Efficient Lévy walks in virtual human foraging
1.
Rosati, A. G. & Cognition, F. Reviving the ecological intelligence hypothesis. Trends Cognit. Sci. 21(9), 691–702. https://doi.org/10.1016/j.tics.2017.05.011 (2017) (ISSN 1879307X).
Article Google Scholar
2.
Kuhn, S. L., Raichlen, D. A. & Clark, A. E. What moves us? How mobility and movement are at the center of human evolution. Evolut. Anthropol. 25(3), 86–97. https://doi.org/10.1002/evan.21480 (2016).
Article Google Scholar
3.
Pacheco-Cobos, L. et al. Nahua mushroom gatherers use area-restricted search strategies that conform to marginal value theorem predictions. Proc. Natl. Acad. Sci. USA 116(21), 10339–10347. https://doi.org/10.1073/pnas.1814476116 (2019) (ISSN 10916490).
CAS Article PubMed Google Scholar
4.
Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401(6756), 911–914. https://doi.org/10.1038/44831 (1999) (ISSN 00280836).
CAS Article PubMed ADS Google Scholar
5.
Bartumeus, F. Lévy processes in animal movement: an evolutionary hypothesis. Fractals 15(2), 151–162. https://doi.org/10.1142/S0218348X07003460 (2007).
Article Google Scholar
6.
Bartumeus, F. et al. Foraging success under uncertainty: search tradeoffs and optimal space use. Ecol. Lett. 19(11), 1299–1313. https://doi.org/10.1111/ele.12660 (2016).
Article PubMed Google Scholar
7.
Sims, D. W. et al. Scaling laws of marine predator search behaviour. Nature 451(7182), 1098–1102. https://doi.org/10.1038/nature06518 (2008).
CAS Article PubMed ADS Google Scholar
8.
Bartumeus, F., Peters, F., Pueyo, S., Marrasé, C. & Catalan, J. Helical Lévy walks: adjusting searching statistics to resource availability in microzooplankton. Proc. Natl. Acad. Sci. USA 100(22), 12771–12775. https://doi.org/10.1073/pnas.2137243100 (2003).
CAS Article PubMed ADS Google Scholar
9.
Boyer, D., Crofoot, M. C. & Walsh, P. D. Non-random walks in monkeys and humans. J. R. Soc. Interface 9(70), 842–847. https://doi.org/10.1098/rsif.2011.0582 (2012) (ISSN 17425662).
Article PubMed Google Scholar
10.
Brown, C. T., Liebovitch, L. S. & Glendon, R. Lévy flights in dobe Ju/’hoansi foraging patterns. Hum. Ecol. 35(1), 129–138. https://doi.org/10.1007/s10745-006-9083-4 (2007) (ISSN 03007839).
Article Google Scholar
11.
Raichien, D. A. et al. Evidence of Lévy walk foraging patterns inhuman hunter-gatherers. Proc. Natl. Acad. Sci. USA 111(2), 728–733. https://doi.org/10.1073/pnas.1318616111 (2014).
CAS Article ADS Google Scholar
12.
Kölzsch, A. et al. Experimental evidence for inherent lévy search behaviour in foraging animals. Proc. R. Soc. B Biol. Sci. 282(1807), 20150424. https://doi.org/10.1098/rspb.2015.0424 (2005).
Article Google Scholar
13.
Kramer, D. L. & McLaughlin, R. L. The behavioral ecology of intermittent locomotion. Am. Zool. 41(2), 137–153. https://doi.org/10.1093/icb/41.2.137 (2001).
Article Google Scholar
14.
Bartumeus, F. & Levin, S.A. Fractal reorientation clocks: Linking animal behavior to statistical patterns of search. Technical Report 49, (2008). https://www.pnas.org/content/pnas/105/49/19072.full.pdf.
15.
Bazazi, S., Bartumeus, F., Hale, J. J. & Couzin, I. D. Intermittent motion in desert locusts: behavioural complexity in simple environments. PLoS Comput. Biol. 8(5), e1002498. https://doi.org/10.1371/journal.pcbi.1002498 (2012).
CAS Article PubMed PubMed Central ADS Google Scholar
16.
Reynolds, A. Liberating Lévy walk research from the shackles of optimal foraging (2015). ISSN 15710645.
