More stories

  • in

    Neoptile feathers contribute to outline concealment of precocial chicks

    Experiment 1: proof of principle
    As a proof of principle, we designed the first experiment to test whether appendages may help to conceal the outline. We created an image of a uniformly light grey coloured circular object with a size of 2950 pixels (px)/250.0 mm circumference and 470 px/39.8 mm radius on a dark grey background using Adobe InDesign CS6 version 8.030. The initial setup started with no appendages added to the outline (Fig. 3a, ‘0’). We then added object-coloured appendages (i.e. lines of 1 Pt/4 px/0.4 mm thickness and 118 px/10.0 mm length) with regular intervals resembling protruding neoptile chick feathers orthogonally to the object outline (‘Basic Scenario’, Fig. 3a). The first image with appendages had 32 appendages added to the outline (Fig. 3a, ‘32′). We then doubled the number of appendages stepwise creating denser spaced appendages to the outline until the extended outline was completely filled (Fig. 3a, ‘full circle’). For the vision of a simulated predator, we used the spatial acuity from humans (Homo sapiens, 72 cycles per degree, cpd)36,45,46 in the basic scenario. The full details for the parameters are provided in Supplementary Table S1 (a–g).
    Figure 3

    (a) Basic Scenario: Seven stages of the artificial chick setup with varying number of thin, non-transparent appendages having all the same length. (b) Scenario 1: varying appendage thickness applied to the Basic Scenario. (c) Scenario 2: varying appendage transparency applied to the Basic Scenario. (d) Scenario 3: varying appendage length heterogeneity applied to the Basic Scenario. (e) Scenario 4: varying background complexity with chessboard backgrounds. (f) Scenario 5: high, medium and low spatial acuity applied to the Basic Scenario. (a–f) The analysed region of interest (ROI) is highlighted in red for clarification only. The figure was produced in Adobe Photoshop29 and InDesign30.

    Full size image

    To further explore the mechanism, we altered appendage characteristics, background and the spatial acuity of the predator. First, we increased appendage thickness to 2 Pt/8 pixels/ 0.7 mm (Scenario 1a) and 3 Pt/12 pixels/1.1 mm (Scenario 1b) resulting in decreased inter-appendage intervals (Fig. 3b and Supplementary Table S1, h–u). Second, we changed appendage transparency to 25% (Scenario 2a) and 50% transparency (Scenario 2b) (Fig. 3c and Supplementary Table S1, v to ai). Third, we varied the appendage length heterogeneity; half of the appendages having 50% of the length (Scenario 3a), and half of the appendages at 25% and one quarter at 50% of the original appendage length (Scenario 3b) (Fig. 3d and Supplementary Table S1, aj to aw). Fourth, we investigated the effect of background complexity on the detectability of the outline. As background, we used a chessboard pattern with large squares (346 pixels/29.3 mm, Scenario 4a) and with small squares (86 pixels/7.3 mm, Scenario 4b) (Fig. 3e and Supplementary Table S1, ax to bk). Fifth, we altered the spatial acuity to test whether or how the visual systems of different predators would affect detectability. We simulated the spatial acuity of a corvid predator (30 cpd, Scenario 5a) and canid predator (10 cpd, Scenario 5b) (Fig. 3f and Supplementary Table S1, bl to by), the two most common predators of ground-nesting plovers16,47,48. This range also covered other potential predators (Supplementary Table S2).
    We did not account for differences in colour vision between different predators as the setup mostly consists of greyscale images that predominantly differ in luminance. Note that in many animals, visual acuity is greater for achromatic than chromatic stimuli34,49.
    We conducted visual modelling and visual analysis using the Quantitative Colour Pattern Analysis (QCPA) framework27 integrated into the Multispectral Image Analysis and Calibration (MICA) toolbox50 for ImageJ version 1.52a51. We converted the generated images into multispectral images containing the red, green and blue channel in a stack and transformed them further into 32-bits/channel cone-catch images based on the human visual system, which are required by the framework. To create the luminance channel, we averaged the long and medium wave channel, which is thought to be representative of human vision52. We modelled the spatial acuity with Gaussian Acuity Control at a viewing distance of 1300 mm and a minimum resolvable angle (MRA) of 0.01389. To increase biological accuracy, we applied a Receptor Noise Limited (RNL) filter that reduces noise and reconstructs edges in the image. The RNL filter used the Weber fractions “Human 0.05” provided by the framework (longwave 0.05, mediumwave 0.07071, shortwave 0.1657), luminance 0.1, 5 iterations, a radius of 5 pixels and a falloff of 3 pixels as specified in van den Berg et al.27 (Supplementary Fig. S1).
    To test for the detectability of the outline, we used LEIA27, which is conceptually similar to the boundary strength analysis34. Boundary strength analysis requires an image with clearly delineated (clustered) colour and luminance pattern elements. However, a large degree of subthreshold details, which may be still perceived by the viewer gets lost in the clustering process. LEIA has the advantage of not requiring such a clustered input and therefore can be directly applied to RNL filtered images. LEIA measures the edge intensity (i.e. the luminance contrast) locally at each position in the image. The output image displays ΔS values in a 32-bit stack of four slices, where each slice shows the values measured in different angles (horizontal, vertical and the two diagonals, for more details, see van den Berg et al.27).
    We ran LEIA on the chosen region of interest (ROI) with the same Weber fractions used for the RNL filter. The ROI was a 180 pixel-wide band that included the area of the appendages extended by 30 pixels towards the object inside and towards the outside (Fig. 3a). We log-transformed the ΔS values as recommended for natural scenes53 to make the results comparable to the natural background images used in Experiment 2 (see below). To test whether the size of the ROI affected our results, we ran an additional analysis using a 1500 × 1500 pixel-wide rectangle surrounding the object as the ROI, which included a bigger area of the background and the full object inside (Supplementary Fig. S2).
    We extracted the luminance ΔS values from the four slices of the output image stack in ImageJ and stored them in separate matrices for further analysis using R version 3.5.328. ImageJ generally assigned values outside the chosen ROI to zero. Thus, we first discarded all values of zero. We then set all negative values that arose as artefacts in areas without any edges to zero, in order to make them biologically meaningful. We then identified the parallel maximum (R function pmax ()) of the four interrelated direction matrices and transferred this value to a new matrix.
    High luminance and colour contrasts imply high conspicuousness34. Consequently, a lower luminance contrast leads to lower conspicuousness and therefore, better camouflage. As the outline is an important cue for predators locating and identifying a prey item7, we assumed that especially low contrasts in the outline of an object improve camouflage. Thus, a reduction of edge intensity in the object outline by the appendages indicates a camouflage improvement. To test whether the object outline became less detectable we compared the edge intensity of the outline pixels in the basic scenario without appendages (Supplementary Table S1, a) with corresponding pixels from other scenarios. The outline pixels were characterised by high edge intensity and constituted a prominent peak. They comprised 1.59% of all pixels in the analysis focused on the contour region (see “Results”, Fig. 1a). For all scenarios, we calculated the mean edge intensity of the high edge intensity pixels (HEI pixels) and identified the changes with parameter variation. Unless otherwise stated we used R28 to produce graphs and panels.
    As an alternative mechanism, we tested whether appendages create a transition zone with intermediate luminance around the object (Mean Luminance Comparison (MLC), Supplementary material). We calculated the mean luminance of the object inside up to the border (object region), the area covered by appendages (appendage region) and the background (background region). We predicted that the appendage region would be characterised by intermediate luminance between object and background and therefore provide a luminance transition zone to conceal the object outline.
    Experiment 2: chick photographs
    Using pictures of young snowy plover chicks hiding when approached by a simulated predator, we tested if protruding neoptile feathers helped to conceal the chicks’ outline and therefore improve their camouflage.
    We studied snowy plovers in their natural environment at Bahía de Ceuta, Sinaloa, Mexico. Fieldwork permits were granted by the Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). All field activities were performed in accordance with the approved ethical guidelines outlined by SEMARNAT. The breeding site consists of salt flats that are sparsely vegetated and surrounded by mangroves54. The predators of chicks are not well described but likely similar to the egg predator community that includes several mammalian predators such as racoon, opossum, coyote, bob cat, avian predators such as crested caracara Caracara cheriway and reptiles17. General field methodology is provided elsewhere55,56. In 2017, we took photographs of young (one to 3 days old) chicks hiding on the ground, that had already left the nest scrape. To photograph the chicks, two observers approached free-roaming families with two mobile hides within the period one hour after sunrise and one hour before sunset. At a distance of 100–200 m, one observer acted as ‘predator’, left the hide and openly approached the brood while the second observer kept watching the chicks. The chicks responded by crouching to the ground and staying motionless while the parents were alarming. The second observer directed the ‘predator’ to the approximate hiding place. When searching for the chicks, we took great care to reduce the number of steps to avoid modification of the ground through our tracks.
    Once the first chick had been found, the second observer joined the ‘predator’ and took the chick photographs. We used a Nikon D7000 camera converted to full spectrum including the UV range (Optic Makario GmbH, Germany) and a Nikkor macro 105 mm lens that allows transmission of light at low wavebands. The equipment was chosen because calibration data were available for this combination50. Each hiding background was photographed with and without the chick using a UV pass filter for the UV spectrum and a UV/IR blocking filter (“IR-Neutralisationsfilter NG”, Optic Makario GmbH, Germany) for the visible spectrum. The camera was set to an aperture of f/8, ISO 400 and the pictures were stored in “RAW” file format. We used exposure bracketing to produce three images to ensure that at least one picture was not over or underexposed. A 25% reflectance standard (Zenith Polymer Diffuse Reflectance Standard provided by SPHEREOPTICS, Germany) placed in the corner of each picture enabled a subsequent standardizing of light conditions.
    In total, we took pictures of 32 chicks from 15 families. For 21 chicks we obtained photographs suitable for further analyses with an unobstructed view to the entire chick and only one chick per photograph. Of these, we randomly selected pictures of 15 chicks. Unfortunately, it was not possible to obtain proper alignment of visual and UV pictures in ImageJ as either chick or camera moved slightly in the break between changing filters for the two settings. Therefore, we restricted our analyses to human colour vision and discarded the UV pictures for further analysis.
    In each picture, we manually selected the chick outline and the feather-boundary as a basis for the ROIs (Fig. 2a–c). The chick outline included bill, legs, rings and all areas densely covered by feathers without background shining through. We then marked the feather-boundary, i.e., the smoothened line created by the protruding neoptile feather tips. In the next step, we transferred images of chicks with or without protruding feathers, i.e. cropped at feather-boundary or chick outline, respectively, and inserted them into a uniform or the natural background. First, we cropped the chick without protruding feathers and transferred it into a uniform black background. Second, we cropped the chick including all feathers and inserted it into exactly the same hiding spot on the picture of the natural background (Fig. 2b). Third, we cropped the chick excluding the protruding feathers and transferred it into the natural background (Fig. 2c).
    We then proceeded with LEIA following the protocol of experiment 1 with the following changes. Again, the selected ROI was the contour region ranging from the chick outline extended by 30 pixels towards the chick inside to the feather-boundary extended by 30 pixels towards the outside. We excluded all areas of the ROI that showed a shadow of the chick as the chicks’ shadow was missing on the empty natural background images to which the cropped chicks were transferred to (Fig. 2a–c). We used the images of the cropped chicks on the black background to determine the threshold of the HEI pixels according to the protocol of experiment 1 for each chick separately. For each cropped chick that was transferred to the picture with the natural background, we compared the mean edge intensity of the HEI pixels provided by LEIA with and without protruding feathers (Fig. 2b,c) using a two-sided paired t-test.
    We also calculated mean luminance differences for chick photographs. Details for this MLC are given in the supplementary material. More

