More stories

  • in

    Spatial distribution patterns of soil total phosphorus influenced by climatic factors in China’s forest ecosystems

    1.
    Weihrauch, C. Dynamics need space—a geospatial approach to soil phosphorus’ reactions and migration. Geoderma 354, 113775 (2019).
    CAS  Article  ADS  Google Scholar 
    2.
    Filippelli, G. M. The global phosphorus cycle: past, present, and future. Elements 4, 89–95 (2008).
    CAS  Article  Google Scholar 

    3.
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).
    CAS  Article  ADS  Google Scholar 

    4.
    Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    5.
    Cordell, D. & White, S. Sustainable phosphorus measures: strategies and technologies for achieving phosphorus security. Agronomy 3, 86–116 (2013).
    Article  Google Scholar 

    6.
    Abelson, P. H. A potential phosphate crisis. Science 283, 2015 (1999).
    CAS  PubMed  Article  ADS  Google Scholar 

    7.
    Yuan, Z. Y. & Chen, H. Y. A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc. R. Soc. B-Biol. Sci. 279, 3796–3802 (2012).
    CAS  Article  Google Scholar 

    8.
    Yang, Y. et al. Stoichiometric shifts in surface soils over broad geographical scales: evidence from China’s grasslands. Glob. Ecol. Biogeogr. 23, 947–955 (2014).
    Article  Google Scholar 

    9.
    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).
    PubMed  Article  Google Scholar 

    10.
    Frossard, E., Condron, L. M., Oberson, A., Sinaj, S. & Fardeau, J. C. Processes governing phosphorus availability in temperate soils. J. Environ. Qual. 29, 15–23 (2000).
    CAS  Article  Google Scholar 

    11.
    Condron, L. M., Turner, B. L., Cade-Menun, B. J., Sims, J. T. & Sharpley, A. N. Chemistry and dynamics of soil organic phosphorus. Agron. Monogr. 46, 87–121 (2005).
    Google Scholar 

    12.
    Ruttenberg, K. C. The global phosphorus cycle: overview. Treatise Geochem. 10, 499–558 (2014).
    Article  Google Scholar 

    13.
    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 19 (1976).
    Article  Google Scholar 

    14.
    Monger, C. et al. Legacy effects in linked ecological–soil–geomorphic systems of drylands. Front. Ecol. Environ. 13, 13–19 (2015).
    Article  Google Scholar 

    15.
    Siebers, N., Sumann, M., Kaiser, K. & Amelung, W. Climatic effects on phosphorus fractions of native and cultivated north American grassland soils. Soil Sci. Soc. Am. J. 81, 299–309 (2017).
    CAS  Article  ADS  Google Scholar 

    16.
    Stewart, J. W. B. & Tiessen, H. Dynamics of soil organic phosphorus. Biogeochemistry 4, 41–60 (1987).
    CAS  Article  Google Scholar 

    17.
    Lane, P. N. J. et al. Water balance of tropical eucalypt plantations in south-eastern China. Agric. For. Meteorol. 124, 253–267 (2004).
    Article  ADS  Google Scholar 

    18.
    Cheng, Y. et al. Effects of soil erosion and land use on spatial distribution of soil total phosphorus in a small watershed on the Loess Plateau, China. Soil Tillage Res. 184, 142–152 (2018).
    Article  Google Scholar 

    19.
    Lin, J., Zheng, S. & Lu, X. Storage and spatial variation of phosphorus in paddy soils of China. Pedosphere 19, 798 (2009).
    Article  Google Scholar 

    20.
    Zhang, C. et al. Pools and distributions of soil phosphorus in China. Glob. Biogeochem. Cycles 19, GB1020 (2005).
    Article  ADS  CAS  Google Scholar 

    21.
    Zhang, S. L., Huffman, T., Zhang, X. Y., Liu, W. & Liu, Z. H. Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available phosphorus and total phosphorus. J. Soil Sedim. 14, 1775–1789 (2014).
    CAS  Article  Google Scholar 

    22.
    Cheng, Y. et al. Spatial distribution of soil total phosphorus in Yingwugou watershed of the Dan River, China. CATENA 136, 175–181 (2016).
    CAS  Article  Google Scholar 

    23.
    Dixon, J. L., Chadwick, O. A. & Vitousek, P. M. Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand. J. Geophys. Res. Earth Surf. 121, 1619–1634 (2016).
    CAS  Article  ADS  Google Scholar 

    24.
    Hou, E. et al. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Change Biol. 24, 3344–3356 (2018).
    Article  ADS  Google Scholar 

    25.
    Liu, J. X. et al. Patterns and controlling factors of plant nitrogen and phosphorus stoichiometry across China’s forests. Biogeochemistry 143, 191–205 (2019).
    CAS  Article  Google Scholar 

    26.
    Qiao, J., Zhu, Y., Jia, X., Huang, L. & Shao, M. Vertical distribution of soil total nitrogen and soil total phosphorus in the critical zone on the Loess Plateau, China. CATENA 166, 310–316 (2018).
    CAS  Article  Google Scholar 

    27.
    Yang, W. et al. The influence of land-use change on the forms of phosphorus in soil profiles from the Sanjiang Plain of China. Geoderma 189, 207–214 (2012).
    Article  ADS  CAS  Google Scholar 

    28.
    Zuo, X. et al. Influence of dune stabilization on relationship between plant diversity and productivity in Horqin Sand Land, Northern China. Environ. Earth Sci. 67, 1547–1556 (2012).
    Article  Google Scholar 

    29.
    Güsewell, S. N: P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).
    Article  Google Scholar 

    30.
    García-Velázquez, L. et al. Climate and soil micro-organisms drive soil phosphorus fractions in coastal dune systems. Funct. Ecol. 34, 1690–1701 (2020).
    Article  Google Scholar 

    31.
    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
    Article  Google Scholar 

    32.
    Kooch, Y., Samadzadeh, B. & Hosseini, S. M. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. CATENA 150, 223–229 (2017).
    CAS  Article  Google Scholar 

    33.
    Jarvi, M. P. & Burton, A. J. Root respiration and biomass responses to experimental soil warming vary with root diameter and soil depth. Plant Soil 451, 435–446 (2020).
    CAS  Article  Google Scholar 

    34.
    Xu, Z. W. et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North–South Transect in eastern China (NSTEC). Soil Biol. Biochem. 104, 152–163 (2017).
    CAS  Article  Google Scholar 

    35.
    Teng, Z. D., Zhu, Y. Y., Li, M. & Whelan, M. J. Microbial community composition and activity controls phosphorus transformation in rhizosphere soils of the Yeyahu Wetland in Beijing, China. Sci. Total Environ. 628–629, 1266–1277 (2018).
    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

    36.
    Chadwick, O. A., Kelly, E. F., Hotchkiss, S. C. & Vitousek, P. M. Precontact vegetation and soil nutrient status in the shadow of Kohala Volcano, Hawaii. Geomorphology 89, 70–83 (2007).
    Article  ADS  Google Scholar 

    37.
    Wang, Y. P., Law, R. M. & Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).
    CAS  Article  ADS  Google Scholar 

    38.
    Li, X., Chang, S. X., Liu, J., Zheng, Z. & Wang, X. Topography-soil relationships in a hilly evergreen broadleaf forest in subtropical China. J. Soil Sedim. 17, 1101–1115 (2016).
    Article  CAS  Google Scholar 

    39.
    Harrison, A. F. Soil Organic Phosphorus: A Review of World Literature 107–121 (Commonwealth Agricultural Bureaux International, Wallingford, 1987).
    Google Scholar 

    40.
    Tian, H. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Global Planet. Change 37, 201–217 (2003).
    ADS  Google Scholar 

    41.
    He, X. J., Hou, E. Q., Liu, Y. & Wen, D. Z. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Sci. Rep. 6, 24261 (2016).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    42.
    Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280 (2013).
    Article  Google Scholar 

    43.
    Korner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    McGill, W. B. & Cole, C. V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 267–286 (1981).
    CAS  Article  ADS  Google Scholar 

    45.
    Ippolito, J. A. et al. Phosphorus biogeochemistry across a precipitation gradient in grasslands of central North America. J. Arid Environ. 74, 954–961 (2010).
    Article  ADS  Google Scholar 

    46.
    Li, K. et al. Long term increasing productivity of high-elevation grassland caused by elevated precipitation and temperature. Rangel. Ecol. Manag. 73, 156–161 (2020).
    Article  Google Scholar 

    47.
    Alizamir, M. et al. Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS One 15, e0231055 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Vitousek, P. M. & Chadwick, O. A. Pedogenic thresholds and soil process domains in basalt-derived soils. Ecosystems 16, 1379–1395 (2013).
    CAS  Article  Google Scholar 

    49.
    Tang, Z. Y. et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc. Natl. Acad. Sci. U. S. A. 115, 4033–4038 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Fang, J. et al. Forest community survey and the structural characteristics of forests in China. Ecography 35, 1059–1071 (2012).
    Article  Google Scholar 

    51.
    Tang, X. et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proc. Natl. Acad. Sci. U. S. A. 115, 4021–4026 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Wu, T. et al. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos. 118, 4326–4347 (2013).
    CAS  Article  ADS  Google Scholar 

