More stories

  • in

    Flickering flash signals and mate recognition in the Asian firefly, Aquatica lateralis

    Flash recordingAll field recording and experiments were performed at the paddy field in the Northern Chita Peninsula, Aichi Prefecture, central Japan, in June and July between 2003 and 2016. The ambient temperature at the firefly’s active period was measured using a thermometer. The flashes were recorded with a digital video camera (NV-GS-400, Panasonic, Japan) mounted on a tripod at a height of 30–50 cm from ground and a distance of 1.0–1.5 m away from the specimen. Isolated specimens were selected for recording to exclude the background light from other nontarget specimens. When another specimen appeared near the target specimen, the video recording was cancelled. When a female copulated during video recording in the field, her flashes until 1 min before copulation were regarded as those of a ‘receptive female’. To record the flashes of a ‘mated female’, the female specimens already mated were prepared in aquariums (because virgin and mated females cannot be distinguished in the field): the eggs were obtained from wild female specimens collected one year before at the same field and reared to adults; immediately after emergence the virgin female was confined in a small container with two cultured males for two nights to facilitate copulation. As the parents of the reared specimens were collected from the observation field (same genetic background), the rearing temperature was almost the same as that of the natural field, the emergence period of the cultured specimens overlapped with that of the natural population, the adult body sizes of the reared and natural specimens were indistinguishable, and the flash pattern of the cultured mated females was indistinguishable from that of the wild (potentially) mated females. Thus, we believe that there was no influence of different rearing environments, i.e., the flash behavior of the cultured mated female specimens is expected to be substantially the same as that of wild mated female specimens. To distinguish them from wild (potentially) mated females, the elytra of cultured mated females were marked with colored ink before placing them in the field, and after three days, the flashes of ink-marked specimens were recorded. Of note, we never observed male attraction and copulation in any of the mated females used for field observation; thus, the mated females were unreceptive.Waveform analysisSequential still images were captured from video files at 30 frames per second using VirtualDub (GPL), and then the light intensities in the images were qualified (8-bit linear gray scaling from black to white at 0–255) using ImageJ software. In this study, we defined ‘flash’ as a luminescent waveform from baseline to baseline and ‘flickering’ as fluctuation above baseline in a single flash. The waveforms containing a saturated signal (255, white) were omitted. The waveforms of the maximum signal value lower than 50 were also omitted because of the difficulty in separating signal and noise. Approximately 10–90 waveforms per individual were analyzed; thus, the effect of the occasional interruption of the flash recording by the specimen’s movement and/or vegetation swinging between the specimen and the video camera is statistically ignorable. FD is defined as the time interval between the beginning and the end of a flash (Fig. S1). Flicker intensity (FI) was defined as$${text{FI}} = left{ {begin{array}{*{20}l} {mathop {max }limits_{1 le i le n} left( {frac{{{text{min}}left( {p_{i} ,p_{i + 1} } right) – t_{i} }}{{min left( {p_{i} , p_{i + 1} } right) + t_{i} }}} right)} hfill & {{text{if}} , n ge 1} hfill \ 0 hfill & {{text{if}} , n = 0} hfill \ end{array} } right.$$where p, t, and n denote the peak and the trough (local extrema) in the waveform of a flash and the number of toughs in the flash, respectively (Fig. S1). In total, we measured the FD and FI values of 347, 94, and 355 waveforms from 13 sedentary males, 7 receptive females, and 8 mated females, respectively. We did not consider the flash brightness as a factor because the measured value of the light intensity depends largely on the distance between the light source and the detector; thus, the actual brightness of the lantern cannot be practically measured in the field.e-FireflyFor male attraction experiments, we built an electronic LED device, the e-firefly, to generate patterned flashes with various FDs and FIs using a chip LED (green type, λmax = 568 nm, Everlight Electronics, Taiwan; Figs. S2 and S3) with a microcontroller PIC16F628A (Microchip Technology, USA) (see Figs. S4-S5). An example of the program for the microcontroller is shown in Supplementary Data S1. The brightness was constant in all programs. Flickering frequency ranged between 5–12 Hz, which corresponds to that of sedentary male flashes (approximately 10 Hz)15. To prevent direct access of the attracted specimen to the light source, the chip LED was covered by a steel net painted green (see Fig. S2). For flying male attraction experiments, when the male landed within a 100-mm distance from the e-firefly, we judged the attraction to be a success; otherwise, it was a failure. For sedentary male attraction experiments, the e-firefly was placed 200–300 mm away from the sedentary male. When the approaching male touched the steel net covering the e-firefly, to warrant a positive approach, we measured the time the male remained on the net. If the male did not move away from the net for more than 2 min, we judged the attraction to be a success (strict criterion for judgment); otherwise, it was a failure.Spectral measurementThe luminescence spectra of e-firefly and A. lateralis were measured using a Flame-S spectrophotometer (Ocean Insight, USA). The living A. lateralis specimens were anesthetized on ice and frozen at − 20 °C until use. The lantern started luminescence by thawing at room temperature, and the spectrum was measured during luminescence (within 5 min).Statistical analysisFirst, we considered a discriminant analysis using a logistic regression model that discriminates between receptive females and others in the observational data. We fitted several models with combinations of FD and FI, quadratic terms of FD and FI (FD2, FI2), interaction of FD and FI (FD (times) FI), and temperature (T) as explanatory variables. Based on Akaike’s information criteria (AIC) values and model simplicity, we chose the logistic regression model with FD, FI, FD2 and T as explanatory variables. Let (p)(({varvec{x}})) denote the conditional probability that a flash is from a receptive female given ({varvec{x}}=left(mathrm{FD},mathrm{ FI},mathrm{ T}right)) and (widehat{p})(({varvec{x}})) denote its estimate. The coefficients of the logistic regression model are estimated as follows.
    [Model for the observational data with temperature (T)]
    $$begin{gathered} {text{log}}frac{{hat{p}}}{{1 – hat{p}}} = begin{array}{*{20}l} { – 32.26 + 69.69 times FD – 43.47 times FI – 76.63 times FD^{2} + 0.87 times T} hfill \ {~quad left( {6.50} right)quad quad left( {15.37} right)quad quad quad left( {8.56} right)quad quad quad quad left( {17.44} right)quad quad quad left( {0.19} right)~~} hfill \ end{array} hfill \ quad {text{AIC: 84}}{text{.75}} hfill \ end{gathered}$$[Model for the observational data without temperature (T)]$$begin{gathered} {text{log}}frac{{hat{p}}}{{1 – hat{p}}} = begin{array}{*{20}l} { – 7.69~ + 47.57 times FD~ – 38.29 times FI~ – 52.86 times FD^{2} ~} hfill \ {~;left( {1.86} right)quad quad left( {9.68} right)quad quad quad left( {7.08} right)quad quad quad quad left( {11.38} right)~~} hfill \ end{array} hfill \ quad {text{AIC: 114}}{text{.89}} hfill \ end{gathered}$$where values in parentheses indicate standard deviations. The same applies hereafter. Temperature (T) is included in the model not because it affects the occurrence of receptive females but because it affects the FD and/or FI of receptive females. The AIC value increased by 30, which is substantial, when temperature was excluded from the model.Figure 2 shows the FD and FI of each flash from receptive females, mated females and males with the discriminant boundaries of receptive females from others for (p=0.5).We next considered a discriminant analysis for the experimental data. Let ({q}^{f}({varvec{x}})) denote the conditional probability that a flying male is attracted to a flash of ({varvec{x}}=left(mathrm{FD},mathrm{ FI},mathrm{ T}right)) and lands, and ({widehat{q}}^{f}({varvec{x}})) denote its estimate. Among several models we fit, the smallest AIC value is attained by the logistic regression model with FD, FI and T as explanatory variables, but the AIC is not much different from the model with FD and FI only.
    [Model for flying males with temperature (T)]
    $$begin{gathered} {text{log}}frac{{hat{q}^{f} }}{{1 – hat{q}^{f} }} = begin{array}{*{20}l} { – 0.74~~ – 2.42 times FD – 16.82 times FI + 0.31 times T} hfill \ {~;left( {4.01} right)quad quad left( {0.83} right)quad quad quad left( {4.88} right)quad quad quad quad left( {0.20} right)~} hfill \ end{array} hfill \ quad {text{AIC}}:66.96 hfill \ end{gathered}$$