17.
Grove, M., Lycett, S.J. & Chauhan, P.R. The Quantitative Analysis of Mobility: Ecological Techniques and Archaeological Extensions. https://doi.org/10.1007/978-1-4419-6861-6 (2010). ISBN 9781441968609.
18.
Bond, A. B. & Kamil, A. C. Spatial heterogeneity, predator cognition, and the evolution of color polymorphism in virtual prey. Proc. Natl. Acad. Sci. USA 103(9), 3214–3219. https://doi.org/10.1073/pnas.0509963103 (2006) (ISSN 00278424).
CAS Article PubMed ADS Google Scholar
19.
Spaethe, J., Tautz, J. & Chittka, L. Do honeybees detect colour targets using serial or parallel visual search?. J. Exp. Biol. 209(6), 987–993. https://doi.org/10.1242/jeb.02124 (2006) (ISSN 00220949).
Article PubMed Google Scholar
20.
de Froment, A. J., Rubenstein, D. I. & Levin, S. A. An extra dimension to decision-making in animals: the three-way trade-off between speed, effort per-unit-time and accuracy. PLoS Comput. Biol. 10(12), e1003937. https://doi.org/10.1371/journal.pcbi.1003937 (2014).
Article PubMed PubMed Central Google Scholar
21.
Campos, D., Méndez, V. & Bartumeus, F. Optimal intermittence in search strategies under speed-selective target detection. Phys. Rev. Lett. 108(2), 028102. https://doi.org/10.1103/PhysRevLett.108.028102 (2012) (ISSN 00319007).
CAS Article PubMed ADS Google Scholar
22.
Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113(4), 700–765. https://doi.org/10.1037/0033-295X.113.4.700 (2006).
Article PubMed Google Scholar
23.
Chittka, L., Skorupski, P. & Raine, N. E. Speed-accuracy tradeoffs in animal decision making. Trends Ecol. Evol. 24(7), 400–407. https://doi.org/10.1016/j.tree.2009.02.010 (2009) (ISSN 01695347).
Article PubMed Google Scholar
24.
Nityananda, V. & Chittka, L. Modality-specific attention in foraging bumblebees. R. Soc. Open Sci.https://doi.org/10.1098/rsos.150324 (2015).
Article PubMed PubMed Central Google Scholar
25.
Chittka, L. & Raine, N.E. Recognition of flowers by pollinators, 8 (2006). ISSN 13695266.
26.
Zhang, M. et al. Finding any Waldo with zero-shot invariant and efficient visual search. Nat. Commun. 9(1), 1–15. https://doi.org/10.1038/s41467-018-06217-x (2018).
CAS Article ADS Google Scholar
27.
Viswanathan, G. M., Da Luz, M. G. E., Raposo, E. P. & Eugene Stanley, H. The Physics of Foraging: An Introduction to Random Searches and Biological Encounters Vol. 9781107006 (Cambridge University Press, Cambridge, 2011). https://doi.org/10.1017/CBO9780511902680.
Google Scholar
28.
Wilson, R. P., Quintana, F. & Hobson, V. J. Construction of energy landscapes can clarify the movement and distribution of foraging animals. Proc. R. Soc. B Biol. Sci. 279(1730), 975–980. https://doi.org/10.1098/rspb.2011.1544 (2012).
Article Google Scholar
29.
Ross, C. T. & Winterhalder, B. Sit-and-wait versus active-search hunting: a behavioral ecological model of optimal search mode. J. Theor. Biol. 387, 76–87. https://doi.org/10.1016/j.jtbi.2015.09.022 (2015) (ISSN 10958541).
MathSciNet Article PubMed MATH Google Scholar
30.
Gameiro, R. R., Kaspar, K., König, S. U., Nordholt, S. & König, P. Exploration and exploitation in natural viewing behavior. Sci. Rep. 7(1), 1–23. https://doi.org/10.1038/s41598-017-02526-1 (2017) (ISSN 20452322).
CAS Article Google Scholar
31.
LaScala-Gruenewald, D. E., Mehta, R. S., Liu, Yu. & Denny, M. W. Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies. Ecol. Model. 404(October 2018), 69–82. https://doi.org/10.1016/j.ecolmodel.2019.02.015 (2019) (ISSN 03043800).