    53.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Liaw, K. A. & Wiener, M. Classification and regression by randomForest. R News 23, 18–22 (2002).
    Article  Google Scholar 

    55.
    Pedro, P.-N., Pierre, L., Stéphane, D. & Daniel, B. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).
    Article  Google Scholar 

    56.
    Oksanen, J. et al. Vegan: Community Ecology Package, R Package Version 2.3-0. https://cran.r-project.org/web/packages/vegan/ (2015). More

  • in

    Slow life history leaves endangered snake vulnerable to illegal collecting

    1.
    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
    CAS  PubMed  Article  ADS  Google Scholar 
    2.
    Scheffers, B. R., Oliveira, B. F., Lamb, I. & Edwards, D. P. Global wildlife trade across the tree of life. Science 366, 71–76 (2019).
    CAS  PubMed  Article  ADS  Google Scholar 

    3.
    Nijman, V. An overview of international wildlife trade from Southeast Asia. Biodivers. Conserv. 19, 1101–1114 (2010).
    Article  Google Scholar 

    4.
    TRAFFIC. Wildlife Trade Monitoring Network, Illegal Wildlife Trade. (2020).

    5.
    Rosen, G. E. & Smith, K. F. Summarizing the evidence on the international trade in illegal wildlife. EcoHealth 7, 24–32 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Wyler, L. & Sheikh, P. International illegal trade in wildlife: Threats and U.S. policy. (2008).

    7.
    Baker, S. E. et al. Rough trade: Animal welfare in the global wildlife trade. Bioscience 63, 928–938 (2013).
    Article  Google Scholar 

    8.
    Tingley, M. W., Harris, J. B. C., Hua, F., Wilcove, D. S. & Yong, D. L. The pet trade’s role in defaunation. Science 356, 916 (2017).
    CAS  PubMed  Article  ADS  Google Scholar 

    9.
    Bush, E. R., Baker, S. E. & Macdonald, D. W. Global trade in exotic pets 2006–2012. Conserv. Biol. 28, 663–676 (2014).
    PubMed  Article  Google Scholar 

    10.
    Harris, J. B. C. et al. Measuring the impact of the pet trade on Indonesian birds. Conserv. Biol. 31, 394–405 (2017).
    PubMed  Article  Google Scholar 

    11.
    Morton, O., Scheffers, B. R., Haugaasen, T. & Edwards, D. P. Impacts of wildlife trade on terrestrial biodiversity. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01399-y (2021).
    Article  PubMed  Google Scholar 

    12.
    Flecks, M. et al. Watching extinction happen: The dramatic population decline of the critically endangered Tanzanian Turquoise Dwarf Gecko, Lygodactylus williamsi. Salamandra 48, 12–20 (2012).
    Google Scholar 

    13.
    Natusch, D. J. D. & Lyons, J. A. Exploited for pets: The harvest and trade of amphibians and reptiles from Indonesian New Guinea. Biodivers. Conserv. 21, 2899–2911 (2012).
    Article  Google Scholar 

    14.
    Marshall, B. M., Strine, C. & Hughes, A. C. Thousands of reptile species threatened by under-regulated global trade. Nat. Commun. 11, 4738 (2020).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    15.
    Auliya, M. et al. Trade in live reptiles, its impact on wild populations, and the role of the European market. Biol. Conserv. 204, 103–119 (2016).
    Article  Google Scholar 

    16.
    Gibbon, J. W. et al. The global decline of reptiles, déjà vu amphibians. Bioscience 50, 653 (2000).
    Article  Google Scholar 

    17.
    Ngo, H. N., Nguyen, T. Q., Phan, T. Q., van Schingen, M. & Ziegler, T. A case study on trade in threatened tiger geckos (Goniurosaurus) in Vietnam including updated information on the abundance of the Endangered G. catbaensis. Nat. Conserv. 33, 1–19 (2019).
    Article  Google Scholar 

    18.
    Mandimbihasina, A. R. et al. The illegal pet trade is driving Madagascar’s ploughshare tortoise to extinction. Oryx 54, 188–196 (2020).
    Article  Google Scholar 

    19.
    Stuart, B. L., Rhodin, A. G. J., Grismer, L. L. & Hansel, T. Scientific description can imperil species. Science 312, 1137b–1137b (2006).
    Article  Google Scholar 

    20.
    Alacs, E. & Georges, A. Wildlife across our borders: A review of the illegal trade in Australia. Aust. J. Forensic Sci. 40, 147–160 (2008).
    Article  Google Scholar 

    21.
    Vall-llosera, M. & Cassey, P. ‘Do you come from a land down under?’ Characteristics of the international trade in Australian endemic parrots. Biol. Conserv. 207, 38–46 (2017).
    Article  Google Scholar 

    22.
    Tingley, R. et al. Geographic and taxonomic patterns of extinction risk in Australian squamates. Biol. Conserv. 238, 108203 (2019).
    Article  Google Scholar 

    23.
    Tingley, R., Meiri, S. & Chapple, D. G. Addressing knowledge gaps in reptile conservation. Biol. Conserv. 204, 1–5 (2016).
    Article  Google Scholar 

    24.
    Natusch, D. J. D., Lyons, J. A., Mumpuni, Riyanto, A. & Shine, R. Jungle giants: Assessing sustainable harvesting in a difficult-to-survey species (Python reticulatus). PLoS One 11, e0158397 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Congdon, J. D. Delayed sexual maturity and demographics of Blanding’s turtles (Emydoidea blandingii): Implications for conservation and management of long-lived organisms. Conserv. Biol. 7, 826–833 (1993).
    Article  Google Scholar 

    26.
    Congdon, J. D., Dunham, A. E. & Sels, R. C. V. L. Demographics of common snapping turtles (Chelydra serpentina): Implications for conservation and management of long-lived organisms. Am. Zool. 34, 397–408 (1994).
    Article  Google Scholar 

    27.
    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B Biol. Sci. 267, 1947–1952 (2000).
    CAS  Article  Google Scholar 

    28.
    Chapple, D. G. et al. The Action Plan for Australian Lizards and Snakes 2017 (CSIRO Publishing, 2019).
    Google Scholar 

    29.
    Geyle, H. M. et al. Reptiles on the brink: Identifying the Australian terrestrial snake and lizard species most at risk of extinction. Pac. Conserv. Biol. https://doi.org/10.1071/PC20033 (2020).
    Article  Google Scholar 

    30.
    Webb, J. K., Harlow, P. S. & Pike, D. A. Australian reptiles and their conservation. In Austra l Ark: The State of Wildlife in Australia and New Zealand 354–381 (Cambridge University Press, 2015).
    Google Scholar 

    31.
    Webb, J. K., Brook, B. W. & Shine, R. Collectors endanger Australia’s most threatened snake, the broad-headed snake Hoplocephalus bungaroides. Oryx 36, 170–181 (2002).
    Article  Google Scholar 

    32.
    Webb, J. K., Brook, B. W. & Shine, R. What makes a species vulnerable to extinction? Comparative life-history traits of two sympatric snakes. Ecol. Res. 17, 59–67 (2002).
    Article  Google Scholar 

    33.
    Webb, J. K. & Shine, R. Ecological characteristics of a threatened snake species, Hoplocephalus bungaroides (Serpentes, Elapidae). Anim. Conserv. 1, 185–193 (1998).
    Article  Google Scholar 

    34.
    Burbidge, A. A. & Jenkins, R. W. G. Endangered Vertebrates of Australia and Its Island Territories (Australian National Parks and Wildlife Service, 1984).
    Google Scholar 

    35.
    Sumner, J., Webb, J. K., Shine, R. & Keogh, J. S. Molecular and morphological assessment of Australia’s most endangered snake, Hoplocephalus bungaroides, reveals two evolutionarily significant units for conservation. Conserv. Genet. 11, 747–758 (2010).
    Article  Google Scholar 

    36.
    Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1251-1 (2020).
    Article  PubMed  Google Scholar 

    37.
    Webb, J. K. Ecology and conservation of the endangered broad-headed snake Hoplocephalus bungaroides in Morton National Park, Australia. In Strategies for Conservation Success in Herpetology (Society for the Study of Amphibians and Reptiles, 2020).
    Google Scholar 

    38.
    Shine, R. Arboreality in snakes: Ecology of the Australian elapid genus Hoplocephalus. Copeia 1983, 198 (1983).
    Article  Google Scholar 

    39.
    Webb, J. K., Brook, B. W. & Shine, R. Does foraging mode influence life history traits? A comparative study of growth, maturation and survival of two species of sympatric snakes from south-eastern Australia. Austral. Ecol. 28, 601–610 (2003).
    Article  Google Scholar 

    40.
    Webb, J. K. & Shine, R. Out on a limb: Conservation implications of tree-hollow use by a threatened snake species (Hoplocephalus bungaroides: Serpentes, Elapidae). Biol. Conserv. 81, 21–33 (1997).
    Article  Google Scholar 

    41.
    Dubey, S. et al. Genetic connectivity among populations of an endangered snake species from southeastern Australia (Hoplocephalus bungaroides, Elapidae). Ecol. Evol. 1, 218–227 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, 120–139 (1999).
    Article  Google Scholar 

    43.
    Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach (Springer, 1998).
    Google Scholar 

    44.
    Cooch, E. & White, G. Using MARK—A Gentle Introduction (Springer, 2001).
    Google Scholar 

    45.
    Sibly, R. M. & Hone, J. Population growth rate and its determinants: An overview. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357, 1153–1170 (2002).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Webb, J. K. & Shine, R. A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biol. Conserv. 82, 203–217 (1997).
    Article  Google Scholar 

    47.
    Penman, T. D., Pike, D. A., Webb, J. K. & Shine, R. Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Divers. Distrib. 16, 109–118 (2010).
    Article  Google Scholar 

    48.
    Lacy, R. C. & Pollak, J. P. Vortex: A Stochastic Simulation of the Extinction Process. Version 10.2.9. , Brookfield, Illinois, USA. (2017).

