More stories

  • in

    First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself

    1.
    Murchison, E. P. Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene 27, S19–S30 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Metzger, M. J. et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534, 705–709 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Storfer, A. et al. The devil is in the details: Genomics of transmissible cancers in Tasmanian devils. PLoS Pathog. 14, 1–7 (2018).
    Article  CAS  Google Scholar 

    4.
    Nowinsky, M. A. Zur Frage über die Impfung der krebsigen Geschwülste. Zentralbl Med Wissensch. 14, 790–791 (1876).
    Google Scholar 

    5.
    Murgia, C., Pritchard, J. K., Kim, S. Y., Fassati, A. & Weiss, R. A. Clonal origin and evolution of a transmissible cancer. Cell 126, 477–487 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Pearse, A. M. & Swift, K. Allograft theory: transmission of devil facial-tumour disease. Nature 439, 549 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Siddle, H. V. et al. Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc. Natl. Acad. Sci. USA 104, 16221–16226 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Metzger, M. J. J., Reinisch, C., Sherry, J. & Goff, S. P. P. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161, 255–263 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Riquet, F., Simon, A. & Bierne, N. Weird genotypes? Don’t discard them, transmissible cancer could be an explanation. Evol. Appl. 10, 140–145 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Yonemitsu, M. A. et al. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. Elife 8, 1–21 (2019).
    Article  Google Scholar 

    11.
    Woods, G. M., Bruce Lyons, A. & Bettiol, S. S. A devil of a transmissible cancer. Trop. Med. Infect. Dis. 5, 1–10 (2020).
    Google Scholar 

    12.
    Ganguly, B., Das, U. & Das, A. K. Canine transmissible venereal tumour: a review. Vet. Comp. Oncol. 14, 1–12 (2016).
    CAS  PubMed  Article  Google Scholar 

    13.
    Paynter, A. N., Metzger, M. J., Sessa, J. A. & Siddall, M. E. Evidence of horizontal transmission of the cancer-associated Steamer retrotransposon among ecological cohort bivalve species. Dis. Aquat. Organ. https://doi.org/10.3354/dao03113 (2017).
    Article  PubMed  Google Scholar 

    14.
    Barber, B. J. Neoplastic diseases of commercially important marine bivalves. Aquat. Living Resour. 17, 449–466 (2004).
    Article  Google Scholar 

    15.
    Farley, C. A. Sarcomatoid proliferative disease in a wild population of blue mussels (Mytilus edulis). J. Natl. Cancer Inst. 43, 509–516 (1969).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Sparks, A. K. Synopsis of Invertebrate Pathology Exclusive of Insects (Elsevier, 1985).
    Google Scholar 

    17.
    Muttray, A. F. & Vassilenko, K. Mollusca: disseminated neoplasia in bivalves and the p53 protein family. Adv. Comp. Immunol. https://doi.org/10.1007/978-3-319-76768-0 (1969).
    Article  Google Scholar 

    18.
    Bihari, N., Mičić, M., Batel, R. & Zahn, R. K. Flow cytometric detection of DNA cell cycle alterations in hemocytes of mussels (Mytilus galloprovincialis) off the Adriatic coast Croatia. Aquat. Toxicol. 64, 121–129 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Vassilenko, E. & Baldwin, S. A. Using flow cytometry to detect haemic neoplasia in mussels (Mytilus trossulus) from the Pacific Coast of Southern British Columbia Canada. J. Invertebr. Pathol. 117, 68–72 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Moore, J. D., Elston, R. A., Drum, A. S. & Wilkinson, M. T. Alternate pathogenesis of systemic neoplasia in the bivalve mollusc Mytilus. J. Invertebr. Pathol. 58, 231–243 (1991).
    CAS  PubMed  Article  Google Scholar 

    21.
    Benabdelmouna, A., Saunier, A., Ledu, C., Travers, M. A. & Morga, B. Genomic abnormalities affecting mussels (Mytilus edulis-galloprovincialis) in France are related to ongoing neoplastic processes, evidenced by dual flow cytometry and cell monolayer analyses. J. Invertebr. Pathol. 157, 45–52 (2018).
    Article  CAS  Google Scholar 

    22.
    Burioli, E. A. V. et al. Implementation of various approaches to study the prevalence, incidence and progression of disseminated neoplasia in mussel stocks. J. Invertebr. Pathol. 168, 107271 (2019).
    CAS  PubMed  Article  Google Scholar 

    23.
    Moore, C. A., Beckmann, N. & Patricia Morse, M. Cytoskeletal structure of diseased and normal hemocytes of Mya arenaria. J. Invertebr. Pathol. 60, 141–147 (1992).
    Article  Google Scholar 

    24.
    Carballal, M. J., Barber, B. J., Iglesias, D. & Villalba, A. Neoplastic diseases of marine bivalves. J. Invertebr. Pathol. https://doi.org/10.1016/j.jip.2015.06.004 (2015).
    Article  PubMed  Google Scholar 

    25.
    Odintsova, N. A. Leukemia-like cancer in bivalves. Russ. J. Mar. Biol. 46, 59–67 (2020).
    Article  Google Scholar 

    26.
    Smolarz, K., Renault, T. & Wołowicz, M. Ultrastructural study of neoplastic cells in Macoma balthica (Bivalvia) from the Gulf of Gdansk (Poland). J. Invertebr. Pathol. 92, 79–84 (2006).
    PubMed  Article  Google Scholar 

    27.
    Carella, F. et al. Nuclear morphometry and ploidy of normal and neoplastic haemocytes in mussels. PLoS ONE 12, e0173219 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Smolowitz, R. M. & Reinisch, C. L. Indirect peroxidase staining using monoclonal antibodies specific for Mya arenaria neoplastic cells. J. Invertebr. Pathol. 48, 139–145 (1986).
    CAS  PubMed  Article  Google Scholar 

    29.
    Carella, F., Figueras, A., Novoa, B. & De Vico, G. Cytomorphology and PCNA expression pattern in bivalves Mytilus galloprovincialis and Cerastoderma edule with haemic neoplasia. Dis. Aquat. Organ. 105, 81–87 (2013).
    PubMed  Article  Google Scholar 

    30.
    McDonald, J. H., Seed, R. & Koehn, R. K. Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern Hemispheres. Mar. Biol. 111, 323–333 (1991).
    Article  Google Scholar 

    31.
    Larraín, M. A., Zbawicka, M., Araneda, C., Gardner, J. P. A. & Wenne, R. Native and invasive taxa on the Pacific coast of South America: impacts on aquaculture, traceability and biodiversity of blue mussels (Mytilus spp.). Evol. Appl. 11, 298–311 (2018).
    Article  CAS  Google Scholar 

    32.
    Pye, R. J. et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 113, 374–379 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Strakova, A. et al. Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer. Elife 5, 1–25 (2016).
    Article  Google Scholar 

    34.
    Rawson, P. D. & Harper, F. M. Colonization of the northwest Atlantic by the blue mussel, Mytilus trossulus postdates the last glacial maximum. Mar. Biol. 156, 1857–1868 (2009).
    Article  Google Scholar 

    35.
    Wenne, R., Bach, L., Zbawicka, M., Strand, J. & McDonald, J. H. A first report on coexistence and hybridization of Mytilus trossulus and M. edulis mussels in Greenland. Polar Biol. 39, 343–355 (2016).
    Article  Google Scholar 

    36.
    Laakkonen, H. M., Hardman, M., Strelkov, P. & Väinölä, R. Cycles of trans-Arctic dispersal and vicariance, and diversification of the amphi-boreal marine fauna. J. Evol. Biol. https://doi.org/10.1111/jeb.13674 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Zbawicka, M., Wenne, R. & Burzyński, A. Mitogenomics of recombinant mitochondrial genomes of Baltic Sea Mytilus mussels. Mol. Genet. Genom. 289, 1275–1287 (2014).
    CAS  Article  Google Scholar 

    38.
    Śmietanka, B. & Burzyński, A. Disruption of doubly uniparental inheritance of mitochondrial DNA associated with hybridization area of European Mytilus edulis and Mytilus trossulus in Norway. Mar. Biol. https://doi.org/10.1007/s00227-017-3235-5 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Sunila, I. Histopathology of mussels (Mytilus edulis L.) from the Tvarminne area, the Gulf of Finland (Baltic Sea). Ann. Zool. Fennici 24, 55–69 (1987).
    Google Scholar 

    40.
    Usheva, L. N. & Frolova, L. T. Neoplasia in the connective tissue tumor in the mussel Mytilus trossulus from a polluted region of Nakhodka Bay, the Sea of Japan. Ontogenez 31, 63–70 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Maiorova, M. A. & Odintsova, N. A. β integrin-like protein-mediated adhesion and its disturbances during cell cultivation of the mussel Mytilus trossulus. Cell Tissue Res. 361, 581–592 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Marigomez, I., Lekube, X. & Cancio, I. Immunochemical localisation of proliferating cells in mussel digestive gland tissue. Histochem. J. 31, 781–788 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Maiorova, M. A. & Odintsova, N. A. Proliferative potential of larval cells of the mussel Mytilus trossulus and their capacity to differentiate into myogenic cells in culture. Russ. J. Mar. Biol. 42, 281–285 (2016).
    Article  Google Scholar 

    44.
    Voronezhskaya, E. E., Nezlin, L. P., Odintsova, N. A., Plummer, J. T. & Croll, R. P. Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia). Zoomorphology 127, 97–110 (2008).
    Article  Google Scholar 

    45.
    Presa, P., Pérez, M., Diz, A. P., Perez, M. & Diz, A. P. Polymorphic microsatellite markers for blue mussels (Mytilus spp.). Conserv. Genet. 3, 441–443 (2002).
    CAS  Article  Google Scholar 

    46.
    Zouros, E. Biparental inheritance through uniparental transmission: the doubly uniparental inheritance (DUI) of mitochondrial DNA. Evol. Biol. 40, 1–31 (2013).
    Article  Google Scholar 

    47.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Paabo, S., Irwin, M. & Wilson, C. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem. 265, 4718–4721 (1990).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Bradley, R. D. & Hillis, D. A. Recombinant DNA sequences generated by PCR amplification. Mol. Biol. Evol. 14, 592–593 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47, 256–259 (2019).
    Article  CAS  Google Scholar 

    51.
    Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, 1–5 (2015).
    Article  Google Scholar 

    52.
    Breton, S., Burger, G., Stewart, D. T. & Blier, P. U. Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels (Mytilus spp.). Genetics 172, 1107–1119 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Marko, P. B. et al. The ‘Expansion-contraction’ model of Pleistocene biogeography: rocky shores suffer a sea change?. Mol. Ecol. 19, 146–169 (2010).
    CAS  PubMed  Article  Google Scholar 

    54.
    Crego-Prieto, V., Juanes, F. & Garcia-Vazquez, E. Aquaculture and the spread of introduced mussel genes in British Columbia. Biol. Invasions https://doi.org/10.1007/s10530-015-0853-z (2015).
    Article  Google Scholar 

    55.
    Chung, J. M. et al. Molecular phylogenetic study of bivalvia from four countries (China, Japan, Russia and Myanmar) using 3 types of primers. Korean J. Malacol. 35, 137–148 (2019).
    Google Scholar 

    56.
    Layton, K. K. S., Martel, A. L., Hebert, P. D. N. & Layton, K. K. S. Patterns of DNA barcode variation in Canadian Marine molluscs. PLoS ONE 9, 1–9 (2014).
    Article  Google Scholar 

    57.
    deWaard, J. R. et al. A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. Sci. Data 6, 1–12 (2019).
    Article  CAS  Google Scholar 

    58.
    Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating Gene Genealogies. Parallel Distrib. Process. Symp. Int. 2, 184 (2002).

