More stories

  • in

    Fine-scale metabolic discontinuity in a stratified prokaryote microbiome of a Red Sea deep halocline

    1.
    Merlino G, Barozzi A, Michoud G, Ngugi DK, Daffonchio D. Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbiol Ecol. 2018;94:1–15.
    Article  CAS  Google Scholar 
    2.
    Antunes A, Ngugi DK, Stingl U. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep. 2011;3:416–33.
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, et al. Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings. Environ Microbiol. 2011;13:2250–68.
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, et al. Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature. 2006;440:203–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, et al. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science. 2005;307:121–3.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    6.
    Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, et al. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA. 2009;106:9151–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Joye SB, Samarkin VA, Orcutt BN, MacDonald IR, Hinrichs K-U, Elvert M, et al. Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci. 2009;2:349–54.
    CAS  Article  Google Scholar 

    8.
    Guan Y, Hikmawan T, Antunes A, Ngugi DK, Stingl U. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea. Res Microbiol. 2015;166:688–99.
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Pachiadaki MG, Yakimov M, LaCono V, Leadbetter E, Edgcomb V. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. ISME J. 2014;8:1–12.
    Article  CAS  Google Scholar 

    10.
    Borin S, Mapelli F, Rolli E, Song B, Tobias C, Schmid MC, et al. Anammox bacterial populations in deep marine hypersaline gradient systems. Extremophiles. 2013;17:289–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Yakimov MM, La Cono V, Spada GL, Bortoluzzi G, Messina E, Smedile F, et al. Microbial community of the deep-sea brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. Environ Microbiol. 2015;17:364–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Ngugi DK, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, et al. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J. 2015;9:396–411.
    Article  CAS  Google Scholar 

    13.
    Ngugi DK, Blom J, Stepanauskas R, Stingl U. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. ISME J. 2016;10:1383–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Zhang W, Ding W, Yang B, Tian RM, Gu S, Luo H, et al. Genomic and transcriptomic evidence for carbohydrate consumption among microorganisms in a cold seep brine pool. Front Microbiol. 2016;7:1825.
    PubMed  PubMed Central  Google Scholar 

    15.
    Bougouffa S, Yang JK, Lee OO, Wang Y, Batang Z, Al-Suwailem A, et al. Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol. 2013;79:3425–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, et al. Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front Microbiol. 2014;5:1–16.
    Article  Google Scholar 

    17.
    Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev. 2009;33:855–69.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42:353–75.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Yakimov M, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN, et al. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J. 2007;1:743–55.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Brune A, Frenzel P, Cypionka H. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev. 2000;24:691–710.
    CAS  PubMed  Article  Google Scholar 

    21.
    Oren A. Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol. 2011;13:1908–23.
    CAS  PubMed  Article  Google Scholar 

    22.
    Baumann A, Richter H, Schoell M. Suakin deep: brines and hydrothermal sediments in the deepest part of the Red Sea. Geol Rundsch. 1973;62:684–97.
    CAS  Article  Google Scholar 

    23.
    Backer H, Schoell M. New deeps with brines and metalliferous sediments in the red sea. Nat Phys Sci. 1972;240:153–8.
    Article  Google Scholar 

    24.
    Schmidt, M, Al-Farawati R, Botz R. Geochemical classification of brine-filled Red Sea Deeps. In: Rasul NMA, Stewart ICF, editors. The Red Sea. Springer; 2015. p. 219–233.

    25.
    Calleja ML, Al-Otaibi N, Morán XAG. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci Rep. 2019;9:4690.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Duarte CM, Røstad A, Michoud G, Barozzi A, Merlino G, Delgado-Huertas A, et al. Discovery of Afifi, the shallowest and southernmost brine pool reported in the Red Sea. Sci Rep. 2020;10:910.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B Stat Methodol. 2011;73:3–36.
    Article  Google Scholar 

    28.
    Salata GG, Roelke LA, Cifuentes LA. A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Mar Chem. 2000;69:153–61.
    CAS  Article  Google Scholar 

    29.
    McIlvin MR, Altabet MA. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem. 2005;77:5589–95.
    CAS  PubMed  Article  Google Scholar 

    30.
    Green MR, Sambrook J. Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb Protoc. 2017;2017:pdb.prot093450.

    31.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Bushnell B. BBMap short read aligner. https://sourceforge.net/projects/bbmap/. 2016. Accessed 03 Feb 2021.

    33.
    Andrews S. FastQC A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010. Accessed 30 Jan 2021.

    34.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Parks DH, Beiko RG. Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities. ISME J. 2013;7:173–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26:680–2.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16:51.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Alam I, Antunes A, Kamau AA, Alawi WB, Kalkatawi M, Stingl U, et al. INDIGO – Integrated data warehouse of microbial genomes with examples from the red sea extremophiles. PLoS ONE. 2013;8:e82210.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Llorens-Marès T, Yooseph S, Goll J, Hoffman J, Vila-Costa M, Borrego CM, et al. Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics. ISME J. 2015;9:1648–61.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Lüke C, Speth DR, Kox MAR, Villanueva L, Jetten MSM. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. PeerJ. 2016;4:e1924.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Wickham H. ggplot2: elegant graphics for data analysis. Springer New York; 2016.

    46.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. https://github.com/vegandevs/vegan, https://cran.r-project.org/package=vegan. 2017. Accessed 28 November 2020.

    47.
    Blanchet FG, Legendre P, Borcard D. Forward selection of explanatory variables. Ecology. 2008;89:2623–32.
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    50.
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  Article  Google Scholar 

    54.
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 2010;11:538.
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–27.
    CAS  Google Scholar 

    56.
    Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Rambaut A. FigTree. http://tree.bio.ed.ac.uk/software/figtree/. 2009. Accessed 04 Jan 2011.

    60.
    Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79:7696–701.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: various r programming tools for plotting data. 2019. https://cran.r-project.org/package=gplots. Accessed 28 Nov 2020.

    63.
    Long A, Heitman J, Tobias C, Philips R, Song B. Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl Environ Microbiol. 2013;79:168–76.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Shu D, He Y, Yue H, Wang Q. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems. Chem Eng J. 2016;290:21–30.
    CAS  Article  Google Scholar 

    65.
    Augustin N, Devey CW, van der Zwan FM. A Modern view on the Red Sea Rift: tectonics, volcanism and salt blankets. In: Rasul NMA, Stewart ICF, editors. Geological setting, palaeoenvironment and archaeology of the Red Sea. Springer International Publishing, 2019. p. 37–52.

    66.
    Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.
    CAS  PubMed  Article  Google Scholar 

    67.
    Ward BB, Kilpatrick KA. Relationship between substrate concentration and oxidation of ammonium and methane in a stratified water column. Cont Shelf Res. 1990;10:1193–208.
    Article  Google Scholar 

    68.
    Stedmon CA, Thomas DN, Papadimitriou S, Granskog MA, Dieckmann GS. Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines. J Geophys Res. 2011;116:G03027.
    Google Scholar 

    69.
    Taylor PG, Townsend AR. Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature. 2010;464:1178–81.
    CAS  PubMed  Article  Google Scholar 

    70.
    Granger J, Sigman DM, Lehmann MF, Tortell PD. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr. 2008;53:2533–45.
    CAS  Article  Google Scholar 

    71.
    Nigro LM, Hyde AS, MacGregor BJ. Teske A. Phylogeography, salinity adaptations and metabolic potential of the candidate division kb1 bacteria based on a partial single cell genome. Front Microbiol. 2016;7:1266.

    72.
    Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W, Anthony Kamau A, et al. Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea. Sci Rep. 2016;6:19181.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Pereira AD, Leal CD, Dias MF, Etchebehere C, Chernicharo CAL, de Araújo JC. Effect of phenol on the nitrogen removal performance and microbial community structure and composition of an anammox reactor. Bioresour Technol. 2014;166:103–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Yamada T, Sekiguchi Y. Anaerolineaceae. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA et al, editors. Bergey’s manual of systematics of archaea and bacteria. Wiley, 2018. p. 1–5.