    49.
    Brook, B. W. et al. Predictive accuracy of population viability analysis in conservation biology. Nature 404, 385–387 (2000).
    CAS  PubMed  Article  ADS  Google Scholar 

    50.
    Naujokaitis-Lewis, I. R., Curtis, J. M. R., Arcese, P. & Rosenfeld, J. Sensitivity analyses of spatial population viability analysis models for species at risk and habitat conservation planning. Conserv. Biol. 23, 225–229 (2009).
    PubMed  Article  Google Scholar 

    51.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 

    52.
    Revelle, W. Psych: Procedures for Personality and Psychological Research. HttpsCRANR-Proj. (2019).

    53.
    Heppell, S. S., Caswell, H. & Crowder, L. B. Life histories and elasticity patterns: Perturbation analysis for species with minimal demographic data. Ecology 81, 654–665 (2000).
    Article  Google Scholar 

    54.
    Sæther, B.-E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
    Article  Google Scholar 

    55.
    Carrete, M., Sánchez-Zapata, J. A., Benítez, J. R., Lobón, M. & Donázar, J. A. Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol. Conserv. 142, 2954–2961 (2009).
    Article  Google Scholar 

    56.
    Hitchmough, R., Adams, L., Reardon, J. & Monks, J. Current challenges and future directions in lizard conservation in New Zealand. J. R. Soc. N. Z. 46, 29–39 (2016).
    Article  Google Scholar 

    57.
    Knox, C. D. Habitat requirements of the jewelled gecko (Naultinus gemmeus): Effects of grazing, predation and habitat fragmentation. Masters Thesis, University of Otago, Dunedin. (2010).

    58.
    Knox, C. D., Cree, A. & Seddon, P. J. Accurate identification of individual geckos (Naultinus gemmeus) through dorsal pattern differentiation. N. Z. J. Ecol. 37, 60–66 (2013).
    Google Scholar 

    59.
    Pike, D. A., Croak, B. M., Webb, J. K. & Shine, R. Subtle—but easily reversible—anthropogenic disturbance seriously degrades habitat quality for rock-dwelling reptiles. Anim. Conserv. 13, 411–418 (2010).
    Article  Google Scholar 

    60.
    Fleishman, E., Ray, C., Sjogren-Gulve, P., Boggs, C. L. & Murphy, D. D. Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv. Biol. 16, 706–716 (2002).
    Article  Google Scholar 

    61.
    Thomas, J. A. et al. The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc. R. Soc. Lond. B Biol. Sci. 268, 1791–1796 (2001).
    CAS  Article  Google Scholar 

    62.
    Verboom, J., Schotman, A., Opdam, P. & Metz, J. A. J. European nuthatch metapopulations in a fragmented agricultural landscape. Oikos 61, 149 (1991).
    Article  Google Scholar 

    63.
    Croak, B. M., Pike, D. A., Webb, J. K. & Shine, R. Habitat selection in a rocky landscape: Experimentally decoupling the influence of retreat site attributes from that of landscape features. PLoS One 7, e37982 (2012).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    64.
    Croak, B. M., Pike, D. A., Webb, J. K. & Shine, R. Using artificial rocks to restore nonrenewable shelter sites in human-degraded systems: Colonization by fauna. Restor. Ecol. 18, 428–438 (2008).
    Article  Google Scholar 

    65.
    Shine, R., Webb, J. K., Fitzgerald, M. & Sumner, J. The impact of bush-rock removal on an endangered snake species, Hoplocephalus bungaroides (Serpentes: Elapidae). Wildl. Res. 25, 285 (1998).
    Article  Google Scholar 

    66.
    Webb, J. K., Pringle, R. M. & Shine, R. Intraguild predation, thermoregulation, and microhabitat selection by snakes. Behav. Ecol. 20, 271–277 (2009).
    Article  Google Scholar 

    67.
    Moilanen, A. & Hanski, I. Metapopulation dynamics: Effects of habitat quality and landscape structure. Ecology 79, 2503–2515 (1998).
    Article  Google Scholar 

    68.
    Iudicello, S., Weber, M. L. & Wieland, R. Fish, Markets, and Fishermen: The Economics of Overfishing (Island Press, 1999).
    Google Scholar 

    69.
    Shine, R. & Fitzgerald, M. Conservation and reproduction of an endangered species: The broad-headed snake, Hoplocephalus bungaroides (Elapidae). Aust. Zool. 25, 65–67 (1989).
    Article  Google Scholar 

    70.
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
    Article  ADS  Google Scholar  More

  • in

    Plasticity in timing of avian breeding in response to spring temperature differs between early and late nesting species

    1.
    Dunn, P. O. & Winkler, D. W. Effects of climate change on timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds (eds Møller, A. P. et al.) 113–128 (Oxford University Press, Oxford, 2010).
    Google Scholar 
    2.
    Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12, 343–351 (2006).
    ADS  Article  Google Scholar 

    3.
    Jones, T. & Cresswell, W. The phenology mismatch hypothesis: are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108 (2010).
    PubMed  Article  Google Scholar 

    4.
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109. https://doi.org/10.1038/s41467-019-10924-4 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U.S.A. 105, 16195–16200 (2008).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Raquel, A. J. et al. Timing of nesting of upland-nesting ducks in the Canadian prairies and its relation to spring wetland conditions. Can. J. Zool. 94, 575–581 (2016).
    Article  Google Scholar 

    9.
    Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: A role for life-history characteristics?. Ecol. Evol. 7, 10492–10502 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Lynch, H. J., Fagan, W. F., Naveen, R., Trivelpiece, S. G. & Trivelpiece, W. Z. Differential advancement of breeding phenology in response to climate may alter staggered breeding among sympatric pygoscelid penguins. Mar. Ecol. Prog. Ser. 454, 135–145 (2012).
    ADS  Article  Google Scholar 

    11.
    Gurney, K. E. B. et al. Time constraints in temperate-breeding species: influence of growing season length on reproductive strategies. Ecography 34, 628–636 (2011).
    Article  Google Scholar 

    12.
    Drever, M. C. & Clark, R. G. Spring temperature, clutch initiation date and duck nest success: a test of the mismatch hypothesis. J. Anim. Ecol. 76, 139–148 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Oja, H. & Pöysä, H. Spring phenology, latitude, and the timing of breeding in two migratory ducks: implications of climate change impacts. Ann. Zool. Fenn. 44, 475–485 (2007).
    Google Scholar 

    14.
    Clark, R. G., Pöysä, H., Runko, P. & Paasivaara, A. Spring phenology and timing of breeding in short-distance migrant birds: phenotypic responses and offspring recruitment patterns in common goldeneyes. J. Avian Biol. 45, 457–465 (2014).
    Article  Google Scholar 

    15.
    Drever, M. C. et al. Population vulnerability to climate change linked to timing of breeding in boreal ducks. Glob. Change Biol. 18, 480–492 (2012).

    16.
    Nussey, D. H., Postma, E., Gienapp, P. & Visser, M. E. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Caro, S. P. et al. Local adaptation of timing of reproduction: females are in the driver’s seat. Funct. Ecol. 23, 172–179 (2009).
    Article  Google Scholar 

    18.
    Martin, J. G. A., Nussey, D. H., Alastair, J. W. & Réale, D. Measuring individual differences in reaction norms in field and experimental studies: a power analysis of random regression models. Methods Ecol. Evol. 2, 362–374 (2011).
    Article  Google Scholar 

    19.
    Arzel, C. et al. Early springs and breeding performance in two sympatric duck species with different migration strategies. Ibis 156, 288–298 (2014).
    Article  Google Scholar 

    20.
    Stafford, J. D., Kaminski, R. M., Reinecke, K. J. & Manley, S. W. Waste rice for waterfowl in the Mississippi Alluvial Valley. J. Wildl. Manag. 70, 61–69 (2006).
    Article  Google Scholar 

    21.
    Porlier, M. et al. Variation in phenotypic plasticity and selection patterns in blue tit breeding time: between-and within-population comparisons. J. Anim. Ecol. 81, 1041–1051 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Cooper, W. E. Dynamics and production of a natural population of a fresh-water amphipod, Hyalella azteca. Ecol. Monogr. 35, 377–394 (1965).
    Article  Google Scholar 

    23.
    Menon, P. S. Population ecology of Gammarus lacustris sars in Big Island Lake. I Habitat preference and relative abundance. Hydrobiologia 33, 14–32 (1969).
    Article  Google Scholar 

