Genomic signatures of drift and selection driven by predation and human pressure in an insular lizard
1.Stuart, Y. E., Losos, J. B. & Algar, A. C. The island-mainland species turnover relationship. Proc. R. Soc. B Biol. Sci. 279, 4071–4077 (2012).Article
Google Scholar
2.Grant, P. R. Evolution on Islands (Oxford University Press, 1998).
Google Scholar
3.Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443 (2007).Article
Google Scholar
4.Armstrong, C. et al. Genomic associations with bill length and disease reveal drift and selection across island bird populations. Evol. Lett. 2(1), 22–36 (2018).PubMed
PubMed Central
Article
Google Scholar
5.Eldridge, M. D. B. et al. Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv. Biol. 13, 531–541 (1999).Article
Google Scholar
6.Wright, S. Isolation by distance under diverse systems of mating. Genetics 31, 39–59 (1946).CAS
PubMed
PubMed Central
Google Scholar
7.Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49(4), 725 (1964).CAS
PubMed
PubMed Central
Article
Google Scholar
8.Luikart, G., England, P. R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: From genotyping to genome typing. Nat. Rev. Genet. 4(12), 981–994 (2003).CAS
PubMed
Article
Google Scholar
9.Nei, M., Suzuki, Y. & Nozawa, M. The neutral theory of molecular evolution in the genomic era. Annu. Rev. Genom. Hum. Genet. 11, 265–289 (2010).CAS
Article
Google Scholar
10.Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl. Acad. Sci. U.S.A. 110(38), 15307–15312 (2013).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
11.Huey, R. B., Gilchrist, G. W., Carlson, M. L., Berrigan, D. & Serra, L. Rapid evolution of a geographic cline in size in an introduced fly. Science 287(5451), 308–309 (2000).CAS
PubMed
Article
ADS
Google Scholar
12.Prates, I., Angilleta, M. J., Wilson, R. S., Niehaus, A. C. & Navas, C. A. Dehydration hardly slows hopping toads (Rhinella granulosa) from xeric and mesic environments. Physiol. Biochem. Zool. 86(4), 451–457 (2013).PubMed
Article
Google Scholar
13.Prates, I., Penna, A., Trefaut, M. & Carnaval, A. C. Local adaptation in mainland anole lizards: Integrating population history and genome-environment associations. Ecol. Evol. 8, 11932–11944 (2018).PubMed
PubMed Central
Article
Google Scholar
14.Funk, W. C. et al. Adaptive divergence despite strong genetic drift: Genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyonlittoralis). Mol. Ecol. 25(10), 2176–2194 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
15.Friis, G. et al. Genome-wide signals of drift and local adaptation during rapid lineage divergence in a songbird. Mol. Ecol. 27(24), 5137–5153 (2018).PubMed
Article
Google Scholar
16.Bover, P., Quintana, J. & Alcover, J. A. Three islands, three worlds: Paleogeography and evolution of the vertebrate fauna from the Balearic Islands. Quatern. Int. 182, 135–144 (2008).Article
Google Scholar
17.Pérez-Mellado, V. Les sargantanes de les Balears (Edicions Quaderns de Natura de les Balears, Documenta Balear, 2009).
