More stories

  • in

    Injury alters motivational trade-offs in calves during the healing period

    This work was undertaken at the University of California Davis Dairy Teaching and Research Facility from June to September 2018. All experimental protocols were approved by and carried out in accordance with the University of California Davis Institutional Animal Care and Use Committee (protocol # 20505).TreatmentsWe enrolled all female calves born between June 19 and September 1 2018, for a total of 28 Holsteins and 8 Jerseys. Our sample size was determined by the availability of calves being born in our herd of approximately 105 lactating cows during this period. Calves were blocked by birth order and randomly allocated to 1 of 3 treatments balanced for breed: disbudded the morning of (Day 0) or 21 days before (Day 21) the startle test, or sham-disbudded (Sham, n = 12/treatment). Among the control calves, half were sham-disbudded the morning of the test, whereas the other half underwent the procedure 21 days earlier. Birth weights were similar across treatments (mean ± SD; Day 0: 35 ± 5 kg; Day 21: 35 ± 6 kg; Sham: 36 ± 9 kg). The startle test occurred between 25 and 32 days of age for all calves. Thus, all Day 0 calves and half of the Sham calves were disbudded between 25 and 32 days of age, and all Day 21 calves and half of the Sham calves were disbudded between 4 and 11 days of age. This design meant all animals were at the same stage of cognitive and motor development during data collection. This was a priority for us because we expected age to strongly influence behavioural responses during the startle test. While it is also possible that disbudding at different ages may affect responses, previous research suggests disbudding has similar outcomes across this range13,15,20.Animal husbandry and housingImmediately after birth, calves were housed individually in outdoor enclosures consisting of a plastic hutch (2.0 m long × 1.5 m wide) and a wire-fenced pen (2.0 m long × 1.5 wide × 0.9 m high). The enclosures were spaced 0.5 m apart and bedded with sand approximately 15 to 20 cm deep.Calves were bottle-fed colostrum twice a day for 5 days. From 5 days of age, calves received milk replacer (26% CP and 16% fat, 15% total solids; Calva Products Inc., Acampo, CA) in bottles at 0645, 1245, and 1845 h. At each meal, Holsteins were fed 1.9 L from 1 to 13 days, 2.4 L from 14 to 23 days, and 2.8 L from 24 days. Jerseys received 1.4 L from 1 to 13 days, 1.9 L from 14 to 23 days, and 2.4 L from 24 days. Water and starter (18.3% CP, 2.8% fat, 4% crude fat; Associated Feed & Supply Co., Turlock, CA) were provided ad libitum in buckets. As part of a separate concurrent study, 11 calves (3 Sham, 3 Day 21, 5 Day 0) received chopped mountain grass hay (34% CP) ad libitum.DisbuddingDisbudding occurred between 730 and 1000 h. For the procedure, the calf was restrained in a head device in her home enclosure21. A 5 × 5 cm patch of hair was clipped with a size 40 electric razor blade on each side of the head to locate the horn bud. We used a 20 gauge × 25 mm needle to administer a cornual nerve block consisting of 5.5 mL buffered lidocaine (2% lidocaine hydrochloride diluted with 8.4% sodium bicarbonate in a 10:1 ratio). If the horn bud was not numb after 10 min, as assessed by pinprick, we gave an additional 2 mL of buffered lidocaine (13% of horn buds). An electric cautery iron (X50, Rhinehart Development Corp., Spencerville, IN) was fitted with a 1.3 cm tip and heated to 439 ± 15 °C (mean ± SD). It was applied to the horn bud for 17 ± 5 s (mean ± SD). Immediately before disbudding, the calf received approximately 1 mg/kg of meloxicam tablets in a gelatin capsule (3.5 g; Torpac Inc., Fairfield, NJ). For Day 0 calves, meloxicam was given after the startle test had occurred later that same day (maximum 12 h later) to ensure the calf was in a drug-free state during the test. Sham-disbudded calves received the same treatment, with the exception that the iron was ambient temperature and the gelatin capsule was empty. Sham calves did not receive meloxicam because the Animal Medicinal Drug Use Clarification Act limits nontherapeutic off-label use of this drug22. SJJA performed all disbudding procedures.ArenaWe tested calves individually in a single 10-min period in a shaded outdoor arena bedded with 10 to 15 cm of sand. The arena was divided into a waiting pen (2.0 × 1.5 m) and a test pen (3.0 × 5.5 m) constructed of 0.9 m high wire panels (MidWest Homes for Pets Foldable Metal Exercise pen, Muncie, IN). A rolling gate provided access between the pens (Fig. 1).Figure 1Aerial view of the arena used for startle tests, including the position of the milk bottle and speaker used to broadcast the startle noise. Figure is drawn to scale.Full size imageA bottle containing 500 mL of the calves’ regular milk replacer was secured to the panel opposite the entrance to the test pen. The bottle was fitted with a rubber teat positioned 80 cm above the ground. Between calves, a fresh bottle was placed in the arena and urine and feces were removed with a shovel.Testing procedureCalves were habituated to the arena for 15 min daily between 700 and 1100 h for 3 consecutive days before the startle test. Calves were brought to the arena in the same order each day, with order balanced across treatments. During habituation, no startle stimulus was delivered, but otherwise the same procedure followed on test days was applied.The startle test occurred between 1530 and 1800 h (Supplementary Video S1). The calf was transported from her home pen to the waiting pen in a cart (Caf-Cart, Raytec, Ephrata, PA). The test began when the gate providing access to the test pen was opened and ended after 10 min. The gate was closed behind the calf after she had entered so that the waiting pen was inaccessible during the test. Three observers were seated quietly 3.5 m away from the pen during the test, and were partially concealed behind a tree branch. One observer remotely controlled the speaker broadcasting the startle noise, while the other two observers were present to respond if a calf escaped from the arena (only one calf jumped out, on the first day of habituation, and was promptly escorted back into the pen). Calves showed no apparent responses to the observers and had no visual contact with other animals.As soon as the calf’s mouth was within a tongue’s reach of the teat, a 0.4 s, 105 ± 2 dB burst of white-noise was emitted through a wireless speaker (OT4200 Big Turtle Shell, Outdoor Tech, Laguna Hills, CA) mounted directly behind the bottle. The noise was created using an online signal generator23. We measured the sound level using a decibel meter (BAFX Products, Milwaukee, WI) held 30 cm in front of the bottle, approximating the distance of the calf’s ears to the source.Behavioural data collectionTests were recorded with a camcorder (HC-V180, Panasonic, Kadoma, Japan) positioned on a tripod approximately 3 m away from of the pen. One trained observer, blinded to the treatments, scored behaviours in all videos taken of the startle test and the third day of habituation (Table 1). Videos were analysed using BORIS (Behavioural Observation Research Interactive Software24). Intra-observer reliability was calculated using 12 randomly selected videos of the startle test (Intraclass correlation coeffcient ≥ 0.95).Table 1 Behavioural definitions used to evaluate calves’ responses in an arena test.Full size tableAccelerometers (Hobo Pendant G Acceleration Data Logger, Onset Computer Corporation, Bourne, MA) were used to assess the magnitude of the startle response. On habituation and test days, we fitted calves with a triaxial accelerometer set to record acceleration in the x-, y-, and z-axis every 0.05 s. The accelerometer was placed in a pouch, strapped around the right hind leg, and secured with Vet Wrap (Co-Flex, Andover Coated Products Inc., Salisbury, MA) while the calf was in the waiting pen of the arena, immediately before the gate to the test pen was opened. Data were downloaded using HOBOware Pro Software (Onset Computer Corporation, Bourne, MA). To calculate the magnitude of the startle response, we summed total acceleration in all 3 axes over the startle duration for that calf. Total acceleration was calculated as the square root of the sum of squared acceleration in each axis25. No startle response was recorded for one calf who did not approach the bottle on the test day.All calves were weighed the morning of the startle test (mean ± SD; Day 0: 56 ± 10 kg; Day 21: 55 ± 9 kg; Sham: 55 ± 11 kg).Wound healing and sensitivityWe measured sensitivity via mechanical nociceptive thresholds around the horn bud area 1 to 2 h after the startle test using a digital algometer fitted with a 4-mm-diameter round rubber tip (ProdPlus; TopCat Metrology Ltd., Little Downham, UK). The calf was restrained in the head device in her home pen and blindfolded to reduce responses to visual cues. We then applied an increasing amount of force to the edge of the disbudding wound, or intact horn bud for sham calves, as described previously13. The test ended when the calf moved her head or a maximum cut-off point of 10 N was reached. We repeated the test if a fly landed on the head, a loud noise occurred, or the calf urinated or defecated. If a test was interrupted 3 times, it was abandoned (0% of tests).Wound sensitivity was tested at the lateral and caudal edges of each wound or the equivalent location on sham calves. The order of test sites was: left lateral, left caudal, right caudal, and right lateral. To ensure force was applied at a consistent rate, personnel operating the algometer were trained and met a set of rigorous criteria before performing the tests13. We calculated the rate that force was applied in each test from video recordings (0.29 ± 0.10 N/s; 2% of videos missing). If force was increased at a rate  0.6 N/s or video was missing, the data were excluded (3% of tests). Due to the nature of the tests, the operator of the algometer was not blind to treatment.We took digital photographs of the wound with a DSLR camera (D5300; Nikon Corp., Tokyo, Japan) after sensitivity testing was completed. Photos were taken 15 cm from the wound. One person scored the photos for tissues present in the wound bed using a 0/1 scoring system13. Due to the clear differences in Day 0 and Day 21 wounds, the scorer was not blind to treatment.Statistical analysisDue to the presence of zeros in the data, we used zero-inflated beta regressions to assess the effect of treatment (Sham, Day 0, Day 21) on the proportion of time suckling on the third day of habituation and during the startle test. A zero-inflated beta regression is a mixture of two models: a beta model for estimating non-zero proportions and a logistic model for estimating the probability of zeroes26. This approach allowed us to infer treatment effects on both the occurrence and duration of suckling. General linear models were used to test the effect of treatment on the duration of the startle response and its magnitude as measured from the accelerometer data.We analyzed the effects of treatment on latency to approach the bottle and latency to return after startling using parametric survival regression models with a log-logistic distribution. Days on which the calf did not perform the behaviour within the allotted time (15 min for habituation, 10 min for startle test) were handled as right-censored data.We ran a general linear model to test the effect of treatment on wound sensitivity. A preliminary analysis indicated that there was no effect of side (left vs right) or location (caudal vs lateral) on wound sensitivity, so we averaged data for each calf into one score.Data were analysed in R, version 3.5.227. General linear models were fitted using the “lm” function in base R. We confirmed homogeneity of variance and normality using residuals vs fits plots and Q-Q plots, respectively. Beta and survival regressions were performed with the “glmmTMB” function in the glmmTMB package version 1.0.028, and the “survreg” function in the survival package version 2.3829, respectively. If treatment effects were identified in any of the models (P  More

  • in

    Fine-scale sampling unveils diazotroph patchiness in the South Pacific Ocean

    1.Kavanaugh, M. T. et al. Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES J. Mar. Sci. 73, 1839–1850 (2016).Article 