    24.
    Hargrave, B. T. Distribution, growth, and seasonal abundance of Hyalella azteca (Amphipoda) in relation to sediment microflora. J. Fish. Res. Board. Can. 27, 685–699 (1970).
    Article  Google Scholar 

    25.
    Dawson, A. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. B 363, 1621–1633. https://doi.org/10.1098/rstb.2007.0004 (2008).
    Article  Google Scholar 

    26.
    Clark, R. G. & Shutler, D. Avian habitat selection: Pattern from process in nest-site use by ducks?. Ecology 80, 272–287 (1999).
    Article  Google Scholar 

    27.
    Devries, J. H., Brook, R. W., Howerter, D. W. & Anderson, M. G. Effects of spring body condition and age on reproduction in mallards (Anas platyrhynchos). Auk 125, 618–628 (2008).
    Article  Google Scholar 

    28.
    Raquel, A. J., Devries, J. H., Howerter, D. W. & Clark, R. G. Reproductive consequences of climate variability in migratory birds: evidence for species-specific responses to spring phenology and cross-seasonal effects. Oecologia 191, 217–229 (2019).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Vardanis, Y., Klaassen, R. H., Strandberg, R. & Alerstam, T. Individuality in bird migration: routes and timing. Biol. Lett. 7, 502–505 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Phil. Trans. R. Soc. B 281, 20132161 (2014).
    Google Scholar 

    31.
    Blums, P. & Clark, R. G. Correlates of lifetime reproductive success in three species of European ducks. Oecologia 140, 61–67 (2004).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Dawson, R. D. & Clark, R. G. Effects of hatching date and egg size on growth, recruitment, and adult size of lesser scaup. Condor 102, 930–935 (2000).
    Article  Google Scholar 

    33.
    Traylor, J. J. & Alisauskas, R. T. Effects of intrinsic and extrinsic factors on survival of white-winged scoter (Melanitta fusca deglandi) ducklings. Auk 123, 67–81 (2006).
    Article  Google Scholar 

    34.
    Koons, D. N., Arnold, T. W. & Schaub, M. Understanding the demographic drivers of realized population growth rates. Ecol. Appl. 27, 2102–2115 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Ruusila, V., Pöysä, H. & Runko, P. Costs and benefits of female-biased natal philopatry in the common goldeneye. Behav. Ecol. 12, 686–690 (2001).
    Article  Google Scholar 

    37.
    Alisauskas, R. T., Traylor, J. J., Swoboda, C. J. & Kehoe, F. P. Components of population growth rate for white–winged scoters in Saskatchewan, Canada. Anim. Biodiv. Conserv. 27, 451–460 (2004).
    Google Scholar 

    38.
    Traylor, J. J., Alisauskas, R. T. & Kehoe, F. P. Nesting ecology of white-winged scoters (Melanitta fusca deglandi) at Redberry Lake, Saskatchewan. Auk 121, 950–962 (2004).
    Article  Google Scholar 

    39.
    Weller, M. W. A simple field candler for waterfowl eggs. J. Wildl. Manag. 20, 111–113 (1956).
    Article  Google Scholar 

    40.
    Arnold, T. W., Devries, J. H. & Howerter, D. W. Factors that affect renesting in mallards (Anas platyrhynchos). Auk 127, 212–221 (2010).
    Article  Google Scholar 

    41.
    Pöysä, H. Tracking ice phenology by migratory waterbirds: settling phenology and breeding success of species with divergent population trends. J. Avian Biol. 50, 2019. https://doi.org/10.1111/jav.02327 (2019).
    Article  Google Scholar 

    42.
    Korhonen, J. Long-term changes in lake ice cover in Finland. Nord. Hydrol. 37, 347–363 (2006).
    Article  Google Scholar 

    43.
    Venäläinen, A., Pirinen, H., Tuomenvirta, P. & Drebs, A. A basic Finnish climate data set 1961–2000. Finn. Meteorol. Inst. Rep. 5, 1–25 (2005).
    Google Scholar 

    44.
    Brown, P. W. & Fredrickson, L. H. Food habits of breeding white-winged scoters. Can. J. Zool. 64, 1652–1654 (1986).
    Article  Google Scholar 

    45.
    Afton, A. D., Hier, R. H. & Paulus, S. L. Lesser scaup diets during migration and winter in the Mississippi Flyway. Can. J. Zool. 69, 328–333 (1991).
    Article  Google Scholar 

    46.
    Fast, P. L., Clark, R. G., Brook, R. W. & Hines, J. E. Patterns of wetland use by brood-rearing lesser scaup in northern boreal forest of Canada. Waterbirds 27, 177–182 (2004).
    Article  Google Scholar 

    47.
    Van de Pol, M. & Wright, J. A. simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Article  Google Scholar 

    48.
    Afton, A. D. Influence of age and time on reproductive performance of female Lesser Scaup. Auk 101, 255–265 (1984).
    Article  Google Scholar 

    49.
    Rohwer, F. C. The evolution of reproductive patterns in waterfowl. In Ecology and Management of Breeding Waterfowl (eds Batt, B. et al.) 486–539 (University of Minnesota Press, Minnesota, 1992).
    Google Scholar 

    50.
    Milonoff, M., Pöysä, H. & Runko, P. Reproductive performance of common goldeneye Bucephala clangula females in relation to age and lifespan. Ibis 144, 585–592 (2002).
    Article  Google Scholar 

    51.
    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2002).
    Google Scholar 

    52.
    Wolak, M. E., Fairbairn, D. J. & Paulsen, Y. R. Guidelines for estimating repeatability. Methods Ecol. Evol. 3, 129–137 (2012).
    Article  Google Scholar 

    53.
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Article  Google Scholar 

    54.
    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    R Core Team. R: A language and environment for statistical computing. https://www.r-project.org (2019).

    56.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar  More

  • in

    Phenotypic and environmental correlates of natal dispersal in a long-lived territorial vulture

    1.
    Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982).
    Article  Google Scholar 
    2.
    Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998).
    Article  Google Scholar 

    3.
    Clobert, J. Dispersal (Oxford University Press, 2001).
    Google Scholar 

    4.
    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).
    Google Scholar 

    5.
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).
    PubMed  Article  Google Scholar 

    6.
    Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).
    Article  Google Scholar 

    7.
    Nathan, R., Perry, G., Cronin, J. T., Strand, A. E. & Cain, M. L. Methods for estimating long-distance dispersal. Oikos 103, 261–273 (2011).
    Article  Google Scholar 

    8.
    Stevens, V. M. et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 6, 630–642 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Driscoll, D. A. et al. The trajectory of dispersal research in conservation biology: Systematic review. PLoS ONE 9, e95053 (2014).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Smith, A. L. et al. Managing uncertainty in movement knowledge for environmental decisions. Conserv. Lett. 12, 1–8. https://doi.org/10.1111/conl.12620 (2018).
    Article  Google Scholar 

    11.
    Koenig, W. D., Van Vuren, D. & Hooge, P. N. Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol. Evol. 11, 514–517 (1996).
    CAS  PubMed  Article  Google Scholar 

    12.
    Trakhtenbrotl, A., Nathan, R., Perry, G. & Richardson, D. M. The importance of long-distance dispersal in biodiversity conservation. Divers. Distrib. 11, 173–181 (2005).
    Article  Google Scholar 

    13.
    Nathan, R., Klein, E., Robledo-Arnuncio, J. J. & Revilla, E. Dispersal kernels: Review. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 187–210 (Oxford University Press, 2012).
    Google Scholar 

    14.
    Van Houtan, K. S., Pimm, S. L., Halley, J. M., Bierregaard, R. O. & Lovejoy, T. E. Dispersal of Amazonian birds in continuous and fragmented forest. Ecol. Lett. 10, 219–229 (2007).
    PubMed  Article  Google Scholar 

    15.
    Matthysen, E. Multicausality of dispersal: A review. Dispersal Ecol. Evol. 3, 18 (2012).
    Google Scholar 

    16.
    Ronce, O., Olivieri, I., Clobert, J. & Danchin, E. Perspectives on the study of dispersal evolution. In Dispersal (eds Clobert, J. et al.) 341–357 (Oxford University Press, 2001).
    Google Scholar 

    17.
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).
    PubMed  Article  Google Scholar 

    18.
    McPeek, M. A. & Holt, R. D. The evolution of dispersal in spatially and temporally varying environments. Am. Midl. Nat. 140, 1010–1027 (1992).
    Article  Google Scholar 

    19.
    Dingle, H. Migration. The Biology of Life on the Move (Oxford University Press, 1996).
    Google Scholar 

    20.
    Verhulst, S., Perrins, C. M. & Riddington, R. Natal dispersal of great tits in a patchy environment. Ecology 78, 864 (1997).
    Article  Google Scholar 

    21.
    Tarwater, C. E., Beissinger, S. R. & Gaillard, J.-M. Dispersal polymorphisms from natal phenotype-environment interactions have carry-over effects on lifetime reproductive success of a tropical parrot. Ecol. Lett. 15, 1218–1229 (2012).
    PubMed  Article  Google Scholar 