    59.
    Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    60.
    Kartavtsev, Y. P., Masalkova, N. A. & Katolikova, M. V. Genetic and morphometric variability in settlements of two mussel species (Mytilus ex. Gr. Edulis), Mytilus trossulus and Mytilus galloprovincialis, in the Northwestern Sea of Japan. J. Shellfish Res. 37, 103–119 (2018).
    Article  Google Scholar 

    61.
    Larraín, M. A., González, P., Pérez, C. & Araneda, C. Comparison between single and multi-locus approaches for specimen identification in Mytilus mussels. Sci. Rep. 9, 1–13 (2019).
    Article  CAS  Google Scholar 

    62.
    Inoue, K., Waite, J. H., Matsuoka, M., Odo, S. & Harayama, S. Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus. Biol. Bull. 189, 370–375 (1995).
    CAS  PubMed  Article  Google Scholar 

    63.
    Heath, D. D., Rawson, P. D. & Hilbish, T. J. PCR-based nuclear markers identify alien blue mussel Mytilus spp. genotypes on the west coast of Canada. Can. J. Fish. Aquat. Sci. 52, 2621–2627 (1995).
    CAS  Article  Google Scholar 

    64.
    Rawson, P. D., Secor, C. L. & Hilbish, T. J. The effects of natural hybridization on the regulation of doubly uniparental mtDNA inheritance in blue mussels (Mytilus spp.). Genetics 144, 241–248 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Rawson, P. D. & Hilbish, T. J. Distribution of male and female mtDNA lineages in populations of blue mussels, Mytilus trossulus and M. galloprovincialis, along the Pacific coast of North America. Mar. Biol. 124, 245–250 (1995).
    Article  Google Scholar 

    66.
    Cremonte, F., Vázquez, N. & Silva, M. R. Gonad atrophy caused by disseminated neoplasia in Mytilus chilensis cultured in the Beagle channel, Tierra Del Fuego Province Argentina. J. Shellfish Res. 30, 845–849 (2011).
    Article  Google Scholar 

    67.
    Ciocan, C. & Sunila, I. Disseminated neoplasia in blue mussels, Mytilus galloprovincialis, from the Black Sea Romania. Mar. Pollut. Bull. 50, 1335–1339 (2005).
    CAS  PubMed  Article  Google Scholar 

    68.
    Gombač, M., Sitar, R., Pogačnik, M., Arzul, I. & Jenčič, V. Haemocytic neoplasia in Mediterranean mussels (Mytilus galloprovincialis). Mar. Freshw. Behav. Physiol. 46, 135–143 (2013).
    Article  Google Scholar 

    69.
    Villalba, A., Mourelle, S. G., Carballal, M. J. & López, C. Symbionts and diseases of farmed mussels Mytilus galloprovincialis throughout the culture process in the Rias of Galicia (NW Spain). Dis. Aquat. Organ. 31, 127–139 (1997).
    Article  Google Scholar 

    70.
    Cremonte, F., Puebla, C., Tillería, J. & Videla, V. Estudio histopatológico del chorito Mytilus chilensis (Mytilidae) y del culengue Gari solida (Psammobiidae) en el sur de Chile. Lat. Am. J. Aquat. Res. 43, 248–254 (2015).
    Article  Google Scholar 

    71.
    Vassilenko, E. I., Muttray, A. F., Schulte, P. M. & Baldwin, S. A. Variations in p53-like cDNA sequence are correlated with mussel haemic neoplasia: a potential molecular-level tool for biomonitoring. Mutat. Res. Genet. Toxicol. Environ. Mutagen. https://doi.org/10.1016/j.mrgentox.2010.06.001 (2010).
    Article  Google Scholar 

    72.
    Caza, F., Bernet, E., Veyrier, F. J., Betoulle, S. & St-Pierre, Y. Hemocytes released in seawater act as Trojan horses for spreading of bacterial infections in mussels. Sci. Rep. 10, 1–12 (2020).
    Article  CAS  Google Scholar 

    73.
    Rebbeck, C. A., Leroi, A. M. & Burt, A. Mitochondrial capture by a transmissible cancer. Science (80-) 331, 303 (2011).
    ADS  CAS  Article  Google Scholar 

    74.
    Rawson, P. D. & Hilbish, T. J. Asymmetric introgression of mitochondrial DNA among European populations of Blue Mussels (Mytilus spp.). Evolution (N. Y.) 52, 100–108 (1998).
    Google Scholar 

    75.
    Kijewski, A., Zbawicka, M., Väinölä, R. & Wenne, T. K. Introgression and mitochondrial DNA heteroplasmy in the Baltic populations of mussels Mytilus trossulus and M. edulis. Mar. Biol. https://doi.org/10.1007/s00227-006-0316-2 (2006).
    Article  Google Scholar 

    76.
    Burzyński, A., Zbawicka, M., Skibinski, D. O. F. & Wenne, R. Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic. Mol. Biol. Evol. 20, 388–392 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Burzynski, A., Zbawicka, M., Skibinski, D. O. F. & Wenne, R. Doubly uniparental inheritance is associated with high polymorphism for rearranged and recombinant control region haplotypes in Baltic Mytilus trossulus. Genetics 174, 1081–1094 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Stuckas, H., Stoof, K., Quesada, H. & Tiedemann, R. Evolutionary implications of discordant clines across the Baltic Mytilus hybrid zone (Mytilus edulis and Mytilus trossulus). Heredity (Edinb). 103, 146–156 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Cao, L., Kenchington, E. & Zouros, E. Differential segregation patterns of sperm mitochondria in embryos of the Blue Mussel (Mytilus edulis). Genetics https://doi.org/10.1534/genetics.166.2.883 (2004).
    Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Key soil parameters affecting the survival of Panax notoginseng under continuous cropping

    1.
    Zhao, Y. Panax notoginseng (Burk.) F.H. Chen (Sanqi, Notoginseng) (eds. Liu, Y., Wang, Z. & Zhang, J.) 185–193 (Springer, 2015).
    2.
    Liao, P. et al. Stereoscopic cultivation of Panax notoginseng: A new approach to overcome the continuous cropping obstacle. Ind. Crop Prod. 126, 38–47 (2018).
    CAS  Article  Google Scholar 

    3.
    Yang, M. et al. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng. PLoS ONE 10, e0118555 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Mazzola, M. & Manici, L. M. Apple replant disease: Role of microbial ecology in cause and control. Annu. Rev. Phytopathol. 50, 45–65 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Lovaisa, N. C. et al. Strawberry monocropping: Impacts on fruit yield and soil microorganisms. J. Soil Sci. Plant Nutr. 17, 868–883 (2017).
    CAS  Article  Google Scholar 

    6.
    Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen–Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Xia, P. G. et al. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents. J. Ginseng Res. 40, 38–46 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Dong, L., Xu, J., Feng, G., Li, X. & Chen, S. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. 6, 31802 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Zhang, Y., Zheng, Y., Xia, P., Xun, L. & Liang, Z. Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties. Sci. Rep. 9, 13205 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Liu, D. H. et al. Study on dynamic change law of N, P and K in Panax notoginseng plant soils with different interval year. China J. Chin. Mater. Med. 39, 572–579 (2014).
    ADS  Google Scholar 

    11.
    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 48 (2016).
    Article  CAS  Google Scholar 

    12.
    Manici, L. M., Caputo, F. & Saccà, M. L. Secondary metabolites released into the rhizosphere by Fusarium oxysporum and Fusarium spp. as underestimated component of nonspecific replant disease. Plant Soil 415, 85–98 (2016).
    Article  CAS  Google Scholar 

    13.
    Tan, Y. et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiol. Res. 194, 10–19 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C. & Fitter, A. H. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 4, 337–345 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Jeanbille, M. et al. Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communities across temperate beech forest soil sequences. Microb. Ecol. 71, 482–493 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Wu, F. Y., Cui, X. M., Yang, Y. & Guan, H. L. Effects of soil pH values regulated by different fertilization on the disease incidence and growth of Panax notoginseng. J. Yunnan Univ. 39, 908–914 (2017).
    Google Scholar 

    17.
    Wei, W., Yang, M., Liu, Y., Huang, H. & Zhu, S. Fertilizer N application rate impacts plant–soil feedback in a Sanqi production system. Sci. Total Environ. 633, 796–807 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    18.
    Killham, K. & Staddon, W. J. Bioindicators and sensors of soil health and the application of geostatistics (eds. Burns, R. G. & Dick, R. P.) 391–405 (Marcel Dekker, 2002).