    76.
    Browne P, Tamaki H, Kyrpides N, Woyke T, Goodwin L, Imachi H, et al. Genomic composition and dynamics among Methanomicrobiales predict adaptation to contrasting environments. ISME J. 2017;11:87–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Youssef NH, Ashlock-Savage KN, Elshahed MS. Phylogenetic diversities and community structure of members of the extremely halophilic archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol. 2012;78:1332–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Sorokin DY, Merkel AY, Abbas B, Makarova KS, Rijpstra WIC, Koenen M, et al. Methanonatronarchaeum thermophilum gen. nov., sp. nov. and ‘Candidatus Methanohalarchaeum thermophilum’, extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov. Int J Syst Evol Microbiol. 2018;68:2199–208.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    van Niftrik L, Geerts WJC, van Donselaar EG, Humbel BM, Webb RI, Fuerst JA, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome c proteins. J Bacteriol. 2008;190:708–17.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    80.
    Muck S, De Corte D, Clifford EL, Bayer B, Herndl GJ, Sintes E. Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front Microbiol. 2019;10:2141.
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Jensen MM, Lam P, Revsbech NP, Nagel B, Gaye B, Jetten MS, et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J. 2011;5:1660–70.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Tian R, Ning D, He Z, Zhang P, Spencer SJ, Gao S, et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome. 2020;8:51.
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E, et al. Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep. 2013;3:3554.
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Jayakumar A, Chang BX, Widner B, Bernhardt P, Mulholland MR, Ward BB. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean. ISME J. 2017;11:2356–67.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, et al. A microdiversity study of anammox bacteria reveals a novel Candidatus scalindua phylotype in marine oxygen minimum zones. Environ Microbiol. 2008;10:3106–19.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Speth DR, Lagkouvardos I, Wang Y, Qian P-Y, Dutilh BE, Jetten MSM. Draft genome of Scalindua rubra, obtained from the interface above the discovery deep brine in the red sea, sheds light on potential salt adaptation strategies in anammox bacteria. Micro Ecol. 2017;74:1–5.
    CAS  Article  Google Scholar 

    87.
    Ali M, Shaw DR, Saikaly PE. Application of an enrichment culture of the marine anammox bacterium “Ca. Scalindua” for nitrogen removal under moderate salinity and in the presence of organic carbon. Water Res. 2020;170:115345.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 2019;13:2150–61.
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Awata T, Goto Y, Kindaichi T, Ozaki N, Ohashi A. Nitrogen removal using an anammox membrane bioreactor at low temperature. Water Sci Technol. 2015;72:2148–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Pappalardo RT. Seeking Europa’s ocean. Proc Int Astron Union. 2010;6:101–14.
    Article  Google Scholar 

    91.
    Martínez GM, Renno NO. Water and brines on mars: current evidence and implications for MSL. Space Sci Rev. 2013;175:29–51.
    Article  CAS  Google Scholar 

    92.
    Jokinen SA, Virtasalo JJ, Jilbert T, Kaiser J, Dellwig O, Arz HW, et al. A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century. Biogeosciences. 2018;15:3975–4001.
    CAS  Article  Google Scholar  More

  • in

    Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom

    1.
    Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, et al. Biospheric primary production during an ENSO transition. Science. 2001;291:2594–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife. 2016;5:e11888.
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Francis TB, Krüger K, Fuchs BM, Teeling H, Amann RI. CandidatusProsiliicoccus vernus, a spring phytoplankton bloom associated member of the Flavobacteriaceae. Syst Appl Microbiol. 2019;42:41–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Krüger K, Chafee M, Francis TB, Glavina del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Fernández-Gomez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H. Polysaccharide utilization loci: fueling microbial communities. J Bacteriol. 2017;199:e00860–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.
    CAS  PubMed  Article  Google Scholar 

    16.
    Kirchman DL. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 2002;39:91–100.
    CAS  PubMed  Google Scholar 

    17.
    Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and gut Bacteroidetes: the food connection. Front Microbiol. 2011;2:93–93.
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Baslé A, Firbank SJ, et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature. 2017;541:407–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Joglekar P, Sonnenburg ED, Higginbottom SK, Earle KA, Morland C, Shapiro-Ward S, et al. Genetic variation of the SusC/SusD homologs from a polysaccharide utilization locus underlies divergent fructan specificities and functional adaptation in Bacteroides thetaiotaomicron strains. mSphere. 2018;3:e00185–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, Pudlo NA, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517:165–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Reintjes G, Arnosti C, Fuchs BM, Amann R. An alternative polysaccharide uptake mechanism of marine bacteria. ISME J. 2017;11:1640–50.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Hehemann J-H, Truong LV, Unfried F, Welsch N, Kabisch J, Heiden SE, et al. Aquatic adaptation of a laterally acquired pectin degradation pathway in marine Gammaproteobacteria. Environ Microbiol. 2017;19:2320–33.
    CAS  PubMed  Article  Google Scholar 

    23.
    Neumann AM, Balmonte JP, Berger M, Giebel H-A, Arnosti C, Voget S, et al. Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. Environ Microbiol. 2015;17:3857–68.
    CAS  PubMed  Article  Google Scholar 

    24.
    Mirus O, Strauss S, Nicolaisen K, von Haeseler A, Schleiff E. TonB-dependent transporters and their occurrence in Cyanobacteria. BMC Biol. 2009;7:68.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Gudmundsdottir A, Bell PE, Lundrigan MD, Bradbeer C, Kadner RJ. Point mutations in a conserved region (TonB box) of Escherichia coli outer membrane protein BtuB affect vitamin B12 transport. J Bacteriol. 1989;171:6526–33.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Köster W, Braun V. Iron (III) hydroxamate transport into Escherichia coli. Substrate binding to the periplasmic FhuD protein. J Biol Chem. 1990;265:21407–10.
    PubMed  Article  Google Scholar 

    27.
    Schauer K, Gouget B, Carrière M, Labigne A, Reuse HD. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol. 2007;63:1054–68.
    CAS  PubMed  Article  Google Scholar 

    28.
    Reeves AR, D’Elia JN, Frias J, Salyers AA. A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J Bacteriol. 1996;178:823–30.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Cheng Q, Yu MC, Reeves AR, Salyers AA. Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J Bacteriol. 1995;177:3721–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A, Braun V. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J Bacteriol. 2005;187:8300–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Noinaj N, Guillier M, Barnard TJ, Buchanan SK. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol. 2010;64:43–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schauer K, Rodionov DA, de Reuse H. New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci. 2008;33:330–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun. 2019;10:2043.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Foley MH, Cockburn DW, Koropatkin NM. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci. 2016;73:2603–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Terrapon N, Lombard V, Gilbert HJ, Henrissat B. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics. 2015;31:647–55.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Terrapon N, Lombard V, Drula E, Lapébie P, Al-Masaudi S, Gilbert HJ, et al. PULDB: the expanded database of polysaccharide utilization loci. Nucleic Acids Res. 2017;46:D677–83.
    PubMed Central  Article  CAS  Google Scholar 

    38.
    Bergauer K, Fernandez-Guerra A, Garcia JA, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Dong H-P, Hong Y-G, Lu S, Xie L-Y. Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea. Environ Microbiol Rep. 2014;6:683–95.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA. 2010;107:16420–7.
    CAS  PubMed  Article  Google Scholar 

    41.
    Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J. 2010;4:673–85.
    CAS  PubMed  Article  Google Scholar 

    42.
    Williams TJ, Long E, Evans F, DeMaere MZ, Lauro FM, Raftery MJ, et al. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 2012;6:1883–900.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Article  CAS  Google Scholar 

    45.
    Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Orellana LH, Francis TB, Krüger K, Teeling H, Müller M-C, Fuchs BM, et al. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota. ISME J. 2019;13:3024–36.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Deusch S, Seifert J. Catching the tip of the iceberg—evaluation of sample preparation protocols for metaproteomic studies of the rumen microbiota. Proteomics. 2015;15:3590–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
    CAS  PubMed  Article  Google Scholar 

    51.
    Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–58.
    CAS  PubMed  Article  Google Scholar 

    52.
    Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL, et al. Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods. 2006;40:303–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–50.
    CAS  PubMed  Article  Google Scholar 

    54.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Article  Google Scholar 

    57.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:538.
    Article  Google Scholar 

    59.
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32.
    CAS  Article  Google Scholar 

    60.
    Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 2016;44:D372–9.
    CAS  PubMed  Article  Google Scholar 

    61.
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
    CAS  PubMed  Article  Google Scholar 

    64.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013;42:D490–5.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Tang K, Jiao N, Liu K, Zhang Y, Li S. Distribution and functions of TonB-dependent transporters in marine bacteria and environments: implications for dissolved organic matter utilization. PLoS ONE. 2012;7:e41204.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Gómez-Santos N, Glatter T, Koebnik R, Świątek-Połatyńska MA, Søgaard-Andersen L. A TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane. Nat Commun. 2019;10:1360.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Engel A, Händel N. A novel protocol for determining the concentration and composition of sugars in particulate and in high molecular weight dissolved organic matter (HMW-DOM) in seawater. Mar Chem. 2011;127:180–91.
    CAS  Article  Google Scholar 

    71.
    Reintjes G, Fuchs BM, Scharfe M, Wiltshire KH, Amann R, Arnosti C. Short-term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom. Environ Microbiol. 2020;22:1884–900.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Avcı B, Krüger K, Fuchs BM, Teeling H, Amann RI. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 2020;14:1369–83.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Sperling M, Piontek J, Engel A, Wiltshire KH, Niggemann J, Gerdts G, et al. Combined carbohydrates support rich communities of particle-associated marine bacterioplankton. Front Microbiol. 2017;8:65.
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann J-H, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92–103.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6:613–24.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    76.
    Becker S, Scheffel A, Polz MF, Hehemann J-H. Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appl Environ Microbiol. 2017;83:e03389–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci USA. 2020;117:6599–607.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Warming impairs trophic transfer efficiency in a long-term field experiment