Google Scholar
18.Pérez-Mellado, V. et al. Population density in Podarcis lilfordi (Squamata, Lacertidae), a lizard species endemic to small islets in the Balearic Islands (Spain). Amphibia-Reptilia 29(1), 49–60 (2008).Article
Google Scholar
19.Brown, R. P. et al. Bayesian estimation of post-Messinian divergence times in Balearic Island lizards. Mol. Phylogenet. Evol. 48(1), 350–358 (2008).CAS
PubMed
Article
ADS
Google Scholar
20.Terrasa, B. et al. Foundations for conservation of intraspecific genetic diversity revealed by analysis of phylogeographical structure in the endangered endemic lizard Podarcis lilfordi. Divers. Distrib. 15(2), 207–221 (2009).Article
Google Scholar
21.Terrasa, B. et al. Use of NCPA to understanding genetic sub-structuring of Podarcis lilfordi from the Balearic archipelago. Amphibia-Reptilia 30(4), 505–514 (2009).Article
Google Scholar
22.Emig, C. C. & Geistdoerfer, P. The Mediterranean deep-sea fauna: Historical evolution, bathymetric variations and geographical changes. Carnets Geol. https://doi.org/10.4267/2042/3230 (2004).Article
Google Scholar
23.Pérez-Cembranos, A. et al. Morphological and genetic diversity of the Balearic lizard, Podarcis lilfordi (Günther, 1874): Is it relevant to its conservation?. Divers. Distrib. 26, 1122–1141 (2020).Article
Google Scholar
24.Palumbi, S. R. The Evolution Explosion: How Humans Cause Rapid Evolutionary Change (W. W. Norton & Company, 2002).
Google Scholar
25.Ashley, M. V. et al. Evolutionary enlightened management. Biol. Conserv. 111, 115–123 (2003).Article
Google Scholar
26.Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).Article
Google Scholar
27.Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10), e3376 (2008).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
28.Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5), e37135 (2012).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
29.Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17(2), 81 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Brown, R. P., Paterson, S. & Risse, J. Genomic signatures of historical allopatry and ecological divergence in an island lizard. Genome Biol. Evol. 8(11), 3618–3626 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
31.Jin, Y. & Brown, R. P. Morphological species and discordant mtDNA: A genomic analysis of Phrynocephalus lizard lineages on the Qinghai-Tibetan Plateau. Mol. Phylogenet. Evol. 139, 106523 (2019).PubMed
Article
Google Scholar
32.Yang, W. et al. Spatial variation in gene flow across a hybrid zone reveals causes of reproductive isolation and asymmetric introgression in wall lizards. Evolution 74(7), 1289–1300 (2020).CAS
PubMed
Article
Google Scholar
33.Li, Y. L., Xue, D. X., Zhang, B. D. & Liu, J. X. Population genomic signatures of genetic structure and environmental selection in the catadromous roughskin sculpin Trachidermus fasciatus. Genome Biol. Evol. 11(7), 1751–1764 (2019).PubMed
PubMed Central
Article
Google Scholar
34.Hedrick, P. W. & Kalinowski, S. T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst. 31(1), 139–162 (2000).Article
Google Scholar
35.Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).Article
Google Scholar
36.Perrier, C., Ferchaud, A. L., Sirois, P., Thibault, I. & Bernatchez, L. Do genetic drift and accumulation of deleterious mutations preclude adaptation? Empirical investigation using RAD seq in a northern lacustrine fish. Mol. Ecol. 26(22), 6317–6335 (2017).CAS
PubMed
Article
Google Scholar
37.Sovic, M., Fries, A., Martin, S. A. & Lisle Gibbs, H. Genetic signatures of small effective population sizes and demographic declines in an endangered rattlesnake, Sistrurus catenatus. Evol. Appl. 12(4), 664–678 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Cao, R. et al. Genetic structure and diversity of Australian freshwater crocodiles (Crocodylus johnstoni) from the Kimberley, Western Australia. Conserv. Genet. 21, 421–429 (2020).Article
Google Scholar
39.Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity?. Mol. Ecol. 19(15), 3038–3051 (2010).PubMed
Article
Google Scholar
40.Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11(2), e12412 (2018).Article
Google Scholar
41.Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25(20), 5073–5092 (2016).PubMed
Article
Google Scholar
42.Campbell-Staton, S. C., Edwards, S. V. & Losos, J. B. Climate mediated adaptation after mainland colonization of an ancestrally subtropical island lizard, Anolis carolinensis. J. Evol. Biol. 29(11), 2168–2180 (2016).CAS
PubMed
Article
Google Scholar
43.Rodríguez, A. et al. Genomic and phenotypic signatures of climate adaptation in an Anolis lizard. Ecol. Evol. 7(16), 6390–6403 (2017).PubMed
PubMed Central
Article
Google Scholar
44.Cooper, W. E., Hawlena, D. & Pérez-Mellado, V. Islet tameness: Escape behavior and refuge use in populations of the Balearic lizard (Podarcis lilfordi) exposed to differing predation pressure. Can. J. Zool. 87(10), 912–919 (2009).Article
Google Scholar
45.Cooper, W. E., Hawlena, D. & Pérez-Mellado, V. Influence of risk on hiding time by Balearic lizards (Podarcis lilfordi): Predator approach speed, directness, persistence, and proximity. Herpetologica 66(2), 131–141 (2010).Article
Google Scholar
46.Cooper, W. E. & Pérez-Mellado, V. Island tameness: Reduced escape responses and morphological and physiological antipredatory adaptations related to escape in lizards. In Islands and Evolution (eds Pérez-Mellado, V. & Ramon, M. M.) 231–253 (Institut Menorquí d’Estudis, 2010).