    19.
    Kotroczó, Z. et al. Soil enzyme activity in response to long-term organic matter manipulation. Soil Biol. Biochem. 70, 237–243 (2014).
    Article  CAS  Google Scholar 

    20.
    Sinsabaugh, R. L., Antibus, R. K. & Linkins, A. E. An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agric. Ecosyst. Environ. 34, 43–54 (1991).
    CAS  Article  Google Scholar 

    21.
    Li, W. H., Liu, Q. Z. & Chen, P. Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity. J. Integr. Agric. 17, 2570–2582 (2018).
    Article  Google Scholar 

    22.
    Sun, X. T. et al. Properties of soil physical–chemistry and activities of soil enzymes in context of continuous cropping obstacles for Panax notoginseng. Ecol. Environ. Sci. 24, 409–417 (2015).
    Google Scholar 

    23.
    Sun, X. T. et al. The progress and prospect on consecutive monoculture problems of Panax notoginseng. Chin. J. Ecol. 34, 885–893 (2015).
    Google Scholar 

    24.
    Tyler, G. & Falkengren-Grerup, U. Soil chemistry and plant performance-ecological consideration. Progr. Bot. 59, 634–658 (1998).
    CAS  Article  Google Scholar 

    25.
    Utkhede, R. S. Soil sickness, replant problem or replant disease and its integrated control. Allelopathy J. 18, 23–38 (2006).
    Google Scholar 

    26.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    27.
    Lu, R. K. Analytical Method of Soil and Agricultural Chemistry 260–344 (China Agricultural Science and Technology Press, 2000).
    Google Scholar 

    28.
    Guan, S. Soil Enzyme and Its Research Methods 22–36 (Agricultural Publisher, 1986).
    Google Scholar 

    29.
    Zhang, Q. et al. Microcalorimetric study of the effects of long-term fertilization on soil microbial activity in a wheat field on the loess plateau. Ecotoxicology 23, 2035–2040 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Fellows, I. Deducer: A data analysis GUI for R. J. Stat. Softw. 49, 1–15 (2012).
    Article  Google Scholar 

    31.
    Yang, M. et al. Steaming combined with biochar application eliminates negative plant-soil feedback for Sanqi cultivation. Soil Till. Res. 189, 189–198 (2019).
    Article  Google Scholar 

    32.
    Tan, Y. et al. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. J. Basic Microbiol. 57, 337–344 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Zhao, Y. M. et al. Role of phenolic acids from the rhizosphere soils of Panax notoginseng as a double-edge sword in the occurrence of root-rot disease. Molecules 23, 819 (2018).
    PubMed Central  Article  CAS  Google Scholar 

    34.
    Wu, L. J., Guan, Y. M. & Liu, J. Y. Pollution-Free Cultivation of Panax notoginseng 69–79 (Chemical Industry Press, 2004).
    Google Scholar 

    35.
    Du, C. Y., Zhang, N. M., Jiang, R., Wang, T. & Liu, Y. Evaluation of main soil nutrients characteristics for Panax notoginseng planting area of Yunnan. Southwest China J. Agric. Sci. 29, 599–605 (2016).
    Google Scholar 

    36.
    Zhou, X. et al. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system. Eur. J. Soil Biol. 60, 1–8 (2014).
    CAS  Article  Google Scholar 

    37.
    Qin, S. H. et al. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield. PLoS ONE 12, e0175934 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Dou, F., Wright, A. L., Mylavarapu, R. S., Jiang, X. J. & Matocha, J. E. Soil enzyme activities and organic matter composition affected by 26 years of continuous cropping. Pedosphere 26, 618–625 (2016).
    CAS  Article  Google Scholar 

    39.
    Wang, Y. et al. Effects of biochar on the growth of apple seedlings, soil enzyme activities and fungal communities in replant disease soil. Sci. Hortic. 256, 108641 (2019).
    CAS  Article  Google Scholar 

    40.
    Adetunji, A. T., Lewu, F. B., Mulidzi, R. & Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 17, 794–807 (2017).
    CAS  Article  Google Scholar 

    41.
    Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).
    CAS  Article  Google Scholar 

    42.
    Malik, A. A. et al. Soil fungal:bacterial ratios are linked to altered carbon cycling. Front. Microbiol. 7, 1247 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Liu, X. et al. Soil fumigation and bio-organic fertilizer application promotes potato growth and affects soil bio-chemical properties in a continuous cropping system. Acta Pratacult. Sin. 24, 122–133 (2015).
    Google Scholar 

    44.
    Liu, H. J. et al. Characteristics of soil microflora of Panax notoginseng in different continuous cropping years. Allelopathy J. 44, 145–158 (2018).
    ADS  Article  Google Scholar 

    45.
    Singh, B. P., Cowi, A. L. & Chan, K. Y. Soil Health and Climate Change 69–85 (Springer, 2011).
    Google Scholar 

    46.
    Turner, B. L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 76, 6485–6493 (2011).
    Article  CAS  Google Scholar 

    47.
    Burns, R. G. et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil. Biol. Biochem. 58, 216–234 (2013).
    CAS  Article  Google Scholar 

    48.
    Stark, S., Männistö, M. K. & Eskelinen, A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 383, 373–385 (2014).
    CAS  Article  Google Scholar 

    49.
    Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-e2916 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Dong, L. L. et al. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil. Biol. Biochem. 125, 64–74 (2018).
    CAS  Article  Google Scholar 

    51.
    Li, X. et al. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat. Sci. Rep. 6, 30466 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Increases in Great Lake winds and extreme events facilitate interbasin coupling and reduce water quality in Lake Erie

    Climate change has increased water temperature and altered wind-driven water movements in aquatic systems1,2. This applies not only to the mean conditions3,4, but also to the frequency of extreme events (i.e., near the upper ends of the range of observed values5,  > 80th percentile). For example, high air temperature or powerful winds5,6,7,8,9 has affected the behaviour of surface gravity waves10. Understanding the changes in wind and wave climate provides insight into the prediction and management of climate change impacts related to coastal dynamics, such as coastal erosion and sediment budgets, water motions, and biological responses6,11,12. Several studies on the impacts of climate change on oceanic waves12,13,14,15 have been undertaken, including a recent study16 that shows a 0.41% annual increase in global wave power (WP; the transport of energy by waves, which represents the temporal variations of energy transferred from the atmosphere to the ocean surface motion over cumulative periods of time16,17 (Eq. 2) due to stronger winds caused by increases in sea surface temperature. The oceanic wave climate also responds to global atmospheric phenomena (e.g., El Niño Southern Oscillation and the Atlantic Multidecadal Oscillation), in which sea surface temperature modifies wind patterns and storm cyclogenesis12,18,19,20. A systematic long-term assessment of climate warming impacts on waves in lakes remains to be undertaken, but should include winds, which are one of the principal sources of mechanical energy for lake circulation and interbasin coupling (e.g., exchange)21,22,23,24.
    The Laurentian Great Lakes, which consist of lakes Superior, Michigan, Huron, Erie, and Ontario (Fig. 1a), are the largest group of freshwater lakes on Earth; they contain 21% of the world’s volume of fresh surface water. These lakes have been affected by climate change in several ways including increased surface water temperature, longer summer stratification related hypoxia (i.e., dissolved oxygen [DO] concentrations  0.05); all the black bars are significant (i.e., p  8 m s−1) from the south and southwest that are the common wind directions over the Great Lakes23, tilt the thermocline upward in the western and northern part of the central basin due to Ekman transport of surface water southward22,38,42,43,44,45. As this hypolimnetic water upwells into shallower depths it can be transported counter clockwise by the alongshore surface currents moving to the west32. If there is a calm period following the high winds, the upwelled water in the northwestern part of the central basin will flow southward because of the pressure gradient and also in a clockwise direction (to the west) because of the Coriolis effect, and so will intrude into the western basin (i.e., a geostrophic flow) opposite to the hydraulic flow from the Detroit River (Fig. 1c)22,32,46. This causes the rapid (on the order of hours) formation of a thermocline within the northeastern portion of the western basin (Pelee Passage) due to the intrusion of low temperature bottom water22,42, which can also be hypoxic22 or anoxic (i.e., DO (approx) 0) at the sediment surface22 and contain high soluble reactive phosphorus concentrations (SRP; 0.02–0.05 mg L−1)47,48,49. Low values of sediment oxygen uptake are observed during these events in the western basin due to stratification and weak bottom shear and turbulence, which results in thicker diffusive sublayer22.
    Interbasin exchange has been observed in lakes with multiple basins elsewhere (e.g., Lake Geneva50, Nechako Reservoir51) as well as in the Great Lakes region (e.g., Muskegon Bay52, Green Bay53, Kempenfelt Bay54, Pere Marquette River55). In Lake Michigan, for example, high winds can lead to coastal upwelling into Muskegon Lake causing episodic hypoxia52. In case of Lake Erie, interbasin exchange was identified as the dominant cause (63%) of hypoxia in the northeastern portion of the western basin during biweekly fishing trawls in August over the past 30 years22. However, there are no long-term continuous water quality observations to assess the occurrence and historic trends in these hypoxic events. Extreme winds prevailing from upwelling favourable directions (i.e., from the south and southwest) can generate strong surface waves and water currents through momentum flux at the air–water interface. Therefore, WP can be used as an indicator or proxy (but not the cause) of interbasin exchange. Here, we examine the historical trends in water temperature, winds and resultant waves in the context of climate change in the summer in the Great Lakes (Fig. 1a) with an emphasis on the western basin of Lake Erie (Fig. 1b). We examine data for August, which is the month when hypoxia is most likely to occur in dimictic north temperate lakes before the fall turnover, and when large HAB have been observed in the western basin of Lake Erie. August is also the time when the spatial extent of hypoxia in the central basin is the largest and when the aforementioned upwelling into the western basin is likely to occur22,40,56. The data examined are from buoys with the longest historical records (Fig. 1a and Table S1). We examine winds from the south and southwest directions, which are the common wind directions over the Great Lakes during August, and which are favourable for upwelling into the western basin of Lake Erie. The results show that the WP in Great Lakes has increased in the past 40 years. A pattern in WP (a proxy for hypoxic upwelling events into the western basin of Lake Erie) has also increased in frequency over this time, which has implications for the water quality (e.g., dissolved oxygen and total phosphorus) of the lake. The increased frequency of interbasin upwelling was confirmed using historical records of lake bottom water temperature (LBT), as well as dissolved oxygen and total phosphorus concentrations. This is the first time that WP has been identified as an indicator of climate change-driven biogeochemical responses in lakes.
    Long-term trends in WP and LST in the Great Lakes
    First, we investigate the historical trends in average lake surface temperature (LST), wind, and waves in the Great Lakes during August. Results show that LST and LSTw (hereinafter subscript ”w” is used to denote the variables measured during upwelling favourable winds from 180° to 270°, clockwise from north) have both increased significantly (p  0.2% year−1) since 1980, although lower trends were observed in lake Erie and Michigan (Figs. S1–S5 ((a) and (b)) and Table S1). These changes in the LST correspond to a warming trend in air temperature (Tair); the average Tair over the Great Lakes increased significantly by ~ 0.4 (pm) 0.2 ((pm) standard error) oC decade−1 since 1980 (Fig. S6a,b). There was an associated significant increase in wind speed (W) over the Great Lakes during August (Ww) of ~ 0.4 (pm) 0.1 m s−1 decade−1 for winds from the south and southwest (Figs. S1–S5 ((c) and (d)) and Table S1). Consequently, the wind stress associated with wind from the south and southwest over the water surface of the Great Lakes (({tau }_{w}=0.0012{rho }_{air}{W}_{w}^{2}), where ({rho }_{air})=1.22 kg m−3 is the density of air57, and the wind speed is measured 10 m above the water) increased significantly by 0.006 (pm) 0.002 Pa decade−1 during August (3.0 (pm) 0.9% year−1; Figs. S1–S5 ((e) and (f)) and Table S1).
    The effects of increased wind stress can also be seen in wave power, which is a function of the square of significant wave height (the mean value of the largest third of the wave heights during typically 1 h, SWH) and the wave period (({T}_{p}); i.e., (WP propto {{T}_{p} times SWH}^{2})); and changes in wind are reflected in wave power ((WP propto {W}^{2.4}) and (propto {W}^{5}) for developing and fully developed waves, respectively; see “Materials and methods”). The average SWH and SWHw in the Great Lakes during August have increased significantly by 0.03 (pm) 0.02 and 0.04 (pm) 0.03 m decade−1, respectively (i.e., ~ 1.0 (pm) 0.8% and ~ 1.7 (pm) 1.5% year−1, respectively), and this is largely driven by the increase in the frequency of extreme surface winds58 (Figs. S1–S5g and h; WP responds to changes in mean values, but it is more sensitive to extreme events because WP (propto { SWH}^{2})16). Consequently, the average WP and WPw in the Great Lakes during August have increased by ~ 0.04 (pm) 0.02 and ~ 0.06 (pm) 0.03 kW m−1 decade−1, respectively (i.e., ~ 1.0 (pm) 0.6% and ~ 2.0 (pm) 0.9% year−1, respectively; Fig. 2). In Lake Erie, WPw during August increased significantly by 0.02 (pm) 0.01 kW m−1 decade−1 (1.4 (pm) 0.2% year−1; Fig. 2 and Table S1; the increasing trend in WP = 0.02 (pm) 0.02 or 0.5 (pm) 0.1% was not statistically significant). It is relevant to note that these results are based on observations from a single buoy per lake; the one with the longest available data records (Fig. 1a and Table S2). However, the wind records and historical wave trends between buoys Sta. NDBC 45005 and Port Stanley in Lake Erie (Fig. 1a), which are ~ 130 km apart, are consistent based on the available records. Specifically, wind speed and direction in 2018 have Pearson correlation coefficients, r  > 0.6 (Fig. S7a,b, respectively); Ww and WPw are also correlated with r = 0.51 and 0.67, respectively, during August of 1990–2018 and the buoys show similar temporal increases in WPw (~ 0.025 (pm) 0.02 and 0.02 ± 0.01 kW m−1 decade−1 in Port Stanley and Sta. NDBC 45005, respectively). The trends in historical LSTw and WPw are related statistically (i.e., higher mutual information; Fig. S8) similar to the relationship described for global sea surface temperature and oceanic WP used as an indicator of climate change16.
    Figure 2