    In natural ecosystems, the efficiency of energy transfer from resources to consumers determines the biomass structure of food webs. As a general rule, about 10% of the energy produced in one trophic level makes it up to the next1–3. Recent theory suggests this energy transfer could be further constrained if rising temperatures increase metabolic growth costs4, although experimental confirmation in whole ecosystems is lacking. We quantified nitrogen transfer efficiency (a proxy for overall energy transfer) in freshwater plankton in artificial ponds exposed to 7 years of experimental warming. We provide the first direct experimental evidence that, relative to ambient conditions, 4 °C of warming can decrease trophic transfer efficiency by up to 56%. In addition, both phytoplankton and zooplankton biomass were lower in the warmed ponds, indicating major shifts in energy uptake, transformation and transfer5,6. These new findings reconcile observed warming-driven changes in individual-level growth costs and carbon-use efficiency across diverse taxa4,7–10 with increases in the ratio of total respiration to gross primary production at the ecosystem level11–13. Our results imply that an increasing proportion of the carbon fixed by photosynthesis will be lost to the atmosphere as the planet warms, impairing energy flux through food chains, with negative implications for larger consumers and the functioning of entire ecosystems. More

  • in

    My race against time to capture the sounds of ancient rainforests

    Natural soundscapes have always called to me. As an eco- and electro-acoustics researcher, with a background in sound engineering and electronic music composition, I have always tried to strike a balance between art and science in my work.
    In 1998, when I first heard about the extinction crisis — more than 35,500 species of flora and fauna are endangered — the idea for the Fragments of Extinction project came to me very quickly. My vision was to build a collection of 24-hour-long ‘acoustic fragments’, recorded at the highest definition possible, capturing the sonic heritage of ancient, biodiverse, untouched tropical rainforests — before climate change damages them irreversibly.
    In these forests, some species vocalize from the canopy, some from the ground and others from big tree trunks that act like sound diffusers. To capture a 3D acoustic portrait of the forest, we simultaneously record on 38 audio channels and microphones.
    In this photograph, I am standing in the Sonosfera, a geodesic theatre in Pesaro, Italy, in which audiences can experience rainforest soundscapes captured in the Amazon, Africa and Borneo. Forty-five high-definition loudspeakers are positioned in an isolated, acoustically perfect space, realistically reproducing the ecosystems’ natural sounds.
    For the first 15 minutes of the performance, the Sonosfera is completely dark. Sound helps listeners to ‘build’ the forest space around them — the position of every insect and amphibian; the birds and mammals moving through the canopy. My team then projects the spectrograms shown here to explain the sounds, and present data showing that these ecosystems are disappearing.
    We have captured the deep infrasound calls of elephants and have recorded insects that sound exactly like violins or trumpets. Our ecosystem recordings are very different. But I don’t have a favourite — they’re a collection. More

  • in

    The population sizes and global extinction risk of reef-building coral species at biogeographic scales

    1.
    Wilkinson, C. Status of Coral Reefs of the World: 2008 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, 2008).
    2.
    Jackson, J. B. C., Donovan, M. K., Cramer, K. L. & Lam, V. V. Status and Trends of Caribbean Coral Reefs: 1970–2012 (Global Coral Reef Monitoring Network, 2014).

    3.
    Eakin, C. M. et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).
    Article  Google Scholar 

    5.
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
    CAS  Article  PubMed  Google Scholar 

    6.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    CAS  PubMed  Article  Google Scholar 

    7.
    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl Acad. Sci. USA 109, 17995–17999 (2012).
    PubMed  Article  Google Scholar 

    8.
    Gardner, T. A. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).
    CAS  PubMed  Article  Google Scholar 

    9.
    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).
    CAS  PubMed  Article  Google Scholar 

    10.
    ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 1, e1500936 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun. 6, 6857 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).
    CAS  PubMed  Article  Google Scholar 

    13.
    Connell, J., Hughes, T. & Wallace, C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
    Article  Google Scholar 

    14.
    Hughes, T. P. & Jackson, J. B. C. Population dynamics and life histories of foliaceous corals. Ecol. Monogr. 55, 141–166 (1985).
    Article  Google Scholar 

    15.
    ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).
    PubMed  Article  CAS  Google Scholar 

    16.
    Gaston, K. J. & Blackburn, T. M. How many birds are there? Biodivers. Conserv. 6, 615–625 (1997).
    Article  Google Scholar 

    17.
    Kerry, J. T. & Bellwood, D. R. Do tabular corals constitute keystone structures for fishes on coral reefs? Coral Reefs 34, 41–50 (2015).
    Article  Google Scholar 

    18.
    Connolly, S. R., Hughes, T. P., Bellwood, D. R. & Karlson, R. H. Community structure of corals and reef fishes at multiple scales. Science 309, 1363–1365 (2005).
    CAS  PubMed  Article  Google Scholar 

    19.
    Connolly, S. R., Hughes, T. P. & Bellwood, D. R. A unified model explains commonness and rarity on coral reefs. Ecol. Lett. 20, 477–486 (2017).
    PubMed  Article  Google Scholar 

    20.
    Hubbell, S. P. Estimating the global number of tropical tree species, and Fisher’s paradox. Proc. Natl Acad. Sci. USA 112, 7343–7344 (2015).
    CAS  PubMed  Article  Google Scholar 

    21.
    Hughes, T. P., Bellwood, D. R. & Connolly, S. R. Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecol. Lett. 5, 775–784 (2002).
    Article  Google Scholar 

    22.
    Hughes, T. P., Bellwood, D. R., Connolly, S. R. & Cornell, H. V. Double jeopardy and global extinction risk in corals and reef fishes. Curr. Biol. 24, 2946–2951 (2014).
    CAS  PubMed  Article  Google Scholar 

    23.
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).
    Article  Google Scholar 

    24.
    Hull, P. M., Darroch, S. A. F. & Erwin, D. H. Rarity in mass extinctions and the future of ecosystems. Nature 528, 345–351 (2015).
    CAS  PubMed  Article  Google Scholar 

    25.
    Cardoso, P., Borges, P. A. V., Triantis, K. A., Ferrández, M. A. & Martín, J. L. Adapting the IUCN Red List criteria for invertebrates. Biol. Conserv. 144, 2432–2440 (2011).
    Article  Google Scholar 

    26.
    Cardoso, P., Borges, P. A. V., Triantis, K. A., Ferrández, M. A. & Martín, J. L. The underrepresentation and misrepresentation of invertebrates in the IUCN Red List. Biol. Conserv. 149, 147–148 (2012).
    Article  Google Scholar 

    27.
    Estes, J. A., Duggins, D. O. & Rathbun, G. B. The ecology of extinctions in kelp forest communities. Conserv. Biol. 3, 252–264 (1989).
    Article  Google Scholar 

    28.
    Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417 (1992).
    CAS  PubMed  Article  Google Scholar 

    29.
    Knowlton, N., Lang, J. C. & Keller, B. D. Case study of natural population collapse: post-hurricane predation on Jamaican staghorn corals. Smithson. Contrib. Mar. Sci. 31, 1–25 (1990).
    Google Scholar 

    30.
    Gaston, K. J. & Fuller, R. A. Commonness, population depletion and conservation biology. Trends Ecol. Evol. 23, 14–19 (2008).
    PubMed  Article  Google Scholar 

    31.
    Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).
    PubMed  Article  CAS  Google Scholar 

    32.
    Pratchett, M. S. Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Mar. Biol. 148, 373–382 (2005).
    Article  Google Scholar 

    33.
    Huang, D., Licuanan, W. Y., Baird, A. H. & Fukami, H. Cleaning up the ‘Bigmessidae’: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol. Biol. 11, 37 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Knowlton, N. & Jackson, J. B. C. New taxonomy and niche partitioning on coral reefs: jack of all trades or master of some? Trends Ecol. Evol. 9, 7–9 (1994).
    CAS  PubMed  Article  Google Scholar 

    35.
    Gilpin, M. E. & Soulé, M. E. in Conservation Biology: The Science of Scarcity and Diversity (ed, Soulé, M. E.) 19–34 (Sinauer Associates, 1986).

    36.
    Bak, R. P. M. & Meesters, E. H. Population structure as a response of coral communities to global change. Am. Zool. 39, 56–65 (1999).
    Article  Google Scholar 

    37.
    McClanahan, T. R., Ateweberhan, M. & Omukoto, J. Long-term changes in coral colony size distributions on Kenyan reefs under different management regimes and across the 1998 bleaching event. Mar. Biol. 153, 755–768 (2008).
    Article  Google Scholar 

    38.
    Riegl, B. M., Bruckner, A. W., Rowlands, G. P., Purkis, S. J. & Renaud, P. Red Sea coral reef trajectories over 2 decades suggest increasing community homogenization and decline in coral size. PLoS ONE 7, e38396 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    CAS  Article  Google Scholar 

    40.
    Global Distribution of Coral Reefs (UNEP-WCMC, WorldFish Centre, WRI & TNC, 2018); https://data.unep-wcmc.org/datasets/

    41.
    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 29778 (2016).

    42.
    Bruno, J. Data from: Coral reef degradation is not correlated with local human population density. Dryad Digital Repository https://doi.org/10.5061/dryad.48r68 (2016).

