 (2020).
    Google Scholar 
    31.Smarandache, F. Introduction to neutrosophic statistics. (Infinite Study, 2014).32.Chen, J., Ye, J. & Du, S. Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry 9, 208 (2017).Article 

    Google Scholar 
    33.Chen, J., Ye, J., Du, S. & Yong, R. Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry 9, 123 (2017).Article 

    Google Scholar 
    34.Aslam, M. Introducing Kolmogorov–Smirnov tests under uncertainty: an application to radioactive data. ACS Omega 5, 9914–9917 (2019).
    Google Scholar 
    35.Aslam, M. A new sampling plan using neutrosophic process loss consideration. Symmetry 10, 132 (2018).Article 

    Google Scholar 
    36.Aslam, M. Design of sampling plan for exponential distribution under neutrosophic statistical interval method. IEEE Access 6, 64153–64158 (2018).Article 

    Google Scholar 
    37.Aslam, M. A new attribute sampling plan using neutrosophic statistical interval method. Complex Intell. Syst. 11, 1–6 (2019).
    Google Scholar 
    38.Aslam, M., Jeyadurga, P., Balamurali, S. & Marshadi, A. H. Time-Truncated Group Plan under a Weibull Distribution based on Neutrosophic Statistics. Mathematics 7, 905 (2019).Article 

    Google Scholar 
    39.Alhasan, K. F. H. & Smarandache, F. Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution. (Infinite Study, 2019).40.Cheema, A. N., Aslam, M., Almanjahie, I. M. & Ahmad, I. Mixture modeling of exponentiated pareto distribution in bayesian framework with applications of wind-speed and tensile strength of carbon fiber. IEEE Access 8, 178514–178525 (2020).Article 

    Google Scholar 
    41.Deep, S., Sarkar, A., Ghawat, M. & Rajak, M. K. Estimation of the wind energy potential for coastal locations in India using the Weibull model. Renew. Energy 161, 319–339 (2020).Article 

    Google Scholar 
    42.Gugliani, G., Sarkar, A., Ley, C. & Mandal, S. New methods to assess wind resources in terms of wind speed, load, power and direction. Renew. Energy 129, 168–182 (2018).Article 

    Google Scholar  More

  • in

    Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations

    Photosynthetic pigments in rice leaf bladesThe contents of chlorophylls a, and b and carotenoids showed an upward trend with increasing nitrogen application rate. Pigments in the N4 treatment were significantly higher than those in the N1 treatment at the heading and maturity stages (Fig. 1).Figure 1Effects of different nitrogen application rates on photosynthetic pigments in rice leaves. Note N0:0 kg ha-1; N1:75 kg ha-1; N2:150 kg ha-1; N3: 225 kg ha-1; N4:300 kg ha-1; Chla, chlorophyll (a); Chlb, chlorophyll (b); significant differences between rice varieties and nitrogen treatments (P  0.05) (Table 2).Table 2 Relationship between photosynthetic pigments and fluorescence parameters in rice leaves.Full size tableRelationships among rice yield and its components, photosynthetic pigments, and fluorescence parametersAt the booting stage, carotenoids had a significant positive correlation with EPN. At the heading stage, carotenoids had a significant negative correlation with SPP. At the maturity stage, chlorophylls a and b and carotenoids had significant positive correlations with EPN. However, chlorophyll a and carotenoids had a significant negative correlation with SF (Table 3).Table 3 Relationship between rice yield and its components, photosynthetic pigments, and fluorescence parameters.Full size tableAt the booting stage, qP was negatively correlated with EPN at the 5% significance level, and the correlation coefficient was − 0.892. At the heading stage, Fv/Fm and Y(NO) were negatively correlated with EPN and SPP (P  More

  • in

    Diminished growth and vitality in juvenile Hydractinia echinata under anticipated future temperature and variable nutrient conditions