    22.
    Baines, C. B., Ferzoco, I. M. C. & McCauley, S. J. Phenotype-by-environment interactions influence dispersal. J. Anim. Ecol. 88, 1263–1274 (2019).
    PubMed  Article  Google Scholar 

    23.
    López-López, P., Zuberogoitia, Í., Alcántara, M. & Gil, J. A. Philopatry, natal dispersal, first settlement and age of first breeding of bearded vultures Gypaetus barbatus in central Pyrenees. Bird Study 60, 555–560 (2013).
    Article  Google Scholar 

    24.
    Poessel, S. A., Bloom, P. H., Braham, M. A. & Katzner, T. E. Age- and season-specific variation in local and long-distance movement behavior of golden eagles. Eur. J. Wildl. Res. 62, 377–393 (2016).
    Article  Google Scholar 

    25.
    Benard, M. F. & McCauley, S. J. Integrating across life-history stages: Consequences of natal habitat effects on dispersal. Am. Nat. 171, 553–567 (2008).
    PubMed  Article  Google Scholar 

    26.
    Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).
    Article  Google Scholar 

    27.
    Stamps, J. A. Conspecific attraction and aggregation in territorial species. Am. Nat. 131, 329–347 (1988).
    Article  Google Scholar 

    28.
    van Horne, B. Density as a misleading indicator of habitat quality. J. Wildl. Manage. 47, 893–901 (1983).
    Article  Google Scholar 

    29.
    Serrano, D. & Tella, J. L. The role of despotism and heritability in determining settlement patterns in the colonial lesser kestrel. Am. Nat. 169, E53–E67 (2007).
    PubMed  Article  Google Scholar 

    30.
    Pyle, P. Age at first breeding and natal dispersal in a declining population of Cassin’s Auklet. Auk 118, 996–1007 (2001).
    Article  Google Scholar 

    31.
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).
    Article  Google Scholar 

    32.
    Clarke, A., Sæther, B.-E. & Røskaft, E. Sex biases in avian dispersal: A reappraisal. Oikos 79, 429–438 (1997).
    Article  Google Scholar 

    33.
    Sanz-Aguilar, A. et al. Sex- and age-dependent patterns of survival and breeding success in a long-lived endangered avian scavenger. Sci. Rep. 7, 40204 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Sergio, F., Blas, J. & Hiraldo, F. Predictors of floater status in a long-lived bird: A cross-sectional and longitudinal test of hypotheses. J. Anim. Ecol. 78, 109–118 (2009).
    PubMed  Article  Google Scholar 

    35.
    Zabala, J. & Zuberogoitia, I. Breeding performance and survival in the peregrine falcon Falco peregrinus support an age-related competence improvement hypothesis mediated via an age threshold. J. Avian Biol. 46, 141–150 (2015).
    Article  Google Scholar 

    36.
    Kim, S. Y., Velando, A., Torres, R. & Drummond, H. Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia 166, 615–626 (2011).
    ADS  PubMed  Article  Google Scholar 

    37.
    Bonte, D. et al. Costs of dispersal. Biol. Rev. Camb. Philos. Soc. 87, 290–312 (2012).
    PubMed  Article  Google Scholar 

    38.
    Spear, L. B., Pyle, P. & Nur, N. Natal dispersal in the western gull: Proximal factors and fitness consequences. J. Anim. Ecol. 67, 165–179 (2009).
    Article  Google Scholar 

    39.
    Forero, M., Donázar, J.A. & Hiraldo, F. Causes and fitness consequences of natal dispersal in a population of black kites. Ecology 83, 858–872 (2002).
    Article  Google Scholar 

    40.
    Barbraud, C., Johnson, A. R. & Bertault, G. Phenotypic correlates of post-fledging dispersal in a population of greater flamingos: The importance of body condition. J. Anim. Ecol. 72, 246–257 (2003).
    Article  Google Scholar 

    41.
    McNamara, J. M. & Dall, S. R. X. The evolution of unconditional strategies via the ‘multiplier effect’. Ecol. Lett. 14, 237–243 (2011).
    PubMed  Article  Google Scholar 

    42.
    Shields, W. M. Philopatry, inbreeding, and the evolution of sex (State University of New York, 1982).
    Google Scholar 

    43.
    Elorriaga, J. et al. First documented case of long-distance dispersal in the Egyptian Vulture (Neophron percnopterus). J. Raptor Res. 43, 142–145 (2009).
    Article  Google Scholar 

    44.
    Carrete, M. et al. Habitat, human pressure, and social behavior: Partialling out factors affecting large-scale territory extinction in an endangered vulture. Biol. Conserv. 136, 143–154 (2007).
    Article  Google Scholar 

    45.
    García-Ripollés, C. & López-López, P. Integrating effects of supplementary feeding, poisoning, pollutant ingestion and wind farms of two vulture species in Spain using a population viability analysis. J. Ornithol. 152, 879–888 (2011).
    Article  Google Scholar 

    46.
    Sanz-Aguilar, A. et al. Action on multiple fronts, illegal poisoning and wind farm planning, is required to reverse the decline of the Egyptian vulture in southern Spain. Biol. Conserv. 187, 10–18 (2015).
    Article  Google Scholar 

    47.
    Tauler, H. et al. Identifying key demographic parameters for the viability of a growing population of the endangered Egyptian Vulture Neophron percnopterus. Bird Conserv. Int. 25, 426–439 (2015).
    Article  Google Scholar 

    48.
    Lieury, N., Gallardo, M., Ponchon, C., Besnard, A. & Millon, A. Relative contribution of local demography and immigration in the recovery of a geographically-isolated population of the endangered Egyptian vulture. Biol. Conserv. 191, 349–356 (2015).
    Article  Google Scholar 

    49.
    Agudo, R., Rico, C., Hiraldo, F. & Donázar, J. A. Evidence of connectivity between continental and differentiated insular populations in a highly mobile species. Divers. Distrib. 17, 1–12 (2011).
    Article  Google Scholar 

    50.
    Travis, J. M. J. & Dytham, C. Habitat persistence, habitat availability and the evolution of dispersal. Proc. R. Soc. B Biol. Sci. 266, 723–728 (1999).
    Article  Google Scholar 

    51.
    Poethke, H. J. & Hovestadt, T. Evolution of density- and patch-size-dependent dispersal rates. Proc. R. Soc. B Biol. Sci. 269, 637–645 (2002).
    Article  Google Scholar 

    52.
    Kun, Á. & Scheuring, I. The evolution of density-dependent dispersal in a noisy spatial population model. Oikos 115, 308–320 (2006).
    Article  Google Scholar 

    53.
    Hovestadt, T., Kubisch, A. & Poethke, H. J. Information processing in models for density-dependent emigration: A comparison. Ecol. Modell. 221, 405–410 (2010).
    Article  Google Scholar 

    54.
    Morton, E. R. et al. Dispersal: a matter of scale. Ecology 99, 938–946 (2018).
    PubMed  Article  Google Scholar 

    55.
    Delestrade, A., McCleery, R. H. & Perrins, C. M. Natal dispersal in a heterogeneous environment: The case of the Great tit in Wytham. Acta Oecol. 17, 519–529 (1996).
    Google Scholar 

    56.
    Luna, Á., Palma, A., Sanz-Aguilar, A., Tella, J. L. & Carrete, M. Sex, personality and conspecific density influence natal dispersal with lifetime fitness consequences in urban and rural burrowing owls. PLoS ONE 15, 1–17 (2020).
    Google Scholar 

    57.
    Eikenaar, C., Richardson, D. S., Brouwer, L. & Komdeur, J. Sex-biased natal dispersal in a closed, saturated population of Seychelles warblers Acrocephalus sechellensis. J. Avian Biol. 39, 73–80 (2008).
    Article  Google Scholar 

    58.
    Serrano, D., Tella, J. L., Donázar, J. A. & Pomarol, M. Social and individual features affecting natal dispersal in the colonial Lesser Kestrel. Ecology 84, 3044–3054 (2003).
    Article  Google Scholar 

    59.
    Hernández, M. & Margalida, A. Poison-related mortality effects in the endangered Egyptian vulture (Neophron percnopterus) population in Spain. Eur. J. Wildl. Res. 55, 415–423 (2009).
    Article  Google Scholar 

    60.
    Fattebert, J., Balme, G., Dickerson, T., Slotow, R. & Hunter, L. Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest. PLoS ONE 10, 1–15 (2015).
    Article  CAS  Google Scholar 

    61.
    Gundersen, G., Andreassen, H. P. & Ims, R. A. Individual and population level determinants of immigration success on local habitat patches: An experimental approach. Ecol. Lett. 5, 294–301 (2002).
    Article  Google Scholar 

    62.
    Newby, J. R. et al. Human-caused mortality influences spatial population dynamics: Pumas in landscapes with varying mortality risks. Biol. Conserv. 159, 230–239 (2013).
    Article  Google Scholar 

    63.
    Doligez, B., Danchin, E. & Clobert, J. Public information and breeding habitat selection in a wild bird population. Science 297, 1168–1170 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    64.
    Delibes, M., Gaona, P. & Ferreras, P. Effects of an attractive sink leading into maladaptive habitat selection. Am. Nat. 158, 277–285 (2001).
    CAS  PubMed  Article  Google Scholar 