    43.
    Karlson, R. H., Cornell, H. V. & Hughes, T. P. Coral communities are regionally enriched along an oceanic biodiversity gradient. Nature 429, 867–870 (2004).
    CAS  PubMed  Article  Google Scholar 

    44.
    Cornell, H. V., Karlson, R. H. & Hughes, T. P. Scale-dependent variation in coral community similarity across sites, islands, and island groups. Ecology 88, 1707–1715 (2007).
    PubMed  Article  Google Scholar 

    45.
    Cornell, H. V., Karlson, R. H. & Hughes, T. P. Local-regional species richness relationships are linear at very small to large scales in west-central Pacific corals. Coral Reefs 27, 145–151 (2008).
    Article  Google Scholar 

    46.
    Connolly, S. R., Dornelas, M., Bellwood, D. R. & Hughes, T. P. Testing species abundance models: a new bootstrap approach applied to Indo-Pacific coral reefs. Ecology 90, 3138–3149 (2009).
    PubMed  Article  Google Scholar 

    47.
    Reef Habitat Maps (NOAA-NCCOS, accessed 10 November 2017); https://products.coastalscience.noaa.gov/collections/benthic/default.aspx

    48.
    Purkis, S. J. et al. High-resolution habitat and bathymetry maps for 65,000 sq. km of Earth’s remotest coral reefs. Coral Reefs 38, 467–488 (2019).
    Article  Google Scholar 

    49.
    Roelfsema, C., Phinn, S., Jupiter, S., Comley, J. & Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 34, 6367–6388 (2013).
    Article  Google Scholar 

    50.
    Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Article  Google Scholar 

    51.
    Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92, 3–10 (2011).
    PubMed  Article  Google Scholar 

    52.
    Marsh, L. M., Bradbury, R. H. & Reichelt, R. E. Determination of the physical parameters of coral distributions using line transect data. Coral Reefs 2, 175–180 (1984).
    Google Scholar 

    53.
    Hughes, T. P. Population dynamics based on individual size rather than age: a general model with a reef coral example. Am. Nat. 123, 778–795 (1984).
    Article  Google Scholar 

    54.
    Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77, 950–963 (1996).
    Article  Google Scholar 

    55.
    Hughes, T. P., Connolly, S. R. & Keith, S. A. Geographic ranges of reef corals (Cnidaria: Anthozoa: Scleractinia) in the Indo-Pacific. Ecology 94, 1659 (2013).
    Article  Google Scholar 

    56.
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
    CAS  PubMed  Article  Google Scholar 

    57.
    van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
    PubMed  Article  CAS  Google Scholar 

    58.
    Hubbell, S. P. et al. How many tree species are there in the Amazon and how many of them will go extinct? Proc. Natl Acad. Sci. USA 105, 11498–11504 (2008).
    CAS  PubMed  Article  Google Scholar 

    59.
    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Sea Res. I 56, 727–740 (2009).
    Article  Google Scholar 

    60.
    Current World Population (Worldometer, accessed 13 May 2020); https://www.worldometers.info/world-population/

    61.
    California Condor Recovery Program: 2017 Annual Population Status (US Fish and Wildlife Service, 2017).

    62.
    Goodrich, J. M. et al. Panthera tigris. The IUCN Red List of Threatened Species 2015 Report number e.T15955A50659951 (IUCN, 2015). More

  • in

    Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity

    1.
    Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. Int J Earth Sci. 2014;103:1889–916.
    CAS  Article  Google Scholar 
    2.
    Joye SB. The geology and biogeochemistry of hydrocarbon seeps. Annu Rev Earth Planet Sci. 2020;48:205–31.
    CAS  Article  Google Scholar 

    3.
    Etiope G, Panieri G, Fattorini D, Regoli F, Vannoli P, Italiano F, et al. A thermogenic hydrocarbon seep in shallow Adriatic Sea (Italy): Gas origin, sediment contamination and benthic foraminifera. Mar Pet Geol. 2014;57:283–93.
    CAS  Article  Google Scholar 

    4.
    Kennicutt, MC Habitats and biota of the Gulf of Mexico: before the deepwater horizon oil spill. Ward CH, editor. New York, NY: Springer New York; 2017. p. 275–358.

    5.
    Ruppel CD, Kessler JD. The interaction of climate change and methane hydrates. Rev Geophys. 2017;55:126–68.
    Article  Google Scholar 

    6.
    Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature. 2007;449:898–901.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J. 2013;7:885–95.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Teske A, Carvalho V. Marine hydrocarbon seeps: microbiology and biogeochemistry of a global marine habitat. Cham, Switzerland: Springer Nature; 2020.

    9.
    Kellogg CA. Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico. Deep Sea Res Part II Top Stud Oceanogr. 2010;57:2002–7.
    Article  Google Scholar 

    10.
    Bryson SJ, Thurber AR, Correa AM, Orphan VJ, Vega Thurber R. A novel sister clade to the enterobacteria microviruses (family Microviridae) identified in methane seep sediments. Environ Microbiol. 2015;17:3708–21.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Paul BG, Bagby SC, Czornyj E, Arambula D, Handa S, Sczyrba A, et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat Commun. 2015;6:6585.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Pan D, Morono Y, Inagaki F, Takai K. An improved method for extracting viruses from sediment: detection of far more viruses in the subseafloor than previously reported. Front Microbiol. 2019;10:878.
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Jin M, Guo X, Zhang R, Qu W, Gao B, Zeng R. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome. 2019;7:58.
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Labbe M, Girard C, Vincent WF, Culley AI. Extreme viral partitioning in a marine-derived high arctic lake. mSphere. 2020;5:e00334–00320.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Okazaki Y, Nishimura Y, Yoshida T, Ogata H, Nakano SI. Genome-resolved viral and cellular metagenomes revealed potential key virus-host interactions in a deep freshwater lake. Environ Microbiol. 2019;21:4740–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Backstrom D, Yutin N, Jorgensen SL, Dharamshi J, Homa F, Zaremba-Niedwiedzka K, et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio. 2019;10:e02497–02418.
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Daly RA, Roux S, Borton MA, Morgan DM, Johnston MD, Booker AE, et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat Microbiol. 2019;4:352–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Daly RA, Borton MA, Wilkins MJ, Hoyt DW, Kountz DJ, Wolfe RA, et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat Microbiol. 2016;1:16146.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Gregory AC, Zayed AA, Conceicao-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell. 2019;177:1109–23.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CPD, et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun. 2017;8:15955.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Chen LX, Meheust R, Crits-Christoph A, McMahon KD, Nelson TC, Slater GF, et al. Large freshwater phages with the potential to augment aerobic methane oxidation. Nat Microbiol. 2020;5:1504–15.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Cai L, Jorgensen BB, Suttle CA, He M, Cragg BA, Jiao N, et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 2019;13:1857–64.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature. 2008;454:1084–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Middelboe M, Glud RN, Wenzhöfer F, Oguri K, Kitazato H. Spatial distribution and activity of viruses in the deep-sea sediments of Sagami Bay. Jpn Deep Sea Res Part 1 Oceanogr Res Pap. 2006;53:1–13.
    Article  Google Scholar 

    28.
    Danovaro R, Serresi M. Viral density and virus-to-bacterium ratio in deep-sea sediments of the Eastern Mediterranean. Appl Environ Microbiol. 2000;66:1857–61.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Hewson I, Fuhrman JA. Viriobenthos production and virioplankton sorptive scavenging by suspended sediment particles in coastal and pelagic waters. Micro Ecol. 2003;46:337–47.
    CAS  Article  Google Scholar 

    30.
    Corinaldesi C, Dell’Anno A, Danovaro R. Viral infection plays a key role in extracellular DNA dynamics in marine anoxic systems. Limnol Oceanogr. 2007;52:508–16.
    CAS  Article  Google Scholar 

    31.
    Dong X, Greening C, Rattray JE, Chakraborty A, Chuvochina M, Mayumi D, et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun. 2019;10:1816.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Dong X, Rattray JE, Campbell DC, Webb J, Chakraborty A, Adebayo O, et al. Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep. Nat Commun. 2020;11:5825.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Gruber-Vodicka HR, Seah BKB, Pruesse E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems. 2020;5:e00920–00920.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2019;36:1925–7.
    PubMed  PubMed Central  Google Scholar 

    39.
    Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Federhen S. The NCBI taxonomy database. Nucleic Acids Res. 2012;40:D136–43.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome. 2017;5:69.
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Marquet M, Hölzer M, Pletz MW, Viehweger A, Makarewicz O, Ehricht R, et al. What the phage: a scalable workflow for the identification and analysis of phage sequences. 2020. https://www.biorxiv.org/content/10.1101/2020.07.24.219899v1.

    46.
    Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90.
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2020. https://doi.org/10.1101/2020.1105.1106.081778.

    48.
    Dalcin Martins P, Danczak RE, Roux S, Frank J, Borton MA, Wolfe RA, et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome. 2018;6:138.
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Article  CAS  Google Scholar 

    50.
    Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.
    Article  CAS  Google Scholar 

    51.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Roux S, Paez-Espino D, Chen IA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 2020;49:D764–75.

    53.
    Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum information about an uncultivated virus genome (MIUViG). Nat Biotechnol. 2019;37:29–37.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Castelan-Sanchez HG, Lopez-Rosas I, Garcia-Suastegui WA, Peralta R, Dobson ADW, Batista-Garcia RA, et al. Extremophile deep-sea viral communities from hydrothermal vents: structural and functional analysis. Mar Genom. 2019;46:16–28.
    Article  Google Scholar 

    55.
    Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–86.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Tominaga K, Morimoto D, Nishimura Y, Ogata H, Yoshida T. In silico prediction of virus-host interactions for marine bacteroidetes with the use of metagenome-assembled genomes. Front Microbiol. 2020;11:738.
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. Alignment-free d2*oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 2017;45:39–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32:11–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Skennerton CT, Imelfort M, Tyson GW. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 2013;41:e105.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Dong X, Strous M. An integrated pipeline for annotation and visualization of metagenomic contigs. Front Genet. 2019;10:999.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Zhou Z, Tran PQ, Breister AM, Liu Y, Kieft K, Cowley ES, et al. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. 2020. https://www.biorxiv.org/content/10.1101/761643v1.