    Collection of parental coloniesWildtype colonies of H. echinata were collected by staff of the Alfred Wegener Institute within the German Bight around Sylt (55°02′ N; 08°28′ E) with the research vessel MYA II in a depth of 1–3.5 m. Here, the mean annual SST ranges between 1 and 20 °C47, and the salinity between 25 and 33 PSU48. The sampling took place in April 2016 (scenario 1) and June 2016 (scenario 2). The hydroid colonies were transported to the Carl von Ossietzky University of Oldenburg, and cultured in artificial sea water (Aqua Medic, Germany) at 12 °C and 34 PSU. Before the transport, the hermit crabs were removed from the shells colonized by hydroids. At the University of Oldenburg, the colonies were fed daily with two-day-old living Artemia salina nauplii.Reproduction and larval settlementJuvenile hydroids were cultured as described in the Helgoland Manual of Animal Development27 Eder et al.31. Overall, 10 male and 10 female adult H. echinate colonies were placed together into one big holding tank to release eggs and sperm for fertilization. The fertilized eggs then transformed into larvae. The transformation of the larvae was induced by caesium chloride49 following the protocol of as described by Eder et al.31, which randomly settled onto black glass tiles (dimensions 10 mm × 10 mm × 2 mm, Mosaikstein, Germany), at least 2–3 larvae on each tile. The colonized glass tiles were then randomly dispersed into the different treatment tanks. As these recruits result from sexual reproduction of overall 20 parental colonies, we can assume high genetic variability of individuals. For individual identification of juvenile colonies, prior to the experiment the glass tiles were engraved underneath with consecutive numbers. After three weeks, the juvenile colonies growing closer to the edges were removed to avoid edge effects, leaving one colony per tile. Prior to the start of the experiments, the colonies were kept in artificial seawater at 18 °C and 34 PSU for 24 h post settlement. From day five of post-settlement onwards, juveniles were fed with two-day-old living Artemia salina nauplii.Experimental setupThe influence of temperature and food availability on the growth of H. echinata colonies was tested in two different experiments (= scenarios) to evaluate the effect of ambient and future environmental conditions on H. echinata in the subtidal (scenario 1, Fig. 7, left panel) and in the intertidal, a habitat characterized by high temperature fluctuations (scenario 2, Fig. 7, right panel). In both scenarios, colonies were exposed to two different temperatures (control and high) cross-factored with two different food conditions (low and high; Fig. 7).Figure 7Experimental design for analysing growth performance and mortality of juvenile H. echinata in two experiments, scenario 1 (left) and 2 (right). The larvae (b) of wild type colonies (a) were settled on glass tiles (c) and transferred to holding tanks for experimental exposure to variable temperature and food conditions (d): HF = high food (dark blue and red tanks); LF = low food (light blue and red tanks); 18 °C = control temperature (blue tanks); 21 °C = high temperature (red tanks). All treatments in scenario 2 contained an extra temperature step of + 1.5 °C for six hours daily. Throughout the experimental timeline and in each treatment, the growth performance of H. echinata was monitored (e). Additionally, a numerical growth model was developed (f dark grey arrows) based on daily analysis of morphological parameters (colony area, polyp number) in hydroids in treatments HF/18 °C and LF/18 °C of scenario 2 and validated (g light grey arrows) by comparing simulated and experimental growth data in all treatments of both scenarios.Full size imageThe control temperature of ~ 18 °C simulated the actual sea surface temperature (SST) during summer in the German Bight (data from Helgoland Roads, 2010–2014, http://www.st.nmfs.noaa.gov). The high temperature of ~ 21 °C was chosen according to predicted increasing SST by the end of the century in the North Sea 8.To evaluate the influence of food availability on the growth potential in hydroids as a response to increasing SST, colonies were fed with two-day-old living A. salina nauplii ( > 1000 nauplii/ml per tank per feeding event) following either a high food (HF) or a low food (LF) scheme (Fig. 7) according to Eder et al.31. Colonies with HF were fed five times a week and with LF three times a week. The LF treatments simulated ´food stress` and