    Historical patterns in wave power in Great Lakes. 10 year moving average of wave power (WP) during the August (a) and during August with the wind from south and southwest and (WPw; b). The dashed lines show the linear regression (statistical results provided in Table S1).

    Full size image

    The long-term variations in WP and LST may be related to the global atmospheric phenomena. The LSTw anomaly in all the lakes show an increasing trend beginning in 1995 (Fig. S9a), which corresponds to the switch from the negative mode of the Atlantic Multidecadal Oscillation (AMO) to the positive mode (associated with increased tropical cyclone activity and stronger westerly winds) between the 1980s and the early 2000s (Fig. S9b)16. Both the WPw and LSTw anomaly are positively correlated with the AMO (r ~ 0.50 and ~ 0.55, respectively, since 1990). Similar to global oceanic wave power16, peaks in WPw in the Great Lakes are associated with strong El Niño years (i.e., Multivariate El Niño/Southern Oscillation (MEI) greater than 1.5; Fig. S9c,d), which can contribute to the enhanced wind energy due to increased cyclonic events16. MEI and WPw in Great Lakes are generally correlated by r  > 0.45 since 1990, however, the impacts of global atmospheric events on temperature and water dynamics of Great Lakes requires further study.
    Episodic hypoxic upwelling events in the western basin of Lake Erie
    We used historical records (Table S2) of long-term near-bottom water temperature (1998–2018) and dissolved oxygen (2007–2018) in the northeastern portion of the western basin of Lake Erie as well as wave observations in the western portion of the central basin (1980–2018 in Sta. NDBC 45005, Fig. 1) in August to determine the frequency of hypoxic upwelling events and the impacts of these events on the total phosphorus concentration in the northeast portion of the western basin. These analyses do not include the local hypoxia due to periods of calm and warm atmospheric conditions that may occur annually31 and, which are different than episodic upwelling events. Intrusion of cold hypoxic hypolimnetic water from the central basin into the western basin, following high winds from upwelling favourable directions, can cause a sudden drop (on the order of hours) in LBT and dissolved oxygen (DO) when the hypolimnetic water in the central basin is hypoxic22. The LBT time series in the western basin from 2017 to 2018 show that LBT decreased more than 3 °C in less than 12 h during upwelling events; e.g., 9–16, 18–22 and 26–31 August 2018 at Sta E (Fig. 3b) and 24–29 August 2017 at Leamington and Sta E (Fig. S10b). The records of LBT measured by the Ontario Ministry of Natural Resources and Forestry (MNRF) in August in Leamington Ontario between 1998 and 2018 detected 23 events of intrusion of cold water, which are consistent with upwelling (the blue symbols in Fig. 4a).
    Figure 3

    Wave power and bottom water temperature during August 2018 in the western basin of Lake Erie. (a) Time series of wave power (WP; black line), wave period (Tp; magenta), and significant wave height (SWH; blue) recorded at Sta. NDBC 45005. (b) Time series of dissolved oxygen (DO; red) and water temperature (LBT; blue dashed-line) in Sta. E at 1 m above the bed and bottom water temperature in Leamington (blue solid-line) in August 2018. The red triangles represent the observed hypoxic events in the western basin of Lake Erie. The wave power of the waves from south and southwest (i.e., favourable for upwelling) are positive preceding upwelling.

    Full size image

    Figure 4

    Number of hypoxic upwelling events in the western basin. (a) The number of hypoxic upwelling events based on patterns in wave power at Sta. NDBC 45005 (dark grey: average WPw  > 0.44 kW m−1, light grey: 0.37  8 m s−1 from similar directions, which corresponds to the ~ 80th percentile of wind speeds and is greater than the sum of the average and standard deviation of the wind speed (~ 6 and 2 m s−1, respectively). This wind threshold is consistent with Rao et al.’s44 wind speed that led to upwelling, which resulted in a fish kill along the north shore of the central basin in 2012.
    We used a least-square method to find a wave pattern (i.e., wave direction, duration, and power) that could be applied to predict the number of upwelling events that could be hypoxic between 1998 and 2018 based on LBT observations. A rapid decrease in the LBT at both Sta E and Leamington (12 km vs. 20 km from the Pelee Passage, respectively) occurred during events in which the average WP was  > 0.44 kW m−1 (i.e., 22–24 August 2017; Fig. S10a,b). The model predicted 25 upwelling events at Leamington (dark bars in Fig. 4a) of which 23 were observed (as stated above; no data were available for 2012; blue circles in Fig. 4a) for waves from south and southwest that lasted for at least 15 h with an average wave power greater than 0.37 kW m−1. Of the 23 observed events, the model predicted 21 events providing a root mean square error [RMSE] of 0.20 events. We validated the model predictions using the biweekly DO measurements from MNRF cruises between 2007 and 2018, which happened to sample 17 of the 23 observed events of low LBT. We note, however, that two hypoxic upwelling events were also recorded outside the study period, i.e., early September; this supports the study’s focus on August. Hypoxic conditions (DO  1.6 events year−1 in 2018 based on a 10-year moving average. Specifically, 21 of 49 (~ 43%) upwelling events in the last four decades have occurred in the past 10 years. Thirty-two of these were strong events with WP  > 0.44 kW m−1, 15 of which (~ 47%) occurred after 2009. Interestingly, this pattern in wave power (i.e., waves from south and southwest that last for  > 15 h with an average WP  > 0.37 kW m−1 from the historical data) was also observed in August 1980 (Fig. 4a), when the LBT dropped following rapid formation of a thermocline, which at the time was attributed to the upwelling of hypolimnetic water from the central basin40,42. These results indicate that an increase in extreme winds from south and southwest during August, over the last four decades, has resulted in more frequent upwelling from the central basin into the western basin and consequently a greater number of episodic hypoxic events in that part of Lake Erie.
    The effect of upwelling on phosphorus concentrations was examined through an analysis of the water column-average total phosphorus (TP) observations from biweekly cruises conducted by the MNRF at station W5 (Fig. 1b). We examined the available data recorded between 15 July and 15 September from 2000 to 2018 (3–5 records year−1; 66 observations in total), which is a period in which linear patterns in TP vs. sampling date were not evident (p  >   > 0.05). The z-score (standard deviate) was determined for the data within a given year (({mathrm{Z}}_{mathrm{TP}}=left(mathrm{TP}-{mathrm{TP}}_{mathrm{mean}}right)/mathrm{SD}), where ({mathrm{TP}}_{mathrm{mean}}) is the annual average of TP and SD is the standard deviation). Positive ({mathrm{Z}}_{mathrm{TP}}) values (i.e., (mathrm{TP} >{mathrm{TP}}_{mathrm{mean}})) were observed in 11 cases in which the sampling occurred  1) observed during 5 August–8 September sampling (black solid circles in Fig. 4b). Statistical comparison revealed that the average ({mathrm{Z}}_{mathrm{TP}}) was significantly higher during upwelling vs. non-upwelling samples (i.e., 0.95 ± 0.18, n = 11 vs. − 0.26 ± 0.12, n = 25; ANOVA F1,34 = 29.64, p  More

  • in

    Biological and biochemical diversity in different biotypes of spotted stem borer, Chilo partellus (Swinhoe) in India

    1.
    Dujardin, J. P. Aporte de la genetica poblacional al control y vigilancia de vectores de la enfermedad de Chagas. In Curso Posgrado Genética Poblacional de Triatomineos Aplicada al Control Vectorial de la Enfermedad de Chagas (ed. Guhl, F.) 13–15 (Corcas Editores Ltda, 1997).
    Google Scholar 
    2.
    Pires, H. H. R., Barbosa, S. E., Margonari, C., Jurberg, J. & Diotaiuti, L. Variations of the external male genitalia in three populations of Triatoma infestans Klug, 1834. Minist. Saúde 93(4), 479–483 (1998).
    CAS  Google Scholar 

    3.
    Bambou, A. E. et al. Comparing genetic diversity of Sitophilus zeamais(Motchulsky) populations sampled in several agro-ecological areas between Central African Republic and Senegal. South Asian J. Exp. Biol. 4(4), 172–182 (2014).
    Google Scholar 

    4.
    Baldwin, J. D. & Dingle, H. Geographic variation in the effects of temperature on life-history traits in the large milkweed bug Oncopeltus fasciatus. Oecologia 69, 64–71 (1986).
    ADS  Article  Google Scholar 