    62.
    Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;5:113.
    Article  CAS  Google Scholar 

    63.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9:37.
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Vik D, Gazitua MC, Sun CL, Zayed AA, Aldunate M, Mulholland MR et al. Genome-resolved viral ecology in a marine oxygen minimum zone. Environ Microbiol. 2020. https://doi.org/10.1111/1462-2920.15313.

    67.
    ter Horst AM, Santos-Medellin C, Sorensen JW, Zinke LA, Wilson RM, Johnston ER, et al. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. 2020. https://www.biorxiv.org/content/10.1101/2020.12.15.422944v1.full.

    68.
    Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
    Article  Google Scholar 

    71.
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Al-Shayeb B, Sachdeva R, Chen LX, Ward F, Munk P, Devoto A, et al. Clades of huge phages from across Earth’s ecosystems. Nature. 2020;578:425–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA. 2015;112:4015–20.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e00076–00018.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. elife. 2015;4:e08490.
    PubMed Central  Article  Google Scholar 

    78.
    Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol. 2018;16:629–45.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Jarett JK, Dzunkova M, Schulz F, Roux S, Paez-Espino D, Eloe-Fadrosh E, et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 2020;14:2527–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Orsi WD. Ecology and evolution of seafloor and subseafloor microbial communities. Nat Rev Microbiol. 2018;16:671–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015;9:472–84.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Mara P, Vik D, Pachiadaki MG, Suter EA, Poulos B, Taylor GT, et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 2020;14:3079–92.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Anderson CL, Sullivan MB, Fernando SC. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome. 2017;5:155.
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Gao SM, Schippers A, Chen N, Yuan Y, Zhang MM, Li Q, et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome. 2020;8:89.
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Zhao R, Summers ZM, Christman GD, Yoshimura KM, Biddle JF. Metagenomic views of microbial dynamics influenced by hydrocarbon seepage in sediments of the Gulf of Mexico. Sci Rep. 2020;10:5772.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Dekas AE, Poretsky RS, Orphan VJ. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science. 2009;326:422–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Zheng, X, Liu, W, Dai, X, Zhu, Y, Wang, J, Zhu, Y et al. Extraordinary diversity of viruses in deep-sea sediments as revealed by metagenomics without prior virion separation. Environ Microbiol. 2020. https://doi.org/10.1111/1462-2920.15154. More

  • in

    Conserving intraspecific variation for nature’s contributions to people

    1.
    Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).
    2.
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).
    PubMed  Google Scholar 

    3.
    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).
    PubMed  Google Scholar 

    4.
    Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997).
    CAS  PubMed  Google Scholar 

    5.
    Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).
    PubMed  Google Scholar 

    6.
    Leigh, D. M. et al. Estimated six per cent loss of genetic variation in wild populations since the Industrial Revolution. Evol. Appl. 12, 1505–1512 (2019).
    PubMed  PubMed Central  Google Scholar 

    7.
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
    CAS  PubMed  Google Scholar 

    8.
    Laikre, L. et al. Post-2020 goals overlook genetic diversity. Science 367, 1083–1085 (2020).
    PubMed  Google Scholar 

    9.
    The Red List of Threatened Species, Version 2019-3 (IUCN, 2019); http://www.iucnredlist.org

    10.
    DiBattista, J. D. Patterns of genetic variation in anthropogenically impacted populations. Conserv. Genet. 9, 141–156 (2008).
    Google Scholar 

    11.
    Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).
    PubMed  Google Scholar 

    12.
    Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Conserv. 191, 495–503 (2015).
    Google Scholar 

    13.
    Living Planet Report (WWF, 2018).

    14.
    Laikre, L. & Ryman, N. Effects on intraspecific biodiversity from harvesting and enhancing natural populations. Ambio 25, 505–509 (1996).
    Google Scholar 

    15.
    Delaney, K. S., Riley, S. P. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5, e12767 (2010).
    PubMed  PubMed Central  Google Scholar 

    16.
    Pfenninger, M., Bálint, M. & Pauls, S. U. Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change. BMC Evol. Biol. 12, 224 (2012).
    PubMed  PubMed Central  Google Scholar 

    17.
    Rocha‐Olivares, A., Fleeger, J. W. & Foltz, D. W. Differential tolerance among cryptic species: a potential cause of pollutant-related reductions in genetic diversity. Environ. Toxicol. Chem. 23, 2132–2137 (2004).
    PubMed  Google Scholar 

    18.
    Laikre, L., Schwartz, M. K., Waples, R. S. & Ryman, N. Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 25, 520–529 (2010).
    PubMed  Google Scholar 

    19.
    Channell, R. & Lomolino, M. V. Trajectories to extinction: spatial dynamics of the contraction of geographical ranges. J. Biogeogr. 27, 169–179 (2000).
    Google Scholar 

    20.
    Bijlsma, R. & Loeschcke, V. Genetic erosion impedes adaptive responses to stressful environments. Evol. Appl. 5, 117–129 (2012).
    CAS  PubMed  Google Scholar 

    21.
    Ouborg, N. J., van Treuren, R. & van Damme, J. M. M. The significance of genetic erosion in the process of extinction. Oecologia 86, 359–367 (1991).
    CAS  PubMed  Google Scholar 

    22.
    Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl Acad. Sci. USA 104, 3883–3888 (2007).
    CAS  PubMed  Google Scholar 

    23.
    Sætre, G.-P. et al. Single origin of human commensalism in the house sparrow. J. Evol. Biol. 25, 788–796 (2012).
    PubMed  Google Scholar 

    24.
    Millette, K. L., Gonzalez, A. & Cristescu, M. E. Breaking ecological barriers: anthropogenic disturbance leads to habitat transitions, hybridization, and high genetic diversity. Sci. Total Environ. 740, 140046 (2020).
    CAS  PubMed  Google Scholar 

    25.
    Millette, K. L. et al. No consistent effects of humans on animal genetic diversity worldwide. Ecol. Lett. 23, 55–67 (2020).
    PubMed  Google Scholar 

    26.
    Allentoft, M. & O’Brien, J. Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2, 47–71 (2010).
    Google Scholar 

    27.
    Blomqvist, D., Pauliny, A., Larsson, M. & Flodin, L.-Å. Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population. BMC Evol. Biol. 10, 33 (2010).
    PubMed  PubMed Central  Google Scholar 

    28.
    Polfus, J. L. et al. Łeghágots’enetę (learning together): the importance of indigenous perspectives in the identification of biological variation. Ecol. Soc. 21, 18 (2016).
    Google Scholar 

    29.
    Marin, K., Coon, A. & Fraser, D. J. Traditional ecological knowledge reveals the extent of sympatric lake trout diversity and habitat preferences. Ecol. Soc. 22, 20 (2017).
    Google Scholar 

    30.
    Small, N. & Munday, M. & Durance, I. The challenge of valuing ecosystem services that have no material benefits. Glob. Environ. Change 44, 57–67 (2017).
    Google Scholar 

    31.
    Satz, D. et al. The challenges of incorporating cultural ecosystem services into environmental assessment. Ambio 42, 675–684 (2013).
    PubMed  PubMed Central  Google Scholar 

    32.
    Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–613 (2010).
    CAS  PubMed  Google Scholar 

    33.
    Rogers, L. A. et al. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries. Proc. Natl Acad. Sci. USA 110, 1750–1755 (2013).
    CAS  PubMed  Google Scholar 

    34.
    Brennan, S. R. et al. Shifting habitat mosaics and fish production across river basins. Science 364, 783–786 (2019).
    CAS  PubMed  Google Scholar 

    35.
    Larson, W. A., Lisi, P. J., Seeb, J. E., Seeb, L. W. & Schindler, D. E. Major histocompatibility complex diversity is positively associated with stream water temperatures in proximate populations of sockeye salmon. J. Evol. Biol. 29, 1846–1859 (2016).
    CAS  PubMed  Google Scholar 

    36.
    Freshwater, C. et al. Individual variation, population-specific behaviours and stochastic processes shape marine migration phenologies. J. Anim. Ecol. 88, 67–78 (2018).
    PubMed  Google Scholar 

    37.
    Moore, J. W., McClure, M., Rogers, L. A. & Schindler, D. E. Synchronization and portfolio performance of threatened salmon. Conserv. Lett. 3, 340–348 (2010).
    Google Scholar 

    38.
    Satterthwaite, W. H. & Carlson, S. M. Weakening portfolio effect strength in a hatchery-supplemented Chinook salmon population complex. Can. J. Fish. Aquat. Sci. 72, 1860–1875 (2015).
    Google Scholar 

    39.
    Araki, H., Berejikian, B. A., Ford, M. J. & Blouin, M. S. Fitness of hatchery-reared salmonids in the wild. Evol. Appl. 1, 342–355 (2008).
    PubMed  PubMed Central  Google Scholar 