were patterned on the predicted decrease in primary and secondary production during the next decades6,50.All experimental conditions, including temperature and food, but also salinity, pH, as well as water quality (ammonium, nitrite and nitrate) were constantly monitored. The temperature was measured every ten minutes using HOBO Tidbit v2 Temp Loggers (Onset, USA). The salinity was checked prior to every water exchange (five times a week) with a hand-held refractometer (Arcarda, Germany). Twice a week, the pH was measured with a pH controller (Aqua Medic, Germany), and concentrations of ammonium, nitrite and nitrate were determined with test kits (JBL, Germany). The water quality was checked once a week before the water exchange. If the limit values for ammonium, nitrite and phosphate (0.25 mg/l, 0.2 mg/l and 0.1 mg/l) were exceeded, an additional water change was performed to ensure a consistently good water quality. Juvenile colonies were exposed to a 14 h-light and 10 h-dark cycle according to in-situ conditions in the German Bight in summer (July/August)31. Each replicate tank, covered by a lid to reduce evaporation and cooling, was provided with air through an air stone, which was placed in the middle of each tank and connected to a pump (HP-40, Hiblow, Japan). To minimize bacterial and algal growth on the glass tiles they were cleaned once a week, without touching the colonies.Scenario 1In the first experiment (Fig. 7, left panel) conducted in June–August 2016, the growth of 80 H. echinata colonies was analysed. The juvenile colonies growing on glass tiles were randomly dispersed into 24 holding tanks containing 100 ml artificial sea water (3–4 glass tiles per tank, 6 replicate tanks per treatment) and exposed for six weeks to, overall, four experimental treatments: HF/18 °C, HF/21 °C, LF/18 °C, LF/21 °C (Fig. 7, left panel). The temperature treatments in this scenario were chosen according to more stable conditions in the subtidal (Fig. 8, grey solid lines), with a control temperature of 18.5 °C ± 0.41 (mean ± SD; Fig. 8, lower grey line) and a high temperature of 20.8 °C ± 0.23 (mean ± SD; Fig. 8, upper grey line). The 24 holding tanks containing the juvenile hydroids were placed in two temperature-constant water baths as described in Eder et al.31. A thermostatic heater (Thermo control 300, Eheim, Germany) and two circulation pumps (Voyager Nano, Sicce, Italy) in each water bath kept temperatures constant at 18 °C and 21 °C, respectively.Figure 8Daily temperature profiles of the control (18 °C; bottom) and high-temperature (21 °C; top) treatments in scenario 1(solid grey lines) and 2 (dotted black lines). In both scenarios, light was provided to experimental animals daily between 8 am and 10 pm (yellow box). All treatments in scenario 2 contained an extra temperature step of + 1.5 °C for six hours daily (between 15:00 and 21:00 h; red box).Full size imageScenario 2The second scenario (Fig. 7, right panel) was conducted in October-December 2016, testing 71 juvenile H. echinata colonies under fluctuating temperature stress. The tiles were dispersed randomly into 32 holding tanks (2–3 glass tiles per tank, 8 replicate tanks per treatment) filled with 300 ml artificial sea water and exposed to four different treatments for five weeks, respectively: HF/18 °C + 1.5 °C, HF/21 °C + 1.5 °C, LF/18 °C + 1.5 °C, LF/21 °C + 1.5 °C (Fig. 7, right panel). This scenario contained an additional temperature step (+ 1.5 °C) for all treatments, to implement daily temperature fluctuations and mimic natural variations in the intertidal during high and low tide51; Fig. 8, black dotted lines). Therefore, the control temperature treatments of 18.2 °C ± 0.60 was increased daily for six hours to 19.5 °C ± 0.17 (mean ± SD; Fig. 8, lower black line), and the high temperature treatments of 20.7 °C ± 0.55 to 22.3 °C ± 0.06 (mean ± SD; Fig. 8, upper black line). The holding tanks were placed into temperature-controlled incubators (MIR-554, Panasonic Healthcare Co., Japan & MIR-553, Sanyo Electric Co., Japan) for each temperature regime.Growth rates and mortalityThroughout the experiment, the colonies developed normally without any signs of polyp or tentacle deformation. Each colony was morphometrically analyzed on a weekly basis in terms of colony area and number of polyps, as indicators for individual growth performance. These parameters were determined throughout both experiments by analyzing weekly photographs of colonies (Fig. 1), taken through a binocular