Article Google Scholar
32.
Mugan, U. & MacIver, M. A. Spatial planning with long visual range benefits escape from visual predators in complex naturalistic environments. Nat. Commun. 11(1), 1–14. https://doi.org/10.1038/s41467-020-16102-1 (2020) (ISSN 20411723).
CAS Article Google Scholar
33.
Kerster, B. E., Rhodes, T. & Kello, C. T. Spatial memory in foraging games. Cognition 148, 85–96. https://doi.org/10.1016/j.cognition.2015.12.015 (2016) (ISSN 18737838).
Article PubMed Google Scholar
34.
Martínez-García, R., Calabrese, J. M. & López, C. Online games: a novel approach to explore how partial information influences human random searches. Sci. Rep. 7(1), 40029. https://doi.org/10.1038/srep40029 (2017).
CAS Article PubMed PubMed Central ADS Google Scholar
35.
Kalff, C. & Hills, T. Human foraging behavior: a virtual reality investigation on area restricted search in humans. Search 32(32), 168–173 (2006).
Google Scholar
36.
Kamil, A. C., Krebs, J. R. & Pulliam, H. R. Foraging Behavior. https://doi.org/10.1007/978-1-4613-1839-2 (1987). ISBN 9781461290278.
37.
Korn, C. W. & Bach, D. R. Heuristic and optimal policy computations in the human brain during sequential decision-making. Nat. Commun. 9(1), 1–15. https://doi.org/10.1038/s41467-017-02750-3 (2018).
CAS Article Google Scholar
38.
Zollner, P.A. & Lima, S.L. Search Strategies for Landscape-Level Interpatch Movements. Technical Report 3 (1999).
39.
Zurick, D., Valli, É., Farkas, R. & Troyer, H. Land of pure vision: The sacred geography of Tibet and the Himalaya. University Press of Kentucky (2014). ISBN 9780813145594.
40.
Kaushal, M. Divining the landscape-the Gaddi and his land. India Int. Centre Q. 27, 31–40 (2001).
Google Scholar
41.
Minetti, A. E., Moia, C., Roi, G. S., Susta, D. & Ferretti, G. Energy cost of walking and running at extreme uphill and downhill slopes. J. Appl. Physiol. 93(3), 1039–1046. https://doi.org/10.1152/japplphysiol.01177.2001 (2002).
Article PubMed Google Scholar
42.
Reynolds, A. M. Optimal random Lévy-loop searching: New insights into the searching behaviours of central-place foragers. Epl 82(2), 20001. https://doi.org/10.1209/0295-5075/82/20001 (2008).
CAS Article ADS Google Scholar
43.
Ydenberg, R. C., Welham, C. V. J., Schmid-hempel, R., Schmid-hempel, P. & Beauchamp, G. Time and energy constraints and the relationships between currencies in foraging theory. Technical Report1, (1994).
44.
Bracis, C., Gurarie, E., Van Moorter, B. & Andrew Goodwin, R. Memory effects on movement behavior in animal foraging. PLoS ONE 10(8), e0136057. https://doi.org/10.1371/journal.pone.0136057 (2015).
CAS Article PubMed PubMed Central Google Scholar
45.
Spencer, W. D. Home ranges and the value of spatial information. J. Mammal. 93(4), 929–947. https://doi.org/10.1644/12-mamm-s-061.1 (2012).
Article Google Scholar
46.
Sims, D. W., Humphries, N. E., Hu, N., Medan, V. & Berni, J. Optimal searching behaviour generated intrinsically by the central pattern generator for locomotion. eLife 8, 1–31. https://doi.org/10.7554/eLife.50316 (2019).
Article Google Scholar
47.
Reynolds, A., Ceccon, E., Baldauf, C., Medeiros, T. K. & Miramontes, O. Lévy foraging patterns of rural humans. PLoS ONE 13(6), e0199099. https://doi.org/10.1371/journal.pone.0199099 (2018).
CAS Article PubMed PubMed Central Google Scholar
48.
Seuront, L. & Eugene Stanley, H. Anomalous diffusion and multifractality enhance mating encounters in the ocean. Proc. Natl. Acad. Sci. USA 111(6), 2206–2211. https://doi.org/10.1073/pnas.1322363111 (2014).