    65.
    Cortés-Avizanda, A., Ceballos, O. & Donázar, J. A. Long-term trends in population size and breeding success in the Egyptian Vulture (Neophron percnopterus) in Northern Spain. J. Raptor Res. 43, 43–49 (2009).
    Article  Google Scholar 

    66.
    Zuberogoitia, I., Zabala, J., Martínez, J. A., Martínez, J. E. & Azkona, A. Effect of human activities on Egyptian vulture breeding success. Anim. Conserv. 11, 313–320 (2008).
    Article  Google Scholar 

    67.
    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).
    Article  Google Scholar 

    68.
    Robertson, B. A. & Hutto, R. L. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87, 1075–1085 (2006).
    PubMed  Article  Google Scholar 

    69.
    Betts, M. G., Hadley, A. S., Rodenhouse, N. & Nocera, J. J. Social information trumps vegetation structure in breeding-site selection by a migrant songbird. Proc. R. Soc. B Biol. Sci. 275, 2257–2263 (2008).
    Article  Google Scholar 

    70.
    Stodola, K. W. & Ward, M. P. The emergent properties of conspecific attraction can limit a species’ ability to track environmental change. Am. Nat. 189, 726–733 (2017).
    PubMed  Article  Google Scholar 

    71.
    Serrano, D. Dispersal in raptors. In Birds of Prey. Biology and Conservation in the XXI Century (eds Hernán Sarasola, J. et al.) 95–121 (Springer, 2018).
    Google Scholar 

    72.
    Trochet, A., Stevens, V. M. & Baguette, M. Evolution of sex-biased dispersal. Q. Rev. Biol. 91, 297–320 (2016).
    PubMed  Article  Google Scholar 

    73.
    Forsman, E. D., Anthony, R. G., Reid, J. A., Loschl, P. J. & Sovern, S. G. Natal and breeding dispersal of northern spotted owls. Wildl. Monogr. 1, 35 (2002).
    Google Scholar 

    74.
    Steiner, U. K. & Gaston, A. J. Reproductive consequences of natal dispersal in a highly philopatric seabird. Behav. Ecol. 16, 634–639 (2005).
    Article  Google Scholar 

    75.
    González, L. M. et al. Effective natal dispersal and age of maturity in the threatened Spanish Imperial Eagle Aquila adalberti: Conservation implications. Bird Stud. 53, 285–293 (2006).
    Article  Google Scholar 

    76.
    Oro, D., Tavecchia, G. & Genovart, M. Comparing demographic parameters for philopatric and immigrant individuals in a long-lived bird adapted to unstable habitats. Oecologia 165, 935–945 (2011).
    ADS  PubMed  Article  Google Scholar 

    77.
    Grande, J. M. et al. Survival in a long-lived territorial migrant: Effects of life-history traits and ecological conditions in wintering and breeding areas. Oikos 118, 580–590 (2009).
    Article  Google Scholar 

    78.
    Van Noordwijk, A. J. On bias due to observer distribution in the analysis of data on natal dispersal in birds. J. Appl. Stat. 22, 683–694 (1995).
    Article  Google Scholar 

    79.
    Ens, B. J. et al. Despotic distribution and deferred maturity: Two sides of the same coin?. Am. Nat. 146, 625–650 (2015).
    Article  Google Scholar 

    80.
    Maness, T. J. & Anderson, D. J. Predictors of juvenile survival in birds. Ornithol. Monogr. 78, 1–55 (2013).
    Article  Google Scholar 

    81.
    Azpillaga, M., Real, J. & Hernández-Matías, A. Effects of rearing conditions on natal dispersal processes in a long-lived predator bird. Ecol. Evol. 8, 6682–6698 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Delgado, M., Penteriani, V., Revilla, E. & Nams, O. The effect of phenotypic traits and external cues on natal dispersal movements. J. Anim. Ecol. 79, 620–632 (2010).
    Article  Google Scholar 

    83.
    Zuberogoitia, I., Zabala, J., Martínez, J. E., González-Oreja, J. A. & López-López, P. Effective conservation measures to mitigate the impact of human disturbances on the endangered Egyptian vulture. Anim. Conserv. 17, 410–418 (2014).
    Article  Google Scholar 

    84.
    Donázar, J. A. et al. Epizootics and sanitary regulations drive long-term changes in fledgling body condition of a threatened vulture. Ecol. Indic. 113, 106188 (2020).
    Article  Google Scholar 

    85.
    Boulinier, T. & Danchin, E. The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species. Evol. Ecol. 11, 505–517 (1997).
    Article  Google Scholar 

    86.
    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).
    Article  Google Scholar 

    87.
    Benton, T. G. & Bowler, D. E. Linking dispersal to spatial dynamics. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 251–265 (Oxford University Press, 2012).
    Google Scholar 

    88.
    Delgado, M. D. M., Ratikainen, I. I. & Kokko, H. Inertia: The discrepancy between individual and common good in dispersal and prospecting behaviour. Biol. Rev. 86, 717–732 (2011).
    Article  Google Scholar 

    89.
    Doncaster, C. P., Clobert, J., Doligez, B., Gustafsson, L. & Danchin, E. Balanced dispersal between spatially varying local populations: An alternative to the source-sink model. Am. Nat. 150, 425–445 (1997).
    CAS  PubMed  Article  Google Scholar 

    90.
    Millon, A., Lambin, X., Devillard, S. & Schaub, M. Quantifying the contribution of immigration to population dynamics: A review of methods, evidence and perspectives in birds and mammals. Biol. Rev. 94, 2049–2067 (2019).
    PubMed  Article  Google Scholar 

    91.
    Altwegg, R., Collingham, Y. C., Erni, B. & Huntley, B. Density-dependent dispersal and the speed of range expansions. Divers. Distrib. 19, 60–68 (2013).
    Article  Google Scholar 

    92.
    Tauler-Ametller, H., Hernández-Matías, A., Pretus, J. L. L. & Real, J. Landfills determine the distribution of an expanding breeding population of the endangered Egyptian Vulture Neophron percnopterus. Ibis 159, 757–768 (2017).
    Article  Google Scholar 

    93.
    Gilroy, J. J. & Sutherland, W. J. Beyond ecological traps: Perceptual errors and undervalued resources. Trends Ecol. Evol. 22, 351–356 (2007).
    PubMed  Article  Google Scholar 

    94.
    Patten, M. A. & Kelly, J. F. Habitat selection and the perceptual trap. Ecol. Appl. 20, 2148–2156 (2010).
    PubMed  Article  Google Scholar 

    95.
    Doebeli, M. & Ruxton, G. D. Evolution of dispersal rates in metapopulation models: Branching and cyclic dynamics in phenotype space. Evolution 51, 1730 (1997).
    PubMed  Article  Google Scholar 

    96.
    Murrell, D. J., Travis, J. M. J. & Dytham, C. The evolution of dispersal distance in spatially-structured populations. Oikos 97, 229–236 (2002).
    Article  Google Scholar 

    97.
    Heino, M. & Hanski, I. Evolution of migration rate in a spatially realistic metapopulation model. Am. Nat. 157, 495–511 (2001).
    CAS  PubMed  Article  Google Scholar 

    98.
    Mathias, A., Kisdi, È. & Olivieri, I. Divergent evolution of dispersal in a heterogeneous landscape. Evolution 55, 246–259 (2001).
    CAS  PubMed  Article  Google Scholar 

    99.
    Baguette, M., Clobert, J. & Schtickzelle, N. Metapopulation dynamics of the bog fritillary butterfly: Experimental changes in habitat quality induced negative density-dependent dispersal. Ecography 34, 170–176 (2011).
    Article  Google Scholar 

    100.
    Margalida, A. et al. Uneven large-scale movement patterns in wild and reintroduced pre-adult bearded vultures: Conservation implications. PLoS ONE 8, e65857 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Buechley, E. R., McGrady, M. J., Çoban, E. & Şekercioğlu, Ç. H. Satellite tracking a wide-ranging endangered vulture species to target conservation actions in the Middle East and East Africa. Biodivers. Conserv. 27, 2293–2310 (2018).
    Article  Google Scholar 

    102.
    Dwyer, J. F., Fraser, J. D. & Morrison, J. L. Evolution of communal roosting: A social refuge-territory prospecting hypothesis. J. Raptor Res. 52, 407–419 (2018).
    Article  Google Scholar 

    103.
    Blanco, G. & Tella, J. L. Temporal, spatial and social segregation of red-billed choughs between two types of communal roost: A role for mating and territory acquisition. Anim. Behav. 57, 1219–1227 (1999).
    CAS  PubMed  Article  Google Scholar 

    104.
    Bocedi, G., Heinonen, J. & Travis, J. M. J. Uncertainty and the role of information acquisition in the evolution of context-dependent emigration. Am. Nat. 179, 606–620 (2012).
    PubMed  Article  Google Scholar 

    105.
    Delgado, M. M., Bartoń, K. A., Bonte, D. & Travis, J. M. J. Prospecting and dispersal: Their eco-evolutionary dynamics and implications for population patterns. Proc. R. Soc. B Biol. Sci. 281, 20132851 (2014).
    CAS  Article  Google Scholar 

    106.
    Kesler, D. C., Walters, J. R. & Kappes, J. J. Social influences on dispersal and the fat-tailed dispersal distribution in red-cockaded woodpeckers. Behav. Ecol. 21, 1337–1343 (2010).
    Article  Google Scholar 

    107.
    Ducros, D. et al. Beyond dispersal versus philopatry? Alternative behavioural tactics of juvenile roe deer in a heterogeneous landscape. Oikos 129, 81–92 (2019).
    Article  Google Scholar 

    108.
    BirdLife International. Species factsheet: Neophron percnopterus. (2019). Available at: http://www.birdlife.org. Accessed 19 Dec 2019.