    40.
    Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).
    CAS  PubMed  Google Scholar 

    41.
    Carlson, S. M. & Satterthwaite, W. H. Weakened portfolio effect in a collapsed salmon population complex. Can. J. Fish. Aquat. Sci. 68, 1579–1589 (2011).
    Google Scholar 

    42.
    Maldonado, C. et al. Phylogeny predicts the quantity of antimalarial alkaloids within the iconic yellow cinchona bark (Rubiaceae: Cinchona calisaya). Front. Plant Sci. 8, 391 (2017).
    PubMed  PubMed Central  Google Scholar 

    43.
    Cueva-Agila, A. et al. Genetic characterization of fragmented populations of Cinchona officinalis L. (Rubiaceae), a threatened tree of the northern Andean cloud forests. Tree Genet. Genomes 15, 81 (2019).
    Google Scholar 

    44.
    Simpson, R. D., Sedjo, R. A. & Reid, J. W. Valuing biodiversity for use in pharmaceutical research. J. Polit. Econ. 104, 163–185 (1996).
    Google Scholar 

    45.
    Graves, R. A., Pearson, S. M. & Turner, M. G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl Acad. Sci. USA 114, 3774–3779 (2017).
    CAS  PubMed  Google Scholar 

    46.
    Darwin, C. On the Origins of Species by Means of Natural Selection (John Murray, 1859).

    47.
    Weldon, W. F. R. Mendel’s laws of alternative inheritance in peas. Biometrika 1, 228–254 (1902).
    Google Scholar 

    48.
    Courchamp, F. et al. Rarity value and species extinction: the anthropogenic allee effect. PLoS Biol. 4, e415 (2006).
    PubMed  PubMed Central  Google Scholar 

    49.
    Davis, J. N. Color abnormalities in birds: a proposed nomenclature for birders. Birding 39, 36–46 (2007).
    Google Scholar 

    50.
    Kolbe, J. J. et al. The desire for variety: Italian wall lizard (Podarcis siculus) populations introduced to the United States via the pet trade are derived from multiple native-range sources. Biol. Invasions 15, 775–783 (2013).
    Google Scholar 

    51.
    Tapley, B., Griffiths, R. A. & Bride, I. Dynamics of the trade in reptiles and amphibians within the United Kingdom over a ten-year period. Herpetol. J. 21, 27–34 (2011).
    Google Scholar 

    52.
    Militz, T. A., Foale, S., Kinch, J. & Southgate, P. C. Natural rarity places clownfish colour morphs at risk of targeted and opportunistic exploitation in a marine aquarium fishery. Aquat. Living Resour. 31, 18 (2018).
    Google Scholar 

    53.
    Rowley, J. J. L., Emmett, D. A. & Voen, S. Harvest, trade and conservation of the Asian arowana Scleropages formosus in Cambodia. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1255–1262 (2008).
    Google Scholar 

    54.
    Clapp, R. A. Wilderness ethics and political ecology: remapping the Great Bear Rainforest. Polit. Geogr. 23, 839–862 (2004).
    Google Scholar 

    55.
    Cusack, C. M. Save the White Tiger. J Law Soc. Deviance 12, 1 (2016).
    Google Scholar 

    56.
    Zhao, S. et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45, 67–71 (2013).
    CAS  PubMed  Google Scholar 

    57.
    Gaos, A. R. et al. Hawksbill turtle terra incognita: conservation genetics of eastern Pacific rookeries. Ecol. Evol. 6, 1251–1264 (2016).
    PubMed  PubMed Central  Google Scholar 

    58.
    Read, T. D. et al. Draft sequencing and assembly of the genome of the world’s largest fish, the whale shark: Rhincodon typus Smith 1828. BMC Genom. 18, 532 (2017).
    Google Scholar 

    59.
    Wilting, A. et al. Planning tiger recovery: understanding intraspecific variation for effective conservation. Sci. Adv. 1, e1400175 (2015).
    PubMed  PubMed Central  Google Scholar 

    60.
    Hedrick, P. W. Gene flow and genetic restoration: the florida panther as a case study. Conserv. Biol. 9, 996–1007 (1995).
    Google Scholar 

    61.
    Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Crutsinger, G. M., Souza, L. & Sanders, N. J. Intraspecific diversity and dominant genotypes resist plant invasions. Ecol. Lett. 11, 16–23 (2007).
    PubMed  Google Scholar 

    63.
    Lahr, E. C., Backe, K. M. & Frank, S. D. Intraspecific variation in morphology, physiology, and ecology of wildtype relative to horticultural varieties of red maple (Acer rubrum). Trees 34, 603–614 (2020).
    CAS  Google Scholar 

    64.
    Yoshihara, Y. & Isogai, T. Does genetic diversity of grass improve yield, digestibility, and resistance to weeds, pests and disease infection? Arch. Agron. Soil Sci. 65, 1623–1629 (2019).
    Google Scholar 

    65.
    Busby, P. E., Newcombe, G., Dirzo, R. & Whitham, T. G. Genetic basis of pathogen community structure for foundation tree species in a common garden and in the wild. J. Ecol. 101, 867–877 (2013).
    Google Scholar 

    66.
    Berrang, P., Karnosky, D. F., Mickler, R. A. & Bennett, J. P. Natural selection for ozone tolerance in Populustremuloides. Can. J. Res. 16, 1214–1216 (1986).
    CAS  Google Scholar 

    67.
    Kremp, A. et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol. Evol. 2, 1195–1207 (2012).
    PubMed  PubMed Central  Google Scholar 

    68.
    Boyden, S., Binkley, D. & Stape, J. L. Competition among eucalyptus trees depends on genetic variation and resource supply. Ecology 89, 2850–2859 (2008).
    PubMed  Google Scholar 

    69.
    Crutsinger, G. M., Reynolds, W. N., Classen, A. T. & Sanders, N. J. Disparate effects of plant genotypic diversity on foliage and litter arthropod communities. Oecologia 158, 65–75 (2008).
    PubMed  Google Scholar 

    70.
    Dubs, F. et al. Positive effects of wheat variety mixtures on aboveground arthropods are weak and variable. Basic Appl. Ecol. 33, 66–78 (2018).
    Google Scholar 

    71.
    Mansion-Vaquié, A., Wezel, A. & Ferrer, A. Wheat genotypic diversity and intercropping to control cereal aphids. Agric. Ecosyst. Environ. 285, 106604 (2019).
    Google Scholar 

    72.
    Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985 (2012).
    Google Scholar 

    73.
    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).
    CAS  PubMed  Google Scholar 

    74.
    Vytopil, E. & Willis, B. L. Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity. Coral Reefs 20, 281–288 (2001).
    Google Scholar 

    75.
    Mercado-Molina, A. E., Ruiz-Diaz, C. P. & Sabat, A. M. Branching dynamics of transplanted colonies of the threatened coral Acropora cervicornis: morphogenesis, complexity, and modeling. J. Exp. Mar. Biol. Ecol. 482, 134–141 (2016).
    Google Scholar 

    76.
    Lohr, K. E. & Patterson, J. T. Intraspecific variation in phenotype among nursery-reared staghorn coral Acropora cervicornis (Lamarck, 1816). J. Exp. Mar. Biol. Ecol. 486, 87–92 (2017).
    Google Scholar 

    77.
    Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl Acad. Sci. USA 116, 10586–10591 (2019).
    CAS  PubMed  Google Scholar 

    78.
    Contolini, G. M., Reid, K. & Palkovacs, E. P. Climate shapes population variation in dogwhelk predation on foundational mussels. Oecologia 192, 553–564 (2020).
    PubMed  Google Scholar 

    79.
    Allgeier, J. E. et al. Individual behavior drives ecosystem function and the impacts of harvest. Sci. Adv. 6, eaax8329 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    80.
    Isaac, M. E. et al. Farmer perception and utilization of leaf functional traits in managing agroecosystems. J. Appl. Ecol. 55, 69–80 (2018).
    Google Scholar 

    81.
    Thomas, E. et al. NTFP harvesters as citizen scientists: validating traditional and crowdsourced knowledge on seed production of Brazil nut trees in the Peruvian Amazon. PLoS ONE 12, e0183743 (2017).
    PubMed  PubMed Central  Google Scholar 

    82.
    Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 44, 825–830 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    83.
    Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    84.
    Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017).
    CAS  PubMed  Google Scholar 

    85.
    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).
    CAS  PubMed  Google Scholar 

    86.
    Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B Biol. Sci. 285, 20172746 (2018).
    Google Scholar 

    87.
    Coddington, J., Lewin, H. A., Robinson, G. E. & Kress, W. J. The Earth Biogenome Project. Biodivers. Inf. Sci. Stand. 3, e37344 (2019).
    Google Scholar 

    88.
    Crain, R., Cooper, C. & Dickinson, J. L. Citizen science: a tool for integrating studies of human and natural systems. Annu. Rev. Environ. Resour. 39, 641–665 (2014).
    Google Scholar 

    89.
    Kerstes, N. A. G., Breeschoten, T., Kalkman, V. J. & Schilthuizen, M. Snail shell colour evolution in urban heat islands detected via citizen science. Commun. Biol. 2, 264 (2019).
    PubMed  PubMed Central  Google Scholar 