Google Scholar
47.Cooper, W. E. & Pérez-Mellado, V. Historical influence of predation pressure on escape by Podarcis lizards in the Balearic Islands. Biol. J. Linn. Soc. 107, 254–268 (2012).Article
Google Scholar
48.Mayr, E. Animal Species and Evolution (The Belknap Press, Harvard University Press, 1963).
Google Scholar
49.Bover, P. et al. Late Miocene/Early Pliocene vertebrate fauna from Mallorca (Balearic Islands, Western Mediterranean): An update. Integr. Zool. 9, 183–196 (2014).PubMed
Article
Google Scholar
50.Vervust, B., Grbac, I. & Van Damme, R. Differences in morphology, performance and behaviour between recently diverged populations of Podarcissicula mirror differences in predation pressure. Oikos 116(8), 1343–1352 (2007).Article
Google Scholar
51.Marques, D. A., Jones, F. C., Di Palma, F., Kingsley, D. M. & Reimchen, T. E. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2(7), 1128–1138 (2018).PubMed
PubMed Central
Article
Google Scholar
52.Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021–1036 (2020).PubMed
Article
PubMed Central
Google Scholar
53.Stockwell, C. A. & Ashley, M. V. Rapid adaptation and conservation. Conserv. Biol. 18, 272–273 (2004).Article
Google Scholar
54.Truong, H. T. et al. Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS ONE 7(5), e37565 (2012).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
55.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22(11), 3124–3140 (2013).PubMed
PubMed Central
Article
Google Scholar
56.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Goudet, J. & Jombart, T. hierfstat: Estimation and tests of hierarchical F-statistics. R package version 0.5-7. Available from http://github.com/jgx65/hierfstat (2015).58.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19(9), 1655–1664 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Jombart, T. & Ahmed, I. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).CAS
Article
Google Scholar
61.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14(1), 209–214 (2014).CAS
PubMed
Article
Google Scholar
62.Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6(11), 3461–3475 (2016).PubMed
PubMed Central
Article
Google Scholar
63.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4(8), 782–788 (2013).Article
Google Scholar
64.Nei, M. The Theory and Estimation of Genetic Distance. Genetic Structure of Populations 45–54 (University of Hawaii Press, 1973).
Google Scholar
65.Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180(2), 977–993 (2008).PubMed
PubMed Central
Article
Google Scholar
66.Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30(7), 1687–1699 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24(17), 4348–4370 (2015).PubMed
Article
PubMed Central
Google Scholar
68.Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27(9), 2215–2233 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
69.Jin, L., Yu, J. P., Yang, Z. J., Merilä, J. & Liao, W. B. Modulation of gene expression in liver of hibernating Asiatic Toads (Bufo gargarizans). Int. J. Mol. Sci. 19(8), 2363 (2018).PubMed Central
Article
CAS
Google Scholar
70.Secor, S. M. & Carey, H. V. Integrative physiology of fasting. Compr. Physiol. 6(2), 773–825 (2011).