  • in

    Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño

    1.
    Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
    ADS  Article  Google Scholar 
    2.
    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Houghton, R. A., Byers, B. & Nassikas, A. A. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 5, 1022–1023 (2015).
    ADS  Article  Google Scholar 

    4.
    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661 (2008).
    Article  Google Scholar 

    8.
    Arroyo-Rodríguez, V. et al. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. Camb. Philos. Soc. 92, 326–340 (2017).
    PubMed  Article  Google Scholar 

    9.
    Collins, C. D. et al. Fragmentation affects plant community composition over time. Ecography 40, 119–130 (2017).
    Article  Google Scholar 

    10.
    Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6 eaax8574 (2020).

    11.
    Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Thirumalai, K., DiNezio, P. N., Okumura, Y. & Deser, C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 8, 15531 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Vogel, M. M., Hauser, M. & Seneviratne, S. I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 15, 094021 (2020).
    ADS  Article  Google Scholar 

    15.
    McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. N. Phytol. https://doi.org/10.1111/nph.15027@10.1111/(ISSN)1469-8137.DroughtImpactsonTropicalForests (2018).

    16.
    Walker, A. P. et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 10, 454 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Riutta, T. et al. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Glob. Chang. Biol. 24, 2913–2928 (2018).
    ADS  PubMed  Article  Google Scholar 

    18.
    Both, S. et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. N. Phytol. 221, 1853–1865 (2019).
    CAS  Article  Google Scholar 

    19.
    Swinfield, T. et al. Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees. Glob. Chang. Biol. 26, 989–1002 (2020).
    ADS  PubMed  Article  Google Scholar 

    20.
    Jotan, P., Maycock, C. R., Burslem, D., Berhaman, A. & Both, S. Comparative vessel traits of macaranga gigantea and vatica dulitensis from Malaysian Borneo. J. Trop. Sci. 32, 25–34 (2020).
    Google Scholar 

    21.
    Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).
    Article  Google Scholar 

    22.
    Park Williams, A. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).
    ADS  Article  Google Scholar 

    23.
    Wolfe, B. T., Sperry, J. S. & Kursar, T. A. Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis. N. Phytol. 212, 1007–1018 (2016).
    Article  Google Scholar 

    24.
    Slik, J. W. F. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141, 114–120 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Itoh, A. et al. Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecol. Res. 18, 307–320 (2003).
    Article  Google Scholar 

    27.
    Stovall, A. E. L., Shugart, H. H. & Yang, X. Reply to ‘Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought’. Nat. Commun. 11, 3401 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Maréchaux, I. et al. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct. Ecol. 29, 1268–1277 (2015).
    Article  Google Scholar 

    29.
    Cosme, L. H. M., Schietti, J., Costa, F. R. C. & Oliveira, R. S. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. N. Phytol. 215, 113–125 (2017).
    Article  Google Scholar 

    30.
    Bittencourt, P. R. L. et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15040 (2020).

    31.
    Luke, S. H. et al. Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).
    Article  Google Scholar 

    32.
    Padfield, R. et al. Co-Producing a Research Agenda for Sustainable Palm Oil. https://doi.org/10.3389/ffgc.2019.00013 (2019).

    33.
    Zhao, K. et al. Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sens. Environ. 204, 883–897 (2018).
    ADS  Article  Google Scholar 

    34.
    Simonson, W., Ruiz-Benito, P., Valladares, F. & Coomes, D. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland. Biogeosciences 13, 961–973 (2016).
    ADS  CAS  Article  Google Scholar 

    35.
    Leitold, V. et al. El Niño drought increased canopy turnover in Amazon forests. N. Phytol. 219, 959–971 (2018).
    CAS  Article  Google Scholar 

    36.
    Moura, Y. Mde et al. Carbon dynamics in a human-modified tropical forest: a case study using multi-temporal LiDAR data. Remote Sens. 12, 430 (2020).
    ADS  Article  Google Scholar 

    37.
    Simonson, W., Allen, H. & Coomes, D. Effect of tree phenology on LiDAR measurement of mediterranean forest structure. Remote Sens. 10, 659 (2018).
    ADS  Article  Google Scholar 

    38.
    Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Coomes, D. A. et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ. 194, 77–88 (2017).
    ADS  Article  Google Scholar 

    40.
    Asner, G. P. et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 217, 289–310 (2018).
    Article  Google Scholar 

    41.
    Burton, C., Rifai, S. & Malhi, Y. Inter-comparison and assessment of gridded climate products over tropical forests during the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences. 373, 1760 (2018).
    Article  Google Scholar 

    42.
    Ordway, E. M. & Asner, G. P. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc. Natl Acad. Sci. USA 117, 7863–7870 (2020).
    CAS  PubMed  Article  Google Scholar 

    43.
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    44.
    Sevanto, S. Phloem transport and drought. J. Exp. Bot. 65, 1751–1759 (2014).
    CAS  PubMed  Article  Google Scholar 

    45.
    Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 9, 384–388 (2019).
    ADS  Article  Google Scholar 

    46.
    Woodgate, W. et al. Quantifying the impact of woody material on leaf area index estimation from hemispherical photography using 3D canopy simulations. Agric. Meteorol. 226-227, 1–12 (2016).
    Article  Google Scholar 

    47.
    Nunes, M. H. et al. Changes in leaf functional traits of rainforest canopy trees associated with an El Niño event in Borneo. Environ. Res. Lett. 14, 085005 (2019).
    ADS  CAS  Article  Google Scholar 

    48.
    Tang, H. & Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl Acad. Sci. USA 114, 2640–2644 (2017).
    CAS  PubMed  Article  Google Scholar 

    49.
    Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Marvin, D. C. & Asner, G. P. Branchfall dominates annual carbon flux across lowland Amazonian forests. Environ. Res. Lett. 11, 094027 (2016).
    ADS  Article  CAS  Google Scholar 

    51.
    Roussel, J.-R., Caspersen, J., Béland, M., Thomas, S. & Achim, A. Removing bias from LiDAR-based estimates of canopy height: accounting for the effects of pulse density and footprint size. Remote Sens. Environ. 198, 1–16 (2017).
    ADS  Article  Google Scholar 

    52.
    Sist, P. & Nguyen-Thé, N. Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan (1990–1996). Ecol. Manag. 165, 85–103 (2002).
    Article  Google Scholar 

    53.
    Rutishauser, E. et al. Rapid tree carbon stock recovery in managed Amazonian forests. Curr. Biol. 25, R787–R788 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Giambelluca, T. W., Ziegler, A. D., Nullet, M. A., Truong, D. M. & Tran, L. T. Transpiration in a small tropical forest patch. Agric. Meteorol. 117, 1–22 (2003).
    Article  Google Scholar 

    55.
    Ewers, R. M. & Banks-Leite, C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS ONE 8, e58093 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Laurance, W. F. & Curran, T. J. Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral. Ecol. 33, 399–408 (2008).
    Article  Google Scholar 

    57.
    Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Chang. Biol. 24, 5243–5258 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Laurance, W. F. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 141, 1731–1744 (2008).
    Article  Google Scholar 

    59.
    Muscarella, R., Kolyaie, S., Morton, D. C., Zimmerman, J. K. & Uriarte, M. Effects of topography on tropical forest structure depend on climate context. J. Ecol. 108, 145–159 (2020).
    Article  Google Scholar 

    60.
    Werner, F. A. & Homeier, J. Is tropical montane forest heterogeneity promoted by a resource‐driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Funct. Ecol. 29, 430–440 (2015).
    Article  Google Scholar 

    61.
    Gonzalez‐Akre, E. et al. Patterns of tree mortality in a temperate deciduous forest derived from a large forest dynamics plot. Ecosphere 7, G04014 (2016).
    Article  Google Scholar 

    62.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    ADS  CAS  Article  Google Scholar 

    63.
    Williamson, J. et al. Riparian Buffers Act as Microclimatic Refugia in Oil Palm Landscapes. https://doi.org/10.17863/CAM.57796 (2020).