    Google Scholar 
    2.Klein, P. & Lapeyre, G. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Ann. Rev. Mar. Sci. 1, 351–375 (2009).Article 

    Google Scholar 
    3.Lehahn, Y., D’Ovidio, F. & Koren, I. A satellite-based lagrangian view on phytoplankton. Dyn. Ann. Rev. Mar. Sci. 10, 99–119 (2017).Article 

    Google Scholar 
    4.d’Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y. & Levy M. Fluid dynamical niches of phytoplankton types. Proc. Natl. Acad. Sci. 107, 18366–18370 (2010).Article 

    Google Scholar 
    5.Lévy, M., Ferrari, R., Franks, P. J. S., Martin, A. P., & Rivière, P. Bringing physics to life at the submesoscale. Geophys. Res. Lett. 39 (2012).6.Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science (80-) 368, eaay9514 (2020).CAS 
    Article 

    Google Scholar 
    7.Fong, A. A. et al. Nitrogen fixation in an anticyclonic eddy in the oligotrophic North Pacific Ocean. ISME J 2, 663–676 (2008).CAS 
    Article 

    Google Scholar 
    8.Davis, C. S. & McGillicuddy, D. J. Transatlantic abundance of the N2-fixing colonial cyanobacterium Trichodesmium. Science (80-) 312, 1517–1520 (2006).CAS 
    Article 

    Google Scholar 
    9.Benavides, M., Robidart, J. Bridging the spatiotemporal gap in diazotroph activity and diversity with high-resolution measurements. Front. Mar. Sci. 7, https://www.frontiersin.org/articles/10.3389/fmars.2020.568876/full (2020).10.Olson, E. et al. Mesoscale eddies and Trichodesmium spp. distributions in the southwestern North Atlantic. J Geophys. Res. Ocean 120, 1–22 (2015).Article 

    Google Scholar 
    11.Bombar, D., Paerl, R. W., & Riemann, L. Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol. 24, 916–927 (2016).CAS 
    Article 

    Google Scholar 
    12.Luo, Y.-W. et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst. Sci. Data 4, 47–73 (2012).Article 

    Google Scholar 
    13.Robidart, J. C. et al. Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean. ISME J 8, 1175–1185 (2014).CAS 
    Article 

    Google Scholar 
    14.Tang, W. et al. New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. ISME J. 14, 2514–2526 (2020).CAS 
    Article 

    Google Scholar 
    15.Petrenko, A. A. et al. A review of the LATEX project: mesoscale to submesoscale processes in a coastal environment. Ocean Dyn 67, 513–533 (2017).Article 

    Google Scholar 
    16.Guidi, L. et al. Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre? J. Geophys. Res. Biogeosci. 117 (2012).17.Palter, J. B. et al. High N2 fixation in and near the Gulf Stream consistent with a circulation control on diazotrophy. Geophys Res Lett 47, e2020GL089103 (2020).CAS 
    Article 

    Google Scholar 
    18.Cornejo-Castillo, F. M., & Zehr, J. P. Intriguing size distribution of the uncultured and globally widespread marine non-cyanobacterial diazotroph Gamma-A. ISME J., 15, 124–128 (2020).Article 

    Google Scholar 
    19.Bonnet, S., Caffin, M., Berthelot, H., & Moutin, T. Hot spot of N2 fixation in the western tropical South Pacific pleads for a spatial decoupling between N2 fixation and denitrification. Proc. Natl. Acad. Sci. 114, E2800–E2801 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Fostering a climate-smart intensification for oil palm

    1.Pirker, J., Mosnier, A., Kraxner, F., Havlík, P. & Obersteiner, M. What are the limits to oil palm expansion? Glob. Environ. Change 40, 73–81 (2016).Article 

    Google Scholar 
    2.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    Article 

    Google Scholar 
    3.Colchester, M. et al. Justice in the Forest (CIFOR, 2006).4.Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).CAS 
    Article 

    Google Scholar 
    5.Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).CAS 
    Article 

    Google Scholar 
    6.First Nationally Determined Contribution Submitted to UNFCCC (Republic of Indonesia, 2016).7.FAOSTAT (FAO, accessed 1 March 2020); http://www.fao.org/faostat/en/#data8.Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).9.Tree Crop Estate Statistics of Indonesia 2017–2019 (Directorate General of Estate Crops, 2019).10.Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. Yield gaps in oil palm: a quantitative review of contributing factors. Eur. J. Agron. 83, 57–77 (2017).Article 

    Google Scholar 
    11.Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 28, 531–540 (2013).Article 

    Google Scholar 
    12.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    13.Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: Examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).CAS 
    Article 

    Google Scholar 
    14.Srinivas, A. & Koh, L. P. Oil palm expansion drives avifaunal decline in the Pucallpa region of Peruvian Amazonia. Glob. Ecol. Conserv. 7, 183–200 (2016).Article 

    Google Scholar 
    15.Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Sec. 3, 92–98 (2014).Article 

    Google Scholar 
    16.Cassman, K. G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).CAS 
    Article 

    Google Scholar 
    17.Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article 

    Google Scholar 
    18.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS 
    Article 

    Google Scholar 
    19.Statistics Indonesia (BPS, accessed 1 March 2020); https://www.bps.go.id20.Jelsma, I., Schoneveld, G. C., Zoomers, A. & van Westen, A. C. M. Unpacking Indonesia’s independent oil palm smallholders: an actor-disaggregated approach to identifying environmental and social performance challenges. Land Use Policy 69, 281–297 (2017).Article 

    Google Scholar 
    21.Roadmap for the National Oil Palm Industry Towards 2045 (Indonesian cross-ministry team and oil palm institutions and local associations, 2019).22.The Palm Oil Dilemma: Policy Tensions Among Higher Productivity, Rising Demand, and Deforestation (IFPRI, 2019).23.OECD-FAO Agricultural Outlook 2020–2029 (OECD, 2020).24.Lobell, D. B., Cassman, K. G. & Field, C. B. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34, 179–204 (2009).Article 

    Google Scholar 
    25.Hoffmann, M. P. et al. Yield gap analysis in oil palm: framework development and application in commercial operations in Southeast Asia. Agric. Syst. 151, 12–19 (2017).Article 

    Google Scholar 
    26.Molenaar, J. W., Persch-Orth, M., Taylor, C. & Harms, J. Diagnostic Study on Indonesia Oil Palm Smallholders: Developing a Better Understanding of their Performance and Potential (IFC, 2013).27.The Future of Food and Agriculture: Trends and Challenges (FAO, 2017).28.Hoffmann, M. P. et al. Simulating potential growth and yield of oil palm (Elaeis guineensis) with PALMSIM: model description, evaluation and application. Agric. Syst. 131, 1–10 (2014).Article 

    Google Scholar 
    29.Euler, M., Hoffmann, M. P., Fathoni, Z. & Schwarze, S. Exploring yield gaps in smallholder oil palm production systems in eastern Sumatra, Indonesia. Agric. Syst. 146, 111–119 (2016).Article 

    Google Scholar 
    30.Soliman, T., Lim, F. K. S. S., Lee, J. S. H. H. & Carrasco, L. R. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds. R. Soc. Open Sci. 3, 160292 (2016).CAS 
    Article 

    Google Scholar 
    31.Grassini, P. et al. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crop. Res. 177, 49–63 (2015).Article 

    Google Scholar 
    32.Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).CAS 
    Article 

    Google Scholar 
    33.Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).CAS 
    Article 

    Google Scholar 
    34.Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).Article 
    CAS 

    Google Scholar 
    35.Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).CAS 
    Article 

    Google Scholar 
    36.Indonesia. Second Biennial Update Report. Under the United Nations Framework Convention on Climate Change (Directorate General of Climate Change, Ministry of Environment and Forestry, 2018).37.Rhebergen, T. et al. Closing yield gaps in oil palm production systems in Ghana through best management practices. Eur. J. Agron. 115, 126011 (2020).Article 

    Google Scholar 
    38.Woittiez, L. S., Slingerland, M., Rafik, R. & Giller, K. E. Nutritional imbalance in smallholder oil palm plantations in Indonesia. Nutr. Cycl. Agroecosyst. 111, 73–86 (2018).Article 

    Google Scholar 
    39.Corley, R. H. V. & Lee, C. H. The physiological basis for genetic improvement of oil palm in Malaysia. Euphytica 60, 179–184 (1992).
    Google Scholar 
    40.Jelsma, I., Woittiez, L. S., Ollivier, J. & Dharmawan, A. H. Do wealthy farmers implement better agricultural practices? An assessment of implementation of Good Agricultural Practices among different types of independent oil palm smallholders in Riau, Indonesia. Agric. Syst. 170, 63–76 (2019).Article 

    Google Scholar 
    41.Deininger, K. Challenges posed by the new wave of farmland investment. J. Peasant Stud. 38, 217–247 (2011).Article 

    Google Scholar 
    42.Agricultural Innovation Systems: An Investment Sourcebook (The World Bank, 2012).43.Cock, J. et al. Learning from commercial crop performance: oil palm yield response to management under well-defined growing conditions. Agric. Syst. 149, 99–111 (2016).Article 

    Google Scholar 
    44.Jelsma, I., Slingerland, M., Giller, K. E. & Bijman, J. Collective action in a smallholder oil palm production system in Indonesia: the key to sustainable and inclusive smallholder palm oil? J. Rural Stud. 54, 198–210 (2017).Article 

    Google Scholar 
    45.Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).CAS 
    Article 

    Google Scholar 
    46.Sahide, M. A. K. & Giessen, L. The fragmented land use administration in Indonesia: analysing bureaucratic responsibilities influencing tropical rainforest transformation systems. Land Use Policy 43, 96–110 (2015).Article 

    Google Scholar 
    47.Presidential Instruction no. 5 (President of the Replublic of Indonesia, 2019).48.REDD+ (UNFCCC, accessed 1 March 2020); https://redd.unfccc.int49.Evans, L. T. Crop Evolution, Adaptation and Yield (Cambridge Univ. Press, 1993).50.van Ittersum, M. K. et al. Yield gap analysis with local to global relevance—A review. F. Crop. Res. 143, 4–17 (2013).Article 

    Google Scholar 
    51.Fairhurst, T. H. & Griffiths, W. Oil Palm: Best Management Practices for Yield Intensification (International Plant Nutrition Institute, Southeast Asia Program, 2015).52.Global Yield Gap Atlas (University of Nebraska, Wageningen University, accessed 1 March 2020); https://www.yieldgap.org53.Hekman, W., Slingerland, M. A., van den Beuken, R., Gerrie, V. & Grassini, P. Estimating yield gaps in oil palm in Indonesia using PALMSIM to inform policy on the scope of intensification. In International Oil Palm Conference (IOPC) (2018).54.Austin, K. G. et al. Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 69, 41–48 (2017).Article 

    Google Scholar 
    55.Land Cover Data (Ministry of Environment and Forestry, Indonesia, accessed 1 March 2020).56.Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).CAS 
    Article 

    Google Scholar 
    57.National Forest References Emission Level for Deforestations and Forest Degradation (Ministry of Environment and Forestry, Indonesia, 2016).58.Khasanah, N., van Noordwijk, M., Ningsih, H. & Wich, S. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils. Cogent Environ. Sci. 1, 1119964 (2015).Article 
    CAS 

