Genetic and demographic consequences of range contraction patterns during biological annihilation
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS 114, E6089–E6096 (2017).ADS
CAS
Google Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS
CAS
Google Scholar
Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. PNAS 117, 13596–13602 (2020).ADS
CAS
Google Scholar
Butchart, S. H. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).ADS
CAS
Google Scholar
Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).
Google Scholar
Arenas, M., Ray, N., Currat, M. & Excoffier, L. Consequences of range contractions and range shifts on molecular diversity. Mol. Biol. Evol. 29, 207–218 (2012).CAS
Google Scholar
Banks, S. C. et al. How does ecological disturbance influence genetic diversity?. Trends Ecol. Evol. 28, 670–679 (2013).
Google Scholar
Branco, C., Ray, N., Currat, M. & Arenas, M. Influence of Paleolithic range contraction, admixture and long-distance dispersal on genetic gradients of modern humans in Asia. Mol. Ecol. 29, 2150–2159 (2020).
Google Scholar
Lomolino, M. V. & Channell, R. Splendid isolation: Patterns of geographic range collapse in endangered mammals. J. Mammal. 76(2), 335–347 (1995).
Google Scholar
Lomolino, M. V. & Channell, R. Range collapse, re-introductions, and biogeographic guidelines for conservation. Conserv. Biol. 12, 481–484 (1998).
Google Scholar
Channell, R. & Lomolino, M. V. Dynamic biogeography and conservation of endangered species. Nature 403, 84–86 (2000).ADS
CAS
Google Scholar
Channell, R. & Lomolino, M. V. Trajectories to extinction: Spatial dynamics of the contraction of geographical ranges. J. Biogeogr. 27, 169–179 (2000).
Google Scholar
Laliberte, A. S. & Ripple, W. J. Range contractions of North American carnivores and ungulates. Bioscience 54, 123–138 (2004).
Google Scholar
Donald, P. F. & Greenwood, J. J. Spatial patterns of range contraction in British breeding birds. Ibis 143, 593–601 (2001).
Google Scholar
Boakes, E. H., Isaac, N. J., Fuller, R. A., Mace, G. M. & McGowan, P. J. Examining the relationship between local extinction risk and position in range. Conserv. Biol. 32, 229–239 (2018).
Google Scholar
Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. PNAS 101(42), 15261–15264 (2004).ADS
CAS
Google Scholar
Hoelzel, A. R. et al. Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks. J. Hered. 84, 443–449 (1993).CAS
Google Scholar
Amos, W. & Balmford, A. When does conservation genetics matter?. Heredity 87, 257–265 (2001).CAS
Google Scholar
Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).
Google Scholar
Carvalho, C. D. S. et al. Habitat loss does not always entail negative genetic consequences. Front. Genet. 10, 1101 (2019).CAS
Google Scholar
Wheeler, B. A., Prosen, E., Mathis, A. & Wilkinson, R. F. Population declines of a long-lived salamander: A 20+-year study of hellbenders, Cryptobranchus alleganiensis. Biol. Cons. 109, 151–156 (2003).
Google Scholar
Walkup, D. K., Leavitt, D. J. & Fitzgerald, L. A. Effects of habitat fragmentation on population structure of dune-dwelling lizards. Ecosphere 8, e01729 (2017).
Google Scholar
Mikle, N., Graves, T. A., Kovach, R., Kendall, K. C. & Macleod, A. C. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore. Proc. R. Soc. B Biol. Sci. 283, 20161467 (2016).
Google Scholar
DeWoody, J. A., Harder, A. M., Mathur, S. & Willoughby, J. R. The long-standing significance of genetic diversity in conservation. Mol. Ecol. 30(17), 4147–4154 (2021).
Google Scholar
Kardos, M., Armstrong, E. E., Fitzpatrick, S. W. & Funk, W. C. The crucial role of genome-wide genetic variation in conservation. PNAS 118(48), e210462118 (2021).
Google Scholar
García-Dorado, A. & Caballero, A. Neutral genetic diversity as a useful tool for conservation biology. Conserv. Genet. 22, 541–545 (2021).
Google Scholar
Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).CAS
Google Scholar
Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).CAS
Google Scholar
Haller, B. C., Galloway, J., Kelleher, J., Messer, P. W. & Ralph, P. L. Tree-sequence recording in SLiM opens new horizons forward-time simulation of whole genomes. Mol. Ecol. Resour. 19, 552–566 (2018).
Google Scholar
Kelleher, J., Thornton, K. R., Ashander, J. & Ralph, P. L. Efficient pedigree recording for fast population genetics simulation. PLoS Comput. Biol. 14, e1006581 (2018).ADS
Google Scholar
Haller, B. C. & Messer, P. W. SLiM 3: Forward genetic simulations beyond the Wright–Fisher model. Mol. Biol. Evol. 36, 632–637 (2019).CAS
Google Scholar
Rodríguez, J. P. Range contraction in declining North American bird populations. Ecol. Appl. 12, 238–248 (2002).