    64.
    Hurst, M. D., Mudd, S. M., Walcott, R., Attal, M. & Yoo, K. Using hilltop curvature to derive the spatial distribution of erosion rates: hilltop curvature predicts erosion rates. J. Geophys. Res. 117, F2 (2012).
    Google Scholar 

    65.
    Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Ewers, R. M. et al. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3292–3302 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Pfeifer, M. et al. Mapping the structure of Borneo’s tropical forests across a degradation gradient. Remote Sens. Environ. 176, 84–97 (2016).
    ADS  Article  Google Scholar 

    68.
    Reynolds, G., Payne, J., Sinun, W., Mosigil, G. & Walsh, R. P. D. Changes in forest land use and management in Sabah, Malaysian Borneo, 1990-2010, with a focus on the Danum Valley region. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3168–3176 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Clarke, A. Principles of thermal ecology: temperature, energy, and life. Oxford Scholarship Online https://doi.org/10.1093/oso/9780199551668.001.0001 (2017).

    70.
    Bolton, D. The computation of equivalent potential temperature. Mon. Weather Rev. 108, 1046–1053 (1980).
    ADS  Article  Google Scholar 

    71.
    Asner, G. P. et al. Carnegie airborne observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens. Environ. 124, 454–465 (2012).
    ADS  Article  Google Scholar 

    72.
    Jucker, T. et al. Estimating aboveground carbon density and its uncertainty in Borneo’s structurally complex tropical forests using airborne laser scanning. Biogeosciences, 15, 3811–3830 (2018).
    ADS  Article  Google Scholar 

    73.
    Khosravipour, A., Skidmore, A. K., Isenburg, M., Wang, T. & Hussin, Y. A. Generating pit-free canopy height models from airborne lidar. Photogramm. Eng. Remote Sens. 80, 863–872 (2014).
    Article  Google Scholar 

    74.
    Asner, G. P. & Mascaro, J. Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 140, 614–624 (2014).
    ADS  Article  Google Scholar 

    75.
    Pearson, T. R. H., Brown, S. & Casarim, F. M. Carbon emissions from tropical forest degradation caused by logging. Environ. Res. Lett. 9, 034017 (2014).
    ADS  Article  CAS  Google Scholar 

    76.
    Gobakken, T. G. & Næsset, E. N. Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Can. J. For. Res. https://doi.org/10.1139/X07-219 (2008).

    77.
    Gray, C. L., Slade, E. M., Mann, D. J. & Lewis, O. T. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes? Ecol. Evol. 4, 1049–1060 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Metcalfe, P., Beven, K. & Freer, J. Dynamic TOPMODEL: a new implementation in R and its sensitivity to time and space steps. Environ. Model. Softw. 72, 155–172 (2015).
    Article  Google Scholar 

    79.
    Condit, R. et al. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño Dry Season. J. Trop. Ecol. 20, 51–72 (2004).
    Article  Google Scholar 

    80.
    H’edl, R. et al. A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. Blumea J. Biodivers. Evolut. Biogeogr. Plants 54, 124–130 (2009).
    Article  Google Scholar 

    81.
    Kent, R., Lindsell, J. A., Laurin, G. V., Valentini, R. & Coomes, D. A. Airborne LiDAR detects selectively logged tropical forest even in an advanced stage of recovery. Remote Sens. 7, 8348–8367 (2015).
    ADS  Article  Google Scholar 

    82.
    Gonsamo, A., Walter, J.-M. N. & Pellikka, P. Sampling gap fraction and size for estimating leaf area and clumping indices from hemispherical photographs. Can. J. Res. 40, 1588–1603 (2010).
    Article  Google Scholar 

    83.
    Kalacska, M. E. R., Sanchez-Azofeifa, G. A., Calvo-Alvarado, J. C., Rivard, B. & Quesada, M. Effects of season and successional stage on leaf area index and spectral vegetation indices in three mesoamerican tropical dry forests1. Biotropica 37, 486–496 (2005).
    Article  Google Scholar 

    84.
    Thimonier, A., Sedivy, I. & Schleppi, P. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. Eur. J. Res. 129, 543–562 (2010).
    Article  Google Scholar 

    85.
    Chen, J. M. & Cihlar, J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE Trans. Geosci. Remote Sens. 33, 777–787 (1995).
    ADS  Article  Google Scholar 

    86.
    Schleppi, P., Conedera, M., Sedivy, I. & Thimonier, A. Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric. Meteorol. 144, 236–242 (2007).
    Article  Google Scholar 

    87.
    Harmon, M. E., Whigham, D. F., Sexton, J. & Olmsted, I. Decomposition and mass of woody detritus in the dry tropical forests of the Northeastern Yucatan Peninsula, Mexico. Biotropica 27, 305–316 (1995).
    Article  Google Scholar 

    88.
    Team, R. C. R: A Language and Environment for Statistical Computing. (Foundation for Statistical Computing, Vienna, Austria. 2017). Available online: www.r-project.org (accessed 14 Febuary 2019) (2018).

    89.
    Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Wedeux, B. et al. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15108 (2020). More

  • in

    Evolution of the locomotor skeleton in Anolis lizards reflects the interplay between ecological opportunity and phylogenetic inertia

    1.
    Grant, P. R. & Grant, B. R. How and why Species Multiply: The Radiation of Darwin’s Finches. (Princeton University Press, 2008).
    2.
    Baldwin, B. G. & Sanderson, M. J. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc. Natl Acad. Sci. USA 95, 9402–9406 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature 457, 830–836 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. (Princeton University Press, 1967).

    5.
    Lewontin, R. C. The organism as the subject and object of evolution. Scientia 77, 65 (1983).
    Google Scholar 

    6.
    Blows, M. W. & Hoffmann, A. A. A reassessment of genetic limits to evolutionary change. Ecology 86, 1371–1384 (2005).
    Article  Google Scholar 

    7.
    Hansen, T. F. & Houle, D. Measuring and comparing evolvability and constraint in multivariate characters. J. Evol. Biol. 21, 1201–1219 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    West-Eberhard, M. J. Developmental Plasticity and Evolution. (Oxford University Press, 2003).

    9.
    Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Hendrikse, J. L., Parsons, T. E. & Hallgrímsson, B. Evolvability as the proper focus of evolutionary developmental biology. Evol. Dev. 9, 393–401 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Klingenberg, C. P. Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos. Trans. R. Soc. B 369, 20130249 (2014).
    Article  Google Scholar 

    12.
    Jablonski, D. Approaches to macroevolution: 1. General concepts and origin of variation. Evol. Biol. 44, 427–450 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Uller, T., Moczek, A. P., Watson, R. A., Brakefield, P. M. & Laland, K. N. Developmental bias and evolution: a regulatory network perspective. Genetics 209, 949–966 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Hansen, T. F. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69, 83–94 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Goswami, A., Binder, W. J., Meachen, J. & O’Keefe, F. R. The fossil record of phenotypic and modularity: a deep-time perspective on developmental and evolutionary dynamics. Proc. Natl Acad. Sci. USA 112, 4891–4896 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Armbruster, W. S., Pelabon, C., Bolstad, G. H. & Hansen, T. F. Integrated phenotypes: understanding trait covariation in plants and animals. Philos. Trans. R. Soc. B 369, 20130245 (2014).
    Article  Google Scholar 

    17.
    Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution 72, 2580–2594 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos. Trans. R. Soc. B 369, 20130254 (2014).
    CAS  Article  Google Scholar 

    19.
    Cheverud, J. M. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36, 499–516 (1982).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Wagner, G. P., Pavlicev, M. & Cheverud, J. M. The road to modularity. Nat. Rev. Genet. 8, 921–931 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Melo, D., Porto, A., Cheverud, J. M. & Marroig, G. Modularity: genes, development and evolution. Annu. Rev. Ecol. Evol. Syst. 47, 463–486 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Gerhart, J. & Kirschner, M. The theory of facilitated variation. Proc. Natl Acad. Sci. USA 104, 8582–8589 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Villmoare, B., Fish, J. & Jungers, W. Selection, morphological integration, and strepsirrhine locomotor adaptations. Evol. Biol. 38, 88–99 (2011).
    Article  Google Scholar 

    24.
    Navalon, G., Marugan-Lobon, J., Bright, J. A., Cooney, C. R. & Rayfield, E. J. The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian honeycreepers. Nat. Ecol. Evol. 4, 270–278 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Nicholson, K. E. et al. Mainland colonization by island lizards. J. Biogeogr. 32, 929–938 (2005).
    Article  Google Scholar 

    26.
    Poe, S. et al. A phylogenetic, biogeographic, and taxonomic study of all extant species of Anolis (Squamata; Iguanidae). Syst. Biol. 66, 663–697 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Jackman, T., Losos, J. B., Larson, A. & de Queiroz, K. in Molecular Evolution and Adaptive Radiation (eds Givnish, T. & Systma, K.) 535–557 (Cambridge University Press, 1997).

    28.
    Underwood, G. The anoles of the Eastern Caribbean (Sauria, Iguanidae). Revisionary notes. Bull. Mus. Comp. Zool., Part III 121, 191–226 (1959).
    Google Scholar 

    29.
    Losos, J. B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles. Vol. 10 (University of California Press, 2009).

    30.
    Pinto, G., Mahler, D. L., Harmon, L. J. & Losos, J. B. Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proc. R. Soc. B 275, 2749–2757 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Poe, S. & Anderson, C. G. The existence and evolution of morphotypes in Anolis lizards: coexistence patterns, not adaptive radiations, distinguish mainland and island faunas. PeerJ 6, e6040 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Irschick, D. J., Vitt, L. J., Zani, P. A. & Losos, J. B. A comparison of evolutionary radiations in mainland and Caribbean Anolis lizards. Ecology 78, 2191–2203 (1997).
    Article  Google Scholar 

    33.
    Macrini, T. E., Irschick, D. J. & Losos, J. B. Ecomorphological differences in toepad characteristics between mainland and island anoles. J. Herpetol. 37, 52–58 (2003).
    Article  Google Scholar 

    34.
    Velasco, J. A. & Herrel, A. Ecomorphology of Anolis lizards of the Choco’ region in Colombia and comparisons with Greater Antillean ecomorphs. Biol. Biol. J. Linn. Soc. 92, 403–403 (2007).
    Article  Google Scholar 

    35.
    Williams, E. E. in Evol. Biol. Vol. 6 (eds Theodosius Dobzhansky, MaxK Hecht, & WilliamC Steere) Ch. 3, 47–89 (Springer US, 1972).