    Google Scholar 
    59.Khasanah, N., van Noordwijk, M., Ningsih, H. & Rahayu, S. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia. Agric. Ecosyst. Environ. 211, 195–206 (2015).Article 

    Google Scholar 
    60.van Straaten, O. et al. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proc. Natl Acad. Sci. USA 112, 9956–9960 (2015).Article 
    CAS 

    Google Scholar 
    61.Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. & Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 5, eaaw4418 (2019).CAS 
    Article 

    Google Scholar 
    62.Harsono, S. S., Prochnow, A., Grundmann, P., Hansen, A. & Hallmann, C. Energy balances and greenhouse gas emissions of palm oil biodiesel in Indonesia. GCB Bioenergy 4, 213–228 (2012).CAS 
    Article 

    Google Scholar 
    63.Archer, S. A., Murphy, R. J. & Steinberger-Wilckens, R. Methodological analysis of palm oil biodiesel life cycle studies. Renew. Sustain. Energy Rev. 94, 694–704 (2018).Article 

    Google Scholar 
    64.Brentrup, F., Lammel, J., Stephani, T. & Christensen, B. Updated carbon footprint values for mineral fertilizer from different world regions. In 11th International Conference on Life Cycle Assessment of Food 2018 (LCA Food) (2018).65.Lim, Y. L. et al. An update on oil palm nutrient budgets. In International Oil Palm Conference (IOPC) (2018).66.Tiemann, T. T. et al. Feeding the palm: a review of oil palm nutrition. Adv. Agron. 152, 149–243 (2018).Article 

    Google Scholar 
    67.Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Calvo Buendia, E. et al.) (IPCC, 2019).68.Caliman, J. P. N-Fertiliser losses quantification in term of N2O emission and NH3 volatilisation. In Oil Palm Best Practices Workshop (MOSTA, 2019).69.Meijide, A. et al. Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel. Nat. Commun. 11, 1089 (2020).CAS 
    Article 

    Google Scholar 
    70.Hassler, E., Corre, M. D., Kurniawan, S. & Veldkamp, E. Soil nitrogen oxide fluxes from lowland forests converted to smallholder rubber and oil palm plantations in Sumatra, Indonesia. Biogeosciences 14, 2781–2798 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Phenolic acid-degrading Paraburkholderia prime decomposition in forest soil

    1.Van Hees, P. A. W., Jones, D. L., Finlay, R., Godbold, D. L. & Lundström, U. S. The carbon we do not see – The impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol. Biochem. 37, 1–13 (2005).Article 
    CAS 

    Google Scholar 
    2.Shindo, H., Ohta, S. & Kuwatsuka, S. Behavior of phenolic substances in the decaying process of plants: IX. Distribution of phenolic acids in soils of paddy fields and forests. Soil Sci. Plant Nutr. 24, 233–243 (1978).CAS 
    Article 

    Google Scholar 
    3.Katase, T. Distribution of different forms of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in forest soil. Soil Sci. Plant Nutr. 27, 365–371 (1981).CAS 
    Article 

    Google Scholar 
    4.Muscolo, A. & Sidari, M. Seasonal fluctuations in soil phenolics of a coniferous forest: effects on seed germination of different coniferous species. Plant Soil. 284, 305–318 (2006).CAS 
    Article 

    Google Scholar 
    5.Whitehead, D. C., Dibb, H. & Hartley, R. D. Bound phenolic compounds in water extracts of soils, plant roots and leaf litter. Soil Biol. Biochem. 15, 133–136 (1983).CAS 
    Article 

    Google Scholar 
    6.Kuiters, A. T. & Sarink, H. M. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biol. Biochem. 18, 475–480 (1986).CAS 
    Article 

    Google Scholar 
    7.Gallet, C. & Pellissier, F. Phenolic compounds in natural solutions of a coniferous forest. J. Chem. Ecol. 23, 2401–2412 (1997).CAS 
    Article 

    Google Scholar 
    8.Schofield, J. A., Hagerman, A. E. & Harold, A. Loss of tannins and other phenolics from willow leaf litter. J. Chem. Ecol. 24, 1409–1421 (1998).CAS 
    Article 

    Google Scholar 
    9.Kaiser, K., Guggenberger, G., Haumaier, L. & Zech, W. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, German. Biogeochemistry. 55, 103–143 (2001).CAS 
    Article 

    Google Scholar 
    10.Li H. et al. Forest gaps alter the total phenol dynamics in decomposing litter in an alpine fir forest. PLoS ONE. 11, e0148426 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Blagodatskaya, E. & Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol. Fertil. Soils. 45, 115–131 (2008).Article 

    Google Scholar 
    12.Nottingham, A. T., Turner, B. L., Chamberlain, P. M., Stott, A. W. & Tanner, E. V. J. Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility. Biogeochemistry. 111, 219–237 (2012).CAS 
    Article 

    Google Scholar 
    13.Stewart, C. E., Moturi, P., Follett, R. F. & Halvorson, A. D. Lignin biochemistry and soil N determine crop residue decomposition and soil priming. Biogeochemistry. 124, 335–351 (2015).CAS 
    Article 

    Google Scholar 
    14.Lonardo, D. P. Di et al. Priming of soil organic matter: chemical structure of added compounds is more important than the energy content. Soil Biol. Biochem. 108, 41–54 (2017).Article 
    CAS 

    Google Scholar 
    15.Zwetsloot, M. J. et al. Prevalent root-derived phenolics drive shifts in microbial community composition and prime decomposition in forest soil. Soil Biol. Biochem. 145, 530–541 (2020).Article 
    CAS 

    Google Scholar 
    16.Tao, X. et al. Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria. Microbiome 8, 84 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Wutzler, T. & Reichstein, M. Priming and substrate quality interactions in soil organic matter models. Biogeosciences. 10, 2089–2103 (2013).Article 

    Google Scholar 
    18.Guenet, B. et al. Impact of priming on global soil carbon stocks. Glob Chang Biol. 24, 1873–1883 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Schöning, I. & Kögel-Knabner, I. Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biol. Biochem. 38, 2411–2424 (2006).Article 
    CAS 

    Google Scholar 
    20.Kleber, M. et al. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Chang Biol. 17, 1097–1107 (2011).Article 

    Google Scholar 
    21.Northup, R. R., Dahlgren, R. A. & Yu, Z. Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient; a new interpretation. Plant Soil. 171, 255–262 (1995).CAS 
    Article 

    Google Scholar 
    22.Sanger, L. J., Cox, P., Splatt, P., Whelan, M. J. & Anderson, J. M. Variability in the quality of Pinus sylvestris needles and litter from sites with different soil characteristics: Lignin and phenylpropanoid signature. Soil Biol. Biochem. 28, 829–835 (1996).CAS 
    Article 

    Google Scholar 
    23.Thevenot, M., Dignac, M. F. & Rumpel, C. Fate of lignins in soils: a review. Soil Biol. Biochem. 42, 1200–1211 (2010).CAS 
    Article 

    Google Scholar 
    24.Zwetsloot, M. J. & Bauerle, T. L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 218, 530–541 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Burges, N., Hurst, H. & Walkden, B. The phenolic constituents of humic acid and their relation to the lignin of the plant cover. Geochim. Cosmochim. Acta. 28, 1547–1554 (1964).CAS 
    Article 

    Google Scholar 
    26.Kuiters, A. T. & Denneman, C. A. J. Water-soluble phenolic substances in soils under several coniferous and deciduous tree species. Soil Biol. Biochem. 19, 765–769 (1987).CAS 
    Article 

    Google Scholar 
    27.Jalal, M. A. F. & Read, D. J. The organic acid composition of Calluna heathland soil with special reference to phyto- and fungitoxicity. Plant Soil. 70, 273–286 (1983).CAS 
    Article 

    Google Scholar 
    28.Shindo, H., Ohta, S. & Kuwatsuka, S. Behavior of phenolic substances in the decaying process of plants: IX. Distribution of phenolic acids in soils of paddy fields and forests. Soil Sci. Plant Nutr. 24, 233–243 (1978).CAS 
    Article 

    Google Scholar 
    29.Whitehead, D. C., Dibb, H. & Hartley, R. D. Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter. Soil Biol. Biochem. 13, 343–348 (1981).CAS 
    Article 

    Google Scholar 
    30.Ed, V., Boyd, S. & Mokma, D. Extraction of phenolic compounds from a spodsol profile. Soil Sci. 140, 412–420 (1985).Article 

    Google Scholar 
    31.Wang, Y. et al. Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. J. Soils Sediments. 16, 1858–1870 (2016).CAS 
    Article 

    Google Scholar 
    32.Phillips, R. P. et al. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology. 87, 1302–1313 (2006).PubMed 
    Article 

    Google Scholar 
    33.Blum, U. & Shafer, S. R. Microbial populations and phenolic acids in soil. Soil Biol. Biochem. 20, 793–800 (1988).CAS 
    Article 

    Google Scholar 
    34.Shafer, S. R. & Blum, U. Influence of Phenolic acids on microbial populations in the rhizosphere of cucumber. J. Chem. Ecol. 17, 369–389 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Eilers, K. G., Lauber, C. L., Knight, R. & Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42, 896–903 (2010).CAS 
    Article 

    Google Scholar 
    36.Morrissey, E. M. et al. Phylogenetic organization of bacterial activity. ISME J. 10, 2336–2340 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Huang P., Wang T., Wang M., Wu M., Hsu N. Retention of phenolic acids by noncrystalline hydroxy-aluminum and-iron compounds and clay minerals of soils. Soil Sci. 123, 213–219 (1977).CAS 
    Article 

    Google Scholar 
    38.Cecchi, A. M., Koskinen, W. C., Cheng, H. H. & Haider, K. Sorption-desorption of phenolic acids as affected by soil properties. Biol. Fertil. Soils. 39, 235–242 (2004).CAS 
    Article 

    Google Scholar 
    39.Shindo, H. & Kuwatsuka, S. Behavior of phenolic substances in the decaying process of plants: IV adsorption and movement of phenolic acids in soils. Soil Sci. Plant Nutr. 22, 23–33 (1976).CAS 
    Article 

    Google Scholar 
    40.DeAngelis K. M. et al. Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS ONE. 6, e19306 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Pold G., Melillo J. M., DeAngelis K. M. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front Microbiol. 6, 480 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Wilhelm, R. C., Singh, R., Eltis, L. D. & Mohn, W. W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 13, 413–429 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Folman, L. B., Klein Gunnewiek, P. J. A., Boddy, L., De & Boer, W. Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol. Ecol. 63, 181–191 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Valášková, V. et al. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J. 3, 1218–1221 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Mandal, S. M., Chakraborty, D. & Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav. 5, 359–368 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Munoz Aguilar, M. et al. Chemotaxis of rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J. Gen. Microbiol. 134, 2741–2746 (1988).CAS 

    Google Scholar 
    47.Morrissey, E. M. et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 11, 1890–1899 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: a question of microbial competition? Soil Biol. Biochem. 35, 837–843 (2003).CAS 
    Article 