    [Model for flying males without temperature (T)]
    $$begin{gathered} {text{log}}frac{{hat{q}^{f} }}{{1 – hat{q}^{f} }} = begin{array}{*{20}l} { – 5.36~ – 1.72 times FD – 13.69 times FI} hfill \ {~;left( {1.49} right)quad quad left( {0.63} right)~quad quad left( {4.09} right)~~} hfill \ end{array} hfill \ quad {text{AIC}}:67.61 hfill \ end{gathered}$$
    For sedentary males, the model with the smallest AIC value includes all the quadratic terms of FI and FD but not temperature. Let ({q}^{s}({varvec{x}})) denote the conditional probability that a sedentary male is attracted to a flash of ({varvec{x}}=left(mathrm{FD},mathrm{ FI},mathrm{ T}right)) and ({widehat{q}}^{s}left({varvec{x}}right)) denote its estimate. The logistic regression model for ({q}^{s}({varvec{x}})) with the best AIC value is given as follows.
    [Model for sedentary males]
    $${text{log}}frac{{hat{q}~^{s} }}{{1 – hat{q}~^{s} }} = begin{array}{*{20}l} { – 0.68~ + 7.84 times FD~ + 48.17 times FI – 5.35 times FD^{2} – 166.70 times FI^{2} – 65.67 times FD times FI} hfill \ {;left( {0.97} right)quad quad quad left( {2.99} right)quad quad quad left( {17.74} right)quad quad quad left( {1.74} right)quad quad quad quad left( {72.34} right)quad quad quad quad left( {17.67} right)~} hfill \ end{array}$$
    Figure 3 shows successes and failures of attraction of flying males on the left and sedentary males on the right with estimated discriminant boundaries.Let us now estimate probabilities that a flying male is attracted and lands or a sedentary male is attracted to a flash when a flash is from a receptive female or when a flash is either from a sedentary male or mated female. The probability that a flying male is attracted and lands when a flash is from a receptive female is a conditional probability and is expressed as follows.$$begin{aligned} Pleft(left.begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} right|begin{array}{*{20}c} {text{Receptive }} \ {{text{female}}} \ end{array} right) & = frac{{Pleft( {begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} {text{ and }}begin{array}{*{20}c} {text{Receptive }} \ {{text{female}}} \ end{array} } right) }}{{Pleft( {begin{array}{*{20}c} {{text{Receptive}}} \ {{text{female}}} \ end{array} } right)}}, \ Pleft( {begin{array}{*{20}c} {{text{Receptive}}} \ {{text{female}}} \ end{array} } right) & = mathop int_{Omega } Pleft(left. begin{array}{*{20}c} {{text{Receptive}}} \ {{text{female}}} \ end{array} right|{varvec{x}} right)fleft( {varvec{x}} right)d{varvec{x}} = mathop int_{Omega }pleft( {varvec{x}} right) fleft( {varvec{x}} right)d{varvec{x}} hspace{5mm}{text{and}} \ Pleft( {begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} {text{ and }}begin{array}{*{20}c} {text{Receptive }} \ {{text{female}}} \ end{array} } right) & = mathop int_{Omega } Pleft(left. begin{array}{*{20}c} {{text{Receptive}}} \ {{text{female}}} \ end{array} right|varvec{x} right)Pleft(left. begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} right|{varvec{x}} right)fleft( {varvec{x}} right)d{varvec{x}} \ & = mathop int_{Omega } pleft( varvec{x} right)q^{f} left( {varvec{x}} right)fleft( {varvec{x}} right)d{varvec{x}}mathbf{.} \ end{aligned}$$Integrals are taken over the domain (Omega) of ({varvec{x}}=(FD, FI, T)) of all females and males, and (f({varvec{x}})) is the joint density function of ({varvec{x}}.) Because (f({varvec{x}})) is unknown, we use the empirical distribution of the observational data, and conditional probabilities given ({varvec{x}}) are replaced with their estimates by logistic regression models. Let ({{varvec{x}}}_{i}=left(F{D}_{i}, F{I}_{i}, {T}_{i}right), i=mathrm{1,2},dots N) denote the (i) th observation in the observational data. The estimates of probabilities are given as follows:$$begin{aligned} hat{P}left( {begin{array}{*{20}c} {{text{Receptive}}} \ {{text{female}}} \ end{array} }right) & = frac{1}{N}mathop sum limits_{i = 1}^{n} hat{p}left( {{varvec{x}}_{i} } right) hspace{15mm} {text{and}} \ hat{P}left( {begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} {text{ and }}begin{array}{*{20}c} {text{Receptive }} \ {{text{female}}} \ end{array} } right) & = frac{1}{N}mathop sum limits_{i = 1}^{n} hat{p}left( {{varvec{x}}_{i} } right) hat{q}^{f} left( {{varvec{x}}_{i} } right). \ end{aligned}$$Thus,$$hat{P}left( left. begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} right| begin{array}{*{20}c} {text{Receptive }} \ {text{female}} \ end{array} right) = frac{{mathop sum nolimits_{i = 1}^{n} hat{p}left( {{varvec{x}}_{i} } right) hat{q}^{f} left( {{varvec{x}}_{i} } right)}}{{mathop sum nolimits_{i = 1}^{n}hat{p}left(varvec{x}_i right)}}.$$Similarly, we have$$begin{aligned} hat{P}left( left.begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array}right| {text{Others}} right) & = frac{{mathop sum nolimits_{i = 1}^{n} (1 – hat{p}left( {{varvec{x}}_{i} } right)) hat{q}^{f} left( {{varvec{x}}_{i} } right)}}{{mathop sum nolimits_{i = 1}^{n} (1 – hat{p}left( {{varvec{x}}_{i} } right))}} \ hat{P}left( left. begin{array}{*{20}c} {text{Sedentary male}} \ {text{is attracted}} \ end{array} right| begin{array}{*{20}c} {text{Receptive }} \ {text{female}} \ end{array} right)& = frac{{mathop sum nolimits_{i = 1}^{n} hat{p}left( {{varvec{x}}_{i} } right) hat{q}^{s} left( {{varvec{x}}_{i} } right)}}{{mathop sum nolimits_{i = 1}^{n} hat{p}left( varvec{x}_{i} right)}}hspace{15mm} {text{ and}} \hat{P}left(left. begin{array}{*{20}c} {text{Sedentary male}} \ {text{is attracted}} \ end{array}right| {text{Others}} right) & = frac{{mathop sum nolimits_{i = 1}^{n} left( {1 – hat{p}left( varvec{x}_{i} right)} right) hat{q}^{s} left( {varvec{x}_{i} } right)}}{mathop sum nolimits_{i = 1}^{n} left( {1 – hat{p}left( varvec{x}_{i} right)} right)} . \ end{aligned}$$The estimated probabilities are shown in Table 1.Table 1 Estimated probabilities of a flying male and a sedentary male being attracted to flashes from a receptive female and from others.Full size table More