    36.
    Williams, E. E. in Lizard ecology: studies of a model organism (eds Pianka, E. R., Huey, R. B. & Schoener, T. W.) 326–370 (Harvard University Press, 1983).

    37.
    Losos, J. B., Jackman, T. R., Larson, A., Queiroz, K. & Rodriguez-Schettino, L. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–2118 (1998).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Tinius, A. & Russell, A. P. Geometric morphometric analysis of the breast-shoulder apparatus of lizards: a test case using Jamaican anoles (Squamata: Dactyloidae). Anat. Rec. 297, 410–432 (2014).
    Article  Google Scholar 

    39.
    Tinius, A., Russell, A. P., Jamniczky, H. A. & Anderson, J. S. What is bred in the bone: ecomorphological associations of pelvic girdle form in greater Antillean Anolis lizards. J. Morphol. 279, 1016–1030 (2018).
    PubMed  Article  Google Scholar 

    40.
    Adams, D. C. & Collyer, M. L. Phylogenetic comparative methods and the evolution of multivariate phenotypes. Annu. Rev. Ecol. Evol. Syst. 50, 405–425 (2019).
    Article  Google Scholar 

    41.
    Legendre, P. & Legendre, L. Numerical Ecology. (Elsevier, 2012).

    42.
    Collyer, M. L., Davis, M. A. & Adams, D. C. Making heads or tails of combined landmark configurations in geometric morphometric data. Evol. Biol. 47, 193–205 (2020).
    Article  Google Scholar 

    43.
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Nishimoto, S. & Logan, M. P. O. Subdivision of the lateral plate mesoderm and specification of the forelimb and hindlimb forming domains. Semin. Cell Dev. Biol. 49, 102–108 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Shou, S., Scott, V., Reed, C., Hitzemann, R. & Stadler, H. S. Transcriptome analysis of the murine forelimb and hindlimb autopod. Dev. Dyn. 234, 74–89 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Margulies, E. H., Kardia, S. L. R. & Innis, J. W. A comparative molecular analysis of developing mouse forelimbs and hindlimbs using Serial Analysis of Gene Expression (SAGE). Genome Res. 11, 1686–1698 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Adams, D. C. & Collyer, M. L. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Adams, D. C. Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure. Methods Ecol. Evol. 7, 565–572 (2016).
    Article  Google Scholar 

    49.
    Adams, D. C. & Collyer, M. L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73, 2352–2367 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Dellinger, A. S. et al. Modularity increases rate of floral evolution and adaptive success for functionally specialized pollination systems. Commun. Biol. 2, 453 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Marki, P. Z., Kennedy, J. D., Cooney, C. R., Rahbek, C. & Fjeldsa, J. Adaptive radiation and the evolution of nectarivory in a large songbird clade. Evolution 73, 1226–1240 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Brown, R. L. What evolvability really is. Br. J. Philos. Sci. 65, 549–572 (2013).
    MathSciNet  Article  Google Scholar 

    55.
    Watson, R. A. & Szathmary, E. How can evolution learn? Trends Ecol. Evol. 31, 147–157 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Young, N. M. & Hallgrimsson, B. Serial homology and the evolution of mammalian limb covariation structure. Evolution 59, 2691–2704 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Young, N. M., Wagner, G. P. & Hallgrimsson, B. Development and the evolvability of human limbs. Proc. Natl Acad. Sci. USA 107, 3400–3405 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Kelly, E. M. & Sears, K. E. Reduced phenotypic covariation in marsupial limbs and the implications for mammalian evolution. Biol. J. Linn. Soc. 102, 22–36 (2011).
    Article  Google Scholar 

    59.
    Bennett, C. V. & Goswami, A. Does developmental strategy drive limb integration in marsupials and monotremes? Mamm. Biol. 76, 79–83 (2011).
    Article  Google Scholar 

    60.
    Martin-Serra, A. & Benson, R. B. J. Developmental constraints do not influence long-term phenotypic evolution of marsupial forelimbs as revealed by interspecific disparity and integration patterns. Am. Nat. 195, 547–560 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Parter, M., Kashtan, N. & Alon, U. Facilitated variation: how evolution learns from past environments to generalize to new environments. PLoS Comp. Biol. 4, e1000206 (2008).
    ADS  Article  CAS  Google Scholar 

    62.
    Kouvaris, K., Clune, J., Kounios, L., Brede, M. & Watson, R. A. How evolution learns to generalise: Using the principles of learning theory to understand the evolution of developmental organisation. PLoS Comp. Biol. 13, e1005358 (2017).
    ADS  Article  CAS  Google Scholar 

    63.
    Brun-Usan, M., Rago, A., Thies, C., Uller, T. & Watson, R. A. Developmental models reveal the role of phenotypic plasticity in explaining genetic evolvability. bioRxiv https://doi.org/10.1101/2020.06.29.179226 (2020).

    64.
    Shanahan, T. Phylogenetic inertia and Darwin’s higher law. Stud. Hist. Philos. Sci. Part C 42, 60–68 (2011).
    Article  Google Scholar 

    65.
    Houle, D., Bolstad, G. H., van der Linde, K. & Hansen, T. F. Mutation predicts 40 million years of fly wing evolution. Nature 548, 447–450 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Braendle, C., Baer, C. F. & Felix, M. A. Bias and evolution of the mutationally accessible phenotypic space in a developmental system. PLoS Genet. 6, e1000877 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Haber, A. Phenotypic covariation and morphological diversification in the ruminant skull. Am. Nat. 187, 576–591 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Hanot, P., Herrel, A., Guintard, C. & Cornette, R. The impact of artificial selection on morphological integration in the appendicular skeleton of domestic horses. J. Anat. 232, 657–673 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Penna, A., Melo, D., Bernardi, S., Oyarzabal, M. I. & Marroig, G. The evolution of phenotypic integration: How directional selection reshapes covariation in mice. Evolution 71, 2370–2380 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Watson, R. A., Wagner, G. P., Pavlicev, M., Weinreich, D. M. & Mills, R. The evolution of phenotypic correlations and “developmental memory”. Evolution 68, 1124–1138 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    72.
    Donihue, C. M. et al. Hurricane effects on Neotropical lizards span geographic and phylogenetic scales. Proc. Natl Acad. Sci. USA 117, 10429–10434 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Feiner, N., Jackson, I. S. C., Munch, K. L., Radersma, R. & Uller, T. Plasticity and evolutionary convergence in the locomotor skeleton of Greater Antillean Anolis lizards. eLife 9, e57468 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Vanhooydonck, B. & Irschick, D. in Topics in functional and ecological vertebrate morphology (eds Aerts, P., D’Août, K., Herrel, A. & Van Damme, R.) (Shaker Publishing, 2002).

    75.
    Schluter, D. The Ecology of Adaptive Radiation. (Oxford: Oxford University Press, 2000).

    76.
    Roughgarden, J. Anolis Lizards of the Caribbean: Ecology, Evolution, and Plate Tectonics. (Oxford University Press, 1995).

    77.
    Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods-a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Losos, J. B. et al. Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54, 301–305 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Tinius, A. Geometric morphometric analysis of the breast-shoulder apparatus of Greater Antillean anole ecomorphs PhD thesis, (University of Calgary, 2016).

    80.
    Cignoni, P. et al. in Eurographics Italian Chapter Conference (eds Scarano, V., De Chiara, R. & Erra, U.) (The Eurographics Association, 2008).

    81.
    Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. (2019).

    82.
    Olsen, A. M. & Westneat, M. W. StereoMorph: an R package for the collection of 3D landmarks and curves using a stereo camera set-up. Methods Ecol. Evol. 6, 351–356 (2015).
    Article  Google Scholar 

    83.
    Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Rohlf, F. J. Shape statistics: procrustes superimpositions and tangent spaces. J. Classif. 16, 197–223 (1999).
    MATH  Article  Google Scholar 

    85.
    Uetz, P., Freed, P. & Hosek, J. The Reptile Database http://www.reptile-database.org (2019).

    86.
    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    87.
    Köhler, G. & Hedges, S. B. A revision of the green anoles of Hispaniola with description of eight new species (Reptilia, Squamata, Dactyloidae). Nov. Carib. 9, 1–135 (2016).
    Google Scholar 

    88.
    Hofmann, E. P. & Townsend, J. H. Origins and biogeography of the Anolis crassulus subgroup (Squamata: Dactyloidae) in the highlands of Nuclear Central America. BMC Evol. Biol. 17, 267 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    89.
    Mahler, D. L. et al. Discovery of a giant chameleon-like lizard (Anolis) on hispaniola and its significance to understanding replicated adaptive radiations. Am. Nat. 188, 357–364 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    90.
    Kohler, J., Hahn, M. & Kohler, G. Divergent evolution of hemipenial morphology in two cryptic species of mainland anoles related to Anolis polylepis. Salamandra 48, 1–11 (2012).
    Google Scholar 

    91.
    Kohler, G., Perez, R. G. T., Petersen, C. B. P. & De la Cruz, F. R. M. A revision of the Mexican Anolis (Reptilia, Squamata, Dactyloidae) from the Pacific versant west of the Isthmus de Tehuantepec in the states of Oaxaca, Guerrero, and Puebla, with the description of six new species. Zootaxa 3862, 1 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    92.
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article  Google Scholar 

    93.
    Nicholson, K. E., Crother, B. I., Guyer, C. & Savage, J. M. It is time for a new classification of anoles (Squamata: Dactyloidae). Zootaxa 3477, 1–108 (2012).
    Article  Google Scholar 

    94.
    Goswami, A. & Finarelli, J. A. EMMLi: a maximum likelihood approach to the analysis of modularity. Evolution 70, 1622–1637 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    95.
    Bookstein, F. L. et al. Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. J. Hum. Evol. 44, 167–187 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    96.
    Adams, D. C. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Syst. Biol. 63, 166–177 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    97.
    Xie, W. G., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    98.
    Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 364–367 (1974).
    MATH  Article  Google Scholar 