CAS Article PubMed ADS Google Scholar
49.
Wearmouth, V. J. et al. Scaling laws of ambush predator “waiting” behaviour are tuned to a common ecology. Proc. R. Soc. B Biol. Sci.https://doi.org/10.1098/rspb.2013.2997 (2014).
50.
Reynolds, A. M., Ropert-Coudert, Y., Kato, A., Chiaradia, A. & MacIntosh, A. J. J. A priority-based queuing process explanation for scale-free foraging behaviours. Anim. Behav. 108, 67–71. https://doi.org/10.1016/j.anbehav.2015.07.022 (2015) (ISSN 00033472).
Article Google Scholar
51.
Raposo, E. P. et al. Dynamical robustness of lévy search strategies. Phys. Rev/. Lett. 91, 24. https://doi.org/10.1103/PhysRevLett.91.240601 (2003).
CAS Article Google Scholar
52.
Vazquez, A. Impact of memory on human dynamics. Physica A Stat. Mech. Its Appl. 373, 747–752. https://doi.org/10.1016/j.physa.2006.04.060 (2007) (ISSN 03784371).
Article ADS Google Scholar
53.
Stephens, D. W. Decision ecology: foraging and the ecology of animal decision making. Cognit. Affect. Behav. Neurosci. 8(4), 475–484. https://doi.org/10.3758/CABN.8.4.475 (2008) (ISSN 15307026).
Article Google Scholar
54.
Bell, W.J. Searching Behavior: the Behavioral Ecology of Finding Resources. https://doi.org/10.1093/aesa/85.1.108 (1990). ISBN 9789401053723.
55.
Pyke, G.H. Animal Movements—An Optimal Foraging Theory Approach, Vol. 2. 2nd edn Elsevier, (2019). ISBN 9780128132517. https://doi.org/10.1016/B978-0-12-809633-8.90160-2
56.
Namboodiri, V. M. K., Levy, J. M., Mihalas, S., Sims, D. W. & Hussain Shuler, M. G. Rationalizing spatial exploration patterns of wild animals and humans through a temporal discounting framework. Proc. Natl. Acad. Sci. USA 113(31), 8747–8752. https://doi.org/10.1073/pnas.1601664113 (2016).
CAS Article PubMed Google Scholar
57.
Humphries, N. E. & Sims, D. W. Optimal foraging strategies: Lévy walks balance searching and patch exploitation under a very broad range of conditions. J. Theor. Biol. 358, 179–193. https://doi.org/10.1016/j.jtbi.2014.05.032 (2014).
Article PubMed MATH Google Scholar
58.
Bartumeus, F. et al. Superdiffusion and encounter rates in diluted, low dimensional worlds. Eur. Phys. J. Spec. Top. 157(1), 157–166. https://doi.org/10.1140/epjst/e2008-00638-6 (2008).
Article Google Scholar
59.
Nurzaman, S.G., Matsumoto, Y., Nakamura, Y., Shirai, K., Koizumi, S. & Ishiguro, H. An adaptive switching behavior between levy and brownian random search in a mobile robot based on biological fluctuation. In IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 – Conference Proceedings, pages 1927–1934. IEEE, 10 https://doi.org/10.1109/IROS.2010.5651671 (2010). ISBN 9781424466757. http://ieeexplore.ieee.org/document/5651671/.
60.
Mason, W. & Suri, S. Conducting behavioral research on Amazon’s Mechanical Turk. Behav. Res. Methods 44(1), 1–23. https://doi.org/10.3758/s13428-011-0124-6 (2012).
Article PubMed ADS Google Scholar
61.
Ross, J., Irani, L., Six Silberman, M., Zaldivar, A. & Tomlinson, B. Who are the crowdworkers? Shifting demographics in mechanical turk. In Conference on Human Factors in Computing Systems – Proceedings, pages 2863–2872, New York, New York, USA, https://doi.org/10.1145/1753846.1753873 (2010). ACM Press. ISBN 9781605589312. http://portal.acm.org/citation.cfm?doid=1753846.1753873.
62.