  • in

    Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change

    Literature search and screeningOur analysis included a systematic literature search and was conducted by following the PRISMA protocol55 (Supplementary Fig. 7). We searched through Web of Science and China National Knowledge Infrastructure (CNKI) platforms by using keywords listed in Supplementary Table 3. A total of 3299 potentially relevant articles were found (Mandarin and English). The availability of peer-reviewed datasets associated with these published articles11,15,56,57,58,59 and online databases (The Sustainable Wetlands Adaptation and Mitigation Program (SWAMP) database, https://www2.cifor.org/swamp) were also considered. We then removed a significant number of articles through title screening, leaving 551 articles for further inspection.For these remaining articles, we used a four-step critique process to screen their title, abstract, and full text. We determined that firstly, they must provide carbon density data for at least one of the four mangrove carbon pools (i.e., aboveground biomass, belowground biomass, sediment organic carbon, or total ecosystem carbon). Secondly, articles needed to state the forest age or the starting date of the restoration action. For those studies providing only age intervals (e.g., 10–25 years, >66 years), we excluded them from the analysis. Thirdly, a description of prior land use was required. From these, mangrove restoration could be divided into two categories—reforestation and afforestation—on whether mangroves previously existed in that location. For reforestation, the initial conditions for inclusion were: (1) abandoned agricultural/aquacultural sites built previously by excavating mangrove forests, (2) clear-felled mangrove lands after wars, timber harvest, and silvicultural management, and (3) mangrove forests with mortality due to spraying of defoliants and hydrological alteration caused by the construction of embankments. We compared the carbon densities of reforested mangroves among sites with different causes of degradation/deforestation, and no significant difference is found (Supplementary Fig. 9). For those reforested mangroves, we assumed they would be protected and conserved by local governments and non-government organizations, so that there will not be human-driven degradation or deforestation in the near future. However, we acknowledge that a fraction of mangrove reforestation is managed for wood production, which means logging would happen at a certain interval after reforestation at these sites. For these logging sites, we used their reported measurements after clear-cut, such as 0-, 5-, 10-, 15-, and 25-year post-harvest sites in Sundarbans, Bangladesh60. On the other hand, the future occurrence of natural-driven deforestation (e.g., cyclones) is difficult to predict, and thus not considered in our study. For afforestation, the initial condition for inclusion was the presence of non-mangrove habitat immediately before afforestation began, such as mudflats, seagrass, saltmarsh, coral reef, or denuded areas. In most cases, reforestation and afforestation were undertaken through active planting without much re-engineering4, but for reforestation, natural regeneration could have, and in many places likely did, augment recruitment61. Moreover, we only considered mangrove succession that started from near-barren land with an insignificant amount of biomass, and introductions of exotic species to degraded areas with sparse trees were not incorporated. Lastly, if the forest age or prior land use type was not given, the articles needed to specify the location of sampling plots (latitude, longitude). With the coordinates matching, prior land use type and establishment dates were sometimes identifiable through remote sensing (Supplementary Fig. 10). For those articles sharing the same restoration sites but showing different aspects of the data collection, we combined the results and considered the collective work as one source. Based on the space-for-time method, data in the control sites before mangrove restoration actions were also collected as a paired site of restoration (e.g., abandoned ponds before mangrove reforestation; mudflats before mangrove afforestation). In total, we obtained data from 379 mangrove restoration sites described by 106 articles.Data extractionWe extracted aboveground living biomass carbon (AGC), belowground living biomass carbon (BGC), sediment carbon (SCS), and total ecosystem carbon (TECS) density from the 106 original data sources. In most cases, numeric values were provided. For those data not provided numerically but graphed, we determined values from figures with the application of GetData Graph Digitizer (http://getdata-graph-digitizer.com/).Among the articles, aboveground and belowground biomass (Mg ha−1) data were obtained using either a harvesting method (empirical) or an allometric method (calculation). Aboveground biomass represented the sum of stem, leaf, and branch dry weight, and we included prop root biomass when Rhizophora spp. were present. For soil coring methods that determined belowground biomass or sediment carbon density, belowground biomass was considered the dry weight of living coarse and fine roots multiplied by the ratio of core area to land surface area62. For allometric methods, trunk diameter at breast height (DBH, ~1.3 m) and tree height were used to calculate aboveground and belowground biomass by species-specific or common allometric equations63. These equations were also used to calculate the belowground biomass when articles provided plot information (DBH, height) but not belowground biomass (Supplementary Table 4). Total biomass was calculated as the sum of aboveground and belowground biomass. Deadwood and pneumatophore biomass were not included in our analysis; these data are rarely provided and/or methods of determination are inconsistent among global studies64. Some articles provided total biomass and shoot/root biomass ratio (S/R), and in such cases, above- and belowground biomass data were obtained through calculation as follows:$${{{{{rm{Aboveground}}}}}},{{{{{rm{biomass}}}}}}={{{{{rm{Total}}}}}},{{{{{rm{biomass}}}}}}times frac{frac{S}{R}}{frac{S}{R}+1}$$
    (1)
    $${{{{{rm{Belowground}}}}}},{{{{{rm{biomass}}}}}}={{{{{rm{Total}}}}}},{{{{{rm{biomass}}}}}}times frac{1}{frac{S}{R}+1}$$
    (2)
    For those articles measuring carbon content, study-specific carbon conversion factors were used to transform biomass to biomass carbon density (Mg C ha−1). If carbon content data were not provided, we converted aboveground and belowground biomass to carbon density by applying a conversion of 0.47 and 0.39, respectively65. The aboveground biomass carbon density was divided by its corresponding age to get the average aboveground biomass carbon accumulation rate (Mg C ha−1 yr−1).For sediment carbon density (SCS, Mg C ha−1), we selected the top 1 m because this depth equated to the most commonly reported depth and could reflect the impact of root mass input in the deeper depth66, which is also consistent with recent blue carbon standing stock assessment guidance64,67. Sediment carbon stock was calculated by multiplying sediment organic carbon content (SOC, %) by bulk density (BD, g cm−3), integrated over depth (cm). For studies that reported sediment carbon stock to More

  • in

    Genomic architecture of migration timing in a long-distance migratory songbird

    Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing arctic. Science 370, 712–715 (2020).ADS 
    CAS 

    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8, 224–228 (2018).ADS 

    Google Scholar 
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).ADS 
    CAS 

    Google Scholar 
    Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Sci. B. 278, 3437–3443 (2011).
    Google Scholar 
    González, A. M., Bayly, N. J. & Hobson, K. A. Earlier and slower or later and faster: spring migration pace linked to departure time in a Neotropical migrant songbird. J. Anim. Ecol. 89, 2840–2851 (2020).
    Google Scholar 
    Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 26, 561–569 (2011).
    Google Scholar 
    Caprioli, M. et al. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow. PLoS ONE 7, e35140 (2012).ADS 
    CAS 

    Google Scholar 
    Mettler, R., Segelbacher, G. & Schaefer, M. H. Interactions between a candidate gene for migration (ADCYAP1), morphology and sex predict spring arrival in blackcap populations. PLoS ONE 10, e0144587 (2015).
    Google Scholar 
    Bazzi, G. et al. Clock gene polymorphism and scheduling of migration: a geolocator study of the barn swallow Hirundo rustica. Sci. Rep. 5, 12443 (2015).ADS 

    Google Scholar 
    Saino, N. et al. Polymorphism at the Clock gene predicts phenology of long-distance migratoin in birds. Mol. Ecol. 24, 1758–1773 (2015).CAS 

    Google Scholar 
    Bossu, C. M. et al. Clock-linked genes underlie seasonal migratory timing in a diurnal raptor. Proc. R. Soc. B. 289, 20212507 (2022).CAS 

    Google Scholar 
    O’Malley, K. G., Ford, M. J. & Hard, J. J. Clock polymorphism in Pacific salmon: evidence for variable selection along a latitudinal gradient. Proc. R. Soc. B. 277, 3703–3714 (2010).
    Google Scholar 
    Peterson, M. P. et al. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Research 2 (2013).McKinnon, E. A. & Ten Love, O. P. years tracking the migrations of small landbirds: Lessons learned in the golden age of bio-logging. Auk 135, 834–856 (2018).
    Google Scholar 
    Fraser, K. C. et al. Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore. Proc. R. Soc. B. 279, 4901–4906 (2012).
    Google Scholar 
    Neufeld, L. R. et al. Breeding latitude is associated with the timing of nesting and migration around the annual calendar among purple martin Progne subis populations. J. Ornithol. 162, 1009–1024 (2021).
    Google Scholar 
    Peona, V. et al. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol. Ecol. 21(1), 263–286 (2020).
    Google Scholar 
    Coelho, L. A., Musher, L. J. & Cracraft, J. A multireference-based whole genome assembly for the obligate ant-following antbird, Rhegmatorhina melanosticta (Thamnophilidae). Diversity 11(19), 144 (2019).CAS 

    Google Scholar 
    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).CAS 

    Google Scholar 
    Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: Towards a genomic predictor of bleaching. Science 369(6501) (2019).Jones, S., Pfister-Genskow, M., Benca, R. M. & Cirelli, C. Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J. Neurochem. 105, 46–62 (2008).CAS 

    Google Scholar 
    Ma, C. et al. Sleep regulation by neurotensinergic neurons in a thalamo-amygdala circuit. Neuron 103 (2019).Wong, J. M. & Eirin-Lopez, J. M. Evolution of methyltransferase-like (METTL) proteins in metazoan: a complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol. Biol. Evol. 38, 5309–5327 (2021).CAS 

    Google Scholar 
    Jia, Z. et al. ACSS3 in brown fast drives propionate catabolism and its deficiency leads to autophagy and systemic metabolic dysfunction. Clin. Transl. Med. 12, e665 (2022).CAS 

    Google Scholar 
    Muller, F. et al. Towards a conceptual framework for explaining variation in nocturnal departure time of songbird migrants. Mov. Ecol. 4, 24 (2016).
    Google Scholar 
    Fraser, K. C. et al. Individual variability in migration timing can explain long-term population-level advances in a songbird. Front. Ecol. Evol. 7, 324 (2019).ADS 

    Google Scholar 
    Barret, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23(1), 38–44 (2008).
    Google Scholar 
    Colodro-Conde, L. et al. A direct test of the diathesis-stress model for depression. Mol. Psychiatry 23, 1590–1596 (2017).
    Google Scholar 
    Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLOS Genetics 9(4) (2013).Lavallée, C. D. et al. The use of nocturnal flights for barrier crossing in a diurnally migrating songbird. Mov. Ecol. 9, 21 (2021).
    Google Scholar 
    Saino, N. et al. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow. Sci. Rep. 7, 45412 (2017).ADS 
    CAS 