    99.
    Levene, H. in Contributions to Probability and Statistics (Stanford University Press, 1960).

    100.
    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).
    MATH  Article  Google Scholar  More

  • in

    Phenotypic and environmental correlates of natal dispersal in a long-lived territorial vulture

    1.
    Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982).
    Article  Google Scholar 
    2.
    Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998).
    Article  Google Scholar 

    3.
    Clobert, J. Dispersal (Oxford University Press, 2001).
    Google Scholar 

    4.
    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).
    Google Scholar 

    5.
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).
    PubMed  Article  Google Scholar 

    6.
    Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).
    Article  Google Scholar 

    7.
    Nathan, R., Perry, G., Cronin, J. T., Strand, A. E. & Cain, M. L. Methods for estimating long-distance dispersal. Oikos 103, 261–273 (2011).
    Article  Google Scholar 

    8.
    Stevens, V. M. et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 6, 630–642 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Driscoll, D. A. et al. The trajectory of dispersal research in conservation biology: Systematic review. PLoS ONE 9, e95053 (2014).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Smith, A. L. et al. Managing uncertainty in movement knowledge for environmental decisions. Conserv. Lett. 12, 1–8. https://doi.org/10.1111/conl.12620 (2018).
    Article  Google Scholar 

    11.
    Koenig, W. D., Van Vuren, D. & Hooge, P. N. Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol. Evol. 11, 514–517 (1996).
    CAS  PubMed  Article  Google Scholar 

    12.
    Trakhtenbrotl, A., Nathan, R., Perry, G. & Richardson, D. M. The importance of long-distance dispersal in biodiversity conservation. Divers. Distrib. 11, 173–181 (2005).
    Article  Google Scholar 

    13.
    Nathan, R., Klein, E., Robledo-Arnuncio, J. J. & Revilla, E. Dispersal kernels: Review. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 187–210 (Oxford University Press, 2012).
    Google Scholar 

    14.
    Van Houtan, K. S., Pimm, S. L., Halley, J. M., Bierregaard, R. O. & Lovejoy, T. E. Dispersal of Amazonian birds in continuous and fragmented forest. Ecol. Lett. 10, 219–229 (2007).
    PubMed  Article  Google Scholar 

    15.
    Matthysen, E. Multicausality of dispersal: A review. Dispersal Ecol. Evol. 3, 18 (2012).
    Google Scholar 

    16.
    Ronce, O., Olivieri, I., Clobert, J. & Danchin, E. Perspectives on the study of dispersal evolution. In Dispersal (eds Clobert, J. et al.) 341–357 (Oxford University Press, 2001).
    Google Scholar 

    17.
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).
    PubMed  Article  Google Scholar 

    18.
    McPeek, M. A. & Holt, R. D. The evolution of dispersal in spatially and temporally varying environments. Am. Midl. Nat. 140, 1010–1027 (1992).
    Article  Google Scholar 

    19.
    Dingle, H. Migration. The Biology of Life on the Move (Oxford University Press, 1996).
    Google Scholar 

    20.
    Verhulst, S., Perrins, C. M. & Riddington, R. Natal dispersal of great tits in a patchy environment. Ecology 78, 864 (1997).
    Article  Google Scholar 

    21.
    Tarwater, C. E., Beissinger, S. R. & Gaillard, J.-M. Dispersal polymorphisms from natal phenotype-environment interactions have carry-over effects on lifetime reproductive success of a tropical parrot. Ecol. Lett. 15, 1218–1229 (2012).
    PubMed  Article  Google Scholar 

    22.
    Baines, C. B., Ferzoco, I. M. C. & McCauley, S. J. Phenotype-by-environment interactions influence dispersal. J. Anim. Ecol. 88, 1263–1274 (2019).
    PubMed  Article  Google Scholar 

    23.
    López-López, P., Zuberogoitia, Í., Alcántara, M. & Gil, J. A. Philopatry, natal dispersal, first settlement and age of first breeding of bearded vultures Gypaetus barbatus in central Pyrenees. Bird Study 60, 555–560 (2013).
    Article  Google Scholar 

    24.
    Poessel, S. A., Bloom, P. H., Braham, M. A. & Katzner, T. E. Age- and season-specific variation in local and long-distance movement behavior of golden eagles. Eur. J. Wildl. Res. 62, 377–393 (2016).
    Article  Google Scholar 

    25.
    Benard, M. F. & McCauley, S. J. Integrating across life-history stages: Consequences of natal habitat effects on dispersal. Am. Nat. 171, 553–567 (2008).
    PubMed  Article  Google Scholar 

    26.
    Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).
    Article  Google Scholar 

    27.
    Stamps, J. A. Conspecific attraction and aggregation in territorial species. Am. Nat. 131, 329–347 (1988).
    Article  Google Scholar 

    28.
    van Horne, B. Density as a misleading indicator of habitat quality. J. Wildl. Manage. 47, 893–901 (1983).
    Article  Google Scholar 

    29.
    Serrano, D. & Tella, J. L. The role of despotism and heritability in determining settlement patterns in the colonial lesser kestrel. Am. Nat. 169, E53–E67 (2007).
    PubMed  Article  Google Scholar 

    30.
    Pyle, P. Age at first breeding and natal dispersal in a declining population of Cassin’s Auklet. Auk 118, 996–1007 (2001).
    Article  Google Scholar 

    31.
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).
    Article  Google Scholar 

    32.
    Clarke, A., Sæther, B.-E. & Røskaft, E. Sex biases in avian dispersal: A reappraisal. Oikos 79, 429–438 (1997).
    Article  Google Scholar 

    33.
    Sanz-Aguilar, A. et al. Sex- and age-dependent patterns of survival and breeding success in a long-lived endangered avian scavenger. Sci. Rep. 7, 40204 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Sergio, F., Blas, J. & Hiraldo, F. Predictors of floater status in a long-lived bird: A cross-sectional and longitudinal test of hypotheses. J. Anim. Ecol. 78, 109–118 (2009).
    PubMed  Article  Google Scholar 

    35.
    Zabala, J. & Zuberogoitia, I. Breeding performance and survival in the peregrine falcon Falco peregrinus support an age-related competence improvement hypothesis mediated via an age threshold. J. Avian Biol. 46, 141–150 (2015).
    Article  Google Scholar 

    36.
    Kim, S. Y., Velando, A., Torres, R. & Drummond, H. Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia 166, 615–626 (2011).
    ADS  PubMed  Article  Google Scholar 

    37.
    Bonte, D. et al. Costs of dispersal. Biol. Rev. Camb. Philos. Soc. 87, 290–312 (2012).
    PubMed  Article  Google Scholar 

    38.
    Spear, L. B., Pyle, P. & Nur, N. Natal dispersal in the western gull: Proximal factors and fitness consequences. J. Anim. Ecol. 67, 165–179 (2009).
    Article  Google Scholar 

    39.
    Forero, M., Donázar, J.A. & Hiraldo, F. Causes and fitness consequences of natal dispersal in a population of black kites. Ecology 83, 858–872 (2002).
    Article  Google Scholar 

    40.
    Barbraud, C., Johnson, A. R. & Bertault, G. Phenotypic correlates of post-fledging dispersal in a population of greater flamingos: The importance of body condition. J. Anim. Ecol. 72, 246–257 (2003).
    Article  Google Scholar 

    41.
    McNamara, J. M. & Dall, S. R. X. The evolution of unconditional strategies via the ‘multiplier effect’. Ecol. Lett. 14, 237–243 (2011).
    PubMed  Article  Google Scholar 

    42.
    Shields, W. M. Philopatry, inbreeding, and the evolution of sex (State University of New York, 1982).
    Google Scholar 

    43.
    Elorriaga, J. et al. First documented case of long-distance dispersal in the Egyptian Vulture (Neophron percnopterus). J. Raptor Res. 43, 142–145 (2009).
    Article  Google Scholar 

    44.
    Carrete, M. et al. Habitat, human pressure, and social behavior: Partialling out factors affecting large-scale territory extinction in an endangered vulture. Biol. Conserv. 136, 143–154 (2007).
    Article  Google Scholar 

    45.
    García-Ripollés, C. & López-López, P. Integrating effects of supplementary feeding, poisoning, pollutant ingestion and wind farms of two vulture species in Spain using a population viability analysis. J. Ornithol. 152, 879–888 (2011).
    Article  Google Scholar 

    46.
    Sanz-Aguilar, A. et al. Action on multiple fronts, illegal poisoning and wind farm planning, is required to reverse the decline of the Egyptian vulture in southern Spain. Biol. Conserv. 187, 10–18 (2015).
    Article  Google Scholar 

    47.
    Tauler, H. et al. Identifying key demographic parameters for the viability of a growing population of the endangered Egyptian Vulture Neophron percnopterus. Bird Conserv. Int. 25, 426–439 (2015).
    Article  Google Scholar 

    48.
    Lieury, N., Gallardo, M., Ponchon, C., Besnard, A. & Millon, A. Relative contribution of local demography and immigration in the recovery of a geographically-isolated population of the endangered Egyptian vulture. Biol. Conserv. 191, 349–356 (2015).
    Article  Google Scholar 

    49.
    Agudo, R., Rico, C., Hiraldo, F. & Donázar, J. A. Evidence of connectivity between continental and differentiated insular populations in a highly mobile species. Divers. Distrib. 17, 1–12 (2011).
    Article  Google Scholar 

    50.
    Travis, J. M. J. & Dytham, C. Habitat persistence, habitat availability and the evolution of dispersal. Proc. R. Soc. B Biol. Sci. 266, 723–728 (1999).
    Article  Google Scholar 

    51.
    Poethke, H. J. & Hovestadt, T. Evolution of density- and patch-size-dependent dispersal rates. Proc. R. Soc. B Biol. Sci. 269, 637–645 (2002).
    Article  Google Scholar 

    52.
    Kun, Á. & Scheuring, I. The evolution of density-dependent dispersal in a noisy spatial population model. Oikos 115, 308–320 (2006).
    Article  Google Scholar 