    5.
    Blanckenhorn, W. U. Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea. Oecologia 109, 342–352 (1997).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Ikten, C., Skoda, S. R., Hunt, T. E., Molina-Ochoa, J. & Foster, J. E. Genetic variation and inheritance of diapause induction in two distinct voltine ecotypes of Ostrinia nubilalis (Lepidoptera: Crambidae). Ann. Entomol. Soc. Am. 104, 567–575 (2011).
    Article  Google Scholar 

    7.
    Dhillon, M. K., Hasan, F., Tanwar, A. K. & Bhadauriya, A. P. S. Effects of thermo-photoperiod on induction and termination of hibernation in Chilo partellus (Swinhoe). Bull. Entomol. Res. 107, 294–302 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Sharma, H. C. Host plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot. 12, 11–34 (1993).
    Article  Google Scholar 

    9.
    Dhillon, M. K., Hasan, F., Tanwar, A. K. & Bhadauriya, A. P. S. Factors responsible for aestivation in spotted stem borer, Chilo partellus (Swinhoe). J. Exp. Zool. A 331, 326–340 (2019).
    Article  Google Scholar 

    10.
    Dhillon, M. K. & Hasan, F. Consequences of diapause on post-diapause development, reproductive physiology and population growth of Chilo partellus (Swinhoe). Physiol. Entomol. 43, 196–206 (2018).
    CAS  Article  Google Scholar 

    11.
    Dhillon, M. K., Tanwar, A. K. & Hasan, F. Fitness consequences of delayed mating on reproductive performance of Chilo partellus (Swinhoe). J. Exp. Zool. A 331, 161–167 (2019).
    Article  Google Scholar 

    12.
    Dhillon, M. K. et al. Genetic regulation of diapause and associated traits in Chilo partellus (Swinhoe). Sci. Rep. 10, 1793 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: Ecological and evolutionary contexts. Adv. Insect Physiol. 33, 50–152 (2006).
    Article  Google Scholar 

    14.
    Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15(2), 407–420 (2006).
    CAS  PubMed  Article  Google Scholar 

    15.
    Rowntree, J. K., Cameron, D. D. & Preziosi, R. F. Genetic variation changes the interactions between the parasitic plant-ecosystem engineer Rhinanthus and its hosts. Philos. Trans. R. Soc. B 366, 1380–1388 (2011).
    Article  Google Scholar 

    16.
    Giron, D. et al. Promises and challenges in insect–plant interactions. Entomol. Exp. Appl. 166(5), 319–343 (2018).
    Article  Google Scholar 

    17.
    Williams, R. S. & Howells, J. M. Effects of intraspecific genetic variation and prior herbivory in an old-field plant on the abundance of the specialist aphid Uroleucon nigrotuberculatum (Hemiptera: Aphididae). Environ. Entomol. 47, 422–431 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Matsubayashi, K. W., Ohshima, I. & Nosil, P. Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 134, 1–27 (2010).
    Article  Google Scholar 

    19.
    Feder, J. L. et al. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc. Natl Acad. Sci USA 100, 10314–10319 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Althoff, M. D. & Pellmyr, O. Examining genetic structure in bogus yucca moth: A sequential approach to phylogeography. Evolution 56, 1632–1643 (2002).
    PubMed  Article  Google Scholar 

    21.
    Knowles, L. L. & Maddison, W. P. Statistical phylogeography. Mol. Ecol. 11, 2623–2635 (2002).
    PubMed  Article  Google Scholar 

    22.
    Templeton, A. R. Statistical phylogeography: Methods of evaluating and minimizing inference errors. Mol. Ecol. 13, 789–809 (2004).
    PubMed  Article  Google Scholar 

    23.
    Thomas, Y., Bethenod, M. T., Pelozuelo, L., Frérot, B. & Bourguet, D. Genetic isolation between two sympatric host-plant races of the European corn borer, Ostrinia nubilalis Hübner. I. Sex pheromone, moth emergence timing, and parasitism. Evolution 57, 261–273 (2003).
    PubMed  Google Scholar 

    24.
    Sharma, H. C., Taneja, S. L., Kameswara Rao, N. & Prasada Rao, K. E. Evaluation of sorghum germplasm for resistance to insect pests. Inf. Bull. 63, 177 (2003).
    Google Scholar 

    25.
    Sharma, H. C., Dhillon, M. K., Pampapathy, G. & Reddy, B. V. S. Inheritance of resistance to spotted stem borer, Chilo partellus in sorghum, Sorghum bicolor. Euphytica 156, 117–128 (2007).
    Article  Google Scholar 

    26.
    Kanta, U., Dhillon, B. S. & Sekhon, S. S. Evaluation and development of maize germplasm for resistance to spotted stem borer. In Insect Resistant Maize: Recent Advances and Utilization (ed. Mihm, J. A.) 246–254 (Proceedings of an International Symposium CIMMYT, 1997).
    Google Scholar 

    27.
    Rakshit, S. et al. Catalogue of Indian maize inbred lines. Tech. Bull. 3, 40 (2008).
    Google Scholar 

    28.
    Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Stireman, J. O. III., Nason, J. D. & Heard, S. B. Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution 59, 2573–2587 (2005).
    CAS  PubMed  Article  Google Scholar 

    30.
    Zytynska, S. E. & Preziosi, R. F. Genetic interactions influence host preference and performance in a plant-insect system. Evol. Ecol. 25, 1321–1333 (2011).
    Article  Google Scholar 

    31.
    Zytynska, S. E. & Preziosi, R. F. Host preference of plant genotypes is altered by intraspecific competition in a phytophagous insect. Arthropod-Plant Interact. 7, 349–357 (2013).
    Article  Google Scholar 

    32.
    Sharma, H. C. Biotechnological Approaches for Pest Management and Ecological Sustainability (CRC Press, 2009).
    Google Scholar 

    33.
    Sharma, H. C. & Dhillon, M. K. Climate change effects on arthropod diversity and its implications for pest management and sustainable crop production. In Agroclimatology: Linking Agriculture to Climate (eds Hatfield, J. L. et al.) 595–619 (Crop Science Society of America and Soil Science Society of America Inc, Madison, WI, 2020).
    Google Scholar 

    34.
    Smith, C. M. Plant Resistance to Arthropods: Molecular and Conventional Approaches (Springer, 2005).
    Google Scholar 

    35.
    Dhillon, M. K. & Sharma, H. C. Paradigm shifts in research on host plant resistance to insect pests. Indian J. Plant Protect. 40(1), 1–11 (2012).
    Google Scholar 

    36.
    Funk, D. J. Isolating a role for natural selection in speciation: Host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52, 1744–1759 (1998).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Dres, M. & Mallet, J. Host races in plant-feeding insects and their importance in sympatric speciation. Philos. Trans. R. Soc. B 357, 471–492 (2002).
    Article  Google Scholar 

    38.
    Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).
    Article  Google Scholar 

    39.
    Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Ishiguro, N. & Tsuchida, K. Polymorphic microsatellite loci for the rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae). Appl. Entomol. Zool. 41, 565–568 (2006).
    CAS  Article  Google Scholar 

    41.
    Mukhopadhyay, J., Ghosh, K., Rangel, E. F. & Munstermann, L. E. Genetic variability in biochemical characters of Brazilian field populations of the Leishmania vector, Lutzomyia longipalpis (Diptera: Psychodidae). Am. J. Trop. Med. Hyg. 59(6), 893–901 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Vijaya Lakshmi, P., Amudhan, S., Bindu, K. H., Cheralu, C. & Bentur, J. S. A new biotype of the Asian rice gall midge Orseolia oryzae (Diptera: Cecidomyiidae) characterized from the Warangal population in Andhra Pradesh, India. Int. J. Trop. Insect Sci. 26, 207–211 (2006).
    Google Scholar 

    43.
    Himabindu, K., Suneetha, K., Sama, V. S. A. K. & Bentur, J. S. A new rice gall midge resistance gene in the breeding line CR57-MR1523, mapping with flanking markers and development of NILs. Euphytica 174, 179–187 (2010).
    CAS  Article  Google Scholar 

    44.
    Ratcliffe, R. H. et al. Biotype composition of Hessian fly (Diptera: Cecidomyiidae) populations from the Southeastern, Midwestern, and Northwestern United States and virulence to resistance genes in wheat. J. Econ. Entomol. 93(4), 1319–1328 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Zhou, H. et al. Genetic analysis and fine mapping of the gall midge resistance gene Gm5 in rice (Oryza sativa L.). Theor. Appl. Genet. 133, 2021–2033 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Dhillon, M. K. & Kumar, S. Amino acid profiling of Sorghum bicolor vis-à-vis Chilo partellus (Swinhoe) for biochemical interactions and plant resistance. Arthropod-Plant Interact. 11, 537–550 (2017).
    Article  Google Scholar 

    47.
    Dhillon, M. K. & Kumar, S. Lipophilic profiling of Sorghum bicolor (L.) seedlings vis-à-vis Chilo partellus (Swinhoe) larvae reveals involvement of biomarkers in sorghum-stem borer interactions. Indian J. Exp. Biol. 58, 95–108 (2020).
    CAS  Google Scholar 

    48.
    Atray, I., Bentur, J. S. & Nair, S. The Asian rice gall midge (Orseolia oryzae) mitogenome has evolved novel gene boundaries and tandem repeats that distinguish its biotypes. PLoS ONE 10(7), e0134625 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Fujita, D., Kohli, A. & Horgan, F. G. Rice resistance to planthoppers and leafhoppers. Crit. Rev. Plant Sci. 32, 162–191 (2013).
    CAS  Article  Google Scholar 

    50.
    Diehl, R. S. & Bush, G. L. An evolutionary and applied perspective of insect biotypes. Annu. Rev. Entomol. 29, 471–504 (1984).
    Article  Google Scholar 

    51.
    Claridge, M. F. & Den Hollander, J. A biotype concept and its application to insect pests of agriculture. Crop Prot. 2(1), 85–95 (1983).
    Article  Google Scholar 

    52.
    Downie, D. A. Baubles, bangles, and biotypes: A critical review of the use and abuse of the biotype concept. J. Insect Sci. 10, 176 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Perring, T. M. The Bemisia tabaci species complex. Crop Prot. 20, 725–737 (2001).
    Article  Google Scholar 

    54.
    Wenger, J. A. & Michel, A. P. Implementing an evolutionary framework for understanding genetic relationships of phenotypically defined insect biotypes in the invasive soybean aphid (Aphis glycines). Evol. Appl. 6(7), 1041–1053 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Sharma, H. C., Taneja, S. L., Leuschner, K. & Nwanze, K. F. Techniques to screen sorghum for resistance to insect pests. Inf. Bull. 32, 48 (1992).
    Google Scholar 

    56.
    Kumar, S. & Dhillon, M. K. Lipophilic metabolite profiling of maize and sorghum seeds and seedlings, and their pest spotted stem borer larvae: A standardized GC-MS based approach. Indian J. Exp. Biol. 53, 170–176 (2015).
    PubMed  Google Scholar 