microscope (Leica M205 C, Leica Microsystems, Germany) between the ages of 5–46 days post-settlement (scenario 1) and 8–36 days post-settlement (scenario 2). In scenario 1, the photographs of animals in the HF and LF treatments were taken three days apart for logistical reasons. The area of each colony was determined graphically by an automated script developed using Matlab (Version R2015b, The MathWorks, Inc., USA). The script identifies the shape of the largest patch on each glass tile and excludes the spaces between the stolonal channels. Geometric patterns were not taken into consideration to counteract potential morphological differences based on genetic variations or similarities (e.g. sheet or runner like colonies). For the determination of polyp number, only completely developed polyps equipped with tentacles were counted, whereas buddies were ignored. The juveniles did not reach sexual maturity during the experiment, therefore the colonies consisted exclusively of feeding polyps.Additionally, we analyzed mortality rates by day 35 post-settlement for both scenarios, which were characterized by visible colony-wide signs of cell necrosis and tissue detachment from the surface.In the treatments HF/18 °C and LF/18 °C of the second scenario, daily pictures of eight colonies (four colonies of each treatment) were taken between day 8 and 27 post-settlement to develop and validate a numerical growth model.Model development and validationTo identify physiological response mechanisms of juvenile hydroids exposed to nutrient and temperature stress, we developed a numerical growth model based on morphological data. The effect of environmental stress was simulated by phenomenological relationships, such as temperature-driven metabolism and the negative effects of resource limitation on growth rates. To identify unexpected trends and features in the experimental growth data, the results of the model simulations were compared to the experimental data.The model simulated the day-to-day growth of the colonies through building up feeding polyps and the stolon system. The polyps were described by nodes of a growing network connected by stolon branches. The energy was treated as an artificial, dimensionless quantity that was distributed over the nodes of the network. Food uptake resulted in an increase of the energy amount of every feeding polyp. Energy loss was accounted for by temperature-dependent rest and activity respiration according to van’t Hoff’s rule and the costs for stolon and polyp growth. The energy of a node was equally distributed to adjacent stolons and polyps at a fixed distribution rate, whereby pressure inequalities in stolon branches were not considered due to an assumed constant stolon diameter.The model was initialized by one feeding polyp. Depending on the available energy, the colony developed feeding polyps first to increase its energy intake. Then, if enough energy was left, the colony built up stolon branches of a certain length in an arbitrary direction. The energy needed for stolon growth was proportional to the length and had to exceed the parameterized amount for the growth of a stolon of reference length. The minimum distance between two polyps was also parameterized, as well as the energy needed for this process.Parameter values were partly taken from the experiments and partly estimated by automatic parameter optimization (Supplementary Table 1). For this, the parameters of the model were trained to the lab data of the LF/18 °C treatment (scenario 2) in respect to the number of feeding polyps and area of the colony. The trained parameter set was then used for all other simulations. The simulation was repeated 100 times per treatment, with the respective temperature and food scheme and randomized stolon growth. The model was programmed in C and ran for 43 days (scenario 1) and 37 days (scenario 2) with a time step of 6 h to simulate the periods of frequent temperature stress in scenario 2 (= additional temperature step). The model was calibrated using the treatment LF/18 °C (scenario 2).StatisticsWe compared the growth performance over time between experimental data and simulated data, for both scenarios separately. Area and polyp growth rates were compared by a pairwise Wilcoxon test with multiple-testing adjustment (Bonferroni-Holmes) in R (R version 3.5.1, R Core Team 2018). The 18 °C high-food condition (HF/18 °C) was set as the reference group. The respective parameters ((alpha ,b)) were calculated as follows:

    1.

    Area growth (colony area as a function of time) of the individual colonies was square root transformed and fitted with a linear model of the form, (sqrt[4]{{varvec{A}}}left( {varvec{t}} right) = {varvec{a}} + {varvec{bt}} + {varvec{varepsilon}}left( {varvec{t}} right),user2{ })([4])({{varvec{A}}}left( {varvec{t}} right) = {varvec{a}} + {varvec{bt}} + {varvec{varepsilon}}left( {varvec{t}} right),user2{ }) where ({varvec{A}}) is the colony area, ({varvec{a}},{varvec{b}}) represent intercept and slope of the fitted area growth curve, respectively, and ({varvec{varepsilon}}) is the model error.

    2.

    The polyp growth (number of polyps as a function of time) was fitted using the parametric Gompertz function without transformation, usually used to describe tumour growth kinetics (Laird, 1964) as follows: ({varvec{N}}left( {{varvec{t}};{varvec{alpha}},{varvec{beta}}} right) = {varvec{e}}^{{{varvec{alpha}}/{varvec{beta}}left( {1 – {varvec{e}}^{{ – user2{beta t}}} } right)}} ,user2{ }) where ({varvec{alpha}} > 0) is the initial growth constant, (mathop {lim }limits_{{{varvec{t}} to 0}} frac{{varvec{d}}}{{{varvec{dt}}}}{varvec{N}}left( {varvec{t}} right) = user2{alpha N}left( {varvec{t}} right),user2{ }) i.e. initial exponential growth, (mathop {lim }limits_{{{varvec{t}} to 0}} {varvec{N}}left( {varvec{t}} right) = exp left( {user2{alpha t}} right)), and ({varvec{beta}} > 0) is the growth constant at the maximum growth rate, i.e., (frac{{varvec{d}}}{{{varvec{dt}}}}{varvec{N}}left( {{varvec{t}} = {varvec{t}}_{{mathbf{i}}} } right) = user2{beta N}left( {{varvec{t}} = {varvec{t}}_{{mathbf{i}}} } right) = frac{{varvec{beta}}}{{varvec{e}}}{varvec{e}}^{{{varvec{alpha}}/{varvec{beta}}}}), with ({varvec{t}}_{{mathbf{i}}} = left( {ln frac{{varvec{alpha}}}{{varvec{beta}}}} right)/{varvec{beta}}) defining the inflexion point of the (sigmoidal) growth curve. The function follows the trend of a logistic growth curve, but is characterized by asymmetric growth through saturation. In both experiments, saturation was probably not reached, but in scenario 2, growth declined towards the end of the experiment. This decline was set as an indicator for the end of the optimal growth phase and, therefore, the end of the experiment. The ({varvec{beta}}) parameter determined for the experimental polyp growth curve of each colony was always significantly lower than the respective ({varvec{alpha}}) parameter and did not differ significantly across the conditions. This allowed us to compare the conditions in terms of the ({varvec{alpha}}) parameter only.

    The analysis of numerical growth model data followed the same procedure. Then, the growth curves over time (polyp number, colony area) for the experimental data and the simulation were qualitatively compared based on the shape and the discrepancies between the curves. Parametric functions to experimental growth curves were fitted using NonlinearModelFit in Wolfram Mathematica (Version 11, Wolfram Research, UK). R was used for statistical analysis and for producing graphical output. The effect sizes (Cohen’s effect size, Odds Ratio) are presented in the supplements (Supplementary Table 4, 5).In addition, we analyzed the experimental data in terms of mortality, which was defined as the proportion of colonies that died 35 days after settlement, using the proportion test in R.Animal rightsAll applicable international, national, and/or institutional guidelines of the University Oldenburg and the federal state Lower Saxony (Germany) for the care and use of animals were followed. More