    Google Scholar 
    Henry, R. A. et al. Changing the selectivity of p300 by acetyl-CoA modulation of histone acetylation. ACS Chem. Biol 10, 146–156 (2015).CAS 

    Google Scholar 
    Sun, H., Skorgerbø, G., Wang, Z., Liu, W. & Li, Y. Structural relationships between highly conserved elements and genes in vertebrate genomes. PLoS ONE 3, e3727 (2008).ADS 

    Google Scholar 
    Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).CAS 

    Google Scholar 
    Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).CAS 

    Google Scholar 
    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 

    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).ADS 

    Google Scholar 
    Coombe, L. et al. ARKS: Chromosome-scale scaffolding of human genome drafts with linked read kmers. BMC Bioinform. 19, 1–10 (2018).
    Google Scholar 
    Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER‐P. Curr. Protocols Bioinform. 48, 4.11.1–4.11.39 (2014).Malmberg, M. M. et al. Evaluation and recommendations for routine genotyping using skim whole genome re-sequencing in canola. Front. Plant. Sci. 9 (2018).Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).CAS 

    Google Scholar 
    Golicz, A. A., Bayer, P. E. & Edwards, D. Skim-based genotyping by sequencing. Methods Mol. Biol. 1245, 257–270 (2015).CAS 

    Google Scholar 
    Hill, R. D. Theory of geolocation by light levels. In B. J. L. Boeuf, & R. M. Laws (Ed.), Elephant seals: Population ecology, behaviour and physiology, pp. 227–236. Berkeley, CA: University of California Press (1994).Wotherspoon, S., Summer, M. & Lisovski, S. BAStag: basic data processing for light based geolocation archival tags. Version 0.1.3. (2016).Lisovski, S. & Hahn, S. GeoLight-processing and anslysing light-based geolocator data in R. Methods Ecol. Evol. 3, 1055–1059 (2012).
    Google Scholar 
    Gompert, Z., Lucas, L. K., Nice, C. C. & Buerkle, C. A. Genome divergence and the genetic architecture of barriers to gene flow between Lycaeides idas and L. melissa. Evolution 67, 2498–2514 (2013).
    Google Scholar 
    Pfeifer, S. P. et al. The evolutionary history of Nebraska deer mice: local adaptation in the face of strong gene flow. Mol. Biol. Evol. 35, 792–806 (2018).CAS 

    Google Scholar 
    Purcell, S. et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 

    Google Scholar 
    Choi, S. W., Mak, T. S. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analysis. Nat Protoc 15, 2759–2772 (2020).CAS 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 

    Google Scholar 
    Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).
    Google Scholar 
    Vijay, N. et al. Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. Nat. Commun. 7, 13195 (2016).ADS 
    CAS 

    Google Scholar 
    Delmore, K. et al. The evolutionary history and genomics of European blackcap migration. eLife 9, e54462 (2020). More

  • in

    What it would take to bring back the dodo

    The flightless dodo went extinct in the seventeenth century. Biotech company Colossal Biosciences plans to resurrect it.Credit: Hart, F/Bridgeman Images

    A biotech company announced an audacious effort to ‘de-extinct’ the dodo last week. The flightless birds vanished from the island of Mauritius — in the Indian Ocean — in the late seventeenth century, and became emblematic of humanity’s negative impacts on the natural world. Could the plan actually work?Colossal Biosciences, based in Dallas, Texas, has landed US$225 million in investment (including funds from the celebrity Paris Hilton) — having previously announced plans to de-extinct thylacines, an Australian marsupial, and create elephants with woolly mammoth traits. But Colossal’s plans depend on huge advances in genome editing, stem-cell biology and animal husbandry, making success far from certain.“It’s incredibly exciting that there’s that kind of money available,” says Thomas Jensen, a cell and molecular reproductive physiologist at Wells College in Aurora, New York. “I’m not sure that the end goal they’re going for is something that’s super feasible in the near future.”Iridescent pigeonsColossal’s plan starts with the dodo’s closest living relative, the iridescent-feathered Nicobar pigeon (Caloenas nicobarica). The company plans to isolate and culture specialized primordial germ cells (PGCs) — which make sperm and egg-producing cells — from developing Nicobars. Colossal’s scientists would edit DNA sequences in the PGCs to match those of dodos using tools such as CRISPR. These gene-edited PGCs would then be inserted into embryos from a surrogate bird species to generate chimeric — those with DNA from both species — animals that make dodo-like egg and sperm. These could potentially produce something resembling a dodo (Raphus cucullatus).To gene-edit Nicobar pigeon PGCs, scientists first need to identify the conditions that allow these cells to flourish in the laboratory, says Jae Yong Han, an avian-reproduction scientist at Seoul National University. Researchers have done this with chickens, but it will take time to identify the appropriate culture conditions that suit other birds’ PGCs.A greater challenge will be determining the genetic changes that could transform Nicobar pigeons into Dodos. A team including Beth Shapiro, a palaeogeneticist at the University of California, Santa Cruz, who is advising Colossal on the dodo project, has sequenced the dodo genome but has not yet published the results. Dodos and Nicobar pigeons shared a common ancestor that lived around 30 million to 50 million years ago, Shapiro’s team reported in 20161. By comparing the nuclear genomes of the two birds, the researchers hope to identify most of the DNA changes that distinguish between them.Insights from ratsTom Gilbert, an evolutionary biologist at the University of Copenhagen, who also advises Colossal, expects the dodo genome to be of high quality — it comes from a museum sample he provided to Shapiro. But he says that finding all the DNA differences between the two birds is not possible. Ancient genomes are cobbled together from short sequences of degraded DNA, and so are filled with unavoidable gaps and errors. And research he published last year comparing the genome of the extinct Christmas Island rat (Rattus macleari) with that of the Norwegian brown rat (Rattus norvegicus)2 suggests that gaps in the dodo genome could lie in the very DNA regions that have changed the most since its lineage split from that of Nicobar pigeons.Even if researchers could identify every genetic difference, introducing the thousands of changes to PGCs would not be simple. “I’m not sure it’s feasible in the near future,” says Jensen, whose team is encountering difficulties making a single genetic change to the genomes of quail.Focusing on only a subset of DNA changes, such as those that alter protein sequences, could slash the number of edits needed. But it’s still not clear that this would yield anything resembling a wild dodo, says Gilbert. “My worry is that Paris Hilton thinks she’s going to get a dodo that looks like a dodo,” he says.A further problem will be the need to find a large bird, such as an emu (Dromaius novaehollandiae), that can act as the surrogate, says Jensen. “Dodo eggs are much, much larger than Nicobar pigeon eggs, you couldn’t grow a dodo inside of a Nicobar egg.”Chicken embryos are fairly receptive to PGCs from other birds, and Jensen’s team has created chimeric chickens that can produce quail sperm — efforts to generate eggs have failed so far. But he thinks it will be far more challenging to transfer PGCs — particularly heavily gene-edited ones — from one wild bird into another.Conservation boon?Colossal chief executive Ben Lamm acknowledges these hurdles, but argues they aren’t dealbreakers. Work towards dodo de-extinction will help with conservation efforts for other birds, he adds. “It will bring a lot of new technologies to the field of bird conservation,” agrees Jensen.Vikash Tatayah, conservation director at the Mauritian Wildlife Foundation in Vacoas-Phoenix, is also enthusiastic about the attention dodo de-extinction could bring to conservation. “It’s something we would like to embrace,” he says.But he points out that the predators that threatened the dodo in the seventeeth century haven’t gone away, whereas most of its habitat has. “You do have to ask,” he says, “if we could have such money, wouldn’t it be better spent on restoring habitat on Mauritius and preventing species from going extinct?” More

  • in

    Intra-individual variation of hen movements is associated with later keel bone fractures in a quasi-commercial aviary

    Rufener, C. et al. Keel bone fractures are associated with individual mobility of laying hens in an aviary system. Appl. Anim. Behav. Sci. 217, 48–56 (2019).
    Google Scholar 
    Rentsch, A. K., Rufener, C. B., Spadavecchia, C., Stratmann, A. & Toscano, M. J. Laying hen’s mobility is impaired by keel bone fractures and does not improve with paracetamol treatment. Appl. Anim. Behav. Sci. 216, 19–25 (2019).
    Google Scholar 
    Rodriguez-Aurrekoetxea, A. & Estevez, I. Use of space and its impact on the welfare of laying hens in a commercial free-range system. Poult. Sci. 95, 2503–2513 (2016).CAS 