Google Scholar
Fisher, D. O. Trajectories from extinction: where are missing mammals rediscovered?. Glob. Ecol. Biogeogr. 20, 415–425 (2011).
Google Scholar
Lino, A., Fonseca, C., Rojas, D., Fischer, E. & Pereira, M. J. R. A meta-analysis of the effects of habitat loss and fragmentation on genetic diversity in mammals. Mamm. Biol. 94, 69–76 (2019).
Google Scholar
Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: Phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16, 977–992 (2007).CAS
Google Scholar
Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).CAS
Google Scholar
Wilkins, J. F. & Wakeley, J. The coalescent in a continuous, finite, linear population. Genetics 161, 873–888 (2002).
Google Scholar
Ringbauer, H., Coop, G. & Barton, N. H. Inferring recent demography from isolation by distance of long shared sequence blocks. Genetics 205, 1335–1351 (2017).
Google Scholar
Bradburd, G. S. & Ralph, P. L. Spatial population genetics: It’s about time. Annu. Rev. Ecol. Evol. Syst. 50, 427–429 (2019).
Google Scholar
Barton, N. H., Etheridge, A. M., Kelleher, J. & Véber, A. Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks. Theor. Popul. Biol. 87, 105–119 (2013).CAS
MATH
Google Scholar
Aguillon, S. M. et al. Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. PLoS Genet. 13, e1006911 (2017).
Google Scholar
Blanco-Pastor, J. L., Fernández-Mazuecos, M. & Vargas, P. Past and future demographic dynamics of alpine species: Limited genetic consequences despite dramatic range contraction in a plant from the Spanish Sierra Nevada. Mol. Ecol. 22, 4177–4195 (2013).CAS
Google Scholar
Chen, N. et al. Allele frequency dynamics in a pedigreed natural population. PNAS 116, 2158–2164 (2019).ADS
CAS
Google Scholar
Exposito-Alonso, M., Booker, T. A., Czech, L., Fukami, T., Gillespie, L., Hateley, S. et al. Quantifying the scale of genetic diversity extinction in the Anthropocene. bioRxiv (2021).Keller, I. & Largiadèr, C. R. Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc. R. Soc. B Biol. Sci. 270, 417–423 (2003).CAS
Google Scholar
Chan, L. M. et al. Phylogeographic structure of the dunes sagebrush lizard, an endemic habitat specialist. PLoS ONE 15, 0238194 (2020).
Google Scholar
Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).
Google Scholar
Cayuela, H. et al. Demographic and genetic approaches to study dispersal in wild animal populations: A methodological review. Mol. Ecol. 27, 3976–4010 (2018).
Google Scholar
Battey, C. J., Ralph, P. L. & Kern, A. D. Space is the place: Effects of continuous spatial structure on analysis of population genetic data. Genetics 215, 193–214 (2020).CAS
Google Scholar
Stubbs, D. & Swingland, I. R. The ecology of a Mediterranean tortoise (Testudo hermanni): A declining population. Can. J. Zool. 63, 169–180 (1985).
Google Scholar
Channell, R. The conservation value of peripheral populations: The supporting science. in Proceedings of the Species at Risk 2004 Pathways to Recovery Conference. 1–17. (Species at Risk 2004 Pathways to Recovery Conference Organizing Committee, 2004).Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124(2), 255–279 (1984).
Google Scholar
Brown, J. H. Macroecology (University of Chicago Press, 1995).
Google Scholar
Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: Size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27(1), 597–623 (1996).
Google Scholar
Sagarin, R. D. & Gaines, S. D. The ‘abundant centre’distribution: To what extent is it a biogeographical rule?. Ecol. Lett. 5, 137–147 (2002).
Google Scholar
Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).CAS
Google Scholar
Yackulic, C. B., Sanderson, E. W. & Uriarte, M. Anthropogenic and environmental drivers of modern range loss in large mammals. PNAS 108, 4024–4029 (2011).ADS
CAS
Google Scholar
Fitzgerald L.A., Walkup, D. Chyn, K. Buchholtz, E. Angeli, N. & Parker M. The future for reptiles: Advances and challenges in the Anthropocene. in Encyclopedia of the Anthropocene. (eds. Dellasala, D.A., & Goldstein, M.I.). 163–174 (Elsevier, 2018).Segelbacher, G., Höglund, J. & Storch, I. From connectivity to isolation: Genetic consequences of population fragmentation in capercaillie across Europe. Mol. Ecol. 12, 1773–1780 (2003).CAS
Google Scholar
Cegelski, C. C., Waits, L. P. & Anderson, N. J. Assessing population structure and gene flow in Montana wolverines (Gulo gulo) using assignment-based approaches. Mol. Ecol. 12, 2907–2918 (2003).CAS
Google Scholar
Proctor, M. F., McLellan, B. N., Strobeck, C. & Barclay, R. M. Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations. Proc. R. Soc. B Biol. Sci. 272, 2409–2416 (2005).