    57.
    Dhillon, M. K., Kumar, S. & Gujar, G. T. A common HPLC-PDA method for amino acid analysis in insects and plants. Indian J. Exp. Biol. 52, 73–79 (2014).
    CAS  PubMed  Google Scholar  More

  • in

    The influence of biochar on the content of carbon and the chemical transformations of fallow and grassland humic acids

    Physicochemical and chemical properties of soils and BioC
    The physicochemical and chemical characteristics of the soils and BioC, as well as selected chemical properties of the HAs isolated from the soil and BioC are shown in Table 1.
    Table 1 Physicochemical and chemical characteristics of soils, BioC and isolated HAs.
    Full size table

    The properties of soils and BioC, such as the d, Corg, A, pH, and Q, were presented in detail previously4. Briefly, soils were characterised by a typical d value for mineral soils ≈ 2.60 g cm−3, and by a relatively low content of Corg and a high content of A. The pH of the soils was weakly acidic. The examined soils were characterised by low Q values, indicating a low content of organic structures dissociating to the negative surface charge (mainly carboxylic and phenolic groups). The HAs obtained from fallow and grassland were characterised by high QHA values (about 50 times higher in comparison with the Q values of fallow and grassland). The d value of BioC was typical for organic materials (1.46 g cm−3), moreover, the BioC contained a high content of OM, which was expressed as Corg. The pH of BioC was alkaline. This material was also characterised by a high Q value, which indicated its favourable sorption properties.
    The results of our studies showed that the E2/6 values were similar for the HAs originated from the two studied soils, suggesting a similar ratio of lignin-type compounds resistant to humification to the structures with a high humification degree. The ΔlgK reached values of 0.83 and 0.86 for HAs isolated from grassland and fallow, respectively, indicating a low degree of HA humification (Kumada’s classification for low humification degree of HAs: ΔlgK = 0.8–1.1)33. Slightly higher ΔlgK values obtained for the grassland HAs compared with the fallow suggested a higher content of less humified compounds, such as cellulose, hemicellulose, and lignin34.
    The ΔlgK of HAs isolated from BioC reached a value of 0.54, suggesting the presence of highly humified compounds, in comparison with soil HAs (Kumada’s classification for high humification degree of HAs: ΔlgK  8.0, above which the OH groups are deprotonated26, therefore we only report results in this pH range. Changes in the QHA values as a function of pH (Fig. 4A–D) were monotonic; these values increased towards an alkaline pH, which resulted from the fact that other fractions of functional groups dissociated successively at increasing pH values. Generally, in the first month of the experiment, the highest QHA values were observed for HAs obtained from fallow and grassland with the lowest BioC dose (Fig. 4A,C). This fact indicated that these HAs had the best sorption properties. In the last month of the experiment, the QHA values changed in an ambiguous way. The QHA at pH 9.0 values of HAs isolated from pure BioC were lower than those obtained from the soil, and moreover, BioC did not have an obvious effect on the QHA values of the soil HAs. Previous studies4 on impact of BioC on the physicochemical properties of Haplic Luvisol under different land uses, showed that BioC added to soil caused a significant increase in Q values in the last year of the experiment. Thus, we can conclude that BioC introduced OM with a variable surface charge but did not affect the soil’s QHA. It is possible that the BioC doses used in our experiment were insufficient to raise the QHA values.
    Figure 4

    Dependence of surface negative charge (QHA) on pH of the HAs solution. HAs obtained from fallow (A,B) and grassland (C,D) amended with BioC in 1st and 28th month of field experiment, as well as HAs obtained from BioC.

    Full size image

    Influence of BioC amendment on structure and chemical properties of HAs in fallow and grassland: spectroscopic approach
    The analyses of the HAs isolated from fallow and grassland amended with BioC showed changes in the structural properties of these compounds. The E2/6 parameter estimated from UV–Vis data was changing both under the influence of different BioC doses and during the 3 years of the experiment. However, it should be assumed that the observed changes were of a different nature for fallow (Fig. 5A) and for grassland (Fig. 5B), due to varied trends in the activity of BioC on the analysed soils.
    Figure 5

    Changes in E2/6 values obtained for HAs of fallow (A) and grassland (B) amended with BioC (0, 1, 2, 3 kg m−2) as a function of time. Average values from 3 replicates in each term, ± standard deviation. Other letter designations indicate significant differences between values at α  More

  • in

    Tracking late Pleistocene Neandertals on the Iberian coast

    1.
    Bennett, M. R. & Morse, S. A. Human Footprints: Fossilised Locomotion? (Springer International Publishing, Berlin, 2014).
    Google Scholar 
    2.
    Leakey, M. D. & Hay, R. L. Pliocene footprints in the Laetolil Beds at Laetoli, northern Tanzania. Nature 278, 317–323 (1979).
    ADS  Article  Google Scholar 

    3.
    Mietto, P., Avanzini, M. & Rolandi, G. Palaeontology: Human footprints in Pleistocene volcanic ash. Nature 422, 133 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Ashton, N. et al. Hominin footprints from early Pleistocene deposits at Happisburgh, UK. PLoS ONE 9, e88329 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Duveau, J. et al. The composition of a Neandertal social group revealed by the hominin footprints at Le Rozel (Normandy, France). PNAS 116, 19409–19414 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Masao, F. T. et al. New footprints from Laetoli (Tanzania) provide evidence for marked body size variation in early hominins. eLife 5, e19568 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Altamura, F. et al. Archaeology and ichnology at Gombore II-2, Melka Kunture, Ethiopia: Everyday life of a mixed-age hominin group 700,000 years ago. Sci. Rep. 8, 2815 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Bustos, D. et al. Footprints preserve terminal Pleistocene hunt? Human-sloth interactions in North America. Sci. Adv. 4, eaar7621 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Stewart, M. et al. Human footprints provide snapshot of last interglacial ecology in the Arabian interior. Sci. Adv. 6, eaba8940 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Barton, C. M. Stone tools and paleolithic settlement in the Iberian Peninsula. Proc. Prehist. Soc. 56, 15–32 (1990).
    Article  Google Scholar 

    11.
    Garralda, M. D. The Neandertals from the Iberian Peninsula. MUNIBE 57, 289–314 (2005).
    Google Scholar 

    12.
    Ruiz, M. N. et al. Last Neandertal occupations at Central Iberia: The lithic industry of Jarama VI rock shelter (Valdesotos, Guadalajara, Spain). Archaeol. Anthropol. Sci. 12, 45 (2020).
    Article  Google Scholar 

    13.
    Muñiz, F. et al. Following the last Neandertals: Mammal tracks in Late Pleistocene coastal dunes of Gibraltar (S Iberian Peninsula). Quat. Sci. Rev. 217, 297–309 (2019).
    ADS  Article  Google Scholar 

    14.
    Neto de Carvalho, C. et al. First vertebrate tracks and palaeoenvironment in a MIS-5 context in the Doñana National Park (Huelva, SW Spain). Quat. Sci. Rev. 243, 106508 (2020).
    Article  Google Scholar 

    15.
    Neto de Carvalho, C. et al. Paleoecological implications of large-sized wild boar tracks recorded during the last interglacial (Mis 5) at Huelva (Sw Spain). Palaios 35, 512–523 (2020).
    ADS  Article  Google Scholar 

    16.
    Rodríguez-Ramírez, A. et al. The role of neo-tectonics in the sedimentary infilling and geomorphological evolution of the Guadalquivir estuary (Gulf of Cadiz, SW Spain) during the Holocene. Geomorphology 219, 126–140 (2014).
    ADS  Article  Google Scholar 

    17.
    Rodríguez-Rámirez, A. Geomorfología del Parque Nacional de Doñana y su Entorno. (ed Organismo Autónomo Parques Nacionales) (Ministerio de Medio Ambiente, Madrid, 1998).

    18.
    Pérez Muñoz, A. B. et al. Parque Nacional de Doñana. Guía Geológica. (ed Rodríguez Fernández, R.) (Instituto Geológico y Minero de España & Organismo Autónomo Parques Nacionales, Madrid, 2020).

    19.
    Instituto Hidrográfico de la Marina. Derrotero N° 2-Tomo 2 (Costas de Portugal y SO de España, Cádiz, 1992).
    Google Scholar 

    20.
    Rodríguez-Ramírez, A. et al. Analysis of the recent storm record in the southwestern spanish coast: Implications for littoral management. Sci. Total Environ. 303, 189–201 (2003).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    21.
    Gibbard, P. L., Head, M. J., Walker, M. J. C. & The Subcommission on Quaternary Stratigraphy. Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. J. Quat. Sci. 25, 96–102 (2010).
    Article  Google Scholar 

    22.
    Zazo, C. et al. Landscape evolution and geodynamic controls in the Gulf of Cadiz (Huelva coast, SW Spain) during the Late Quaternary. Geomorphology 68, 269–290 (2005).
    ADS  Article  Google Scholar 

    23.
    Duveau, J. Les empreintes de pieds du Rozel (Manche). Instantanés de groupes humains au Pléistocène supérieur. Approche combinée morphométrique et expérimentale. (Ph. D. dissertation. Muséum national d’Histoire naturelle, Paris, 2020).

    24.
    Manolis, S., Aiello, L., Henessy, R., Kyparissi-Apostolika, N. Middle Palaeolithic Footprints from Theopetra Cave (Thessaly, Greece) (ed Kyparissi-Apostolika, N.) 87–93 (Greek Ministry of Culture and Institute for Aegean Prehistory, Athens, 2000).

    25.
    Onac, B. P. et al. U-Th ages constraining the Neanderthal footprint at Vârtop Cave, Romania. Quat. Sci. Rev. 24, 1151–1157 (2005).
    ADS  Article  Google Scholar 

    26.
    Duveau, J., Berillon, G., Verna, C. 11-On the tracks of Neandertals: The ichnological assemblage from Le Rozel (Normandy, France). (eds Pastoors, A. & Lenssen-Erz, T.) (Springer Nature, in Press).