  • in

    Siland a R package for estimating the spatial influence of landscape

    We consider a response variable measured at n different sites denoted Yi (i stands for a site), L local variables which can be continuous or discrete and are denoted as xil (l stands for a local variable and i for a site) and K landscape variables denoted as zrk (k stands for a landscape variable and r for a polygon in the landscape). In the Bsiland method, the effect of landscape variables is modelled using buffers with (p_{{i},delta_{k}}^{k}), the percentage of the landscape variable k in a buffer of radius δk and centered on site i. Since the Bsiland model is based on the generalized linear models framework, the expected value of the response variable Yi is modelled as follows:$$ mu_{i} = mu + sumlimits_{l in L} {alpha_{l} x_{i}^{l} } + sumlimits_{k in K} {beta_{k} p_{{i},delta_{k}}^{k} } $$
    (1)
    where µ is the intercept, αl and βk are the effects of local and landscape variables, respectively.The Fsiland method is based on Spatial Influence Functions (SIFs) in a similar framework to Chandler & Hepinstall-Cymerman 9. To simplify computations, the entire study area is not considered as continuous but rasterized, i.e. pixelated on a regular grid, named R. The value of each landscape variable k at a pixel r is described in zrk. For instance, if the landscape variable k is a presence/absence variable, zrk is equal to one or zero. The expected value of the response variable Yi is then modelled as follows:$$ mu_{i} = mu + sumlimits_{l in L} {alpha_{l} x_{i}^{l} } + sumlimits_{k in K} {beta_{k} } sumlimits_{r in R} {f_{{delta}_{k}} (d_{i,r} )z_{r}^{k} } $$
    (2)
    where fδk(.) is the SIF associated with the landscape variable k and di,r is the distance between the center of pixel r and the observation at site i. The SIF is a density function decreasing with the distance. The scale of effect of a landscape variable k is calibrated through the parameter δk, the mean distance of fδk. Two families of SIF are currently implemented in the siland package, exponential and Gaussian families defined as fδ(d) = 2/(πδ2)exp(-2d/δ) and fδ(d) = 1/(2δ)2exp(-π(d/2δ)2), respectively19. The effect of a landscape variable k is modelled by two parameters: an intensity parameter, βk describing its strength and its direction and a scale parameter, δk, describing how this effect declines with distance. Each pixel potentially has an effect on the response variable at any observation site. No set of scales of effects is initially determined. In Eq. 2, the sum on the regular grid R is an approximation of the integration on the continuous study area. The choice of the grid definition is a tradeoff between computing precision and computing time. The smallest the mesh size of the grid is, the better are the precision but the longer the computing time is (and the larger the required memory size is). The parameters estimation may be very sensitive to this mesh size. To obtain a reliable estimation, we recommend to ensure, after the estimation procedure, that mesh size is at least three times smaller than the smallest estimated SIF (see Supplementary Fig. S2 online for details). If not, it is recommended to proceed with a new estimation with a smaller mesh (by using the wd argument of the Fsiland function, set at 30 by default).All parameters, µ, {α1,…, αK}, {β1,…, βK} but also {δ1,…, δK} are simultaneously estimated by likelihood maximization for both Bsiland and Fsiland methods. We have developed a sequential algorithm. At the initialization stage, values are arbitrarily defined for the {δ1,..,δK} scales parameters. In step A, the µ, {α1,.., αK}, {β1,.., βK} parameters are estimated using the classical maximization procedures implemented in the lm and glm functions knowing the fixed values of the scale parameters. In step B, the scale parameters are estimated by likelihood maximization knowing the parameters estimated in step A. The values of the scale parameters are then fixed at the new estimated values. Steps A and B are thus repeated until the relative increase in likelihood decreased below a threshold or the maximum number of repetitions is reached. Tests performed (obtained using the summary function) are similar to those given by summary.lm or summary.glm function (see R Core Team16 for details, this implies that tests are given conditionally to the estimated scale parameters.). More