Google Scholar
71.Bahudhanapati, H., Bhattacharya, S. & Wei, S. Evolution of vertebrate adam genes; duplication of testicular adams from ancient adam9/9-like loci. PLoS ONE 10(8), e0136281 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
72.Alibardi, L. Immunolocalization of matrix metalloproteinases in regenerating lizard tail suggests that an intense remodelling activity allows for apical tail growth. Acta Zool. 101(2), 124–132 (2020).Article
Google Scholar
73.The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).Article
CAS
Google Scholar
74.Tosini, G., Baba, K., Hwang, C. K. & Iuvone, P. M. Melatonin: An underappreciated player in retinal physiology and pathophysiology. Exp. Eye Res. 103, 82–89 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
75.Voronin, D. A. & Kiseleva, E. V. Functional role of proteins containing ankyrin repeats. Tsitologiia 49(12), 989–999 (2007).CAS
PubMed
Google Scholar
76.Yang, L. et al. Transcriptome analysis and identification of genes associated with chicken sperm storage duration. Poult. Sci. 99(2), 1199–1208 (2020).PubMed
Article
Google Scholar
77.Geng, X. et al. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). J. Proteomics 119, 196–208 (2015).CAS
PubMed
Article
Google Scholar
78.Subramaniam, N., Petrik, J. J. & Vickaryous, M. K. VEGF, FGF-2 and TGF β expression in the normal and regenerating epidermis of geckos: Implications for epidermal homeostasis and wound healing in reptiles. J. Anat. 232(5), 768–782 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
79.Pillai, A., Desai, I. & Balakrishnan, S. Pharmacological inhibition of FGFR1 signaling attenuates the progression of tail regeneration in the northern house gecko Hemidactylus flaviviridis. Int. J. Life Sci. Biotechnol. Pharma Res. 2, 263–278 (2013).
Google Scholar
80.Schoettl, T., Fischer, I. P. & Ussar, S. Heterogeneity of adipose tissue in development and metabolic function. J. Exp. Biol. 221, jeb162958 (2018).PubMed
Article
Google Scholar
81.Wang, X. et al. Identification of a novel 43-bp insertion in the heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene and its associations with growth and carcass traits in chickens. Anim. Biotechnol. 30(3), 252–259 (2019).CAS
PubMed
Article
Google Scholar
82.Sun, C. et al. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genomics 16(1), 565 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
83.Ng, C. S. et al. Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genomics 16(1), 756 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
84.Qu, Y. et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat. Commun. 4(1), 1–9 (2013).
Google Scholar
85.Fischer, I., Kosik, K. S. & Sapirstein, V. S. Heterogeneity of microtubule-associated protein (MAP2) in vertebrate brains. Brain Res. 436(1), 39–48 (1987).CAS
PubMed
Article
Google Scholar
86.Singchat, W. et al. Chromosome map of the Siamese cobra: Did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?. BMC Genomics 19(1), 939 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360(6391), 881–888 (2018).CAS
PubMed
Article
ADS
Google Scholar
88.Vitulo, N., Dalla Valle, L., Skobo, T., Valle, G. & Alibardi, L. Transcriptome analysis of the regenerating tail vs. the scarring limb in lizard reveals pathways leading to successful vs. unsuccessful organ regeneration in amniotes. Dev. Dyn. 246(2), 116–134 (2017).CAS
PubMed
Article
Google Scholar
89.Carobbio, S., Guénantin, A. C., Samuelson, I., Bahri, M. & Vidal-Puig, A. Brown and beige fat: From molecules to physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864(1), 37–50 (2019).CAS
PubMed
Article
Google Scholar More