    Google Scholar 
    49.Liu, X. J. A. et al. The soil priming effect: consistent across ecosystems, elusive mechanisms. Soil Biol Biochem. 140, 107617 (2020).CAS 
    Article 

    Google Scholar 
    50.Fanin, N., Alavoine, G. & Bertrand, I. Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect. Geoderma [Internet]. 377, 114576 (2020).CAS 
    Article 

    Google Scholar 
    51.Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds – from one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Yang, Z. H. & Ji, G. D. Quantitative response relationships between degradation rates and functional genes during the degradation of beta-cypermethrin in soil. J. Hazard Mater. 299, 719–724 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Nishiyama, E., Ohtsubo, Y., Nagata, Y. & Tsuda, M. Identification of Burkholderia multivorans ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ. Microbiol. 12, 2539–2558 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Wilhelm et al. Paraburkholderia madseniana sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. Int. J. Syst. Evol. Microbiol. 70, (2020). https://doi.org/10.1099/ijsem.0.004029.55.Pallant, E. & Riha, S. J. Surface soil acidification under red pine and Norway spruce. Soil Sci. Soc. Am. J. 54, 1124–1130 (1990).CAS 
    Article 

    Google Scholar 
    56.Fahey T. J. et al. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest. Ecol. Appl. 23, 1185–1201 (2013).PubMed 
    Article 

    Google Scholar 
    57.Melvin, A. M. & Goodale, C. L. Tree species and earthworm effects on soil nutrient distribution and turnover in a northeastern United States common garden. Can. J. For. Res. 43, 180–187 (2013).CAS 
    Article 

    Google Scholar 
    58.Suarez E. Invasion of Northern Hardwood Forests by Exotic Earthworm Communities in South-Central New York. Cornell; 2004.59.Greweling T., Peech M. Chemical soil tests. Ithaca; 1960.60.Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Neufeld, J. D. et al. DNA stable-isotope probing. Nat. Protoc. 2, 860–866 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Wilhelm, R., Szeitz, A., Klassen, T. L. & Mohn, W. W. Sensitive, efficient quantitation of 13C-enriched nucleic acids via ultrahigh-performance liquid chromatography-tandem mass spectrometry for applications in stable isotope probing. Appl. Environ. Microbiol. 80, 7206–7211 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    65.De Caceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology, Ecology. 90, 3566–3574 (2009). http://sites.google.com/site/miqueldecaceres/.PubMed 
    Article 

    Google Scholar 
    66.Wilhelm, R. C., Niederberger, T. D., Greer, C. & Whyte, L. G. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can. J. Microbiol. 57, 303–315 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13, 134 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.López-Gutiérrez, J. C. et al. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J. Microbiol. Methods. 57, 399–407 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    69.Markowitz, V. M. et al. IMG/M: A data management and analysis system for metagenomes. Nucleic Acids Res. 36(Suppl. 1), 534–538 (2008).
    Google Scholar 
    70.Martiny, A. C., Treseder, K. & Pusch, G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 7, 830–838 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), 590–596 (2013).Article 
    CAS 

    Google Scholar 
    74.Wickham, H. Elegant graphics for data analysis. Media. 35, 211 (2009).
    Google Scholar 
    75.McMurdie P. J., Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Oksanen J. et al. Vegan: community ecology package. R Packag. 2015;77.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Price M. N., Dehal P. S., Arkin A. P. FastTree 2 – Approximately maximum-likelihood trees for large alignments. PLoS ONE. 5, e9490 (2010).Article 
    CAS 

    Google Scholar 
    79.Wilhelm R. C. et al. Paraburkholderia solitsugae sp. nov. and Paraburkholderia elongata sp. nov., phenolic acid-degrading bacteria isolated from forest soil and emended description of Paraburkholderia madseniana. Int. J. Syst. Evol. Microbiol. 70, 5093–5105 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Chain, P. S. G. et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. PNAS. 103, 15280–15287 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Mason-Jones, K. & Kuzyakov, Y. “Non-metabolizable” glucose analogue shines new light on priming mechanisms: Triggering of microbial metabolism. Soil Biol. Biochem. 107, 68–76 (2017).CAS 
    Article 

    Google Scholar 
    82.Yuan, Y. et al. Exudate components exert different influences on microbially mediated C losses in simulated rhizosphere soils of a spruce plantation. Plant Soil. 419, 127–140 (2017).CAS 
    Article 

    Google Scholar 
    83.Liu, X. J. A. et al. Labile carbon input determines the direction and magnitude of the priming effect. Appl. Soil Ecol. 109, 7–13 (2017).Article 

    Google Scholar 
    84.Sugai, S. F. & Schimel, J. P. Decomposition and biomass incorporation of 14C-labeled glucose and phenolics in taiga forest floor: effect of substrate quality, successional state, and season. Soil Biol. Biochem. 25, 1379–1389 (1993).CAS 
    Article 

    Google Scholar 
    85.Fontaine, S. et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 43, 86–96 (2011).CAS 
    Article 

    Google Scholar 
    86.Zhu, Z. et al. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biol. Biochem. 121, 67–76 (2018).CAS 
    Article 

    Google Scholar 
    87.Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    88.Smirnova, G. V. & Oktyabrsky, O. N. Relationship between Escherichia coli growth rate and bacterial susceptibility to ciprofloxacin. FEMS Microbiol. Lett. 365, 1–6 (2018).Article 
    CAS 

    Google Scholar 
    89.Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66, 1328–1333 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Méndez V., Agulló L., González M., Seeger M. The homogentisate and homoprotocatechuate central pathways are involved in 3- and 4-hydroxyphenylacetate degradation by Burkholderia xenovorans LB400. PLoS ONE. 6, e17583 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Johnson, G. R. & Olsen, R. H. Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Appl. Environ. Microbiol. 63, 4047–4052 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Andreolli, M. et al. Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere. 92, 688–694 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Somtrakoon, K. et al. Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013. World J. Microbiol. Biotechnol. 24, 523–531 (2008).CAS 
    Article 

    Google Scholar 
    94.Chain, P. S. G. et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc. Natl. Acad. Sci. 103, 15280–15287 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Raj, A., Krishna Reddy, M. M. & Chandra, R. Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp. Int. Biodeterior Biodegrad. 59, 292–296 (2007).CAS 
    Article 

    Google Scholar 
    96.Shi, Y. et al. Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst. Eng. 36, 1957–1965 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Moraes, E. C. et al. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnol. Biofuels. 11, 1–16 (2018).CAS 
    Article 

    Google Scholar 
    98.Coenye, T. et al. Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int. J. Syst. Evol. Microbiol. 51, 1099–1107 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Lim, Y. W., Baik, K. S., Han, S. K., Kim, S. B. & Bae, K. S. Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida. Int. J. Syst. Evol. Microbiol. 53, 1631–1636 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Herzog C. et al. Microbial succession on decomposing root litter in a drought-prone Scots pine forest. ISME J. 13, 2346–2362 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Yeoh Y. K. et al. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat. Commun. 8, 215 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    102.Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    103.Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q. & Vivanco, J. M. Application of natural blends of phytochemicals derived from the root exudates of arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404 (2010).CAS 
    Article 

    Google Scholar 
    105.Henning, J. A. et al. Root bacterial endophytes alter plant phenotype, but not physiology. PeerJ. 2016, 1–20 (2016).
    Google Scholar 
    106.Caballero-Mellado, J., Martínez-Aguilar, L., Paredes-Valdez, G., & Estrada-de los Santos, P. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int. J. Syst. Evol. Microbiol. 54, 1165–1172 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Martínez-Aguilar, L. et al. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 104, 1063–1071 (2013).
    Google Scholar 
    108.De Meyer, S. E. et al. Symbiotic and non-symbiotic Paraburkholderia isolated from South African Lebeckia ambigua root nodules and the description of Paraburkholderia fynbosensis sp. Nov. Int. J. Syst. Evol. Microbiol. 68, 2607–2614 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    109.Peeters, C. et al. Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol. 7, 1–19 (2016).
    Google Scholar 
    110.Vandamme, P. et al. Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosph. Int. J. Syst. Evol. Microbiol. 63(PART 12), 4707–4718 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Shiraishi, A., Matsushita, N. & Hougetsu, T. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst. Appl. Microbiol. 33, 269–274 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Thijs, S. et al. Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil. 385, 15–36 (2014).CAS 
    Article 

    Google Scholar 
    113.Mavengere, N. R., Ellis, A. G. & Le Roux, J. J. Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb. Int. J. Syst. Evol. Microbiol. 64(PART 6), 1906–1912 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Blair, P. M. et al. Exploration of the biosynthetic potential of the populus microbiome. mSystems. 3, 1–17 (2018).Article 

    Google Scholar 
    115.Peters, N. K. & Verma, D. P. S. Phenolic compounds as regulators of gene expression in plant-microbe interactions. Mol. Plant-Microbe Interact. 3, 4–8 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 
    Article 

    Google Scholar  More

  • in

    Cold-water species need warm water too

    1.Root, T. L. et al. Nature 421, 57–60 (2003).CAS 
    Article 

    Google Scholar 
    2.Morelli, T. L. et al. Front. Ecol. Environ. 18, 228–234 (2020).Article 

    Google Scholar 
    3.Armstrong, J. B. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-021-00994-y (2021).4.Northcote, T. G. N. Am. J. Fish. Manage. 17, 1029–1045 (1997).Article 

    Google Scholar 
    5.Xu, C., Letcher, B. H. & Nislow, K. H. Freshwater Biol. 55, 2253–2264 (2010).Article 

    Google Scholar 
    6.Schlosser, I. J. BioScience 41, 704–712 (1991).Article 

    Google Scholar 
    7.Al-Chokhachy, R., Alder, J., Hostetler, S., Gresswell, R. & Shepard, B. Glob. Change Biol. 19, 3069–3081 (2013).Article 

    Google Scholar 
    8.Fausch, K. D., Torgersen, C. E., Baxter, C. V. & Li, H. W. BioScience 52, 483–498 (2002).Article 

    Google Scholar 
    9.Muhlfeld, C. C. et al. Science 360, 866–867 (2018).CAS 

    Google Scholar 
    10.Kovach, R. P. et al. Rev. Fish Biol. Fisher. 26, 135–151 (2016).Article 

    Google Scholar 
    11.Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L. & Groce, M. C. Glob. Change Biol. 21, 2540–2553 (2015).Article 

    Google Scholar 
    12.Isaak, D. J. et al. Water Resour. Res. 53, 9181–9205 (2017).Article 

    Google Scholar 
    13.Small-Lorenz, S. L., Culp, L. A., Ryder, T. B., Will, T. C. & Marra, P. P. Nat. Clim. Change 3, 91–93 (2013).Article 

    Google Scholar 
    14.Rieman, B. E. & Dunham, J. B. Ecol. Freshw. Fish 9, 51–64 (2000).Article 

    Google Scholar 
    15.Guzzo, M. M., Blanchfield, P. J. & Rennie, M. D. Proc. Natl Acad. Sci. USA 114, 9912–9917 (2017).CAS 
    Article 

