More stories

  • in

    Superior predatory ability and abundance predicts potential ecological impact towards early-stage anurans by invasive ‘Killer Shrimp’ (Dikerogammarus villosus)

    1.
    Hoffmann, B. D. & Broadhurst, L. M. The economic cost of managing invasive species in Australia. NeoBiota 31, 1–18 (2016).
    Article  Google Scholar 
    2.
    Dueñas, M. A. et al. The role played by invasive species in interactions with endangered and threatened species in the United States: a systematic review. Biodivers. Conserv. 27, 3171–3183 (2018).
    Article  Google Scholar 

    3.
    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Ricciardi, A. & MacIsaac, H. J. Impacts of biological invasions on freshwater ecosystems. Fifty Years Invas. Ecol. Legacy Charles Elton https://doi.org/10.1002/9781444329988.ch16 (2010).
    Article  Google Scholar 

    5.
    Moorhouse, T. P. & Macdonald, D. W. Are invasives worse in freshwater than terrestrial ecosystems?. Wiley Interdiscip. Rev. Water 2, 1–8 (2015).
    Article  Google Scholar 

    6.
    Rosewarne, P. J. et al. Feeding behaviour, predatory functional responses and trophic interactions of the invasive Chinese mitten crab (Eriocheir sinensis) and signal crayfish (Pacifastacus leniusculus). Freshw. Biol. 61, 426–443 (2016).
    Article  Google Scholar 

    7.
    Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).
    Article  Google Scholar 

    8.
    Dick, J. T. A. et al. Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).
    Article  Google Scholar 

    9.
    Cuthbert, R. N., Dickey, J. W. E., Coughlan, N. E., Joyce, P. W. S. & Dick, J. T. A. The Functional Response Ratio (FRR): advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 21, 2543–2547 (2019).
    Article  Google Scholar 

    10.
    Devin, S., Piscart, C., Beisel, J. N. & Moreteau, J. C. Life History Traits of the Invader Dikerogammarus villosus (Crustacea: Amphipoda) in the Moselle River. France. Int. Rev. Hydrobiol. 89, 21–34 (2004).
    ADS  Article  Google Scholar 

    11.
    Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P. & Vilà, M. More than “100 worst” alien species in Europe. Biol. Invasions 20, 1611–1621 (2018).
    Article  Google Scholar 

    12.
    Gallardo, B. & Aldridge, D. C. Is Great Britain heading for a Ponto-Caspian invasional meltdown?. J. Appl. Ecol. 52, 41–49 (2015).
    Article  Google Scholar 

    13.
    Kramer, A. M. et al. Suitability of Laurentian Great Lakes for invasive species based on global species distribution models and local habitat. Ecosphere 8, e01883 (2017).
    Article  Google Scholar 

    14.
    Van Riel, M. C. et al. Trophic relationships in the Rhine food web during invasion and after establishment of the Ponto-Caspian invader Dikerogammarus villosus. Hydrobiologia 565, 39–58 (2006).
    Article  Google Scholar 

    15.
    MacNeil, C., Boets, P., Lock, K. & Goethals, P. L. M. Potential effects of the invasive ‘killer shrimp’ (Dikerogammarus villosus) on macroinvertebrate assemblages and biomonitoring indices. Freshw. Biol. 58, 171–182 (2013).
    Article  Google Scholar 

    16.
    Dodd, J. A. et al. Predicting the ecological impacts of a new freshwater invader: Functional responses and prey selectivity of the ‘killer shrimp’, Dikerogammarus villosus, compared to the native Gammarus pulex. Freshw. Biol. 59, 337–352 (2014).
    Article  Google Scholar 

    17.
    Bruijs, M. C. M., Kelleher, B., Van Der Velde, G. & De Vaate, A. B. Oxygen consumption, temperature and salinity tolerance of the invasive amphipod Dikerogammarus villosus: Indicators of further dispersal via ballast water transport. Arch. fur Hydrobiol. 152, 633–646 (2001).
    Article  Google Scholar 

    18.
    Pöckl, M. Strategies of a successful new invader in European fresh waters: Fecundity and reproductive potential of the Ponto-Caspian amphipod Dikerogammarus villosus in the Austrian Danube, compared with the indigenous Gammarus fossarum and G. roeseli. Freshw. Biol. 52, 50–63 (2007).