Hamilton, M. J., Lobo, J., Rupley, E., Youn, H. & West, G. B. The ecological and evolutionary energetics of hunter-gatherer residential mobility. Evolut. Anthropol. 25(3), 124–132. https://doi.org/10.1002/evan.21485 (2016) (ISSN 15206505).
Article Google Scholar
63.
Sakiyama, T. & Gunji, Y. P. Emergent weak home-range behaviour without spatial memory. R. Soc. Open Sci.https://doi.org/10.1098/rsos.160214 (2016).
Article PubMed PubMed Central Google Scholar
64.
Bénichou, O., Coppey, M., Moreau, M., Suet, P. H. & Voituriez, R. Optimal search strategies for hidden targets. Phys. Rev. Lett.https://doi.org/10.1103/PhysRevLett.94.198101 (2005).
Article PubMed Google Scholar
65.
Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. & Smouse, P.E. A movement ecology paradigm for unifying organismal movement research, 12 (2008). ISSN 00278424. http://www.ncbi.nlm.nih.gov/pubmed/19060196, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2614714.
66.
Hills, T. Animal foraging and the evolution of goal-directed cognition. Cognit. Sci. 30(1), 3–41. https://doi.org/10.1207/s15516709cog0000_50 (2006).
MathSciNet Article Google Scholar
67.
Purcell, B. A. & Kiani, R. Hierarchical decision processes that operate over distinct timescales underlie choice and changes in strategy. Proc. Natl. Acad. Sci. USA 113(31), E4531–E4540. https://doi.org/10.1073/pnas.1524685113 (2016) (ISSN 10916490).
CAS Article PubMed Google Scholar
68.
Jeffrey Brantingham, P. et al. Measuring forager mobility. Curr. Anthropol. 47(3), 435–459. https://doi.org/10.1086/503062 (2006).
Article Google Scholar
69.
Farnsworth, K. D. & Beecham, J. A. How do grazers achieve their distribution? A continuum of models from random diffusion to the ideal free distribution using biased random walks. Am. Nat. 153(5), 509–526. https://doi.org/10.1086/303192 (1999) (ISSN 00030147).
CAS Article PubMed Google Scholar
70.
Wilke, A. & Barrett, H. C. The hot hand phenomenon as a cognitive adaptation to clumped resources. Evol. Hum. Behav. 30(3), 161–169. https://doi.org/10.1016/j.evolhumbehav.2008.11.004 (2009) (ISSN 10905138).
Article Google Scholar
71.
Hills, T. T. Animal foraging and the evolution of goal-directed cognition. Cognit. Sci. 30(1), 3–41. https://doi.org/10.1207/s15516709cog0000_50 (2006).
MathSciNet Article Google Scholar
72.
Rhodes, T., Kello, C. T. & Kerster, B. Intrinsic and extrinsic contributions to heavy tails in visual foraging. Vis. Cognit. 22(6), 809–842. https://doi.org/10.1080/13506285.2014.918070 (2014).
Article Google Scholar
73.
Levin, S. A. The problem of pattern and scale in ecology. Ecology 73(6), 1943–1967. https://doi.org/10.2307/1941447 (1992) (ISSN 00129658).
Article Google Scholar
74.
Mobbs, D., Trimmer, P.C., Blumstein, D.T. & Dayan, P. Foraging for foundations in decision neuroscience: Insights from ethology. Technical Report 7, (2018). www.nature.com/nrn.
75.
Schulz, E., Wu, C. M., Huys, Q. J. M., Krause, A. & Speekenbrink, M. Generalization and search in risky environments. Cognit. Sci. 42(8), 2592–2620. https://doi.org/10.1111/cogs.12695 (2018) (ISSN 15516709).
Article Google Scholar
76.
Hart, Y. et al. Creative exploration as a scale-invariant search on a meaning landscape. Nat. Commun. 9(1), 5411. https://doi.org/10.1038/s41467-018-07715-8 (2018).
CAS Article PubMed PubMed Central ADS Google Scholar
77.
Shlesinger, M. F. Mathematical physics: search research. Nature 443(7109), 281–282. https://doi.org/10.1038/443281a (2006).
CAS Article PubMed ADS Google Scholar
78.
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703. https://doi.org/10.1137/070710111 (2009).
MathSciNet Article MATH ADS Google Scholar More