    Google Scholar 
    16.Brennan, S. R. et al. Science 364, 783–786 (2019).CAS 
    Article 

    Google Scholar 
    17.Hauer, F. R. et al. Sci. Adv. 2, e1600026 (2016).Article 

    Google Scholar  More

  • in

    Selective enrichment and metagenomic analysis of three novel comammox Nitrospira in a urine-fed membrane bioreactor

    Bioreactor operation and samplingA continuous-flow MBR made from Plexiglass with a working volume of 12 L was used for enrichment (Supplementary Fig. S1). The reactor was installed with a submerged hollow fiber ultrafiltration membrane module (0.02 μm pore size, Litree, China) with a total membrane surface area of 0.03 m2. A level control system was set up to prevent liquid overflowing. The reactor was fed with diluted real urine with Total Kjeldahl Nitrogen (TKN) concentration of 140–405 mg N L−1 (for detailed influent composition see Supplementary Table S1). Initially, the reactor was inoculated with activated sludge taken from the aeration tank of a municipal wastewater treatment plant (Tsinghua Campus Water Reuse). The pH was maintained at 6.0 ± 0.1 by adding 1 M NaOH to buffer acidification by ammonia oxidation. The airflow was controlled at 2 L min−1, leading to the dissolved oxygen (DO) concentration above 4 mg O2 L−1 as regularly measured by a DO probe (WTW Multi 3420). The airflow also served to wash the membrane and mix the liquid. The temperature was controlled at 22–25 °C. The initial hydraulic retention time (HRT) was 3 days and was decreased to 1.5 days on day 222. The sludge retention time (SRT) was infinite as no biomass was discharged.The MBR was operated for 490 days. During this period, influent and effluent samples (10 mL each) were collected 1–3 times per week and used to determine the concentrations of TKN, total nitrite nitrogen (TNN = NO2−-N + HNO2-N), and nitrate nitrogen, according to standard methods.19 Mixed liquid samples (25 mL) were also taken weekly to measure mixed-liquor suspended solids (MLSS) and mixed-liquor volatile suspended solids (MLVSS).19 Biomass samples (10 mL) were regularly taken for qPCR and microbial community analyses (see below).Batch testsIn order to test urea hydrolysis and subsequent nitrification in the enrichment culture, short-term incubations were performed in a cylindrical batch reactor (8 ×18.5 cm [d × h], made from Plexiglass). 150 mL biomass was sampled from the reactor and washed three times in 1 x PBS buffer to remove any remaining nitrogen source. Subsequently, the biomass was resuspended in a 400 mL growth medium, which contained urea (about 40 mg N L−1), NaHCO3 (120 mg L−1), and 2 mL Hunter’s trace elements stock. Dissolved oxygen was controlled above 4 mg O2 L−1. Biotic and abiotic controls were performed under identical conditions with NH4Cl (~40 mg N L−1) instead of urea. The pH in all batch assays was maintained at 6.0 ± 0.1 by adding 1 M HCl or NaOH. According to the microbial activities during long-term operation, each batch assay lasted 6 to 8 h, and samples (5 mL) were taken every 20 to 60 min. Biomass was removed by sterile syringe filter (0.45 μm pore size, JINTENG, China), and urea, ammonium, nitrite, and nitrate concentrations were determined as described above. All experiments were performed in triplicate.DNA extractionBiomass (2 mL) for DNA extraction was collected on days 0, 53, 98, 131, 161, 189, 210, 238, 266, 301, 321, 358, 378, 449, and 471. DNA was extracted using the FastDNA™ SPIN Kit for Soil (MP Biomedicals, CA, U.S.) according to the manufacturer’s protocols. DNA purity and concentration were examined using agarose gel electrophoresis and spectrophotometrically on a NanoDrop 2000 (ThermoFisher Scientific, Waltham, MA, USA).16S rRNA gene amplicon sequencing and data analysisThe V4-V5 region of the 16 S rRNA gene was amplified using the universal primers 515F (5′-barcode-GTGCCAGCMGCCGCGG-3′) and 907 R (5′-CCGTCAATTCMTTTRAGTTT-3′).20 PCR products were purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) according to manufacturer’s instructions and quantified using the QuantiFluor™ -ST (Promega, USA). Amplicons were pooled in equimolar concentrations and sequenced using the Illumina MiSeq PE3000 sequencer as per the manufacturer’s protocol. Amplicon sequences were demultiplexed and quality filtered using QIIME (version 1.9.1).21 Reads 10 bp were assembled. UPARSE (version 7.0.1090 http://drive5.com/uparse/) was used to cluster operational units (OTUs) on a 97% similarity cut-off level, and UCHIME to identify and remove chimeric sequences. The taxonomy of each 16S rRNA gene sequence was assigned by the RDP Classifier algorithm (http://rdp.cme.msu.edu/) according to the SILVA (SSU132) 16S rRNA database using a confidence threshold of 70%.Quantification of various amoA by qPCRTo quantify the abundances of comammox Nitrospira, AOB and AOA in the bioreactor, qPCR targeting the functional marker gene amoA was performed on DNA extracted from the bioreactor at different time points. We used the specific primers Ntsp-amoA 162F/359R amplifying comammox Nitrospira clades A and clade B simultaneously,12 Arch-amoAF/amoAR targeting AOA amoA,22 and amoA-1F/amoA-2R for AOB amoA.23 Reactions were conducted on a Bori 9600plus fluorescence quantitative PCR instrument using previously reported thermal profiles (Supplementary Table S2). Triplicate PCR assays were performed the appropriately diluted samples (10–30 ng μL−1) and 10-fold serially diluted plasmid standards as described by Guo et al.24. Plasmid standards containing the different amoA variants were obtained by TA-cloning with subsequent plasmid DNA extraction using the Easy Pure Plasmid MiniPrep Kit (TransGen Biotech, China). Standard curves covered three to eight orders of magnitude with R2 greater than 0.999. The efficiency of qPCR was about 95%.Library construction and metagenomic sequencingThe extracted DNA was fragmented to an average size of about 400 bp using Covaris M220 (Gene Company Limited, China) for paired-end library construction. A paired-end library was constructed using NEXTFLEX Rapid DNA-Seq (Bioo Scientific, Austin, TX, USA). Adapters containing the full complement of sequencing primer hybridization sites were ligated to the blunt-end of fragments. Paired-end sequencing was performed on Illumina NovaSeq PE150 (Illumina Inc., San Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) using NovaSeq Reagent Kits according to the manufacturer’s instructions (www.illumina.com).Metagenomic assembly and genome binningRaw metagenomic sequencing reads (in PE150 mode) were trimmed and quality filtered with in-house Perl scripts as described previously.25 Briefly, duplicated reads caused by the PCR bias during the amplification step were dereplicated. Reads were eliminated if both paired-end reads contained >10% ambiguous bases (that is, “N”). Low-quality bases with phred values 2.5 kbp were retained for later analysis. Genome binning was conducted for each sample using sequencing depth and tetranucleotide frequency. To calculate coverage, high-quality reads from all samples were mapped to the contigs using BBMap v38.85 (http://sourceforge.net/projects/bbmap/) with minimal identity set to 90%. The generated bam files were sorted using samtools v1.3.1.27 Then, sequencing depth was calculated using the script “jgi_summarize_bam_contig_depths” in MetaBAT.28 Metagenome-assembled genomes (MAGs) were obtained in MetaBAT. MAG quality, including completeness, contamination, and heterogeneity, was estimated using CheckM v1.0.12.29 To optimize the MAGs, emergent self-organizing maps30 were used to visualize the bins, and contigs with abnormal coverage or discordant tetranucleotide frequencies were removed manually. Finally, all MAGs were reassembled using SPAdes with the following parameters: –careful –k 21,33,55,77,99,127. The reads used for reassembly were recruited by mapping all high-quality reads to each MAG using BBMap with the same parameter settings as described above.Functional annotation of metagenomic assemblies and metagenome-assembled genomesGene calling was conducted for the complete metagenomic assemblies and all retrieved MAGs using Prodigal v2.6.3.31 For the MAGs, predicted protein-coding sequences (CDSs) were subsequently aligned to a manually curated database containing amoCAB, hao, and nxrAB genes collected from public database using DIAMOND v0.7.9 (E-values < 1e−5 32) MAGs found to contain all these genes were labeled as comammox Nitrospira MAGs and kept for later analysis. Functional annotations were obtained by searching all CDSs in the complete metagenomic assemblies and the retrieved MAGs against the NCBI-nr, eggNOG, and KEGG databases using DIAMOND (E-values < 1e−5).Phylogenetic analysisPhylogenomic treeThe taxonomic assignment of the three identified comammox Nitrospira MAGs was determined using GTDB-tk v0.2.2.33 To reveal the phylogenetic placement of these MAGs within the Nitrospirae, 296 genomes from this phylum were downloaded from the NCBI-RefSeq database. The download genomes were dereplicated using dRep v2.3.234 (-con 10 -comp 80) to reduce the complexity and redundancy of the phylogenetic tree, which resulted in the removal of 166 genomes. In the remaining genomes, the three comammox Nitrospira MAGs and 25 genomes from phylum Thermotogae which were treated as outgroups, a set of 16 ribosomal proteins were identified using AMPHORA2.35 Each gene set was aligned separately using MUSCLE v3.8.31 with default parameters,36 and poorly aligned regions were filtered by TrimAl v1.4.rev22 (-gt 0.95 –cons 5037) The individual alignments of the 16 marker genes were concatenated, resulting in an alignment containing 118 species and 2665 amino acid positions. Subsequently, the best phylogenetic model LG + F + R8 was determined using ModelFinder38 integrated into IQ-tree v1.6.10.39 Finally, a phylogenetic tree was reconstructed using IQ-tree with the following options: -bb 1000 –alrt 1000. The generated tree in newick format was visualized by iTOL v3.40 amoA treeReference amoA sequences of AOB, AOA, and comammox Nitrospira were obtained from NCBI. Together with the amoA genes from the present study, all sequences were aligned and trimmed as described above. IQ-tree was used to generate the phylogenetic tree, with “LG + G4” determined as the best model.ureABC gene treeureABC gene sequences detected in this study were extracted and used to build a database using “hmmbuild” command in HMMER.41 ureABC gene sequences from genomes in NCBI-RefSeq database (downloaded on July 1st, 2019) were identified by searching against the built database using AMPHORA2. The same procedures as above were conducted to construct the phylogenetic tree of concatenated ureABC genes, except for the sequence collection step. To reduce the complexity of the phylogenetic tree, the alignment of concatenated ureABC genes was clustered using CD-HIT42 with the following parameters: -aS 1 -c 0.8 -g 1. Only representative sequences were kept for phylogeny reconstruction, which resulted in an alignment containing 858 sequences and 1263 amino acids positions. “LG + R10” was determined as the best model and used to build the phylogenetic tree. Regarding the Nitrospirae-specific ureABC gene tree, ureABC gene sequences were recruited from the genomes as described above, but without the sequence clustering step. The final Nitrospirae-specific phylogeny of ureABC genes was built on an alignment containing 62 sequences and 1015 amino acid positions with “LG + F + I + G4” as the best model. More