    19.
    Rolla, M., Consuegra, S. & de Leaniz, C. G. Predator recognition and anti-predatory behaviour in a recent aquatic invader, the killer shrimp (Dikerogammarus villosus). Aquat. Invasions 15, 482–496 (2020).
    Article  Google Scholar 

    20.
    Kobak, J., Rachalewski, M. & Bącela-Spychalska, K. Conquerors or exiles? Impact of interference competition among invasive Ponto-Caspian gammarideans on their dispersal rates. Biol. Invasions 18, 1953–1965 (2016).
    Article  Google Scholar 

    21.
    Rewicz, T., Grabowski, M., MacNeil, C. & Bącela-Spychalska, K. The profile of a ‘perfect’ invader – the case of killer shrimp. Dikerogammarus villosus. Aquat. Invasions 9, 267–288 (2014).
    Article  Google Scholar 

    22.
    Hellmann, C. et al. The trophic function of Dikerogammarus villosus (Sowinsky, 1894) in invaded rivers: a case study in the Elbe and Rhine. Aquat. Invasions 10, 385–397 (2015).
    Article  Google Scholar 

    23.
    Platvoet, D., Van Der Velde, G., Dick, J. T. A. & Li, S. Flexible omnivory in Dikerogammarus villosus (Sowinsky, 1894) (Amphipoda) – Amphipod Pilot Species Project (AMPIS) Report 5. Crustaceana 82, 703–720 (2009).
    Article  Google Scholar 

    24.
    Taylor, N. G. & Dunn, A. M. Size matters: predation of fish eggs and larvae by native and invasive amphipods. Biol. Invasions 19, 89–107 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Alford, R. A. Ecology: Bleak future for amphibians. Nature 480, 461–462 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Alroy, J. Current extinction rates of reptiles and amphibians. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1508681112 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    González-del-Pliego, P. et al. Phylogenetic and Trait-Based Prediction of Extinction Risk for Data-Deficient Amphibians. Curr. Biol. 29, 1557–1563.e3 (2019)

    28.
    Fisher, M. C. & Garner, T. W. J. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Hayes, T. B., Falso, P., Gallipeau, S. & Stice, M. The cause of global amphibian declines: a developmental endocrinologist’s perspective. J. Exp. Biol. 213, 921–933 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Bellard, C., Genovesi, P. & Jeschke, J. M. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2015.2454 (2016).
    Article  Google Scholar 

    31.
    IUCN. The IUCN Red List of Threatened Species. (2020).

    32.
    Nunes, A. L. et al. A global meta-analysis of the ecological impacts of alien species on native amphibians. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2528 (2019).
    Article  Google Scholar 

    33.
    Ilhéu, M., Bernardo, J. & Fernandes, S. Biological invaders in inland waters: Profiles, distribution, and threats. Biol. invaders Inl. waters profiles, Distrib. Threat. 2, 543–558 (2007).

    34.
    Kats, L. B. & Ferrer, R. P. Alien predators and amphibian declines: Review of two decades of science and the transition to conservation. Divers. Distrib. 9, 99–110 (2003).
    Article  Google Scholar 

    35.
    Beebee, T. J. C. & Griffiths, R. A. The amphibian decline crisis: A watershed for conservation biology?. Biol. Conserv. 125, 271–285 (2005).
    Article  Google Scholar 

    36.
    National Biodiversity Network. NBN Atlas. Nbn (2017).

    37.
    Uehlinger, U., Wantzen, K. M., Leuven, R. S. E. W. & Arndt, H. The Rhine River Basin. in Rivers of Europe 199–245 (2009). https://doi.org/10.1016/B978-0-12-369449-2.00006-0