    53.
    Hovestadt, T., Kubisch, A. & Poethke, H. J. Information processing in models for density-dependent emigration: A comparison. Ecol. Modell. 221, 405–410 (2010).
    Article  Google Scholar 

    54.
    Morton, E. R. et al. Dispersal: a matter of scale. Ecology 99, 938–946 (2018).
    PubMed  Article  Google Scholar 

    55.
    Delestrade, A., McCleery, R. H. & Perrins, C. M. Natal dispersal in a heterogeneous environment: The case of the Great tit in Wytham. Acta Oecol. 17, 519–529 (1996).
    Google Scholar 

    56.
    Luna, Á., Palma, A., Sanz-Aguilar, A., Tella, J. L. & Carrete, M. Sex, personality and conspecific density influence natal dispersal with lifetime fitness consequences in urban and rural burrowing owls. PLoS ONE 15, 1–17 (2020).
    Google Scholar 

    57.
    Eikenaar, C., Richardson, D. S., Brouwer, L. & Komdeur, J. Sex-biased natal dispersal in a closed, saturated population of Seychelles warblers Acrocephalus sechellensis. J. Avian Biol. 39, 73–80 (2008).
    Article  Google Scholar 

    58.
    Serrano, D., Tella, J. L., Donázar, J. A. & Pomarol, M. Social and individual features affecting natal dispersal in the colonial Lesser Kestrel. Ecology 84, 3044–3054 (2003).
    Article  Google Scholar 

    59.
    Hernández, M. & Margalida, A. Poison-related mortality effects in the endangered Egyptian vulture (Neophron percnopterus) population in Spain. Eur. J. Wildl. Res. 55, 415–423 (2009).
    Article  Google Scholar 

    60.
    Fattebert, J., Balme, G., Dickerson, T., Slotow, R. & Hunter, L. Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest. PLoS ONE 10, 1–15 (2015).
    Article  CAS  Google Scholar 

    61.
    Gundersen, G., Andreassen, H. P. & Ims, R. A. Individual and population level determinants of immigration success on local habitat patches: An experimental approach. Ecol. Lett. 5, 294–301 (2002).
    Article  Google Scholar 

    62.
    Newby, J. R. et al. Human-caused mortality influences spatial population dynamics: Pumas in landscapes with varying mortality risks. Biol. Conserv. 159, 230–239 (2013).
    Article  Google Scholar 

    63.
    Doligez, B., Danchin, E. & Clobert, J. Public information and breeding habitat selection in a wild bird population. Science 297, 1168–1170 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    64.
    Delibes, M., Gaona, P. & Ferreras, P. Effects of an attractive sink leading into maladaptive habitat selection. Am. Nat. 158, 277–285 (2001).
    CAS  PubMed  Article  Google Scholar 

    65.
    Cortés-Avizanda, A., Ceballos, O. & Donázar, J. A. Long-term trends in population size and breeding success in the Egyptian Vulture (Neophron percnopterus) in Northern Spain. J. Raptor Res. 43, 43–49 (2009).
    Article  Google Scholar 

    66.
    Zuberogoitia, I., Zabala, J., Martínez, J. A., Martínez, J. E. & Azkona, A. Effect of human activities on Egyptian vulture breeding success. Anim. Conserv. 11, 313–320 (2008).
    Article  Google Scholar 

    67.
    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).
    Article  Google Scholar 

    68.
    Robertson, B. A. & Hutto, R. L. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87, 1075–1085 (2006).
    PubMed  Article  Google Scholar 

    69.
    Betts, M. G., Hadley, A. S., Rodenhouse, N. & Nocera, J. J. Social information trumps vegetation structure in breeding-site selection by a migrant songbird. Proc. R. Soc. B Biol. Sci. 275, 2257–2263 (2008).
    Article  Google Scholar 

    70.
    Stodola, K. W. & Ward, M. P. The emergent properties of conspecific attraction can limit a species’ ability to track environmental change. Am. Nat. 189, 726–733 (2017).
    PubMed  Article  Google Scholar 

    71.
    Serrano, D. Dispersal in raptors. In Birds of Prey. Biology and Conservation in the XXI Century (eds Hernán Sarasola, J. et al.) 95–121 (Springer, 2018).
    Google Scholar 

    72.
    Trochet, A., Stevens, V. M. & Baguette, M. Evolution of sex-biased dispersal. Q. Rev. Biol. 91, 297–320 (2016).
    PubMed  Article  Google Scholar 

    73.
    Forsman, E. D., Anthony, R. G., Reid, J. A., Loschl, P. J. & Sovern, S. G. Natal and breeding dispersal of northern spotted owls. Wildl. Monogr. 1, 35 (2002).
    Google Scholar 

    74.
    Steiner, U. K. & Gaston, A. J. Reproductive consequences of natal dispersal in a highly philopatric seabird. Behav. Ecol. 16, 634–639 (2005).
    Article  Google Scholar 

    75.
    González, L. M. et al. Effective natal dispersal and age of maturity in the threatened Spanish Imperial Eagle Aquila adalberti: Conservation implications. Bird Stud. 53, 285–293 (2006).
    Article  Google Scholar 

    76.
    Oro, D., Tavecchia, G. & Genovart, M. Comparing demographic parameters for philopatric and immigrant individuals in a long-lived bird adapted to unstable habitats. Oecologia 165, 935–945 (2011).
    ADS  PubMed  Article  Google Scholar 

    77.
    Grande, J. M. et al. Survival in a long-lived territorial migrant: Effects of life-history traits and ecological conditions in wintering and breeding areas. Oikos 118, 580–590 (2009).
    Article  Google Scholar 

    78.
    Van Noordwijk, A. J. On bias due to observer distribution in the analysis of data on natal dispersal in birds. J. Appl. Stat. 22, 683–694 (1995).
    Article  Google Scholar 

    79.
    Ens, B. J. et al. Despotic distribution and deferred maturity: Two sides of the same coin?. Am. Nat. 146, 625–650 (2015).
    Article  Google Scholar 

    80.
    Maness, T. J. & Anderson, D. J. Predictors of juvenile survival in birds. Ornithol. Monogr. 78, 1–55 (2013).
    Article  Google Scholar 

    81.
    Azpillaga, M., Real, J. & Hernández-Matías, A. Effects of rearing conditions on natal dispersal processes in a long-lived predator bird. Ecol. Evol. 8, 6682–6698 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Delgado, M., Penteriani, V., Revilla, E. & Nams, O. The effect of phenotypic traits and external cues on natal dispersal movements. J. Anim. Ecol. 79, 620–632 (2010).
    Article  Google Scholar 

    83.
    Zuberogoitia, I., Zabala, J., Martínez, J. E., González-Oreja, J. A. & López-López, P. Effective conservation measures to mitigate the impact of human disturbances on the endangered Egyptian vulture. Anim. Conserv. 17, 410–418 (2014).
    Article  Google Scholar 

    84.
    Donázar, J. A. et al. Epizootics and sanitary regulations drive long-term changes in fledgling body condition of a threatened vulture. Ecol. Indic. 113, 106188 (2020).
    Article  Google Scholar 

    85.
    Boulinier, T. & Danchin, E. The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species. Evol. Ecol. 11, 505–517 (1997).
    Article  Google Scholar 

    86.
    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).
    Article  Google Scholar 

    87.
    Benton, T. G. & Bowler, D. E. Linking dispersal to spatial dynamics. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 251–265 (Oxford University Press, 2012).
    Google Scholar 

    88.
    Delgado, M. D. M., Ratikainen, I. I. & Kokko, H. Inertia: The discrepancy between individual and common good in dispersal and prospecting behaviour. Biol. Rev. 86, 717–732 (2011).
    Article  Google Scholar 

    89.
    Doncaster, C. P., Clobert, J., Doligez, B., Gustafsson, L. & Danchin, E. Balanced dispersal between spatially varying local populations: An alternative to the source-sink model. Am. Nat. 150, 425–445 (1997).
    CAS  PubMed  Article  Google Scholar 

    90.
    Millon, A., Lambin, X., Devillard, S. & Schaub, M. Quantifying the contribution of immigration to population dynamics: A review of methods, evidence and perspectives in birds and mammals. Biol. Rev. 94, 2049–2067 (2019).
    PubMed  Article  Google Scholar 

    91.
    Altwegg, R., Collingham, Y. C., Erni, B. & Huntley, B. Density-dependent dispersal and the speed of range expansions. Divers. Distrib. 19, 60–68 (2013).
    Article  Google Scholar 

    92.
    Tauler-Ametller, H., Hernández-Matías, A., Pretus, J. L. L. & Real, J. Landfills determine the distribution of an expanding breeding population of the endangered Egyptian Vulture Neophron percnopterus. Ibis 159, 757–768 (2017).
    Article  Google Scholar 

    93.
    Gilroy, J. J. & Sutherland, W. J. Beyond ecological traps: Perceptual errors and undervalued resources. Trends Ecol. Evol. 22, 351–356 (2007).
    PubMed  Article  Google Scholar 

    94.
    Patten, M. A. & Kelly, J. F. Habitat selection and the perceptual trap. Ecol. Appl. 20, 2148–2156 (2010).
    PubMed  Article  Google Scholar 

    95.
    Doebeli, M. & Ruxton, G. D. Evolution of dispersal rates in metapopulation models: Branching and cyclic dynamics in phenotype space. Evolution 51, 1730 (1997).
    PubMed  Article  Google Scholar 

    96.
    Murrell, D. J., Travis, J. M. J. & Dytham, C. The evolution of dispersal distance in spatially-structured populations. Oikos 97, 229–236 (2002).
    Article  Google Scholar 

    97.
    Heino, M. & Hanski, I. Evolution of migration rate in a spatially realistic metapopulation model. Am. Nat. 157, 495–511 (2001).
    CAS  PubMed  Article  Google Scholar 

    98.
    Mathias, A., Kisdi, È. & Olivieri, I. Divergent evolution of dispersal in a heterogeneous landscape. Evolution 55, 246–259 (2001).
    CAS  PubMed  Article  Google Scholar 