  • in

    Biodiversity and the challenge of pluralism

    1.Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Summary for Policymakers of the Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) (IPBES secretariat, 2019).2.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Article 
    CAS 

    Google Scholar 
    3.Adams, W. M. Against Extinction: The Story of Conservation (Earthscan, 2004).4.Escobar, A. Whose knowledge, whose nature? Biodiversity, conservation, and the political ecology of social movements. J. Polit. Ecol. 5, 53–82 (1998).
    Google Scholar 
    5.Meine, C., Soulé, M. & Noss, R. F. A mission-driven discipline: the growth of conservation biology. Conserv. Biol. 20, 631–651 (2006).Article 

    Google Scholar 
    6.Sandbrook, C., Fisher, J. A., Holmes, G., Luque-Lora, R. & Keane, A. The global conservation movement is diverse but not divided. Nat. Sustain. 2, 316–323 (2019).Article 

    Google Scholar 
    7.Takacs, D. The Idea of Biodiversity: Philosophies of Paradise (Johns Hopkins Univ. Press, 1996).8.Garland, E. The elephant in the room: confronting the colonial character of wildlife conservation in Africa. Afr. Stud. Rev 51, 51–74 (2008).Article 

    Google Scholar 
    9.Thekaekara, T. Botswana elephants episode: there’s a colonial underpinning to conservation. DownToEarth (22 July 2020); https://www.downtoearth.org.in/blog/wildlife-and-biodiversity/botswana-elephants-episode-there-s-a-colonial-underpinning-to-conservation-7242910.Cronon, W. et al. Uncommon Ground: Toward Reinventing Nature (WW Norton & Company, 1995).
    Google Scholar 
    11.Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).CAS 
    Article 

    Google Scholar 
    12.Brockington, D., Duffy, R. & Igoe, J. Nature Unbound: Conservation, Capitalism and the Future of Protected Areas (Earthscan, 2008).13.Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).CAS 
    Article 

    Google Scholar 
    14.Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).Article 

    Google Scholar 
    15.Lele, S., Springate-Baginski, O., Lakerveld, R., Deb, D. & Dash, P. Ecosystem services: origins, contributions, pitfalls, and alternatives. Conserv. Soc. 11, 343–358 (2013).Article 

    Google Scholar 
    16.Martin, J.-L., Maris, V. & Simberloff, D. S. The need to respect nature and its limits challenges society and conservation science. Proc. Natl Acad. Sci. USA 113, 6105–6112 (2016).CAS 
    Article 

    Google Scholar 
    17.Díaz, S. et al. The IPBES Conceptual Framework: connecting nature and people. Curr. Opin. Environ. Sustain 14, 1–16 (2015).Article 

    Google Scholar 
    18.Turnhout, E., Waterton, C., Neves, K. & Buizer, M. Rethinking biodiversity: from goods and services to ‘living with’. Conserv. Lett. 6, 154–161 (2013).Article 

    Google Scholar 
    19.Kenter, J. O. et al. Loving the mess: navigating diversity and conflict in social values for sustainability. Sustain. Sci. 14, 1439–1461 (2019).Article 

    Google Scholar 
    20.Lele, S. From wildlife-ism to ecosystem-service-ism to a broader environmentalism. Environ. Conserv. https://doi.org/10.1017/S0376892920000466 (2020).21.Muradian, R. & Pascual, U. A typology of elementary forms of human-nature relations: a contribution to the valuation debate. Curr. Opin. Environ. Sustain 35, 8–14 (2018).Article 

    Google Scholar 
    22.Robertson, D. P. & Hull, R. B. Beyond biology: toward a more public ecology for conservation. Conserv. Biol. 15, 970–979 (2001).Article 

    Google Scholar 
    23.Tallis, H. & Lubchenco, J. Working together: a call for inclusive conservation. Nature 515, 27 (2014).CAS 
    Article 

    Google Scholar 
    24.Kareiva, P. M., Marvier, M. & Silliman, B. Effective Conservation Science: Data Not Dogma (Oxford Univ. Press, 2018).25.Wilshusen, P. R., Brechin, S. R., Fortwangler, C. L. & West, P. C. Reinventing a square wheel: critique of a resurgent “protection paradigm” in international biodiversity conservation. Soc. Nat. Resour. 15, 17–40 (2002).Article 

    Google Scholar 
    26.Turnhout, E. The politics of environmental knowledge. Conserv. Soc. 16, 363–371 (2018).Article 

    Google Scholar 
    27.Louder, E. & Wyborn, C. Biodiversity narratives: stories of the evolving conservation landscape. Environ. Conserv. 47, 251–259 (2020).Article 

    Google Scholar 
    28.Gadgil, M., Seshagiri Rao, P., Utkarsh, G., Pramod, P. & Chhatre, A. New meanings for old knowledge: the people’s biodiversity registers program. Ecol. Appl. 10, 1307–1317 (2000).Article 

    Google Scholar 
    29.Buijs, A. E., Fischer, A., Rink, D. & Young, J. C. Looking beyond superficial knowledge gaps: understanding public representations of biodiversity. Int. J. Biodivers. Sci. Manag. 4, 65–80 (2008).Article 

    Google Scholar 
    30.Wyborn, C. et al. An agenda for research and action towards diverse and just futures for life on Earth. Conserv. Biol. https://doi.org/10.1111/cobi.13671 (2020).31.Wyborn, C. et al. Imagining transformative biodiversity futures. Nat. Sustain. 3, 670–672 (2020).Article 

    Google Scholar 
    32.Samper, C. Planetary boundaries: rethinking biodiversity. Nat. Clim. Change 1, 118–119 (2009).Article 

    Google Scholar 
    33.Mayer, P. Biodiversity: the appreciation of different thought styles and values helps to clarify the term. Restor. Ecol. 14, 105–111 (2006).Article 

    Google Scholar 
    34.Morar, N., Toadvine, T. & Bohannan, B. J. Biodiversity at twenty-five years: revolution or red herring? Ethics Policy Environ. 18, 16–29 (2015).Article 

    Google Scholar 
    35.Purvis, A. et al. in Global Assessment Report on Biodiversity and Ecosystem Services (eds Brondízio, E. S. et al.) Ch. 2.2 (Secretariat of the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services, 2019).36.Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).37.Perrings, C. Our Uncommon Heritage: Biodiversity Change, Ecosystem Services, and Human Well-Being (Cambridge Univ. Press, 2014).38.Gowdy, J. M. The value of biodiversity: markets, society, and ecosystems. Land Econ. 73, 25–41 (1997).Article 

    Google Scholar 
    39.Keulartz, J. Boundary work in ecological restoration. Environ. Phil. 6, 35–55 (2009).Article 

    Google Scholar 
    40.Chan, K. M. et al. Why protect nature? Rethinking values and the environment. Proc. Natl Acad. Sci. USA 113, 1462–1465 (2016).CAS 
    Article 

    Google Scholar 
    41.Descola, P. The Ecology of Others (Prickly Paradigm, 2013).42.Raffles, R. Intimate knowledge. Int. Soc. Sci. J. 54, 325–335 (2002).Article 

    Google Scholar 
    43.Tengö, M., Brondizio, E. S., Elmqvist, T., Malmer, P. & Spierenburg, M. Connecting diverse knowledge systems for enhanced ecosystem governance: the multiple evidence base approach. AMBIO 43, 579–591 (2014).Article 

    Google Scholar 
    44.Zafra-Calvo, N. et al. Plural valuation of nature for equity and sustainability: insights from the Global South. Glob. Environ. Change 63, 102115 (2020).Article 

    Google Scholar 
    45.Lele, S., Wilshusen, P., Brockington, D., Seidler, R. & Bawa, K. Beyond exclusion: alternative approaches to biodiversity conservation in the developing tropics. Curr. Opin. Environ. Sustain. 2, 94–100 (2010).Article 

    Google Scholar 
    46.Pascual, U. et al. Social equity matters in payments for ecosystem services. BioScience 64, 1027–1036 (2014).Article 

    Google Scholar 
    47.Wunder, S. et al. From principles to practice in paying for nature’s services. Nat. Sustain. 1, 145–150 (2018).Article 

    Google Scholar 
    48.Büscher, B. et al. Half-Earth or whole Earth? Radical ideas for conservation, and their implications. Oryx 51, 407–410 (2017).Article 

    Google Scholar 
    49.Adams, W. M. in The Anthropology of Sustainability, Palgrave Studies in Anthropology of Sustainability (eds Brightman, M. & Lewis, J.) 111–126 (Palgrave Macmillan, 2017).50.Vatn, A. An institutional analysis of methods for environmental appraisal. Ecol. Econ. 68, 2207–2215 (2009).Article 

    Google Scholar 
    51.Büscher, B., Sullivan, S., Neves, K., Igoe, J. & Brockington, D. Towards a synthesized critique of neoliberal biodiversity conservation. Capital. Nat. Social. 23, 4–30 (2012).Article 

    Google Scholar 
    52.Lliso, B., Mariel, P., Pascual, U. & Engel, S. Increasing the credibility and salience of valuation through deliberation: lessons from the Global South. Glob. Environ. Change 62, 102065 (2020).Article 

    Google Scholar 
    53.Rudel, T. K., Defries, R., Asner, G. P. & Laurance, W. F. Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. 23, 1396–1405 (2009).Article 

    Google Scholar 
    54.Mazor, T. et al. Global mismatch of policy and research on drivers of biodiversity loss. Nat. Ecol. Evol. 2, 1071–1074 (2018).Article 

    Google Scholar 
    55.Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).CAS 
    Article 

    Google Scholar 
    56.Folke, C. et al. Transnational corporations and the challenge of biosphere stewardship. Nat. Ecol. Evol. 3, 1396–1403 (2019).Article 

    Google Scholar 
    57.Ceddia, M. G. Investments’ role in ecosystem degradation. Science 368, 377–377 (2020).
    Google Scholar 
    58.Neumann, R. P. Moral and discursive geographies in the war for biodiversity in Africa. Polit. Geogr. 23, 813–837 (2004).Article 

    Google Scholar 
    59.Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).CAS 
    Article 

    Google Scholar 
    60.Svarstad, H., Petersen, L. K., Rothman, D., Siepel, H. & Wätzold, F. Discursive biases of the environmental research framework DPSIR. Land Use Policy 25, 116–125 (2008).Article 

    Google Scholar 
    61.Gari, S. R., Newton, A. & Icely, J. D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manage. 103, 63–77 (2015).Article 

    Google Scholar 
    62.Muradian, R. et al. Payments for ecosystem services and the fatal attraction of win-win solutions. Conserv. Lett. 6, 274–279 (2013).Article 

    Google Scholar 
    63.Otero, I. et al. Biodiversity policy beyond economic growth. Conserv. Lett. 13, e12713 (2020).Article 

    Google Scholar 
    64.Nielsen, J. Ø. et al. Toward a normative land systems science. Curr. Opin. Environ. Sustain. 38, 1–6 (2019).Article 

    Google Scholar 
    65.Lele, S. & Kurien, A. Interdisciplinary analysis of the environment: insights from tropical forest research. Environ. Conserv. 38, 211–233 (2011).Article 