Google Scholar
Leavitt, D. J. & Fitzgerald, L. A. Disassembly of a dune–dwelling lizard community due to landscape fragmentation. Ecosphere 4, 97 (2013).
Google Scholar
Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
Google Scholar
Rogan, J.E., & Lacher Jr., T.E. Impacts of habitat loss and fragmentation on terrestrial biodiversity. in Reference Modules in Earth Systems and Environmental Sciences. 1–18 (Elsevier, 2018).Hurtado, L. A., Santamaria, C. A. & Fitzgerald, L. A. Conservation genetics of the critically endangered St. Croix ground lizard (Ameiva polops Cope 1863). Conserv. Genet. 13, 665–679 (2012).
Google Scholar
Lawton, J. H. Range, population abundance and conservation. Trends Ecol. Evol. 8, 409–413 (1993).CAS
Google Scholar
Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. B Biol. Sci. 267, 1947–1952 (2000).CAS
Google Scholar
Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. B Biol. Sci. 275, 1441–1448 (2008).
Google Scholar
Templeton, A. R. Coadaptation and outbreeding depression. in Conservation Biology: The Science of Scarcity and Diversity. (ed. Soulé, M.E.). 105–116 (Sinauer, 1986). Lomolino, M. V. & Smith, G. A. Dynamic biogeography of prairie dog (Cynomys ludovicianus) towns near the edge of their range. J. Mammal. 82, 937–945 (2001).
Google Scholar
Wright, S. Isolation by distance. Genetics 28, 114 (1943).CAS
Google Scholar
Maruyama, T. Rate of decrease of genetic variability in a two-dimensional continuous population of finite size. Genetics 4(1), 639–651 (1972).
Google Scholar
Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 645, 330–338 (1922).
Google Scholar
Kelleher, J. & EtheridgeMcVean, A. M. G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput. Biol. 12, e1004842 (2016).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2019).Greenstein, B. J. & Pandolfi, J. M. Escaping the heat: Range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 14, 513–528 (2008).ADS
Google Scholar
Wilcove, D. S. & Terborgh, J. W. Patterns of population decline in birds. Am. Birds 38, 10–13 (1984).
Google Scholar
Gabelli, F. M. et al. Range contraction in the Pampas meadowlark Sturnella defilippii in the southern Pampas grasslands of Argentina. Oryx 38, 164–170 (2004).
Google Scholar
Pomara, L. Y., LeDee, O. E., Martin, K. J. & Zuckerberg, B. Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species. Glob. Change Biol. 20, 2087–2099 (2014).ADS
Google Scholar
Towns, D. R. & Daugherty, C. H. Patterns of range contractions and extinctions in the New Zealand herpetofauna following human colonisation. N. Z. J. Zool. 21, 325–339 (1994).
Google Scholar
Rudolph, D. C., Burgdorf, S. J., Schaefer, R. R., Conner, R. N. & Maxey, R. W. Status of Pituophis ruthveni (Louisiana pine snake). Southeast. Nat. 5(3), 463–472 (2006).
Google Scholar
Russell, R. W., Lipps, G. J. Jr., Hecnar, S. J. & Haffner, G. D. Persistent organic pollutants in Blanchard’s cricket frogs (Acris crepitans blanchardi) from Ohio. Ohio J. Sci. 102, 119–122 (2002).CAS
Google Scholar
Fellers, G. M. & Drost, C. A. Disappearance of the Cascades frog Rana cascadae at the southern end of its range, California, USA. Biol. Cons. 65, 177–181 (1993).
Google Scholar
Franco, A. M. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12, 1545–1553 (2006).ADS
Google Scholar
Stewart, J. A., Wright, D. H. & Heckman, K. A. Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA. PLoS ONE 12, e0181834 (2017).
Google Scholar
Rodríguez, A. & Delibes, M. Internal structure and patterns of contraction in the geographic range of the Iberian lynx. Ecography 25, 314–328 (2002).
Google Scholar
Kattan, G. et al. Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx 38(2), 155–163 (2004).
Google Scholar
Jones, S. J., Lima, F. P. & Wethey, D. S. Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J. Biogeogr. 37, 2243–2259 (2010).
Google Scholar
Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. P. R. Soc. B Biol. Sci. 280, 20122829 (2013).
Google Scholar More