    99.
    Baguette, M., Clobert, J. & Schtickzelle, N. Metapopulation dynamics of the bog fritillary butterfly: Experimental changes in habitat quality induced negative density-dependent dispersal. Ecography 34, 170–176 (2011).
    Article  Google Scholar 

    100.
    Margalida, A. et al. Uneven large-scale movement patterns in wild and reintroduced pre-adult bearded vultures: Conservation implications. PLoS ONE 8, e65857 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Buechley, E. R., McGrady, M. J., Çoban, E. & Şekercioğlu, Ç. H. Satellite tracking a wide-ranging endangered vulture species to target conservation actions in the Middle East and East Africa. Biodivers. Conserv. 27, 2293–2310 (2018).
    Article  Google Scholar 

    102.
    Dwyer, J. F., Fraser, J. D. & Morrison, J. L. Evolution of communal roosting: A social refuge-territory prospecting hypothesis. J. Raptor Res. 52, 407–419 (2018).
    Article  Google Scholar 

    103.
    Blanco, G. & Tella, J. L. Temporal, spatial and social segregation of red-billed choughs between two types of communal roost: A role for mating and territory acquisition. Anim. Behav. 57, 1219–1227 (1999).
    CAS  PubMed  Article  Google Scholar 

    104.
    Bocedi, G., Heinonen, J. & Travis, J. M. J. Uncertainty and the role of information acquisition in the evolution of context-dependent emigration. Am. Nat. 179, 606–620 (2012).
    PubMed  Article  Google Scholar 

    105.
    Delgado, M. M., Bartoń, K. A., Bonte, D. & Travis, J. M. J. Prospecting and dispersal: Their eco-evolutionary dynamics and implications for population patterns. Proc. R. Soc. B Biol. Sci. 281, 20132851 (2014).
    CAS  Article  Google Scholar 

    106.
    Kesler, D. C., Walters, J. R. & Kappes, J. J. Social influences on dispersal and the fat-tailed dispersal distribution in red-cockaded woodpeckers. Behav. Ecol. 21, 1337–1343 (2010).
    Article  Google Scholar 

    107.
    Ducros, D. et al. Beyond dispersal versus philopatry? Alternative behavioural tactics of juvenile roe deer in a heterogeneous landscape. Oikos 129, 81–92 (2019).
    Article  Google Scholar 

    108.
    BirdLife International. Species factsheet: Neophron percnopterus. (2019). Available at: http://www.birdlife.org. Accessed 19 Dec 2019.

    109.
    Donázar, J. A., Ceballos, O. & Tella, J. L. Communal roosts of Egyptian vulture (Neophron percnopterus): Dynamics and implications for the species conservation. In Biología y conservación de las rapaces Mediterráneas (eds Muntaner, J. & Muntaner, J.) 189–201 (SEO/Birdlife, 1996).
    Google Scholar 

    110.
    Hernández-Matías, A. et al. Determinants of territorial recruitment in bonelli’s eagle (Aquila fasciata) populations. Auk 127, 173–184 (2010).
    Article  Google Scholar 

    111.
    Phipps, W. L. et al. Spatial and temporal variability in migration of a soaring raptor across three continents. Front. Ecol. Evol. 7, 1–14 (2019).
    Article  Google Scholar 

    112.
    del Moral, J. C. El Alimoche Común en España Población Reproductora en 2008 y Método de Censo (SEO/Birdlife, 2009).
    Google Scholar 

    113.
    del Moral, J. C. & El Martí, R. Alimoche Común en España y Portugal. (I Censo Coordinado). Año 2000. Monografía no 8 (SEO/Birdlife, 2002).
    Google Scholar 

    114.
    Donázar, J. A. & Ceballos, O. Growth rates of nestling Egyptian Vultures Neophrone percnopterus in relation to brood size, hatching order and environmental factors. Ardea 77, 217–226 (1989).
    Google Scholar 

    115.
    Imdadullah, M., Aslam, M. & Altaf, S. Mctest: An r package for detection of collinearity among regressors. R J. 8, 499–509 (2016).
    Article  Google Scholar 

    116.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
    Google Scholar 

    117.
    Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
    Article  Google Scholar 

    118.
    Schabenberger, O. & Pierce, F. J. Contemporary Statistical Models for the Plant and Soil Sciences (CRC Press, 2002).
    Google Scholar 

    119.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2018).

    120.
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.2.4. (2019). More

  • in

    Author Correction: Continent-wide tree fecundity driven by indirect climate effects

    Nicholas School of the Environment, Duke University, Durham, NC, USA
    James S. Clark, Christopher L. Kilner, Jordan Luongo, Renata Poulton-Kamakura, Ethan Ready, Chantal D. Reid, C. Lane Scher, William H. Schlesinger, Shubhi Sharma, Samantha Sutton, Jennifer J. Swenson & Margaret Swift

    INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
    James S. Clark, Benoit Courbaud, Georges Kunstler, Kyle C. Rodman & Thomas T. Veblen

    Department of Geography, University of Colorado Boulder, Boulder, CO, USA
    Robert Andrus & Emily Moran

    School of Natural Sciences, University of California, Merced, Merced, CA, USA
    Melaine Aubry-Kientz

    Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC, Canada
    Yves Bergeron

    Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
    Michal Bogdziewicz

    USDA Forest Service, Southern Research Station, Monticello, AR, USA
    Don C. Bragg

    USDA Forest Service Southern Research Station, Auburn, AL, USA
    Dale Brockway & Timothy J. Fahey

    Natural Resources, Cornell University, Ithaca, NY, USA
    Natalie L. Cleavitt

    Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
    Susan Cohen

    Greater Yellowstone Network, National Park Service, Bozeman, MT, USA
    Robert Daley, Kristin L. Legg & Erin Shanahan

    USGS Western Ecological Research Center, Three Rivers, CA, USA
    Adrian J. Das & Nathan L. Stephenson

    Earth and Environment, Boston University, Boston, MA, USA
    Michael Dietze

    Finnish Meteorological Institute, Helsinki, Finland
    Istem Fer

    Forest Resources, University of Washington, Seattle, WA, USA
    Jerry F. Franklin

    Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA
    Catherine A. Gehring, Amy V. Whipple & Thomas G. Whitham

    University of California, Santa Cruz, Santa Cruz, CA, USA
    Gregory S. Gilbert & Kai Zhu

    USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC, USA
    Cathryn H. Greenberg

    USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC, USA
    Qinfeng Guo

    Department of Biology, University of Washington, Seattle, WA, USA
    Janneke HilleRisLambers

    School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
    Ines Ibanez

    Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
    Jill Johnstone

    Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
    Johannes Knops

    Hastings Reservation, University of California Berkeley, Carmel Valley, CA, USA
    Walter D. Koenig

    Department of Biological Sciences, DePaul University, Chicago, IL, USA
    Jalene M. LaMontagne

    Department of Wildland Resources, Utah State University Ecology Center, Logan, UT, USA
    James A. Lutz

    Department of Biology, University of New Mexico, Albuquerque, NM, USA
    Diana Macias

    Pacific Forestry Centre, Victoria, BC, Canada
    Eliot J. B. McIntire

    Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada
    Yassine Messaoud

    Department of Biology, Colby College, Waterville, ME, USA
    Christopher M. Moore

    Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
    Jonathan A. Myers

    University of New Mexico, Albuquerque, NM, USA
    Orrin B. Myers

    Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Chase Nunez

    Valles Caldera National Preserve, National Park Service, Jemez Springs, NM, USA
    Robert Parmenter

    Fort Collins Science Center, Fort Collins, CO, USA
    Sam Pearse

    Department of Natural Sciences, Mars Hill University, Mars Hill, NC, USA
    Scott Pearson

    Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
    Miranda D. Redmond & Andreas P. Wion

    Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
    Amanda M. Schwantes

    Department of Biology, Wilkes University, Wilkes-Barre, PA, USA
    Michael A. Steele

    Geography Department and Russian and East European Institute, Bloomington, IN, USA
    Roman Zlotin More

  • in

    Accepting the loss of habitat specialists in a changing world

    1.
    Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. J. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01342-7 (2020).
    Article  Google Scholar 
    2.
    Wilson, S. K. et al. J. Anim. Ecol. 77, 220–228 (2008).
    Article  Google Scholar 

    3.
    Dornelas, M. et al. Science 344, 296–299 (2014).
    CAS  Article  Google Scholar 

    4.
    Sommer, B., Harrison, P. L., Beger, M. & Pandolfi, J. M. Ecology 95, 1000–1009 (2014).
    Article  Google Scholar 

    5.
    Feary, D. A. et al. Fish Fish. 15, 593–615 (2013).
    Article  Google Scholar 

    6.
    Brandl, S. J. et al. Science 364, 1189–1192 (2019).
    CAS  Article  Google Scholar 

    7.
    Hughes, T. P. et al. Nature 546, 82–90 (2017).
    CAS  Article  Google Scholar 

    8.
    Beyer, H. et al. Conserv. Lett. 11, e12587 (2018).
    Article  Google Scholar 

    9.
    Bottrill, M. C. et al. Trends Ecol. Evol. 24, 183–184 (2009).
    Article  Google Scholar 

    10.
    Wernberg, T. et al. Nat. Clim. Change 3, 78–82 (2013).
    Article  Google Scholar  More

  • in

    Habitat loss and range shifts contribute to ecological generalization among reef fishes

    1.
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Devictor, V. et al. Functional biotic homogenization of bird communities in disturbed landscapes. Glob. Ecol. Biogeogr. 17, 252–261 (2008).
    Article  Google Scholar 

    4.
    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
    Article  Google Scholar 

    5.
    Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).
    Article  Google Scholar 

    6.
    Wilson, S. K. et al. Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J. Anim. Ecol. 77, 220–228 (2008).
    Article  Google Scholar 

    7.
    Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Change Biol. 10, 1642–1647 (2004).
    Article  Google Scholar 

    8.
    Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl Acad. Sci. USA 101, 8251–8253 (2004).
    CAS  PubMed  Article  Google Scholar 

    9.
    Paddack, M. J. et al. Recent region-wide declines in Caribbean reef fish abundance. Curr. Biol. 19, 590–595 (2009).
    CAS  PubMed  Article  Google Scholar 

    10.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Change Biol. 23, 1511–1524 (2017).
    Article  Google Scholar 

    13.
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl Acad. Sci. USA 106, 22341–22345 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).
    PubMed  Article  Google Scholar 

    16.
    Mair, L. et al. Abundance changes and habitat availability drive species’ responses to climate change. Nat. Clim. Change 4, 127–131 (2014).
    Article  Google Scholar 

    17.
    Monaco, C. J. et al. Dietary generalism accelerates arrival and persistence of coral-reef fishes in their novel ranges under climate change. Glob. Change Biol. 26, 5564–5573 (2020).
    Article  Google Scholar 

    18.
    Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: where do we draw the line? Am. Zool. 39, 146–159 (2015).
    Article  Google Scholar 

    19.
    Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).
    Article  Google Scholar 

    20.
    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Pratchett, M. S. et al. in Oceanography and Marine Biology: Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (Taylor and Francis, 2008).