    Google Scholar 
    66.West, S., Haider, L. J., Stålhammar, S. & Woroniecki, S. A relational turn for sustainability science? Relational thinking, leverage points and transformations. Ecosyst. People 16, 304–325 (2020).Article 

    Google Scholar 
    67.Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).CAS 
    Article 

    Google Scholar 
    68.Jacobs, S. et al. Use your power for good: plural valuation of nature – the Oaxaca statement. Glob. Sustain. 3, e8 (2020).Article 

    Google Scholar 
    69.Turnhout, E., Tuinstra, W. & Halffman, W. Environmental Expertise: Connecting Science, Policy and Society (Cambridge Univ. Press, 2019).70.Saberwal, V. & Chhatre, A. Democratizing Nature: Politics, Conservation, and Development in India (Oxford Univ. Press, 2006). More

  • in

    Revisiting the rules of life for viruses of microorganisms

    1.Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).Article 

    Google Scholar 
    2.Bergh, O., Børsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Cai, L. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 13, 1857–1864 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Reyes, A., Semenkovich, N. P., Whiteson, K., Rohwer, F. & Gordon, J. I. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat. Rev. Microbiol. 10, 607–617 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Vega Thurber, R. L., Payet, J. P., Thurber, A. R. & Correa, A. M. S. Virus-host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216 (2017).Article 
    CAS 

    Google Scholar 
    8.Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea. Bioscience 49, 781–788 (1999). Seminal work modelling how viral activity in the oceans prevents up to a quarter of organic matter from being exported to higher trophic levels; instead, this matter is recycled (by viral lysis) into a form that can be assimilated by microorganisms.Article 

    Google Scholar 
    10.Calendar, R. L. The Bacteriophages 2nd edn (Oxford University Press, 2005).11.Sullivan, M. B., Weitz, J. S. & Wilhelm, S. W. Viral ecology comes of age. Environ. Microbiol. Rep. 9, 33–35 (2017).PubMed 
    Article 

    Google Scholar 
    12.Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, e08490 (2015).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    13.Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016). An in silico catalogue of the diversity of viruses on Earth that serves as the foundation for the Joint Genome Institute’s growing IMG/VR database.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Stough, J. M. A. et al. Diversity of active viral infections within the Sphagnum microbiome. Applied Environ. Microbiol. https://doi.org/10.1128/AEM.01124-18 (2018).Article 

    Google Scholar 
    16.Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123.e1114 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.De Corte, D. et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01801 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Jang, H. B. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).Article 
    CAS 

    Google Scholar 
    19.Roux, S. A viral ecogenomics framework to uncover the secrets of nature’s “microbe whisperers”. mSystems 4, e00111–e00119 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Hobbs, Z. & Abedon, S. T. Diversity of phage infection types and associated terminology: the problem with ‘lytic or lysogenic’. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw047 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Hay, I. D. & Lithgow, T. Filamentous phages: masters of a microbial sharing economy. EMBO Reports 20, e47427 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.McLeod, S. M., Kimsey, H. H., Davis, B. M. & Waldor, M. K. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol. Microbiol. 57, 347–356 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Howard-Varona, C. et al. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J. 11, 284–295 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Howard-Varona, C. et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 12, 1605–1618 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Kirzner, S., Barak, E. & Lindell, D. Variability in progeny production and virulence of cyanophages determined at the single-cell level. Environ. Microbiol. Rep. 8, 605–613 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 17, 930 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Holmfeldt, K. et al. Large‐scale maps of variable infection efficiencies in aquatic Bacteroidetes phage‐host model systems. Environ. Microbiol. 18, 3949–3961 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Zborowsky, S. & Lindell, D. Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1906897116 (2019). A meticulous investigation revealing that cyanobacteria defend against specialist phages by blocking their entry, whereas generalist phage infections are arrested intracellularly; thus generalist phages may be more common agents of horizontal gene transfer and co-infection.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Lwoff, A. Lysogeny. Bacteriol. Rev. 17, 269–337 (1953).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Abedon, S. T. The murky origin of Snow White and her T-even dwarfs. Genetics 155, 481–486 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Demerec, M. & Fano, U. Bacteriophage-resistant mutants in Escherichia coli. Genetics 30, 119–136 (1945).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Bronfenbrenner, J. J. & Korb, C. Studies on the bacteriophage of d’Herelle: I. Is the lytic principle volatile? J. Exp. Med. 41, 73–79 (1925).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Kourilsky, P. & Knapp, A. Lysogenization by bacteriophage lambda: III. – Multiplicity dependent phenomena occuring upon infection by lambda. Biochimie 56, 1517–1523 (1975).Article 

    Google Scholar 
    36.St-Pierre, F. & Endy, D. Determination of cell fate selection during phage lambda infection. Proc. Natl Acad. Sci. USA 105, 20705 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Zeng, L. et al. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141, 682–691 (2010). Re-examination of the phage λ decision switch via single-cell tracking of infection fates, revealing how increasing cellular multiplicity of infection increases the stochastic tendency towards lysogeny after infection.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Trinh, J. T., Székely, T., Shao, Q., Balázsi, G. & Zeng, L. Cell fate decisions emerge as phages cooperate or compete inside their host. Nat. Commun. 8, 14341 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Joh, R. I. & Weitz, J. S. To lyse or not to lyse: Transient-mediated stochastic fate determination in cells infected by bacteriophages. PLOS Comput. Biol. 7, e1002006 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Fillol-Salom, A. et al. Bacteriophages benefit from generalized transduction. PLOS Pathog. 15, e1007888 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Howard-Varona, C. et al. Fighting fire with fire: phage potential for the treatment of E. coli O157 infection. Antibiotics 7, 101 (2018).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    42.Pratama, A. A. & van Elsas, J. D. A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437. Sci. Rep. 7, 9156 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Jiang, S. C. & Paul, J. H. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar. Ecol. Prog. Ser. 104, 163–172 (1994).Article 

    Google Scholar 
    44.Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016). Demonstration that lysogenic activity is favoured in low-productivity polar months (and lytic activity is favoured in high-productivity months), providing support for decades-old ecological hypotheses on the link between abiotic factors and viral strategies.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Levin, R. A., Voolstra, C. R., Weynberg, K. D. & van Oppen, M. J. H. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 11, 808–812 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Vega Thurber, R. L. et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc. Natl Acad. Sci. USA 105, 18413–18418 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Correa, A. M. S. et al. Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front. Microbiol. 7, 127 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Lawrence, S. A., Davy, J. E., Aeby, G. S., Wilson, W. H. & Davy, S. K. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss. Coral Reefs 33, 687–691 (2014).Article 

    Google Scholar 
    49.Lawrence, S. A., Floge, S. A., Davy, J. E., Davy, S. K. & Wilson, W. H. Exploratory analysis of Symbiodinium transcriptomes reveals potential latent infection by large dsDNA viruses. Environ. Microbiol. 19, 3909–3919 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Weynberg, K. D. et al. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs 36, 773–784 (2017).Article 

    Google Scholar 
    51.Ptashne, M. et al. How the λ repressor and cro work. Cell 19, 1–11 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Warwick-Dugdale, J., Buchholz, H. H., Allen, M. J. & Temperton, B. Host-hijacking and planktonic piracy: how phages command the microbial high seas. Virol. 16, 15 (2019).Article 

    Google Scholar 
    53.Silpe, J. E. & Bassler, B. L. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176, 268–280.e213 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Erez, Z. et al. Communication between viruses guides lysis–lysogeny decisions. Nature 541, 488 (2017). Demonstration that viruses can ‘communicate’ to decide between lysis and lysogeny by co-opting a host system: extracellular release of small peptides.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Stokar-Avihail, A., Tal, N., Erez, Z., Lopatina, A. & Sorek, R. Widespread utilization of peptide communication in phages infecting soil and pathogenic bacteria. Cell Host Microbe 25, 746–755 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Ofir, G. & Sorek, R. Contemporary phage biology: from classic models to new insights. Cell 172, 1260–1270 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.McNamara, J. M. & Houston, A. I. State-dependent life histories. Nature 380, 215–221 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Tan, D. et al. High cell densities favor lysogeny: induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum. ISME J. 14, 1731–1742 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Pleška, M., Lang, M., Refardt, D., Levin, B. R. & Guet, C. C. Phage–host population dynamics promotes prophage acquisition in bacteria with innate immunity. Nat. Ecol. Evol 2, 359–366 (2018).PubMed 
    Article 

    Google Scholar 
    60.Güemes, A. G. C. et al. Viruses as winners in the game of life. Annu. Rev. Virol. 3, 197–214 (2016).Article 
    CAS 

    Google Scholar 
    61.Stewart, F. M. & Levin, B. R. The population biology of bacterial viruses: why be temperate. Theor. Popul. Biol. 26, 93–117 (1984). A seminal article that lays out key pressure points that should dictate temperate phage biology.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Lipsitch, M., Siller, S. & Nowak, M. A. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 50, 1729–1741 (1996).PubMed 
    Article 

    Google Scholar 
    63.Frank, S. A. Models of parasite virulence. Q. Rev. Biol. 71, 37–78 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. https://doi.org/10.1093/ve/vez006 (2019). Theoretical study that examines the impact of ecological factors on the proliferation of viruses, enabled by a cell-centric (rather than a particle-centric) view of viral invasion fitness.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Li, G., Cortez, M. H., Dushoff, J. & Weitz, J. S. When to be temperate: on the fitness benefits of lysis vs. lysogeny. Virus Evol. https://doi.org/10.1093/ve/veaa042 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Berngruber, T. W., Froissart, R., Choisy, M. & Gandon, S. Evolution of virulence in emerging epidemics. PLOS Pathog. 9, e1003209 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Wahl, L. M., Betti, M. I., Dick, D. W., Pattenden, T. & Puccini, A. J. Evolutionary stability of the lysis-lysogeny decision: Why be virulent? Evolution 73, 92–98 (2019).CAS 
    PubMed 

    Google Scholar 
    68.Coy, S. R., Alsante, A. N., Van Etten, J. L. & Wilhelm, S. W. Cryopreservation of Paramecium bursaria Chlorella virus-1 during an active infection cycle of its host. PLoS ONE 14, e0211755 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Godfrey-Smith, P. in Individuals Across the Sciences (eds Guay, A. & T. Pradeu, T.) (Oxford University Press, 2015).70.Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233 (2013). Proposes the virocell concept, which argues that a given cell represents distinct entities when infected versus uninfected by a virus, providing a non-lytic mechanism by which viruses can significantly alter biogeochemical cycles.CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Rosenwasser, S., Ziv, C., van Creveld, S. G. & Vardi, A. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol. 24, 821–832 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Forterre, P. (ed.) Virocell Concept, The. In eLS https://doi.org/10.1002/9780470015902.a0023264 (2012).74.Diekmann, O., Heesterbeek, H. & Britton, T. Mathematical Tools for Understanding Infectious Disease Dynamics. 1st edn, 517 (Princeton University Press, 2012).75.Diekmann, O., Heesterbeek, J. A. P. & Metz, J. A. J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Diekmann, O., Heesterbeek, J. A. P. & Roberts, M. G. The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7, 873–885 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.van den Driessche, P. & Watmough, J. in Mathematical Epidemiology. Lecture Notes in Mathematics Vol. 1945 (eds Brauer, F., van den Driessche, P. & Wu, J.) 159–178 (Springer, 2008).78.Gandon, S., Day, T., Metcalf, C. J. E. & Grenfell, B. T. Forecasting epidemiological and evolutionary dynamics of infectious diseases. Trends Ecol. Evol. 31, 776–788 (2016).PubMed 
    Article 