    27.
    Citton, P., Romano, M., Salvador, I. & Avanzini, M. Reviewing the upper Pleistocene human footprints from the ‘Sala dei Misteri’in the Grotta della Basura (Toirano, northern Italy) cave: An integrated morphometric and morpho-classificatory approach. Quat. Sci. Rev. 169, 50–64 (2017).
    ADS  Article  Google Scholar 

    28.
    Helm, C. W. et al. A New Pleistocene Hominin Tracksite from the Cape South Coast, South Africa. Sci. Rep. 8, 3772 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Dingwall, H. L., Hatala, K. G., Wunderlich, R. E. & Richmond, B. G. Hominin stature, body mass, and walking speed estimates based on 1.5 million-year-old fossil footprints at Ileret, Kenya. J. Hum. Evol. 64, 556–568 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Krishan, K. Estimation of stature from footprint and foot outline dimensions in Gujjars of North India. Forensic Sci. Int. 175, 93–101 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Fawzy, I. A. & Kamal, N. N. Stature and body weight estimation from various footprint measurements among Egyptian population. J. Forensic Sci. 55, 884–888 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Reel, S., Rouse, S., Obe, W. V. & Doherty, P. Estimation of stature from static and dynamic footprints. Forensic Sci. Int. 219, 283-e1 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Hemy, N., Flavel, A., Ishak, N. I. & Franklin, D. Sex estimation using anthropometry of feet and footprints in a Western Australian population. Forensic Sci. Int. 231, 402-e1 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Aiello, L. & Dean, C. An Introduction to Human Evolutionary Anatomy (Academic Press Inc., London, 1990).
    Google Scholar 

    35.
    Klenerman, L. & Wood, B. The Human Foot: A Companion to Clinical Studies (Springer, London, 2006).
    Google Scholar 

    36.
    Elftman, H. & Manter, J. Chimpanzee and human feet in bipedal walking. Am. J. Phys. Anthropol. 20, 69–79 (1935).
    Article  Google Scholar 

    37.
    Alexander, R. M. Principles of Animal Locomotion (Princeton University Press, Princeton, 2003).
    Google Scholar 

    38.
    Ruff, C. B., Trinkaus, E. & Holliday, T. W. Body mass and encephalization in Pleistocene Homo. Nature 387, 173 (1997).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Carretero, J. M. et al. Stature estimation from complete long bones in the Middle Pleistocene humans from the Sima de los Huesos, Sierra de Atapuerca (Spain). J. Hum. Evol. 62, 242–255 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neandertal behaviour. Nature 479, 525–528 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Hublin, J. J. The modern human colonization of western Eurasia: When and where?. Quat. Sci. Rev. 118, 194–210 (2015).
    ADS  Article  Google Scholar 

    42.
    Karavanić, I. et al. Paleolithic hominins and settlement in Croatia from MIS 6 to MIS 3: Research history and current interpretations. Quat. Int. 494, 152–166 (2018).
    Article  Google Scholar 

    43.
    Vallespi, E., Alvarez, G., Perez Sindreu, F. & Rufete, P. Nuevas atribuciones onubenses al Paleolitico Inferior y Medio. Huelva en su Historia I, 43–56 (1986).

    44.
    Viehmann, I. Prehistoric Human Footprints in Romania’s Caves. Theor. Appl. Karstol. 3, 229–234 (1987).
    Google Scholar 

    45.
    Harvati, K. The human fossil record from Romania: Early Upper Paleolithic European Mandibles and Neanderthal. (eds Harvati, K. & Roksandic, M.) 51–68 (Springer Netherlands, 2016).

    46.
    Zazo, C. et al. Pleistocene and Holocene Aeolian facies along the Huelva coast (southern Spain): Climatic and neotectonic implications. Geol. Mijn. 77, 209–224 (1999).
    Article  Google Scholar 

    47.
    Zazo, C. et al. El complejo eólico de El Abalario (Huelva) (eds Sanjaume, E., Gracia, F. J.) 407–425 (Sociedad Española de Geomorfología, Madrid, 2011)

    48.
    Paerl, H. W. & Yanarell, A. C. Environmental dynamics, community structure and function in a hypersaline microbial mat (eds Seckbach, J. & Oren, A.) 421–442, (Springer Netherlands, 2010).

    49.
    Porada, H. & Bouougri, E. Wrinkle structures—a critical review (eds Schieber, J. et al.) 135–144 (Elsevier, 2007).

    50.
    Gerdes, G. What Are Microbial Mats? (eds Seckbach, J. & Oren, A.) 3–25, (Springer Netherlands, 2010).

    51.
    Eriksson, P. G. et al. Paleoenvironmental Context Of Microbial Mat-Related Structures In Siliciclastic Rocks. (eds Seckbach, J. & Oren, A.) 71–108 (Springer Netherlands, 2010).

    52.
    Zilhão, J. et al. Last Interglacial Iberian Neandertals as fisher-hunter-gatherers. Science 367, 1443 (2020).
    ADS  Article  CAS  Google Scholar 

    53.
    Hardy, B. L. & Moncel, M.-H. Neanderthal use of fish, mammals, birds, starchy plants and wood 125–250,000 years ago. PLoS ONE 6, e23768 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Wall-Scheffler, C. M., Wagnild, J. & Wagler, E. Human footprint variation while performing load bearing tasks. PLoS ONE 10, e0118619 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Romagnoli, F., Martini, F. & Sarti, L. Neanderthal use of Callista chione shells as raw material for retouched tools in South-East Italy: Analysis of Grotta del Cavallo layer l assemblage with a new methodology. J. Archaeol. Method Theory 22, 1007–1037 (2015).
    Article  Google Scholar 

    56.
    Benito, B. M. et al. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 44, 51–61 (2017).
    Article  Google Scholar 

    57.
    Villa, P. et al. Neandertals on the beach: Use of marine resources at Grotta dei Moscerini (Latium, Italy). PLoS ONE 15, e0226690 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Cortés-Sánchez, M. et al. Shellfish collection on the westernmost Mediterranean, Bajondillo cave (~ 160–35 cal kyr BP): A case of behavioral convergence?. Quat. Sci. Rev. 217, 284–196 (2019).
    ADS  Article  Google Scholar 

    59.
    Stringer, C. B. et al. Neandertal exploitation of marine mammals in Gibraltar. PNAS 105, 14319–14324 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Eco-evolutionary interaction between microbiome presence and rapid biofilm evolution determines plant host fitness

    1.
    Slobodkin, L. B. Growth and regulation of animal populations (Holt, Rinehart and Winston, 1961).
    2.
    Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).
    CAS  PubMed  Article  Google Scholar 

    3.
    Hendry, A. P. A critique for eco-evolutionary dynamics. Funct. Ecol. 33, 84–94 (2019).
    Article  Google Scholar 

    4.
    Turcotte, M. M., Reznick, D. N. & Hare, J. D. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol. Lett. 14, 1084–1092 (2011).
    PubMed  Article  Google Scholar 

    5.
    Hairston, N. G. Jr, Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).
    Article  Google Scholar 

    6.
    Tan, J., Rattray, J. B., Yang, X. & Jiang, L. Spatial storage effect promotes biodiversity during adaptive radiation. Proc. R. Soc. Lond. B 284, 20170841 (2017).
    Google Scholar 

    7.
    Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl Acad. Sci. USA 116, 2112–2117 (2019).
    CAS  PubMed  Article  Google Scholar 

    8.
    Faillace, C. A. & Morin, P. J. Evolution alters the consequences of invasions in experimental communities. Nat. Ecol. Evol. 1, 0013 (2017).
    Article  Google Scholar 

    9.
    Vanbergen, A. J., Espíndola, A. & Aizen, M. A. Risks to pollinators and pollination from invasive alien species. Nat. Ecol. Evol. 2, 16–25 (2018).
    PubMed  Article  Google Scholar 

    10.
    Hendry, A. P. Eco-evolutionary dynamics (Princeton Univ. Press, 2016).

    11.
    Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    terHorst, C. P. & Zee, P. C. Eco-evolutionary dynamics in plant–soil feedbacks. Funct. Ecol. 30, 1062–1072 (2016).
    Article  Google Scholar 

    14.
    Soto, M. J., Domínguez‐Ferreras, A., Pérez‐Mendoza, D., Sanjuán, J. & Olivares, J. Mutualism versus pathogenesis: the give‐and‐take in plant–bacteria interactions. Cell. Microbiol. 11, 381–388 (2009).
    CAS  PubMed  Article  Google Scholar 

    15.
    Marchetti, M. et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol. 8, e1000280 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Saikkonen, K., Wäli, P., Helander, M. & Faeth, S. H. Evolution of endophyte–plant symbioses. Trends Plant Sci. 9, 275–280 (2004).
    CAS  PubMed  Article  Google Scholar 

    17.
    Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio 9, e01294-18 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Miller, E. T., Svanbäck, R. & Bohannan, B. J. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).
    PubMed  Article  Google Scholar 

    19.
    Griffin, E. A. et al. Plant host identity and soil macronutrients explain little variation in sapling endophyte community composition: is disturbance an alternative explanation? J. Ecol. 107, 1876–1889 (2019).
    CAS  Article  Google Scholar 

    20.
    Acosta, K. et al. Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS ONE 15, e0228560 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Sandler, G., Bartkowska, M., Agrawal, A. F. & Wright, S. I. Estimation of the SNP mutation rate in two vegetatively propagating species of duckweed. G3 10, 4191–4200 (2020).
    PubMed  Article  Google Scholar 

    22.
    Ishizawa, H., Kuroda, M., Morikawa, M. & Ike, M. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnol. Biofuels 10, 62 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Zhang, Y. et al. Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS ONE 5, e13527 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Tan, J., Yang, X., He, Q., Hua, X. & Jiang, L. Earlier parasite arrival reduces the repeatability of host adaptive radiation. ISME J. 14, 2358–2360 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Tan, J., Yang, X. & Jiang, L. Species ecological similarity modulates the importance of colonization history for adaptive radiation. Evolution 71, 1719–1727 (2017).
    PubMed  Article  Google Scholar 

    27.
    Meyer, J. R., Schoustra, S. E., Lachapelle, J. & Kassen, R. Overshooting dynamics in a model adaptive radiation. Proc. R. Soc. Lond. B 278, 392–398 (2011).
    Google Scholar 

    28.
    Tan, J., Kelly, C. K. & Jiang, L. Temporal niche promotes biodiversity during adaptive radiation. Nat. Commun. 4, 2102 (2013).
    PubMed  Article  CAS  Google Scholar 

    29.
    Spiers, A. J., Buckling, A. & Rainey, P. B. The causes of Pseudomonas diversity. Microbiology 146, 2345–2350 (2000).
    CAS  PubMed  Article  Google Scholar 

    30.
    Spiers, A. J., Bohannon, J., Gehrig, S. M. & Rainey, P. B. Biofilm formation at the air–liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol. Microbiol. 50, 15–27 (2003).
    CAS  PubMed  Article  Google Scholar 

    31.
    Bantinaki, E. et al. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Genetics 176, 441–453 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    McDonald, M. J., Gehrig, S. M., Meintjes, P. L., Zhang, X.-X. & Rainey, P. B. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation. GENETICS 183, 1041–1053 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Bailey, S. F., Dettman, J. R., Rainey, P. B. & Kassen, R. Competition both drives and impedes diversification in a model adaptive radiation. Proc. R. Soc. Lond. B 280, 20131253 (2013).
    Google Scholar 