    109.
    Donázar, J. A., Ceballos, O. & Tella, J. L. Communal roosts of Egyptian vulture (Neophron percnopterus): Dynamics and implications for the species conservation. In Biología y conservación de las rapaces Mediterráneas (eds Muntaner, J. & Muntaner, J.) 189–201 (SEO/Birdlife, 1996).
    Google Scholar 

    110.
    Hernández-Matías, A. et al. Determinants of territorial recruitment in bonelli’s eagle (Aquila fasciata) populations. Auk 127, 173–184 (2010).
    Article  Google Scholar 

    111.
    Phipps, W. L. et al. Spatial and temporal variability in migration of a soaring raptor across three continents. Front. Ecol. Evol. 7, 1–14 (2019).
    Article  Google Scholar 

    112.
    del Moral, J. C. El Alimoche Común en España Población Reproductora en 2008 y Método de Censo (SEO/Birdlife, 2009).
    Google Scholar 

    113.
    del Moral, J. C. & El Martí, R. Alimoche Común en España y Portugal. (I Censo Coordinado). Año 2000. Monografía no 8 (SEO/Birdlife, 2002).
    Google Scholar 

    114.
    Donázar, J. A. & Ceballos, O. Growth rates of nestling Egyptian Vultures Neophrone percnopterus in relation to brood size, hatching order and environmental factors. Ardea 77, 217–226 (1989).
    Google Scholar 

    115.
    Imdadullah, M., Aslam, M. & Altaf, S. Mctest: An r package for detection of collinearity among regressors. R J. 8, 499–509 (2016).
    Article  Google Scholar 

    116.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
    Google Scholar 

    117.
    Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
    Article  Google Scholar 

    118.
    Schabenberger, O. & Pierce, F. J. Contemporary Statistical Models for the Plant and Soil Sciences (CRC Press, 2002).
    Google Scholar 

    119.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2018).

    120.
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.2.4. (2019). More

  • in

    Author Correction: Continent-wide tree fecundity driven by indirect climate effects

    Nicholas School of the Environment, Duke University, Durham, NC, USA
    James S. Clark, Christopher L. Kilner, Jordan Luongo, Renata Poulton-Kamakura, Ethan Ready, Chantal D. Reid, C. Lane Scher, William H. Schlesinger, Shubhi Sharma, Samantha Sutton, Jennifer J. Swenson & Margaret Swift

    INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
    James S. Clark, Benoit Courbaud, Georges Kunstler, Kyle C. Rodman & Thomas T. Veblen

    Department of Geography, University of Colorado Boulder, Boulder, CO, USA
    Robert Andrus & Emily Moran

    School of Natural Sciences, University of California, Merced, Merced, CA, USA
    Melaine Aubry-Kientz

    Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC, Canada
    Yves Bergeron

    Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
    Michal Bogdziewicz

    USDA Forest Service, Southern Research Station, Monticello, AR, USA
    Don C. Bragg

    USDA Forest Service Southern Research Station, Auburn, AL, USA
    Dale Brockway & Timothy J. Fahey

    Natural Resources, Cornell University, Ithaca, NY, USA
    Natalie L. Cleavitt

    Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
    Susan Cohen

    Greater Yellowstone Network, National Park Service, Bozeman, MT, USA
    Robert Daley, Kristin L. Legg & Erin Shanahan

    USGS Western Ecological Research Center, Three Rivers, CA, USA
    Adrian J. Das & Nathan L. Stephenson

    Earth and Environment, Boston University, Boston, MA, USA
    Michael Dietze

    Finnish Meteorological Institute, Helsinki, Finland
    Istem Fer

    Forest Resources, University of Washington, Seattle, WA, USA
    Jerry F. Franklin

    Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA
    Catherine A. Gehring, Amy V. Whipple & Thomas G. Whitham

    University of California, Santa Cruz, Santa Cruz, CA, USA
    Gregory S. Gilbert & Kai Zhu

    USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC, USA
    Cathryn H. Greenberg

    USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC, USA
    Qinfeng Guo

    Department of Biology, University of Washington, Seattle, WA, USA
    Janneke HilleRisLambers

    School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
    Ines Ibanez

    Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
    Jill Johnstone

    Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
    Johannes Knops

    Hastings Reservation, University of California Berkeley, Carmel Valley, CA, USA
    Walter D. Koenig

    Department of Biological Sciences, DePaul University, Chicago, IL, USA
    Jalene M. LaMontagne

    Department of Wildland Resources, Utah State University Ecology Center, Logan, UT, USA
    James A. Lutz

    Department of Biology, University of New Mexico, Albuquerque, NM, USA
    Diana Macias

    Pacific Forestry Centre, Victoria, BC, Canada
    Eliot J. B. McIntire

    Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada
    Yassine Messaoud

    Department of Biology, Colby College, Waterville, ME, USA
    Christopher M. Moore

    Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
    Jonathan A. Myers

    University of New Mexico, Albuquerque, NM, USA
    Orrin B. Myers

    Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Chase Nunez

    Valles Caldera National Preserve, National Park Service, Jemez Springs, NM, USA
    Robert Parmenter

    Fort Collins Science Center, Fort Collins, CO, USA
    Sam Pearse

    Department of Natural Sciences, Mars Hill University, Mars Hill, NC, USA
    Scott Pearson

    Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
    Miranda D. Redmond & Andreas P. Wion

    Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
    Amanda M. Schwantes

    Department of Biology, Wilkes University, Wilkes-Barre, PA, USA
    Michael A. Steele

    Geography Department and Russian and East European Institute, Bloomington, IN, USA
    Roman Zlotin More

  • in

    Accepting the loss of habitat specialists in a changing world

    1.
    Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. J. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01342-7 (2020).
    Article  Google Scholar 
    2.
    Wilson, S. K. et al. J. Anim. Ecol. 77, 220–228 (2008).
    Article  Google Scholar 

    3.
    Dornelas, M. et al. Science 344, 296–299 (2014).
    CAS  Article  Google Scholar 

    4.
    Sommer, B., Harrison, P. L., Beger, M. & Pandolfi, J. M. Ecology 95, 1000–1009 (2014).
    Article  Google Scholar 

    5.
    Feary, D. A. et al. Fish Fish. 15, 593–615 (2013).
    Article  Google Scholar 

    6.
    Brandl, S. J. et al. Science 364, 1189–1192 (2019).
    CAS  Article  Google Scholar 

    7.
    Hughes, T. P. et al. Nature 546, 82–90 (2017).
    CAS  Article  Google Scholar 

    8.
    Beyer, H. et al. Conserv. Lett. 11, e12587 (2018).
    Article  Google Scholar 

    9.
    Bottrill, M. C. et al. Trends Ecol. Evol. 24, 183–184 (2009).
    Article  Google Scholar 

    10.
    Wernberg, T. et al. Nat. Clim. Change 3, 78–82 (2013).
    Article  Google Scholar  More

  • in

    Habitat loss and range shifts contribute to ecological generalization among reef fishes

    1.
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Devictor, V. et al. Functional biotic homogenization of bird communities in disturbed landscapes. Glob. Ecol. Biogeogr. 17, 252–261 (2008).
    Article  Google Scholar 

    4.
    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
    Article  Google Scholar 

    5.
    Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).
    Article  Google Scholar 

    6.
    Wilson, S. K. et al. Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J. Anim. Ecol. 77, 220–228 (2008).
    Article  Google Scholar 

    7.
    Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Change Biol. 10, 1642–1647 (2004).
    Article  Google Scholar 

    8.
    Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl Acad. Sci. USA 101, 8251–8253 (2004).
    CAS  PubMed  Article  Google Scholar 

    9.
    Paddack, M. J. et al. Recent region-wide declines in Caribbean reef fish abundance. Curr. Biol. 19, 590–595 (2009).
    CAS  PubMed  Article  Google Scholar 

    10.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Change Biol. 23, 1511–1524 (2017).
    Article  Google Scholar 

    13.
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl Acad. Sci. USA 106, 22341–22345 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).
    PubMed  Article  Google Scholar 

    16.
    Mair, L. et al. Abundance changes and habitat availability drive species’ responses to climate change. Nat. Clim. Change 4, 127–131 (2014).
    Article  Google Scholar 

    17.
    Monaco, C. J. et al. Dietary generalism accelerates arrival and persistence of coral-reef fishes in their novel ranges under climate change. Glob. Change Biol. 26, 5564–5573 (2020).
    Article  Google Scholar 

    18.
    Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: where do we draw the line? Am. Zool. 39, 146–159 (2015).
    Article  Google Scholar 

    19.
    Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).
    Article  Google Scholar 

    20.
    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Pratchett, M. S. et al. in Oceanography and Marine Biology: Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (Taylor and Francis, 2008).