    Google Scholar 
    79.Roossinck, M. J. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9, 99–108 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Bondy-Denomy, J. & Davidson, A. R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Nanda, A. M., Thormann, K. & Frunzke, J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J. Bacteriol. 197, 410 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Obeng, N., Pratama, A. A. & Elsas, J. D. V. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24, 440–449 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symposia Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    84.Taylor, V. L., Fitzpatrick, A. D., Islam, Z. & Maxwell, K. L. The diverse impacts of phage morons on bacterial fitness and virulence. Adv. Virus Res. 103, 1–31 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Hendrix, R. W., Lawrence, J. G., Hatfull, G. F. & Casjens, S. The origins and ongoing evolution of viruses. Trends Microbiol. 8, 504–508 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Casjens, S. R. & Hendrix, R. W. Bacteriophage lambda: early pioneer and still relevant. Virology 479-480, 310–330 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Fortier, L. C. & Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4, 354–365 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Harrison, E. & Brockhurst, M. A. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays 39, 1700112 (2017).Article 

    Google Scholar 
    89.Berngruber, T. W., Weissing, F. J. & Gandon, S. Inhibition of superinfection and the evolution of viral latency. J. Virol. 4, 10200–10208 (2010).Article 
    CAS 

    Google Scholar 
    90.Susskind, M. M., Botstein, D. & Wright, A. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium: III. Failure of superinfecting phage DNA to enter sieA+ lysogens. Virology 62, 350–366 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Dodd, I. B., Shearwin, K. E. & Egan, J. B. Revisited gene regulation in bacteriophage lambda. Curr. Opin. Genet. Dev. 15, 145–152 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Díaz-Muñoz, S. L. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments. Virus Evol. 3, vex011 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    96.Weitz, J. S., Beckett, S. J., Brum, J. R., Cael, B. B. & Dushoff, J. Lysis, lysogeny and virus-microbe ratios. Nature 549, E1–E3 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Knowles, B. & Rohwer, F. Knowles & Rohwer reply. Nature 549, E3–E4 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Wagner, P. L. & Waldor, M. K. Bacteriophage control of bacterial virulence. Infect. Immun. 70, 3985–3993 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Erickson, A. K. et al. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host Microbe 23, 77–88.e75 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Davies, E. V., Winstanley, C., Fothergill, J. L. & James, C. E. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw015 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Schroven, K., Aertsen, A. & Lavigne, R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuaa041 (2020).Article 

    Google Scholar 
    102.Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Matsuda, M. & Barksdale, L. Phage-directed synthesis of diphtherial toxin in non-toxinogenic Corynebacterium diphtheriae. Nature 210, 911–913 (1966).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.O’Brien, A. D. et al. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226, 694 (1984).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Gerlach, D. et al. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature 563, 705–709 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Jahn, M. T. et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 26, 542–550.e545 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Weynberg, K. D., Voolstra, C. R., Neave, M. J., Buerger, P. & Van Oppen, M. J. H. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5, 17889 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Menouni, R., Hutinet, G., Petit, M. A. & Ansaldi, M. Bacterial genome remodeling through bacteriophage recombination. FEMS Microbiol. Lett. 362, 1–10 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    109.Feiner, R. et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13, 641–650 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Duerkop, B. A., Clements, C. V., Rollins, D., Rodrigues, J. L. M. & Hooper, L. V. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc. Natl Acad. Sci. USA 109, 17621–17626 (2012). Demonstrates that temperate virus infections (including those derived from distinct, spatially separated prophage elements) can ‘make winners’ out of their hosts by providing the hosts with competitive advantages.CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Gama, J. A. et al. Temperate bacterial viruses as double-edged swords in bacterial warfare. PLoS ONE https://doi.org/10.1371/journal.pone.0059043 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Davies, E. V. et al. Temperate phages enhance pathogen fitness in chronic lung infection. ISME J. 10, 2553–2555 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Bossi, L., Fuentes, J. A., Mora, G. & Figueroa-Bossi, N. Prophage contribution to bacterial population dynamics. J. Bacteriol. 185, 6467–6471 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Basso, J. T. R. et al. Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects. ISME J. 14, 1688–1700 (2020). Demonstrates that two genetically similar, but incompatible, temperate phages that lysogenize the same Roseobacter host can impart distinct physiological traits on that host; thus, each makes its host ‘the winner’ under different environmental conditions.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.Li, X. Y. et al. Temperate phages as self-replicating weapons in bacterial competition. J. R. Soc. Interface https://doi.org/10.1098/rsif.2017.0563 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    116.Weitz, J. S. et al. Phage-bacteria infection networks. Trends Microbiol. 21, 82–91 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    117.Dang, V., Howard-Varona, C., Schwenck, S. & Sullivan, M. B. Variably lytic infection dynamics of large Bacteroidetes podovirus phi38:1 against two Cellulophaga baltica host strains. Environ. Microbiol. 17, 4659–4671 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    118.Holmfeldt, K., Howard-Varona, C., Solonenko, N. & Sullivan, M. B. Contrasting genomic patterns and infection strategies of two co-existing Bacteroidetes podovirus genera. Environ. Microbiol. 16, 2501–2513 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    119.Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host–phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    120.Parmar, K. M., Gaikwad, S. L., Dhakephalkar, P. K., Kothari, R. & Singh, R. P. Intriguing interaction of bacteriophage-host association: an understanding in the era of omics. Front. Microbiol. 8, 559 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.Flores, C. O., Valverde, S. & Weitz, J. S. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 7, 520 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Koskella, B. & Meaden, S. Understanding bacteriophage specificity in natural microbial communities. Viruses 5, 806–823 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics. eLife https://doi.org/10.7554/eLife.03125 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    124.Labonte, J. M. et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Munson-McGee, J. H. et al. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments. ISME J. 12, 1706–1714 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    126.Díaz-Muñoz, S. L., Sanjuán, R. & West, S. Sociovirology: conflict, cooperation, and communication among viruses. Cell Host Microbe 22, 437–441 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    127.Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174, 908 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    128.Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    129.Coutinho, F. H. et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat. Commun. https://doi.org/10.1038/ncomms15955 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    130.Alrasheed, H., Jin, R. & Weitz, J. S. Caution in inferring viral strategies from abundance correlations in marine metagenomes. Nat. Commun. 10, 501 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Roossinck, M. J. Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles. Front.Microbiol. https://doi.org/10.3389/fmicb.2014.00767 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    132.Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    133.Gilmore, M. S. & Miller, O. K. A bacterium’s enemy isn’t your friend. Nature 563, 637–638 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    134.Callanan, J. et al. RNA phage biology in a metagenomic era. Viruses 10, 386 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    135.Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18, 125–138 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    136.Ross, A., Ward, S. & Hyman, P. More is better: Selecting for broad host range bacteriophages. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01352 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    137.de Jonge, P. A. et al. Adsorption sequencing as a rapid method to link environmental bacteriophages to hosts. iScience https://doi.org/10.1016/j.isci.2020.101439 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    138.Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    139.Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0526-2 (2019).Article 
    PubMed 

    Google Scholar 
    140.Labonte, J. M. et al. Single cell genomics-based analysis of gene content and expression of prophages in a diffuse-flow deep-sea hydrothermal system. Front.Microbiol. https://doi.org/10.3389/fmicb.2019.01262 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    141.Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    142.Jover, L. F., Romberg, J. & Weitz, J. S. Inferring phage–bacteria infection networks from time-series data. R. Soc. Open Sci. 3, 160654 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    143.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    144.Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    145.Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    146.Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e620 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    147.Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    148.Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    149.Laffy, P. W. et al. HoloVir: a workflow for investigating the diversity and function of viruses in invertebrate holobionts. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00822 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    150.Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B. L. & Sullivan, M. B. iVirus: facilitating new insights into viral ecology with software and community datasets imbedded in a cyberinfrastructure. ISME J. 11, 7–14 (2017).PubMed 
    Article 

    Google Scholar 
    151.Baran, N., Goldin, S., Maidanik, I. & Lindell, D. Quantification of diverse virus populations in the environment using the polony method. Nat. Microbiol. 3, 62–72 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    152.Mruwat, N. et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. (2020).153.Martínez-García, M., Santos, F., Moreno-Paz, M., Parro, V. & Antón, J. Unveiling viral–host interactions within the ‘microbial dark matter’. Nat. Commun. 5, 4542 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    154.Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    155.Bickhart, D. M. et al. Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation. Genome Biol. 20, 153 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    156.Marbouty, M., Baudry, L., Cournac, A. & Koszul, R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci. Adv. 3, e1602105 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    157.Lopez-Madrigal, S., Latorre, A., Porcar, M., Moya, A. & Gil, R. Mealybugs nested endosymbiosis: going into the ‘matryoshka’ system in Planococcus citri in depth. BMC Microbiol. https://doi.org/10.1186/1471-2180-13-74 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    158.Noda, S. et al. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol. Ecol. 16, 1257–1266 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    159.Woyke, T. & Schulz, F. Entities inside one another – a matryoshka doll in biology? Environ. Microbiol. Rep. 11, 26–28 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    160.Chatterjee, A. & Duerkop, B. A. Beyond bacteria: Bacteriophage-eukaryotic host interactions reveal emerging paradigms of health and disease. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01394 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    161.Bordenstein, S. R., Marshall, M. L., Fry, A. J., Kim, U. & Wernegreen, J. J. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLOS Pathog. 2, e43 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    162.Shropshire, J. D., On, J., Layton, E. M., Zhou, H. & Bordenstein, S. R. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 115, 4987 (2018). One of the genes in Wolbachia-infecting prophage WO that was previously shown to induce cytoplasmic incompatibility (in combination with a second gene) in insect gametes is demonstrated to also independently rescue cytoplasmic incompatibility and nullify associated embryonic defects.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    163.Beckmann, J. F. et al. The toxin–antidote model of cytoplasmic incompatibility: Genetics and evolutionary implications. Trends Genet. 35, 175–185 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    164.Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    165.Marquez, L. M., Redman, R. S., Rodriguez, R. J. & Roossinck, M. J. A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. Science 315, 513–515 (2007). An early example of a mutualistic ‘nested’ symbiosis involving viruses; in this case, the direct fungal host of a virus as well as the plant host of the fungus benefitted from viral infection.CAS 
    PubMed 
    Article 

    Google Scholar 
    166.van Oppen, M. J. H., Leong, J.-A. & Gates, R. D. Coral-virus interactions: a double-edged sword? Symbiosis 47, 1–8 (2009).Article 

    Google Scholar 
    167.Tikhe, C. V. & Husseneder, C. Metavirome sequencing of the termite gut reveals the presence of an unexplored bacteriophage community. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.02548 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More