    22.
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Feary, D. A. The influence of resource specialization on the response of reef fish to coral disturbance. Mar. Biol. 153, 153–161 (2007).
    Article  Google Scholar 

    24.
    Mellin, C., Bradshaw, C., Fordham, D. & Caley, M. Strong but opposing β-diversity–stability relationships in coral reef fish communities. Proc. R. Soc. B 281, 20131993 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    29.
    Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102–114 (2007).
    Article  Google Scholar 

    30.
    Feary, D. A. et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish Fish. 15, 593–615 (2014).
    Article  Google Scholar 

    31.
    Guisan, A. et al. Scaling the linkage between environmental niches and functional traits for improved spatial predictions of biological communities. Glob. Ecol. Biogeogr. 28, 1384–1392 (2019).
    Article  Google Scholar 

    32.
    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).
    Article  Google Scholar 

    33.
    Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011).
    Article  Google Scholar 

    34.
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
    CAS  Article  Google Scholar 

    35.
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
    CAS  PubMed  Article  Google Scholar 

    36.
    Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).
    Article  Google Scholar 

    37.
    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).
    CAS  PubMed  Article  Google Scholar 

    38.
    Graham, M. H., Kinlan, B. P. & Grosberg, R. K. Post-glacial redistribution and shifts in productivity of giant kelp forests. Proc. R. Soc. B 277, 399–406 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    CAS  Article  Google Scholar 

    40.
    Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).
    CAS  PubMed  Article  Google Scholar 

    41.
    Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).
    PubMed  Article  Google Scholar 

    44.
    Cresswell, A. K. et al. Translating local benthic community structure to national biogenic reef habitat types. Glob. Ecol. Biogeogr. 26, 1112–1125 (2017).
    Article  Google Scholar 

    45.
    Edgar, G. J., Barrett, N. S. & Stuart-Smith, R. D. Exploited reefs protected from fishing transform over decades into conservation features otherwise absent from seascapes. Ecol. Appl. 19, 1967–1974 (2009).
    PubMed  Article  Google Scholar 

    46.
    Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PLoS ONE 10, e0141039 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).
    PubMed  Article  Google Scholar 

    48.
    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).
    CAS  PubMed  Article  Google Scholar 

    49.
    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
    Article  Google Scholar 

    50.
    Becker, R. A., Wilks, A. R (original S code) & Brownrigg, R. (R version). mapdata: Extra map databases. R package version 2.3.0 (2018).

    51.
    Matis, P. A., Donelson, J. M., Bush, S., Fox, R. J. & Booth, D. J. Temperature influences habitat preference of coral reef fishes: will generalists become more specialised in a warming ocean? Glob. Change Biol. 24, 3158–3169 (2018).
    Article  Google Scholar  More

  • in

    Seventeen ‘extinct’ plant species back to conservation attention in Europe

    1.
    Guidelines for Using the IUCN Red List Categories and Criteria Version 14 (IUCN Standards and Petitions Committee, 2019); http://www.iucnredlist.org/documents/RedListGuidelines.pdf
    2.
    Dalrymple, S. E., Godefroid, S., Orsenigo, S. & Abeli, T. Frankenstein’s work or everyday conservation? How reintroductions are informing the de-extinction debate. J. Nat. Conserv. 56, 125870 (2020).
    Article  Google Scholar 

    3.
    IUCN SSC. Guiding Principles on Creating Proxies of Extinct Species for Conservation Benefit Version 1.0 (IUCN, 2016).

    4.
    Dalrymple, S. E. & Abeli, T. Ex situ seed banks and the IUCN Red List. Nat. Plants 5, 122–123 (2019).
    Article  Google Scholar 

    5.
    Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).
    Article  Google Scholar 

    6.
    Knapp, W. M. et al. Regional records improve data quality in determining plant extinction rates. Nat. Ecol. Evol. 4, 512–514 (2020).
    Article  Google Scholar 

    7.
    Ladle, R. J., Jepson, P., Malhado, A. C. M., Jennings, S. & Barua, M. The causes and biogeographical significance of species’ rediscovery. Front. Biogeogr. 3, 111–118 (2011).
    Google Scholar 

    8.
    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: back from the brink? PLoS ONE 6, e22531 (2011).
    CAS  Article  Google Scholar 

    9.
    Aedo, C., Medina, L., Barberá, P. & Fernández-Albert, M. Extinctions of vascular plants in Spain. Nord. J. Bot. 33, 83–100 (2015).
    Article  Google Scholar 

    10.
    Bawri, A., Gajurel, P. R. & Khan, M. L. Rediscovery of Primula polonensis. Kew Bull. 70, 56–60 (2015).
    Article  Google Scholar 

    11.
    Bonini, F., Lastrucci, L. & Gigante, D. Juncus atratus Krock. (Juncaceae) rediscovered in Italy: a species deserving urgent conservation actions. Biologia 75, 1519–1527 (2020).
    Article  Google Scholar 

    12.
    Abeli, T. et al. Ex situ collections and their potential for the restoration of extinct plants. Conserv. Biol. 34, 303–313 (2020).
    Article  Google Scholar 

    13.
    Liu, U., Breman, E., Cossu, T. A. & Kenney, S. The conservation value of germplasm stored at the Millennium Seed Bank, Royal Botanic Gardens, Kew, UK. Biodivers. Conserv. 27, 1347–1386 (2018).
    Article  Google Scholar 

    14.
    Minteer, B. A., Collins, J. P., Love, K. E. & Puschendorf, R. Avoiding (re)extinction. Science 344, 260–261 (2014).
    CAS  Article  Google Scholar 

    15.
    Rossi, G. et al. Is legal protection sufficient to ensure plant conservation? The Italian Red List of policy species as a case study. Oryx 50, 431–436 (2016).
    Article  Google Scholar 

    16.
    Fos, S., Laguna, E., Jiménez, J. & Gómez-Serrano, M. Á. Plant micro-reserves in Valencia (E. Spain): a model to preserve threatened flora in China? Plant Divers. 39, 383–389 (2017).
    Article  Google Scholar 

    17.
    Keith, D. A. & Burgman, M. A. The Lazarus effect: can the dynamics of extinct species lists tell us anything about the status of biodiversity? Biol. Conserv. 117, 41–48 (2004).
    Article  Google Scholar 

    18.
    Dunkel, F. G. The Ranunculus auricomus L. complex (Ranunculaceae) in northern Italy. Webbia 65, 179–227 (2010).
    Article  Google Scholar 

    19.
    Bartolucci, F. et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst. 152, 179–303 (2018).
    Article  Google Scholar 

    20.
    Lista Vermelha da Flora Vascular de Portugal Continental (Sociedade Portuguesa de Botânica e Associação Portuguesa de Ciência da Vegetação – PHYTOS, em parceria com o Instituto da Conservação da Natureza e das Florestas, 2020); https://listavermelha-flora.pt/

    21.
    Euro+Med PlantBase—the Information Resource for Euro-Mediterranean Plant Diversity (Euro+Med, 2020); http://ww2.bgbm.org/EuroPlusMed/

    22.
    Perehrym, M. M. in Vascular Plants of the Emerald Network of Ukraine Under Protection of the Bern Convention (ed. Solomakha, V. A.) (Ministry of Ecology and Natural Resources of Ukraine, 2016).

    23.
    Andrés-Sánchez, S., Galbany-Casals, M., Rico, E. & Martínez-Ortega, M. M. A nomenclatural treatment for Logfia Cass. and Filago L. (Asteraceae) as newly circumscribed: typification of several names. Taxon 60, 572–576 (2011).

    24.
    Vladimirov, V., Aybeke, A., Matevski, V. & Tan, K. New floristic records in the Balkans: 33*. Phytol. Balc. 23, 281–329 (2017).
    Google Scholar 

    25.
    Orsenigo, S. et al. Red list of threatened vascular plants in Italy. Plant Biosyst. 152, 310–335 (2021).
    Article  Google Scholar 

    26.
    Barina, Z. (ed.) Distribution Atlas of Vascular Plants in Albania (Hungarian Natural History Museum, 2017).

    27.
    La Liste Rouge des Espèces Menacées en France—Chapitre Flore Vasculaire de France Métropolitaine (UICN France, FCBN, AFB, MNHN, 2018).

    28.
    Blanca, G., Gavira, O. & Suárez-Santiago, V. N. Galatella malacitana (Asteraceae): a new species from the peridotitic mountains of southern Spain. Phytotaxa 205, 239–248 (2015).
    Article  Google Scholar 

    29.
    Bogdanović, S., Brullo, S., Ljubičić, I., Rat, M. & Salmeri, C. Cytotaxonomical remarks on Loncomelos visianicum (Hyacinthaceae), a poorly known species endemic to Croatia. Phytotaxa 430, 95–108 (2020).
    Article  Google Scholar 

    30.
    Banfi, E. in Flora d’Italia 2nd edn, Vol. 1 (eds Pignatti, S. et al.) (Edagricole, 2017). More