    90.
    Searfoss, A. M., Liu, W. & Creanza, N. Geographically well-distributed citizen science data reveals range-wide variation in the chipping sparrow’s simple song. Anim. Behav. 161, 63–76 (2020).
    Google Scholar 

    91.
    Sauer, J. R., Link, W. A., Fallon, J. E., Pardieck, K. L. & David, J. Ziolkowski Jr. The North American Breeding Bird Survey 1966–2011: summary analysis and species accounts. North Am. Fauna 79, 1–32 (2013).
    Google Scholar 

    92.
    Nugent, J. iNaturalist: citizen science for 21st-century naturalists. Sci. Scope 41, 12 (2018).
    Google Scholar 

    93.
    McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 208, 15–28 (2017).
    Google Scholar 

    94.
    Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).
    PubMed  Google Scholar 

    95.
    Waples, R. S. Pacific salmon, Oncorhynchus spp., and the definition of ‘species’ under the endangered species. Act. Mar. Fish. Rev. 53, 11–22 (1991).
    Google Scholar 

    96.
    Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).
    CAS  PubMed  Google Scholar 

    97.
    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).
    PubMed  PubMed Central  Google Scholar 

    98.
    Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with the speciespopulation continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).
    Google Scholar 

    99.
    Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).
    PubMed  Google Scholar 

    100.
    Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    101.
    Des Roches, S. et al. Socio-eco-evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).
    PubMed  Google Scholar 

    102.
    Drury, C. et al. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity. Ecol. Evol. 7, 6188–6200 (2017).
    PubMed  PubMed Central  Google Scholar 

    103.
    Vasconcelos, R. et al. Combining molecular and landscape tools for targeting evolutionary processes in reserve design: an approach for islands. PLoS ONE 13, e0200830 (2018).
    PubMed  PubMed Central  Google Scholar 

    104.
    Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).
    Google Scholar 

    105.
    Hoffmann, A. A., Sgrò, C. M. & Kristensen, T. N. Revisiting adaptive potential, population size, and conservation. Trends Ecol. Evol. 32, 506–517 (2017).
    PubMed  Google Scholar 

    106.
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).
    PubMed  Google Scholar 

    107.
    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2020).
    PubMed  PubMed Central  Google Scholar 

    108.
    Oke, K. B. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    109.
    Thompson, J., Stow, A. & Raftos, D. Lack of genetic introgression between wild and selectively bred Sydney rock oysters Saccostrea glomerata. Mar. Ecol. Prog. Ser. 570, 127–139 (2017).
    Google Scholar 

    110.
    Schindler, D. E., Leavitt, P. R., Brock, C. S., Johnson, S. P. & Quay, P. D. Marine-derived nutrients, commercial fisheries, and production of salmon and lake algae in Alaska. Ecology 86, 3225–3231 (2005).
    Google Scholar 

    111.
    Ainsworth, E. A. The importance of intraspecific variation in tree responses to elevated [CO2]: breeding and management of future forests. Tree Physiol. 36, 679–681 (2016).
    CAS  PubMed  Google Scholar  More

  • in

    A state-space model to derive motorboat noise effects on fish movement from acoustic tracking data

    1.
    Desiderà, E. et al. Acoustic fish communities: Sound diversity of rocky habitats reflects fish species diversity. Mar. Ecol. Prog. Ser. 608, 183–197 (2019).
    ADS  Article  Google Scholar 
    2.
    Iorio, L. D., Gervaise, C., Lossent, J., Valentini-Poirier, C.-A. & Boissery, P. Benthic biophonic assemblages, their environmental divers, eco-acoustic scores at the level of the Western Mediterranean basin, and their implications for large-scale ecosystem monitoring. J. Acoust. Soc. Am. 144, 1692–1692 (2018).
    ADS  Article  Google Scholar 

    3.
    Buscaino, G. et al. Temporal patterns in the soundscape of the shallow waters of a Mediterranean marine protected area. Sci. Rep. 6, 1–13 (2016).
    Article  CAS  Google Scholar 

    4.
    McNett, G. D., Luan, L. H. & Cocroft, R. B. Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav. Ecol. Sociobiol. 64, 2043–2051 (2010).
    Article  Google Scholar 

    5.
    Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).
    ADS  Article  Google Scholar 

    6.
    Popper, A. N. & Hawkins, A. D. An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. J. Fish Biol. 94, 692–713 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Belkovich, V. M., Bibikov, N. G., Dubrovsky, N. A., Suhoruchenko, M. N. & Zhuravlev, V. A. Preliminary estimates of low-frequency sound effect on sea animals in the Eastern Arctic. (1994).

    8.
    Mate, B. R., Stafford, K. M. & Ljungblad, D. K. A change in sperm whale (Physeter macroephalus) distribution correlated to seismic surveys in the Gulf of Mexico. J. Acoust. Soc. Am. 96, 3268–3269 (1994).
    ADS  Article  Google Scholar 

    9.
    Dunlop, R. A. et al. The behavioural response of humpback whales (Megaptera novaeangliae) to a 20 cubic inch air gun. Aquat. Mamm. 41, 412–433 (2015).
    Article  Google Scholar 

    10.
    Kunc, H. P., McLaughlin, K. E. & Schmidt, R. Aquatic noise pollution: Implications for individuals, populations, and ecosystems. Proc. R. Soc. B Biol. Sci. 283, 20160839 (2016).
    Article  Google Scholar 

    11.
    Rako-Gospić, N. & Picciulin, M. Underwater noise: Sources and effects on marine life. in World Seas: An Environmental Evaluation Volume III: Ecological Issues and Environmental Impacts (ed. Sheppard, C.) vol. 3 367–389 (Elsevier, 2019).

    12.
    Duarte, C. M., Chapuis, L., Collin, S. P., Costa, D. P., Devassy, R. P., Eguiluz, V. M., Erbe, C., Gordon, T. A. C., Halpern, B. S., Harding, H. R., Havlik, M. N., Meekan, M., Merchant, N. D., Miksis-Olds, J. L., Parsons, M., Predragovic, M., Radford, A. N., Radford, C. A., Simpson, S. D., Slabbekoorn, H., Staaterman, E., Van Opzeeland, I. C., Winderen, J., Zhang, X. & Juanes, F. The soundscape of the Anthropocene ocean. Science 371(6529), eaba4658 (2021).
    CAS  PubMed  Article  Google Scholar 

    13.
    Cox, K., Brennan, L. P., Gerwing, T. G., Dudas, S. E. & Juanes, F. Sound the alarm: A meta-analysis on the effect of aquatic noise on fish behavior and physiology. Glob. Chang. Biol. 24, 3105–3116 (2018).
    ADS  PubMed  Article  Google Scholar 

    14.
    La Manna, G., Manghi, M., Perretti, F. & Sarà, G. Behavioral response of brown meagre (Sciaena umbra) to boat noise. Mar. Pollut. Bull. 110, 324–334 (2016).
    PubMed  Article  CAS  Google Scholar 

    15.
    Nedelec, S. L. et al. Motorboat noise impacts parental behaviour and offspring survival in a reef fish. Proc. R. Soc. B Biol. Sci. 284, 20170143 (2017).
    Article  Google Scholar 

    16.
    Maxwell, R. J. et al. Does motor noise from recreational boats alter parental care behaviour of a nesting freshwater fish?. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 969–978 (2018).
    Article  Google Scholar 

    17.
    Picciulin, M., Sebastianutto, L., Codarin, A., Calcagno, G. & Ferrero, E. A. Brown meagre vocalization rate increases during repetitive boat noise exposures: A possible case of vocal compensation. J. Acoust. Soc. Am. 132, 3118–3124 (2012).
    ADS  PubMed  Article  Google Scholar 

    18.
    de Jong, K., Amorim, M. C. P., Fonseca, P. J., Klein, A. & Heubel, K. U. Noise affects acoustic courtship behavior similarly in two species of gobies. Proc. Meet. Acoust. 27, 010018 (2016).
    Article  Google Scholar 

    19.
    Nedelec, S. L. et al. Motorboat noise disrupts co-operative interspecific interactions. Sci. Rep. 7, 1–8 (2017).
    ADS  CAS  Article  Google Scholar 

    20.
    Codarin, A., Wysocki, L. E., Ladich, F. & Picciulin, M. Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Mar. Pollut. Bull. 58, 1880–1887 (2009).
    CAS  PubMed  Article  Google Scholar 

    21.
    Holles, S., Simpson, S. D., Radford, A. N., Berten, L. & Lecchini, D. Boat noise disrupts orientation behaviour in a coral reef fish. Mar. Ecol. Prog. Ser. 485, 295–300 (2013).
    ADS  Article  Google Scholar 

    22.
    Pine, M. K., Jeffs, A. G., Wang, D. & Radford, C. A. The potential for vessel noise to mask biologically important sounds within ecologically significant embayments. Ocean Coast. Manag. 127, 63–73 (2016).
    Article  Google Scholar 

    23.
    de Jong, K., Amorim, M. C. P., Fonseca, P. J., Fox, C. J. & Heubel, K. U. Noise can affect acoustic communication and subsequent spawning success in fish. Environ. Pollut. 237, 814–823 (2018).
    PubMed  Article  CAS  Google Scholar 