    Google Scholar 
    Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).
    Google Scholar 
    Campbell, D. L. M., Talk, A. C., Loh, Z. A., Dyall, T. R. & Lee, C. Spatial cognition and range use in free-range laying hens. Animals 8, 26 (2018).
    Google Scholar 
    de Jager, M., Weissing, F. J., Herman, P. M. J., Nolet, B. A. & van de Koppel, J. Lévy walks evolve through interaction between movement and environmental complexity. Science 1979(332), 1551–1553 (2011).
    Google Scholar 
    Krause, J., James, R. & Croft, D. P. Personality in the context of social networks. Philos. Trans. R. Soc. B Biol. Sci. 365, 4099–4106 (2010).CAS 

    Google Scholar 
    Ihwagi, F. W. et al. Poaching lowers elephant path tortuosity: Implications for conservation. J. Wildl. Manag. 83, 1022–1031 (2019).
    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).
    Google Scholar 
    Matthews, S. G., Miller, A. L., Plötz, T. & Kyriazakis, I. Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    Berger-Tal, O. & Saltz, D. Using the movement patterns of reintroduced animals to improve reintroduction success. Curr. Zool. 60, 515–526 (2014).
    Google Scholar 
    Stuber, E. F., Carlson, B. S. & Jesmer, B. R. Spatial personalities: A meta-analysis of consistent individual differences in spatial behavior. Behav. Ecol. https://doi.org/10.1093/BEHECO/ARAB147 (2022).Article 

    Google Scholar 
    Sirovnik, J., Würbel, H. & Toscano, M. J. Feeder space affects access to the feeder, aggression, and feed conversion in laying hens in an aviary system. Appl. Anim. Behav. Sci. 198, 75–82 (2018).
    Google Scholar 
    Sirovnik, J., Voelkl, B., Keeling, L. J., Würbel, H. & Toscano, M. J. Breakdown of the ideal free distribution under conditions of severe and low competition. Behav. Ecol. Sociobiol. 75, 1–11 (2021).
    Google Scholar 
    Becot, L., Bedere, N., Burlot, T., Coton, J. & le Roy, P. Nest acceptance, clutch, and oviposition traits are promising selection criteria to improve egg production in cage-free system. PLoS ONE 16, e0251037 (2021).CAS 

    Google Scholar 
    Thompson, M. J., Evans, J. C., Parsons, S. & Morand-Ferron, J. Urbanization and individual differences in exploration and plasticity. Behav. Ecol. 29, 1415–1425 (2018).
    Google Scholar 
    Stamps, J. & Groothuis, T. G. G. The development of animal personality: Relevance, concepts and perspectives. Biol. Rev. 85, 301–325 (2010).
    Google Scholar 
    Salinas-Melgoza, A., Salinas-Melgoza, V. & Wright, T. F. Behavioral plasticity of a threatened parrot in human-modified landscapes. Biol. Conserv. 159, 303–312 (2013).
    Google Scholar 
    Stamps, J. A., Briffa, M. & Biro, P. A. Unpredictable animals: Individual differences in intraindividual variability (IIV). Anim. Behav. 83, 1325–1334 (2012).
    Google Scholar 
    Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).
    Google Scholar 
    Biro, P. A. & Adriaenssens, B. Predictability as a personality trait: Consistent differences in intraindividual behavioral variation. Am. Nat. 182, 621–629 (2013).
    Google Scholar 
    Henriksen, R. et al. Intra-individual behavioural variability: A trait under genetic control. Int. J. Mol. Sci. 21, 8069 (2020).CAS 

    Google Scholar 
    Rufener, C. et al. Finding hens in a haystack: Consistency of movement patterns within and across individual laying hens maintained in large groups. Sci. Rep. 8, (2018).Campbell, D. L. M., Karcher, D. M. & Siegford, J. M. Location tracking of individual laying hens housed in aviaries with different litter substrates. Appl. Anim. Behav. 184, 74–79 (2016).
    Google Scholar 
    Weeks, C. A. & Nicol, C. J. Behavioural needs, priorities and preferences of laying hens. Worlds Poult. Sci. J. 62, 296–307 (2006).
    Google Scholar 
    Hartcher, K. M. & Jones, B. The welfare of layer hens in cage and cage-free housing systems. Worlds Poult. Sci. J. 73, 767–782 (2017).
    Google Scholar 
    Zeltner, E. & Hirt, H. Effect of artificial structuring on the use of laying hen runs in a free-range system. Br. Poult. Sci. 44, 533–537 (2010).
    Google Scholar 
    Stratmann, A. et al. Modification of aviary design reduces incidence of falls, collisions and keel bone damage in laying hens. Appl. Anim. Behav. Sci. 165, 112–123 (2015).
    Google Scholar 
    Vandekerchove, D., Herdt, P., Laevens, H. & Pasmans, F. Colibacillosis in caged layer hens: Characteristics of the disease and the aetiological agent. Avian Pathol. 33, 117–125 (2004).CAS 

    Google Scholar 
    Montalcini, C. M., Voelkl, B., Gómez, Y., Gantner, M. & Toscano, M. J. Evaluation of an active LF tracking system and data processing methods for livestock precision farming in the poultry sector. Sensors 22, 659 (2022).ADS 

    Google Scholar 
    Revelle, W. Procedures for psychological, psychometric, and personality research. (2021).Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).
    Google Scholar 
    Rufener, C., Baur, S., Stratmann, A. & Toscano, M. J. A reliable method to assess keel bone fractures in laying hens from radiographs using a tagged visual analogue scale. Front. Vet. Sci. 5, 124 (2018).
    Google Scholar 
    Tauson, R., Kjaer, J., Maria, G. A., Cepero, R. & Holm, K.-E. The creation of a common scoring system for the integument and health of laying hens: Applied scoring of integument and health in laying hens. Final report Health from the Laywell project. https://www.laywel.eu/web/pdf/deliverables%2031-33%20health.pdf (2005).Hertel, A. G. et al. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, (2020).Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. 85, 935–956 (2010).
    Google Scholar 
    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J Stat Softw 67, (2015).Cleasby, I. R., Nakagawa, S. & Schielzeth, H. Quantifying the predictability of behaviour: Statistical approaches for the study of between-individual variation in the within-individual variance. Methods Ecol. Evol. 6, 27–37 (2015).
    Google Scholar 
    Bürkner, P.-C. brms: An R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).
    Google Scholar 
    Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).
    Google Scholar 
    Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).ADS 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).
    Google Scholar 
    Occhiuto, F., Vázquez-Diosdado, J. A., Carslake, C. & Kaler, J. Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors. R. Soc. Open Sci. 9, (2022).Moinard, C. et al. Accuracy of laying hens in jumping upwards and downwards between perches in different light environments. Appl. Anim. Behav. Sci. 85, 77–92 (2004).
    Google Scholar 
    Baur, S., Rufener, C., Toscano, M. J. & Geissbühler, U. Radiographic evaluation of keel bone damage in laying hens—Morphologic and temporal observations in a longitudinal study. Front. Vet. Sci. 1, 129 (2020).
    Google Scholar 
    Cordiner, L. S. & Savory, C. J. Use of perches and nestboxes by laying hens in relation to social status, based on examination of consistency of ranking orders and frequency of interaction. Appl. Anim. Behav. Sci. 71, 305–317 (2001).
    Google Scholar 
    Rufener, C. & Makagon, M. M. Keel bone fractures in laying hens: A systematic review of prevalence across age, housing systems, and strains. J. Anim. Sci. 98, S36–S51 (2020).
    Google Scholar 
    Nasr, M. A. F., Nicol, C. J., Wilkins, L. & Murrell, J. C. The effects of two non-steroidal anti-inflammatory drugs on the mobility of laying hens with keel bone fractures. Vet. Anaesth. Analg. 42, 197–204 (2015).CAS 

    Google Scholar 
    Nasr, M., Murrell, J., Wilkins, L. J. & Nicol, C. J. The effect of keel fractures on egg-production parameters, mobility and behaviour in individual laying hens. Anim. Welf. 21, 127–135 (2012).CAS 

    Google Scholar 
    Koolhaas, J. M. & van Reenen, C. G. Animal behavior and well-being symposium: Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals. J. Anim. Sci. 94, 2284–2296 (2016).CAS 

    Google Scholar 
    Coppens, C. M., de Boer, S. F. & Koolhaas, J. M. Coping styles and behavioural flexibility: Towards underlying mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 365, 4021 (2010).
    Google Scholar 
    Koolhaas, J. M., de Boer, S. F., Coppens, C. M. & Buwalda, B. Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Front. Neuroendocrinol. 31, 307–321 (2010).CAS 