    22.
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Feary, D. A. The influence of resource specialization on the response of reef fish to coral disturbance. Mar. Biol. 153, 153–161 (2007).
    Article  Google Scholar 

    24.
    Mellin, C., Bradshaw, C., Fordham, D. & Caley, M. Strong but opposing β-diversity–stability relationships in coral reef fish communities. Proc. R. Soc. B 281, 20131993 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    29.
    Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102–114 (2007).
    Article  Google Scholar 

    30.
    Feary, D. A. et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish Fish. 15, 593–615 (2014).
    Article  Google Scholar 

    31.
    Guisan, A. et al. Scaling the linkage between environmental niches and functional traits for improved spatial predictions of biological communities. Glob. Ecol. Biogeogr. 28, 1384–1392 (2019).
    Article  Google Scholar 

    32.
    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).
    Article  Google Scholar 

    33.
    Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011).
    Article  Google Scholar 

    34.
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
    CAS  Article  Google Scholar 

    35.
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
    CAS  PubMed  Article  Google Scholar 

    36.
    Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).
    Article  Google Scholar 

    37.
    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).
    CAS  PubMed  Article  Google Scholar 

    38.
    Graham, M. H., Kinlan, B. P. & Grosberg, R. K. Post-glacial redistribution and shifts in productivity of giant kelp forests. Proc. R. Soc. B 277, 399–406 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    CAS  Article  Google Scholar 

    40.
    Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).
    CAS  PubMed  Article  Google Scholar 

    41.
    Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).
    PubMed  Article  Google Scholar 

    44.
    Cresswell, A. K. et al. Translating local benthic community structure to national biogenic reef habitat types. Glob. Ecol. Biogeogr. 26, 1112–1125 (2017).
    Article  Google Scholar 

    45.
    Edgar, G. J., Barrett, N. S. & Stuart-Smith, R. D. Exploited reefs protected from fishing transform over decades into conservation features otherwise absent from seascapes. Ecol. Appl. 19, 1967–1974 (2009).
    PubMed  Article  Google Scholar 

    46.
    Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PLoS ONE 10, e0141039 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).
    PubMed  Article  Google Scholar 

    48.
    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).
    CAS  PubMed  Article  Google Scholar 

    49.
    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
    Article  Google Scholar 

    50.
    Becker, R. A., Wilks, A. R (original S code) & Brownrigg, R. (R version). mapdata: Extra map databases. R package version 2.3.0 (2018).

    51.
    Matis, P. A., Donelson, J. M., Bush, S., Fox, R. J. & Booth, D. J. Temperature influences habitat preference of coral reef fishes: will generalists become more specialised in a warming ocean? Glob. Change Biol. 24, 3158–3169 (2018).
    Article  Google Scholar  More

  • in

    Seventeen ‘extinct’ plant species back to conservation attention in Europe

    1.
    Guidelines for Using the IUCN Red List Categories and Criteria Version 14 (IUCN Standards and Petitions Committee, 2019); http://www.iucnredlist.org/documents/RedListGuidelines.pdf
    2.
    Dalrymple, S. E., Godefroid, S., Orsenigo, S. & Abeli, T. Frankenstein’s work or everyday conservation? How reintroductions are informing the de-extinction debate. J. Nat. Conserv. 56, 125870 (2020).
    Article  Google Scholar 

    3.
    IUCN SSC. Guiding Principles on Creating Proxies of Extinct Species for Conservation Benefit Version 1.0 (IUCN, 2016).

    4.
    Dalrymple, S. E. & Abeli, T. Ex situ seed banks and the IUCN Red List. Nat. Plants 5, 122–123 (2019).
    Article  Google Scholar 

    5.
    Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).
    Article  Google Scholar 

    6.
    Knapp, W. M. et al. Regional records improve data quality in determining plant extinction rates. Nat. Ecol. Evol. 4, 512–514 (2020).
    Article  Google Scholar 

    7.
    Ladle, R. J., Jepson, P., Malhado, A. C. M., Jennings, S. & Barua, M. The causes and biogeographical significance of species’ rediscovery. Front. Biogeogr. 3, 111–118 (2011).
    Google Scholar 

    8.
    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: back from the brink? PLoS ONE 6, e22531 (2011).
    CAS  Article  Google Scholar 

    9.
    Aedo, C., Medina, L., Barberá, P. & Fernández-Albert, M. Extinctions of vascular plants in Spain. Nord. J. Bot. 33, 83–100 (2015).
    Article  Google Scholar 

    10.
    Bawri, A., Gajurel, P. R. & Khan, M. L. Rediscovery of Primula polonensis. Kew Bull. 70, 56–60 (2015).
    Article  Google Scholar 

    11.
    Bonini, F., Lastrucci, L. & Gigante, D. Juncus atratus Krock. (Juncaceae) rediscovered in Italy: a species deserving urgent conservation actions. Biologia 75, 1519–1527 (2020).
    Article  Google Scholar 

    12.
    Abeli, T. et al. Ex situ collections and their potential for the restoration of extinct plants. Conserv. Biol. 34, 303–313 (2020).
    Article  Google Scholar 

    13.
    Liu, U., Breman, E., Cossu, T. A. & Kenney, S. The conservation value of germplasm stored at the Millennium Seed Bank, Royal Botanic Gardens, Kew, UK. Biodivers. Conserv. 27, 1347–1386 (2018).
    Article  Google Scholar 

    14.
    Minteer, B. A., Collins, J. P., Love, K. E. & Puschendorf, R. Avoiding (re)extinction. Science 344, 260–261 (2014).
    CAS  Article  Google Scholar 

    15.
    Rossi, G. et al. Is legal protection sufficient to ensure plant conservation? The Italian Red List of policy species as a case study. Oryx 50, 431–436 (2016).
    Article  Google Scholar 

    16.
    Fos, S., Laguna, E., Jiménez, J. & Gómez-Serrano, M. Á. Plant micro-reserves in Valencia (E. Spain): a model to preserve threatened flora in China? Plant Divers. 39, 383–389 (2017).
    Article  Google Scholar 

    17.
    Keith, D. A. & Burgman, M. A. The Lazarus effect: can the dynamics of extinct species lists tell us anything about the status of biodiversity? Biol. Conserv. 117, 41–48 (2004).
    Article  Google Scholar 

    18.
    Dunkel, F. G. The Ranunculus auricomus L. complex (Ranunculaceae) in northern Italy. Webbia 65, 179–227 (2010).
    Article  Google Scholar 

    19.
    Bartolucci, F. et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst. 152, 179–303 (2018).
    Article  Google Scholar 

    20.
    Lista Vermelha da Flora Vascular de Portugal Continental (Sociedade Portuguesa de Botânica e Associação Portuguesa de Ciência da Vegetação – PHYTOS, em parceria com o Instituto da Conservação da Natureza e das Florestas, 2020); https://listavermelha-flora.pt/

    21.
    Euro+Med PlantBase—the Information Resource for Euro-Mediterranean Plant Diversity (Euro+Med, 2020); http://ww2.bgbm.org/EuroPlusMed/

    22.
    Perehrym, M. M. in Vascular Plants of the Emerald Network of Ukraine Under Protection of the Bern Convention (ed. Solomakha, V. A.) (Ministry of Ecology and Natural Resources of Ukraine, 2016).

    23.
    Andrés-Sánchez, S., Galbany-Casals, M., Rico, E. & Martínez-Ortega, M. M. A nomenclatural treatment for Logfia Cass. and Filago L. (Asteraceae) as newly circumscribed: typification of several names. Taxon 60, 572–576 (2011).

    24.
    Vladimirov, V., Aybeke, A., Matevski, V. & Tan, K. New floristic records in the Balkans: 33*. Phytol. Balc. 23, 281–329 (2017).
    Google Scholar 

    25.
    Orsenigo, S. et al. Red list of threatened vascular plants in Italy. Plant Biosyst. 152, 310–335 (2021).
    Article  Google Scholar 

    26.
    Barina, Z. (ed.) Distribution Atlas of Vascular Plants in Albania (Hungarian Natural History Museum, 2017).

    27.
    La Liste Rouge des Espèces Menacées en France—Chapitre Flore Vasculaire de France Métropolitaine (UICN France, FCBN, AFB, MNHN, 2018).

    28.
    Blanca, G., Gavira, O. & Suárez-Santiago, V. N. Galatella malacitana (Asteraceae): a new species from the peridotitic mountains of southern Spain. Phytotaxa 205, 239–248 (2015).
    Article  Google Scholar 

    29.
    Bogdanović, S., Brullo, S., Ljubičić, I., Rat, M. & Salmeri, C. Cytotaxonomical remarks on Loncomelos visianicum (Hyacinthaceae), a poorly known species endemic to Croatia. Phytotaxa 430, 95–108 (2020).
    Article  Google Scholar 

    30.
    Banfi, E. in Flora d’Italia 2nd edn, Vol. 1 (eds Pignatti, S. et al.) (Edagricole, 2017). More