    24.
    Montgomery, J. C., Jeffs, A., Simpson, S. D., Meekan, M. & Tindle, C. Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. Adv. Mar. Biol. 51, 143–196 (2006).
    PubMed  Article  Google Scholar 

    25.
    Hussey, N. E. et al. Aquatic animal telemetry: A panoramic window into the underwater world. Science 348, 1255642 (2015).
    PubMed  Article  CAS  Google Scholar 

    26.
    Simpfendorfer, C. A., Heupel, M. R. & Collins, A. B. Variation in the performance of acoustic receivers and its implication for positioning algorithms in a riverine setting. Can. J. Fish. Aquat. Sci. 65, 482–492 (2008).
    Article  Google Scholar 

    27.
    Abecasis, D. et al. A review of acoustic telemetry in Europe and the need for a regional aquatic telemetry network. Anim. Biotelemetry 6, 12 (2018).
    Article  Google Scholar 

    28.
    Kessel, S. T. et al. A review of detection range testing in aquatic passive acoustic telemetry studies. Rev. Fish Biol. Fish. 24, 199–218 (2014).
    Article  Google Scholar 

    29.
    Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O. & Matthiopoulos, J. State-space models of individual animal movement. Trends Ecol. Evol. 23, 87–94 (2008).
    PubMed  Article  Google Scholar 

    30.
    Alós, J., Palmer, M., Balle, S. & Arlinghaus, R. Bayesian state-space modelling of conventional acoustic tracking provides accurate descriptors of home range behavior in a small-bodied coastal fish species. PLoS ONE 11, 1–23 (2016).
    Article  CAS  Google Scholar 

    31.
    Jonsen, I. D. et al. State-space models for bio-loggers: A methodological road map. Deep Sea Res. Top. Stud. Oceanogr. 88, 34–46 (2013).
    ADS  Article  Google Scholar 

    32.
    Bauchot, M. . Serranidae. in Guide FAO d’identification des espèces pour les besoins de la pêche (eds. Fisher, W., Bauchot, M. L. & Scheneider, M.) 1301–1329 (Organisation des Nations Unies pour l’Alimentation et l’Agriculture, 1987).

    33.
    Börger, L., Dalziel, B. D. & Fryxell, J. M. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650 (2008).
    PubMed  Article  Google Scholar 

    34.
    Alós, J. et al. Selective exploitation of spatially structured coastal fish populations by recreational anglers may lead to evolutionary downsizing of adults. Mar. Ecol. Prog. Ser. 503, 219–233 (2014).
    ADS  Article  Google Scholar 

    35.
    Palmer, M., Balle, S., March, D., Alós, J. & Linde, M. Size estimation of circular home range from fish mark-release-(single)-recapture data: Case study of a small labrid targeted by recreational fishing. Mar. Ecol. Prog. Ser. 430, 87–97 (2011).
    ADS  Article  Google Scholar 

    36.
    Mills, S. C. et al. Hormonal and behavioural effects of motorboat noise on wild coral reef fish. Environ. Pollut. 262, 114250 (2020).
    CAS  PubMed  Article  Google Scholar 

    37.
    Hitt, S., Pittman, S. J. & Nemeth, R. S. Diel movements of fishes linked to benthic seascape structure in a Caribbean coral reef ecosystem. Mar. Ecol. Prog. Ser. 427, 275–291 (2011).
    ADS  Article  Google Scholar 

    38.
    March, D., Palmer, M., Alós, J., Grau, A. & Cardona, F. Short-term residence, home range size and diel patterns of the painted comber Serranus scriba in a temperate marine reserve. Mar. Ecol. Prog. Ser. 400, 195–206 (2010).
    ADS  Article  Google Scholar 

    39.
    Codling, E. A., Plank, M. J. & Benhamou, S. Random walk models in biology. J. R. Soc. Interface 5, 813–834 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Campos-Candela, A., Palmer, M., Balle, S., Álvarez, A. & Alós, J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol. Lett. 22, 213–232 (2019).
    PubMed  Article  Google Scholar 

    41.
    Gardiner, C. W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 1990).
    Google Scholar 

    42.
    Follana-Berná, G., Palmer, M., Lekanda-Guarrotxena, A., Grau, A. & Arechavala-Lopez, P. Fish density estimation using unbaited cameras: Accounting for environmental-dependent detectability. J. Exp. Mar. Bio. Ecol. 527, 151376 (2020).
    Article  Google Scholar 

    43.
    Klimley, A. P., Voegeli, F., Beavers, S. C. & Le Boeuf, B. J. Automated listening stations for tagged marine fishes. Mar. Technol. Soc. J. 32, 94–101 (1998).
    Google Scholar 

    44.
    Hedger, R. D. et al. The optimized interpolation of fish positions and speeds in an array of fixed acoustic receivers. ICES J. Mar. Sci. 65, 1248–1259 (2008).
    Article  Google Scholar 

    45.
    Merchant, N. D., Blondel, P., Dakin, D. T. & Dorocicz, J. Averaging underwater noise levels for environmental assessment of shipping. J. Acoust. Soc. Am. 132, 343–349 (2012).
    ADS  Article  Google Scholar 

    46.
    Plummer, M. rjags: Bayesian graphical models using MCMC. (2016).

    47.
    Su, Y. S. & Yajima, M. R2jags: Using R to run ‘JAGS’. (2015).

    48.
    R Development Core Team. R: A language and environment for statistical computing. (2017).

    49.
    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).
    Google Scholar 

    50.
    Gelman, A. et al. Bayesian data analysis. (Taylor & Francis Group, 2013).

    51.
    Fagan, W. F. & Calabrese, J. M. The correlated random walk and the rise of movement ecology. Bull. Ecol. Soc. Am. 95, 204–206 (2014).
    Article  Google Scholar 

    52.
    Payne, N. L., Gillanders, B. M., Webber, D. M. & Semmens, J. M. Interpreting diel activity patterns from acoustic telemetry: The need for controls. Mar. Ecol. Prog. Ser. 419, 295–301 (2010).
    ADS  Article  Google Scholar 

    53.
    Burger, J. & Gochfeld, M. On developing bioindicators for human and ecological health. Environ. Monit. Assess. 66, 23–46 (2001).
    CAS  PubMed  Article  Google Scholar 

    54.
    Alós, J., March, D., Palmer, M., Grau, A. & Morales-Nin, B. Spatial and temporal patterns in Serranus cabrilla habitat use in the NW Mediterranean revealed by acoustic telemetry. Mar. Ecol. Prog. Ser. 427, 173–186 (2011).
    ADS  Article  Google Scholar 

    55.
    Alós, J., Palmer, M., Rosselló, R. & Arlinghaus, R. Fast and behavior-selective exploitation of a marine fish targeted by anglers. Sci. Rep. 6, 1–13 (2016).
    Article  CAS  Google Scholar 

    56.
    Campioni, L. et al. Individual and spatio-temporal variations in the home range behaviour of a long-lived, territorial species. Oecologia 172, 371–385 (2013).
    ADS  PubMed  Article  Google Scholar 

    57.
    Topping, D. T. & Szedlmayer, S. T. Home range and movement patterns of red snapper (Lutjanus campechanus) on artificial reefs. Fish. Res. 112, 77–84 (2011).
    Article  Google Scholar 

    58.
    Jorgensen, S. J. et al. Limited movement in blue rockfish Sebastes mystinus: Internal structure of home range. Mar. Ecol. Prog. Ser. 327, 157–170 (2006).
    ADS  Article  Google Scholar 

    59.
    Harding, H. R. et al. Fish in habitats with higher motorboat disturbance show reduced sensitivity to motorboat noise. Biol. Lett. 14, 20180441 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Holmes, L. J., McWilliam, J., Ferrari, M. C. O. & McCormick, M. I. Juvenile damselfish are affected but desensitize to small motor boat noise. J. Exp. Mar. Bio. Ecol. 494, 63–68 (2017).
    Article  Google Scholar 

    61.
    Huntingford, F. A. et al. Current issues in fish welfare. J. Fish Biol. 68, 332–372 (2006).
    Article  Google Scholar 

    62.
    Sierra-Flores, R., Atack, T., Migaud, H. & Davie, A. Stress response to anthropogenic noise in Atlantic cod Gadus morhua L. Aquac. Eng. 67, 67–76 (2015).
    Article  Google Scholar 

    63.
    de Jong, K. et al. Predicting the effects of anthropogenic noise on fish reproduction. Rev. Fish Biol. Fish. 30, 1–24 (2020).
    Article  Google Scholar 

    64.
    McCormick, M. I., Fakan, E. P., Nedelec, S. L. & Allan, B. J. M. Effects of boat noise on fish fast-start escape response depend on engine type. Sci. Rep. 9, 1–10 (2019).
    Article  CAS  Google Scholar 

    65.
    Hawkins, A. D. & Popper, A. N. A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates. ICES J. Mar. Sci. 74, 635–651 (2017).
    Article  Google Scholar 

    66.
    Soudijn, F. H., van Kooten, T., Slabbekoorn, H. & de Roos, A. M. Population-level effects of acoustic disturbance in Atlantic cod: a size-structured analysis based on energy budgets. Proc. Royal Soc. B. Sci. 287(1929), 20200490 (2020).
    Article  Google Scholar  More