    Google Scholar 
    Finkemeier, M.-A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures, and relationship to welfare. Front. Vet. Sci. 5, 131 (2018).
    Google Scholar 
    Martin, J. G. A., Pirotta, E., Petelle, M. B. & Blumstein, D. T. Genetic basis of between-individual and within-individual variance of docility. J. Evol. Biol. 30, 796–805 (2017).CAS 

    Google Scholar 
    Prentice, P. M., Houslay, T. M., Martin, J. G. A. & Wilson, A. J. Genetic variance for behavioural ‘predictability’ of stress response. J. Evol. Biol. 33, 642–652 (2020).
    Google Scholar  More

  • in

    Global patterns of water storage in the rooting zones of vegetation

    Teuling, A. J., Seneviratne, S. I., Williams, C. & Troch, P. A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 33, L23403 (2006).Gao, H. et al. Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophys. Res. Lett. 41, 7916–7923 (2014).Article 

    Google Scholar 
    Milly, P. C. D. Climate, soil water storage, and the average annual water balance. Water Resour. Res. 30, 2143–2156 (1994).Article 

    Google Scholar 
    Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).Article 

    Google Scholar 
    Thompson, S. E. et al. Comparative hydrology across AmeriFlux sites: the variable roles of climate, vegetation, and groundwater. Water Resour. Res. 47, W00J07 (2011).Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).Article 

    Google Scholar 
    Hain, C. R., Crow, W. T., Anderson, M. C. & Tugrul Yilmaz, M. Diagnosing neglected soil moisture source–sink processes via a thermal infrared-based two-source energy balance model. J. Hydrometeorol. 16, 1070–1086 (2015).Article 

    Google Scholar 
    Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).Article 

    Google Scholar 
    Dawson, T. E., Jesse Hahm, W. & Crutchfield-Peters, K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. N. Phytol. 226, 666–671 (2020).Article 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article 

    Google Scholar 
    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).Article 

    Google Scholar 
    Schlemmer, L., Schär, C., Lüthi, D. & Strebel, L. A groundwater and runoff formulation for weather and climate models. J. Adv. Model. Earth Syst. 10, 1809–1832 (2018).Article 

    Google Scholar 
    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).Article 

    Google Scholar 
    Koirala, S. et al. Global distribution of groundwater–vegetation spatial covariation. Geophys. Res. Lett. 44, 4134–4142 (2017).Article 

    Google Scholar 
    Esteban, E. J. L., Castilho, C. V., Melgaço, K. L. & Costa, F. R. C. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. N. Phytol. 229, 1995–2006 (2021).Article 

    Google Scholar 
    Liu, Y., Konings, A. G., Kennedy, D. & Gentine, P. Global coordination in plant physiological and rooting strategies in response to water stress. Glob. Biogeochem. Cycles 35, e2020GB006758 (2021).Article 

    Google Scholar 
    Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).Article 

    Google Scholar 
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).Article 

    Google Scholar 
    Weaver, J. E. & Darland, R. W. Soil–root relationships of certain native grasses in various soil types. Ecol. Monogr. 19, 303–338 (1949).Article 

    Google Scholar 
    Chitra-Tarak, R. et al. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. N. Phytol. 231, 1798–1813 (2021).Article 

    Google Scholar 
    Schenk, H. J. & Jackson, R. B. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126, 129–140 (2005).Article 

    Google Scholar 
    Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).Article 

    Google Scholar 
    Kleidon, A. & Heimann, M. A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle. Glob. Change Biol. 4, 275–286 (1998).Article 

    Google Scholar 
    Schymanski, S. J., Sivapalan, M., Roderick, M. L., Hutley, L. B. & Beringer, J. An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resour. Res. 45, W01412 (2009).Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).Article 

    Google Scholar 
    Anderson, M. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 60, 195–216 (1997).Article 

    Google Scholar 
    Hain, C. R. & Anderson, M. C. Estimating morning change in land surface temperature from MODIS day/night observations: applications for surface energy balance modeling. Geophys. Res. Lett. 44, 9723–9733 (2017).Article 

    Google Scholar 
    Tumber-Dávila, S. J., Schenk, H. J., Du, E. & Jackson, R. B. Plant sizes and shapes above- and belowground and their interactions with climate. New Phytol. https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.18031 (2022).Harmonized World Soil Database Version 1.0 (FAO, 2008).Wieder, W. Regridded Harmonized World Soil Database Version 1.2 (ORNL DAAC, 2014); https://doi.org/10.3334/ORNLDAAC/1247Balland, V., Pollacco, J. A. P. & Arp, P. A. Modeling soil hydraulic properties for a wide range of soil conditions. Ecol. Model. 219, 300–316 (2008).Article 

    Google Scholar 
    Agee, E. et al. Root lateral interactions drive water uptake patterns under water limitation. Adv. Water Resour. 151, 103896 (2021).Article 

    Google Scholar 
    Krakauer, N. Y., Li, H. & Fan, Y. Groundwater flow across spatial scales: importance for climate modeling. Environ. Res. Lett. 9, 034003 (2014).Article 

    Google Scholar 
    Stoy, P. C. et al. Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16, 3747–3775 (2019).Article 

    Google Scholar 
    Jackson, R. B., Moore, L. A., Hoffmann, W. A., Pockman, W. T. & Linder, C. R. Ecosystem rooting depth determined with caves and DNA. Proc. Natl Acad. Sci. USA 96, 11387–11392 (1999).Article 

    Google Scholar 
    Pelletier, J. D. et al. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. J. Adv. Model. Earth Syst. 8, 41–65 (2016).Article 

    Google Scholar 
    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).Article 

    Google Scholar 
    Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).Article 

    Google Scholar 
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536 (2007).Article 

    Google Scholar 
    Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the international space station. Water Resour. Res. 56, e2019WR026058 (2020).Article 

    Google Scholar 
    Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).Article 

    Google Scholar 
    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    Orth, R., Koster, R. D. & Seneviratne, S. I. Inferring soil moisture memory from streamflow observations using a simple water balance model. J. Hydrometeorol. 14, 1773–1790 (2013).Article 

    Google Scholar 
    Stocker, B. cwd v.1.0: R package for cumulative water deficit calculation. Zenodo https://doi.org/10.5281/zenodo.5359053 (2021).Zhang, Y. et al. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sens. Environ. 187, 145–155 (2016).Article 

    Google Scholar 
    Duveiller, G. et al. A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth Syst. Sci. Data 12, 1101–1116 (2020).Article 

    Google Scholar 
    Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–2823 (2013).Article 

    Google Scholar 
    Köhler, P., Guanter, L. & Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 8, 2589–2608 (2015).Article 

    Google Scholar 
    Jiang, B. et al. Validation of the surface daytime net radiation product from version 4.0 GLASS product suite. IEEE Geosci. Remote Sens. Lett. 16, 509–513 (2019).Article 

    Google Scholar 
    Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003).Article 

    Google Scholar 
    Gilleland, E. & Katz, R. W. extRemes 2.0: an extreme value analysis package in R. J. Stat. Softw. 72, 1–39 (2016).Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S. & Gedney, N. High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 19, 91–104 (2015).Article 

    Google Scholar 
    Etopo1, Global 1 Arc-Minute Ocean Depth and Land Elevation from the US National Geophysical Data Center (NGDC) (National Geophysical Data Center, NESDIS, NOAA and US Department of Commerce, 2011); https://doi.org/10.5065/D69Z92Z5Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24, 43–69 (1979).Article 

    Google Scholar 
    Hansen, M. C., Townshend, J. R. G., DeFries, R. S. & Carroll, M. Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int. J. Remote Sens. 26, 4359–4380 (2005).Article 

    Google Scholar 
    Stocker, B. D. Global rooting zone water storage capacity and rooting depth estimates. Zenodo https://doi.org/10.5281/zenodo.5515246 (2021).Stocker, B. stineb/mct: v3.0: re-submission to Nature Geoscience. Zenodo https://doi.org/10.5281/zenodo.6239187 (2022). More

  • in

    Genetic population structures of common scavenging species near hydrothermal vents in the Okinawa Trough

    Van Dover, C. L. et al. Environmental management of deep-sea chemosynthetic ecosystems: justification of and considerations for a spatially based approach. ISA Technical Study: No.9. (International Seabed Authority, 2011).Ikehata, K., Suzuki, R., Shimada, K., Ishibashi, J., & Urabe, T. Mineralogical and Geochemical Characteristics of Hydrothermal Minerals Collected from Hydrothermal Vent Fields in the Southern Mariana Spreading Center. In Subseafloor biosphere linked to hydrothermal systems: TAIGA Concept. 275–288 (Springer Tokyo, 2015).Rona, P. A. & Scott, S. D. A special issue on sea-floor hydrothermal mineralization; new perspectives; preface. Econ. Geol. 88, 1935–1976 (1993).
    Google Scholar 
    Glasby, G. P., Iizasa, K., Yuasa, M. & Usui, A. Submarine hydrothermal mineralization on the Izu-Bonin arc, south of Japan: an overview. Mar. Georesources Geotech. 18, 141–176 (2000).
    Google Scholar 
    Van Dover, C. L. Inactive sulfide ecosystems in the deep sea: a review. Front. Mar. Sci. 6, 461. https://doi.org/10.3389/fmars.2019.00461 (2019).Article 