    34.
    Hansen, S. K., Rainey, P. B., Haagensen, J. A. & Molin, S. Evolution of species interactions in a biofilm community. Nature 445, 533–536 (2007).
    CAS  PubMed  Article  Google Scholar 

    35.
    Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).
    CAS  PubMed  Article  Google Scholar 

    36.
    Ahmad, F., Ahmad, I. & Khan, M. S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163, 173–181 (2008).
    CAS  PubMed  Article  Google Scholar 

    37.
    El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y. & Elbadry, M. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front. Microbiol. 5, 651 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Gómez, P. & Buckling, A. Real-time microbial adaptive diversification in soil. Ecol. Lett. 16, 650–655 (2013).
    PubMed  Article  Google Scholar 

    39.
    Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290 (2011).
    CAS  PubMed  Article  Google Scholar 

    40.
    Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Veach, A. M. et al. Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome 7, 76 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Lennon, J. T. & Martiny, J. B. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol. Lett. 11, 1178–1188 (2008).
    PubMed  Article  Google Scholar 

    43.
    Pantel, J. H., Duvivier, C. & Meester, L. D. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecol. Lett. 18, 992–1000 (2015).
    PubMed  Article  Google Scholar 

    44.
    Faillace, C. A. & Morin, P. J. Evolution alters post-invasion temporal dynamics in experimental communities. J. Anim. Ecol. 89, 285–298 (2020).
    PubMed  Article  Google Scholar 

    45.
    Omilian, A. R., Cristescu, M. E. A., Dudycha, J. L. & Lynch, M. Ameiotic recombination in asexual lineages of Daphnia. Proc. Natl Acad. Sci. USA 103, 18638–18643 (2006).
    CAS  PubMed  Article  Google Scholar 

    46.
    Mao, Y., Botella, J. R., Liu, Y. & Zhu, J.-K. Gene editing in plants: progress and challenges. Natl Sci. Rev. 6, 421–437 (2019).
    CAS  Article  Google Scholar 

    47.
    Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of Bacteria and Archaea. Science 327, 167–170 (2010).
    CAS  PubMed  Article  Google Scholar 

    48.
    Yang, L. et al. Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol. Biochem. 43, 915–922 (2011).
    CAS  Article  Google Scholar 

    49.
    Zabłocka-Godlewska, E., Przystaś, W. & Grabińska-Sota, E. Decolourization of diazo Evans blue by two strains of Pseudomonas fluorescens isolated from different wastewater treatment plants. Water Air Soil Pollut. 223, 5259–5266 (2012).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Paulsen, I. T. et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat. Biotechnol. 23, 873–878 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Rainey, P. B. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol. 1, 243–257 (1999).
    CAS  PubMed  Article  Google Scholar 

    52.
    Gilbert, S. et al. Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front. Chem. 6, 265 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Bailey, M. J., Lilley, A. K., Thompson, I. P., Rainey, P. B. & Ellis, R. J. Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Mol. Ecol. 4, 755–764 (1995).
    CAS  PubMed  Article  Google Scholar 

    54.
    Spiers, A. J. & Rainey, P. B. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology 151, 2829–2839 (2005).
    CAS  PubMed  Article  Google Scholar 

    55.
    Lind, P. A., Libby, E., Herzog, J. & Rainey, P. B. Predicting mutational routes to new adaptive phenotypes. eLife 8, e38822 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    O’Brien, P. A., Webster, N. S., Miller, D. J. & Bourne, D. G. Host–microbe coevolution: applying evidence from model systems to complex marine invertebrate holobionts. mBio 10, e02241-18 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028-16 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Landolt, E. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), Volume 2. The Family of Lemnaceae, A Monographic Study, Volume 1 (Geobotanical Institute, ETH Zurich, 1986).

    59.
    Ziegler, P., Sree, K. S. & Appenroth, K.-J. Duckweeds for water remediation and toxicity testing. Toxicol. Environ. Chem. 98, 1127–1154 (2016).
    CAS  Article  Google Scholar  More

  • in

    Urbanization can benefit agricultural production with large-scale farming in China

    1.
    Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).
    ADS  CAS  Article  Google Scholar 
    2.
    Godfray, H. C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).
    ADS  CAS  Article  Google Scholar 

    3.
    Bren D Amour, C. et al. Future urban land expansion and implications for global croplands. Proc. Natl Acad. Sci. USA 114, 8939–8944 (2017).
    Article  Google Scholar 

    4.
    Gardi, C., Panagos, P., Van Liedekerke, M., Bosco, C. & De Brogniez, D. Land take and food security: assessment of land take on the agricultural production in Europe. J. Environ Plann. Manag. 58, 898–912 (2015).
    Article  Google Scholar 

    5.
    Shi, K. et al. Urban expansion and agricultural land loss in China: a multiscale perspective. Sustainability 8, 790 (2016).
    Article  Google Scholar 

    6.
    Bai, X., Shi, P. & Liu, Y. Society: realizing China’s urban dream. Nature 509, 158–160 (2014).
    Article  Google Scholar 

    7.
    World Urbanization Prospects 2018 (United Nations, 2018); https://population.un.org/wup/Download/

    8.
    Zhai, Z., Chen, J. & Li, L. Future trends of China’s population and aging from 2015 to 2100 [in Chinese]. Popul. Res. 41, 60–71 (2017).
    Google Scholar 

    9.
    Van Vliet, J., Eitelberg, D. A. & Verburg, P. H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Change 43, 107–115 (2017).
    Article  Google Scholar 

    10.
    Chen, J. Rapid urbanization in China: a real challenge to soil protection and food security. Catena 69, 1–15 (2007).
    Article  Google Scholar 

    11.
    Martellozzo, F. et al. Urbanization and the loss of prime farmland: a case study in the Calgary–Edmonton corridor of Alberta. Reg. Environ. Change 15, 881–893 (2015).
    Article  Google Scholar 

    12.
    Yan, H., Liu, J., He, Q. H., Bo, T. & Cao, M. Assessing the consequence of land use change on agricultural productivity in China. Glob. Planet. Change 67, 13–19 (2009).
    ADS  Article  Google Scholar 

    13.
    Bai, X., Chen, J. & Shi, P. Landscape urbanization and economic growth in China: positive feedbacks and sustainability dilemmas. Environ. Sci. Technol. 46, 132–139 (2012).
    ADS  CAS  Article  Google Scholar 

    14.
    Statistical yearbooks of prefecture-level cities in 2015 [in Chinese]. National Bureau of Statistics http://www.stats.gov.cn/tjsj/ (2016).

    15.
    Zuo, L. et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 1, 304–313 (2018).
    Article  Google Scholar 

    16.
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).
    ADS  CAS  Article  Google Scholar 

    17.
    Zhang, X. et al. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: evidence from long-term experiments with wheat–maize cropping systems in China. Sci. Total Environ. 562, 247–259 (2016).
    ADS  CAS  Article  Google Scholar 

    18.
    Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).
    ADS  CAS  Article  Google Scholar 

    19.
    Zou, B., Mishra, A. K. & Luo, B. Aging population, farm succession, and farmland usage: evidence from rural China. Land Use Policy 77, 437–445 (2018).
    Article  Google Scholar 

    20.
    Guidance on Accelerating the Development of Agricultural Productive Services (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2017).

    21.
    Ju, X., Gu, B., Wu, Y. & Galloway, J. N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Change 41, 26–32 (2016).
    Article  Google Scholar 

    22.
    Ren, C. et al. The impact of farm size on agricultural sustainability. J. Clean Prod. 220, 357–367 (2019).
    Article  Google Scholar 

    23.
    Adamopoulos, T. & Restuccia, D. The size distribution of farms and international productivity differences. Am. Econ. Rev. 104, 1667–1697 (2014).
    Article  Google Scholar 

    24.
    Wang, J., Chen, K. Z., Gupta, S. D. & Huang, Z. Is small still beautiful? A comparative study of rice farm size and productivity in China and India. China Agr. Econ. Rev. 7, 484–509 (2015).
    Article  Google Scholar 

    25.
    Lu, H., Xie, H., He, Y., Wu, Z. & Zhang, X. Assessing the impacts of land fragmentation and plot size on yields and costs: a translog production model and cost function approach. Agr. Syst. 161, 81–88 (2018).
    Article  Google Scholar 

    26.
    Syp, A., Faber, A., Borzecka-Walker, M. & Osuch, D. Assessment of greenhouse gas emissions in winter wheat farms using data envelopment analysis approach. Pol. J. Environ. Stud. 24, 2197–2203 (2015).
    CAS  Article  Google Scholar 

    27.
    Li, G., Feng, Z., You, L. & Fan, L. Re-examining the inverse relationship between farm size and efficiency. China Agr. Econ. Rev. 5, 473–488 (2013).
    Article  Google Scholar 

    28.
    Fan, L. et al. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environ. Sci. Pollut. Res. 26, 464–472 (2019).
    Article  Google Scholar 

    29.
    Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Env. Resour. 28, 315–358 (2003).
    Article  Google Scholar 

    30.
    Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl Acad. Sci. USA 115, 2335–2340 (2018).
    CAS  Article  Google Scholar 

    31.
    Resource and Environment Data Cloud Platform (Resource and Environment Science and Data Center, 2018); http://www.resdc.cn/Default.aspx

    32.
    Laborde, D., Martin, W., Swinnen, J. & Vos, R. COVID-19 risks to global food security. Science 369, 500–502 (2020).
    ADS  CAS  Article  Google Scholar 

    33.
    Shi, Q., Jin, H. & Zhuo, J. Does land expropriation definitely reduce farmers’ income: a survey of 7 villages in Shanghai: the defects and reforms of the current land expropriation system [in Chinese]. Manage. World 3, 77–82 (2011).
    Google Scholar 

    34.
    Liu, Y. & Li, Y. Revitalize the world’s countryside. Nature 548, 275–277 (2017).
    ADS  CAS  Article  Google Scholar 

    35.
    Liu, Y., Fang, F. & Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 40, 6–12 (2014).
    CAS  Article  Google Scholar 

    36.
    Measures for Land Acquisition Compensation and Social Security for Land-Expropriated Farmers in Jiangsu Province Provincial Government Order No. 93 (Jiangsu Provincial People’s Government, 2013).

    37.
    Wu, Y., Chen, Y., Deng, X. & Hui, E. C. M. Development of characteristic towns in China. Habitat Int. 77, 21–31 (2018).
    Article  Google Scholar 

    38.
    Yu, Y., Huang, Y. & Zhang, W. Modeling soil organic carbon change in croplands of China, 1980–2009. Glob. Planet Change 82–83, 115–128 (2012).
    ADS  Article  Google Scholar 

    39.
    No. 1 Central Document (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2020); http://www.moa.gov.cn/ztzl/jj2020zyyhwj/

    40.
    Güneralp, B. et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl Acad. Sci. USA 114, 8945–8950 (2017).
    Article  Google Scholar  More