    Google Scholar 
    Boschen, R. E., Rowde, A. A., Clark, M. R. & Gardner, J. P. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 84, 54–67 (2013).
    Google Scholar 
    Washburn, T. W. et al. Ecological risk assessment for deep-sea mining. Ocean Coast. Manag. 176, 24–39 (2019).
    Google Scholar 
    Matsui, T., Sugishima, H., Okamoto, N., Igarashi, Y. Evaluation of turbidity and resedimentation through seafloor disturbance experiments for assessment of environmental impacts associated with exploitation of seafloor massive sulfides mining. Proceedings of the Twenty-eighth. International Ocean and Polar Engineering Conference. 144–151 (2018).International Seabed Authority. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area. https://www.isa.org.jm/documents/isba19ltc8 (2013).Suzuki, K., Yoshida, K., Watanabe, H. & Yamamoto, H. Mapping the resilience of chemosynthetic communities in hydrothermal vent fields. Sci. Rep. 8, 9364. https://doi.org/10.1038/s41598-018-27596-7 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Yahagi, T., Watanabe, H., Ishibashi, J. I. & Kojima, S. Genetic population structure of four hydrothermal vent shrimp species (Alvinocarididae) in the Okinawa Trough, Northwest Pacific. Mar. Ecol. Prog. Ser. 529, 159–169 (2015).ADS 

    Google Scholar 
    Mullineaux, L. S. Deep-sea hydrothermal vent communities. In Marine community ecology and conservation (eds Bertness, M. D. et al.) 383–400 (Sinauer, 2013).
    Google Scholar 
    Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M. & Vrijenhoek, R. C. Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295, 1253–1257 (2002).ADS 

    Google Scholar 
    Yahagi, T., Kayama-Watanabe, H., Kojima, S. & Kano, Y. Do larvae from deep-sea hydrothermal vents disperse in surface waters?. Ecology 98, 1524–1534 (2017).
    Google Scholar 
    Hebert, P. D. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859 (2005).
    Google Scholar 
    Iguchi, A. et al. Comparative analysis on the genetic population structures of the deep-sea whelks Buccinum tsubai and Neptunea constricta in the Sea of Japan. Mar. Biol. 151, 31–39 (2007).
    Google Scholar 
    Goode, G. B. & Bean, T. H. A catalogue of the fishes of Essex County, Massachusetts, including the fauna of Massachusetts Bay and the contiguous deep waters. Bull. Essex Inst. 11, 1–38 (1879).
    Google Scholar 
    Johnson, J. Y. Descriptions of some new genera and species of fishes obtained at Madeira. Proc. Zool. Soc. Lond. 1862, 167–180 (1862).
    Google Scholar 
    Bate, C. S. Report on the Crustacea Macrura collected by the Challenger during the years 1873–76. Report on the scientific results of the Voyage of H.M.S. Challenger during the years 1873–76. Zoology 24, 1–942 (1888).
    Google Scholar 
    Folmer, O., Black, M., Hoeh, W. R., Lutz, R. & Vrijenhoek, R. C. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol Biotech. 3, 294–299 (1994).CAS 

    Google Scholar 
    Pilgrim, E. M., Blum, M. J., Reusser, D. A., Lee, H. & Darling, J. A. Geographic range and structure of cryptic genetic diversity among Pacific North American populations of the non-native amphipod Grandidierella japonica. Biol. Invasions 15, 2415–2428 (2013).
    Google Scholar 
    Suyama, Y. & Matsuki, Y. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci. Rep. 5, 16963. https://doi.org/10.1038/srep16963 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 

    Google Scholar 
    Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962. https://doi.org/10.1371/journal.pone.0163962 (2016).Article 
    CAS 

    Google Scholar 
    Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).CAS 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 

    Google Scholar 
    Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2020).CAS 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RaxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).CAS 

    Google Scholar 
    Ronquist, F. R. & Huelsenbeck, J. P. MRBAYES 3: Bayesian inference of phylogeny. Bioinformatics 19, 1572–1574 (2003).CAS 

    Google Scholar 
    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2021).
    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, http://journal.embnet.org/index.php/embnetjournal/article/view/200/479 (2011).Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).CAS 

    Google Scholar 
    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 

    Google Scholar 
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 

    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2013).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).Dana, J. D. Synopsis of the genera of Gammaracea. Am. J. Sci. Arts 8, 135–140 (1849).
    Google Scholar 
    Hansen, H. J. Malacostraca marina Groenlandiæ occidentalis Oversigt over det vestlige Grønlands Fauna af malakostrake Havkrebsdyr. Vidensk. Meddel. Natuirist. Foren Kjobenhavn, Aaret 9, 5–226 (1888).
    Google Scholar 
    Van Dover, C. L. The ecology of deep-sea hydrothermal vents (Princeton University Press, 2000).
    Google Scholar 
    Tunnicliffe, V. The biology of hydrothermal vents: ecology and evolution. Oceanogr. Mar. Biol. Annu. Rev. 29, 319–407 (1991).
    Google Scholar 
    Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. U. K. 74, 481–498 (1994).
    Google Scholar 
    Causse, R., Biscoito, M. & Briand, P. First record of the deep-sea eel Ilyophis saldanhai (Synaphobranchidae, Anguilliformes) from the Pacific Ocean. Cybium 29, 413–416 (2005).
    Google Scholar 
    King, N. J., Bagley, P. M. & Priede, I. G. Depth zonation and latitudinal distribution of deep-sea scavenging demersal fishes of the Mid-Atlantic Ridge, 42 to 53°N. Mar. Ecol. Prog. Ser. 319, 263–274 (2006).ADS 

    Google Scholar 
    Leitner, A. B., Durden, J. M., Smith, C. R., Klingberg, E. D. & Drazen, J. C. Synaphobranchid eel swarms on abyssal seamounts: largest aggregation of fishes ever observed at abyssal depths. Deep Sea Res. Oceanogr. Res. Part I Pap. 167, 103423. https://doi.org/10.1016/j.dsr.2020.103423 (2021).Article 

    Google Scholar 
    Fishelson, L. Comparative internal morphology of deep-sea eels, with particular emphasis on gonads and gut structure. J. Fish. Biol. 44, 75–101 (1994).
    Google Scholar 
    Bailey, D. M. et al. High swimming and metabolic activity in the deep-sea eel Synaphobranchus kaupii revealed by integrated in situ and in vitro measurements. Physiol. Biochem. Zool. 78, 335–346 (2005).
    Google Scholar 
    Trenkel, V. M. & Lorance, P. Estimating Synaphobranchus kaupii densities: contribution of fish behaviour to differences between bait experiments and visual strip transects. Deep Sea Res. Oceanogr. Res. Part I Pap. 58, 63–71 (2011).ADS 

    Google Scholar 
    Raupach, M. J. et al. Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar. Biol. 157, 1783–1797 (2010).CAS 

    Google Scholar 
    Dambach, J., Raupach, M. J., Leese, F., Schwarzer, J. & Engler, J. O. Ocean currents determine functional connectivity in an Antarctic deep-sea shrimp. Mar. Ecol. 37, 1336–1344 (2016).ADS 
    CAS 

    Google Scholar 
    Dambach, J., Raupach, M. J., Mayer, C., Schwarzer, J. & Leese, F. Isolation and characterization of nine polymorphic microsatellite markers for the deep-sea shrimp Nematocarcinus lanceopes (Crustacea: Decapoda: Caridea). BMC Res. Notes 6, 75. https://doi.org/10.1186/1756-0500-6-75 (2013).Article 

    Google Scholar 
    Ritchie, H., Jamieson, A. J. & Piertney, S. B. Phylogenetic relationships among hadal amphipods of the Superfamily Lysianassoidea: Implications for taxonomy and biogeography. Deep Sea Res. Part I 105, 119–131 (2015).CAS 

    Google Scholar 
    Bowen, B. W. et al. Phylogeography unplugged: comparative surveys in the genomic era. Bull. Mar. Sci. 90, 13–46 (2014).
    Google Scholar 
    Ritchie, H., Jamieson, A. J. & Piertney, S. B. Population genetic structure of two congeneric deep-sea amphipod species from geographically isolated hadal trenches in the Pacific Ocean. Deep Sea Res. Part I. 119, 50–57 (2017).
    Google Scholar 
    Iguchi, A. et al. Deep-sea amphipods around cobalt-rich ferromanganese crusts: taxonomic diversity and selection of candidate species for connectivity analysis. PLoS ONE 15, e0228483. https://doi.org/10.1371/journal.pone.0228483 (2020).Article 
    CAS 

    Google Scholar 
    Baco, A. R. et al. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol. Ecol. 25, 3276–3298 (2016).
    Google Scholar 
    Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mol. Ecol. 26, 4872–4896 (2017).CAS 

    Google Scholar  More

  • in

    Benthic biota of Chilean fjords and channels in 25 years of cruises of the National Oceanographic Committee

    The data were recorded under the DarwinCore standard55,56 in a matrix named “Benthic biota of CIMAR-Fiordos and Southern Ice Field Cruises”58. The occurrence dataset contains direct basic information (description, scope [temporal, geographic and taxonomic], methodology, bibliography, contacts, data description, GBIF registration and citation), project details, metrics (taxonomy and occurrences classification), activity (citations and download events) and download options. The following data fields were occupied:Column 1: “occurrenceID” (single indicator of the biological record indicating the cruise and correlative record).Column 2: “basisOfRecord” (“PreservedSpecimen” for occurrence records with catalogue number of scientific collection, “MaterialCitation” for any literature record).Column 3: “institutionCode” (The acronym in use by the institution having custody of the sample or information referred to in the record).Column 4: “collectionCode” (The name of the cruise).Column 5: “catalogNumber” (The repository number in museums or correlative number).Column 6: “type” (All records entered as “text”).Column 7: “language” (Spanish, English or both).Column 8: “institutionID” (The identifier for the institution having custody of the sample or information referred to in the record).Column 9: “collectionID” (The identifier for the collection or dataset from which the record was derived).Column 10: “datasetID” (The code “CONA-benthic-biota-database” for entire database).Column 11: “recordedBy” (Author/s who recorded the original occurrence [publication source]).Column 12: “individualCount” (Number of individuals recorded).Column 13: “associatedReferences” (Publication source [report and/or paper/s] for each record).Column 14: “samplingProtocol” (The sampling gear for each record).Column 15: “eventDate” (The date-time or interval during which the record occurred).Column 16: “eventRemarks” (Comments or notes about the event).Column 17: “continent” (Location).Column 18: “country” (Location).Column 19: “countryCode” (The standard code for the country in which the location occurs).Column 20: “stateProvince” (Location, refers to the Administrative Region of Chile).Column 21: “county” (Location, refers to the Administrative Province of Chile).Column 22: “municipality” (Location, refers to the Administrative Commune of Chile).Column 23: “locality” (The specific name of the place).Column 24: “verbatimLocality” (The original textual description of the place).Column 25: “verbatimDepth” (The original description of the depth).Column 26: “minimumDepthInMeters” (The shallowest depth of a range of depths).Column 27: “maximumDepthInMeters” (The deepest depth of a range of depths).Column 28: “locationRemarks” (The name of the sample station of the cruise).Column 29: “verbatimLatitude” (The verbatim original latitude of the location).Column 30: “verbatimLongitude” (The verbatim original longitude of the location).Column 31: “verbatimCoordinateSystem” (The coordinate format for the “verbatimLatitude” and “verbatimLongitude” or the “verbatimCoordinates” of the location).Column 32: “verbatimSRS” (The spatial reference system [SRS] upon which coordinates given in “verbatimLatitude” and “verbatimLongitude” are based)Column 33: “decimalLatitude” (The geographic latitude in decimal degrees).Column 34: “decimalLongitude” (The geographic longitude in decimal degrees).Column 35: “geodeticDatum” (The spatial reference system [SRS] upon which the geographic coordinates given in “decimalLatitude” and “decimalLongitude” was based).Column 36: “coordinateUncertaintyInMeters” (The horizontal distance from the given “decimalLatitude” and “decimalLongitude” describing the smallest circle containing the whole of the location).Column 37: “georeferenceRemarks” (Notes about the spatial description determination).Column 38: “identifiedBy” (Responsible for recording the original occurrence [publication source]).Column 39: “dateIdentified” (The date-time or interval during which the identification occurred.)Column 40: “identificationQualifier” (A taxonomic determination [e.g., “sp.”, “cf.”]).Column 41: “scientificNameID” (An identifier for the nomenclatural details of a scientific name).Column 42: “scientificName” (The name of species or taxon of the occurrence record).Column 43: “kingdom” (The scientific name of the kingdom in which the taxon is classified).Column 44: “phylum” (The scientific name of the phylum or division in which the taxon is classified).Column 45: “class” (The scientific name of the class in which the taxon is classified).Column 46: “order” (The scientific name of the order in which the taxon is classified).Column 47: “family” (The scientific name of the family in which the taxon is classified).Column 48: “genus” (The scientific name of the genus in which the taxon is classified).Column 49: “subgenus” (The scientific name of the subgenus in which the taxon is classified).Column 50: “specificEpithet” (The name of the first or species epithet of the “scientificName”).Column 51: “infraspecificEpithet” (The name of the lowest or terminal infraspecific epithet of the “scientificName”).Column 52: “taxonRank” (The taxonomic rank of the most specific name in the “scientificName”).Column 53: “scientificNameAuthorship” (The authorship information for the “scientificName” formatted according to the conventions of the applicable nomenclatural Code).Column 54: “verbatimIdentification” (A string representing the taxonomic identification as it appeared in the original record).The information sources (see Fig. 2b) provided a total of 107 publications (22 cruise reports and 85 scientific papers; see Fig. 2c). Nineteen of the 22 cruise reports reviewed provided species occurrence records8,28,29,30,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46, one provided qualitative or descriptive data, with no recorded occurrences31, and two did not provide information on benthic biota (CIMAR-9 and −23 cruises). Of all the scientific papers reviewed, 74 provided records of species occurrences (Table 2), while 11 did not provide any record, as they were data without occurrences of geographically referenced species or with descriptive or qualitative information: Foraminifera59,60,61,62, Annelida63,64,65,66, Fishes67, Mollusca68 and Echinodermata69. The phyla with the highest number of publications were the following: Annelida (present in 18 reports and 21 papers), Mollusca (in 14 and 20), Arthropoda (in 10 and 18), Echinodermata (in 10 and 9), Chordata (in 10 and 9) and Foraminifera (in 4 and 10).Table 2 Publications with >100 occurrences, indicating the main recorded taxa.Full size tableThe information registry includes data on occurrences and number of individuals for 8,854 records (files in the database), representing 1,225 species (Fig. 3). The main taxa in terms of occurrence and number of species were Annelida (mainly Polychaeta), Foraminifera, Mollusca and Arthopoda (mainly Crustacea), together accumulating ~70% of total occurrences and ~73% of the total species (Fig. 3). The large number of recorded occurrences of Myzozoa (10%) should be highlighted, which, however, only represent about 32 species. Echinodermata represented ~8% of occurrences and 7% of species.Fig. 3Occurrences and total species by taxon, considering large taxonomic groups of the benthic biota recorded in the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of occurrences and species are represented in parentheses.Full size imageThe cruises with the highest number of occurrences were CIMAR-2 (with 1,424), followed by CIMAR-8 (1,040) and CIMAR-16 (813) (Fig. 4). Three dominant taxonomic groups were recorded in most cruises, except for cruises CIMAR-1, CIMAR-4, CIMAR-17, CIMAR-18 and CIMAR-24 (Fig. 4). The cruises with the highest number of species recorded were CIMAR-2 (with 335), CIMAR-3 (328) and CIMAR-8 (323) (Fig. 5). Three or fewer dominant taxonomic groups were recorded only in the CIMAR-1, CIMAR-4, CIMAR-17, CIMAR-18 and CIMAR-24 cruises (Fig. 5).Fig. 4Total occurrences and percentages per dominant taxon recorded in each of the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of occurrences per dominant taxon are represented in parentheses.Full size imageFig. 5Total species and percentages per dominant taxon recorded in each of the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of species per dominant taxon are represented in parentheses.Full size imageThe latitudinal bands 42°S and 45°S are those with the highest number of occurrences (Fig. 6), while the 56°S and 46°S bands had the fewest. The highest number of species was recorded in the 52°S and 50°S latitudinal bands, while, as with the occurrences, the lowest values corresponded to the 56°S and 46°S latitudinal bands (Fig. 6).Fig. 6Occurrences and number of species recorded by latitudinal band from the CIMAR 1 to 25 and CDHS-1995 cruises. SEP: South-eastern Pacific.Full size image More