    38.
    Koester, M., Bayer, B. & Gergs, R. Is Dikerogammarus villosus (Crustacea, Gammaridae) a ‘killer shrimp’ in the River Rhine system?. Hydrobiologia 768, 299–313 (2016).
    Article  Google Scholar 

    39.
    Gergs, R. & Rothhaupt, K. O. Invasive species as driving factors for the structure of benthic communities in Lake Constance. Germany. Hydrobiologia 746, 245–254 (2014).
    Article  CAS  Google Scholar 

    40.
    Haubrock, P. J. et al. Shared histories of co-evolution may affect trophic interactions in a freshwater community dominated by alien species. Frontiers in Ecology and Evolution 7, 355 (2019).
    Article  Google Scholar 

    41.
    Marguillier, S. Stable isotope ratios and food web structure of aquatic ecosystems. (1998).

    42.
    Dick, J. T. A. & Platvoet, D. Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proc. R. Soc. B Biol. Sci. 267, 977–983 (2000).
    CAS  Article  Google Scholar 

    43.
    Bollache, L., Dick, J. T., Farnsworth, K. D. & Montgomery, W. I. Comparison of the functional responses of invasive and native amphipods. Biol Lett 4, 166–169 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    MacNeil, C. et al. The Ponto-Caspian ‘killer shrimp’, Dikerogammarus villosus (Sowinsky, 1894), invades the British Isles. Aquat. Invasions 5, 441–445 (2010).
    Article  Google Scholar 

    45.
    Worischka, S. et al. Food consumption of the invasive amphipod Dikerogammarus villosus in field mesocosms and its effects on leaf decomposition and periphyton. Aquat. Invasions 13, 261–275 (2018).
    Article  Google Scholar 

    46.
    Jourdan, J. et al. Pronounced species turnover, but no functional equivalence in leaf consumption of invasive amphipods in the river Rhine. Biol. Invasions 18, 763–774 (2016).
    Article  Google Scholar 

    47.
    Fries, G. & Der Tesch, F. W. Einfluss der Massenvorkommens von Gammarus tigrinus Sexton auf Fische und niedere Tierwelt in der Weser. Arch. für Fischer Wiss. 16, 133–150 (1965).
    Google Scholar 

    48.
    Hudgens, B. & Harbert, M. Amphipod Predation on Northern Red-Legged Frog (Rana Aurora) Embryos. Northwest. Nat. 100, 126 (2019).
    Article  Google Scholar 

    49.
    Räsänen, K., Pahkala, M., Laurila, A. & Merilä, J. Does Jelly Envelope Protect the Common Frog Rana Temporaria Embryos From Uv-B Radiation?. Herpetologica 59, 293–300 (2003).
    Article  Google Scholar 

    50.
    Ward, D. & Sexton, O. J. Anti-Predator Role of Salamander Egg Membranes. Copeia 1981, 724 (1981).
    Article  Google Scholar 

    51.
    Henrikson, B.-I. Predation on amphibian eggs and tadpoles by common predators in acidified lakes. Ecography (Cop.) 13, 201–206 (1990).
    Article  Google Scholar 

    52.
    Duellman, W. E. (William E. & Trueb, L. Biology of amphibians. (Johns Hopkins University Press, 1994).

    53.
    Latham, D., Jones, E. & Fasham, M. Amphibians. in Handbook of Biodiversity Methods: Survey, Evaluation and Monitoring (eds. Hill, D., Fasham, M., Tucker, G., Shewry, M. & Shaw, P.) (Cambridge University Press, 2005).

    54.
    Tinsley, R. C., Stott, L. C., Viney, M. E., Mable, B. K. & Tinsley, M. C. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events. Biol. Invasions 17, 3183–3195 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. B Biol. Sci. 367, 2923–2934 (2012).

    56.
    Glazier, D. S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 85, 111–138 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    58.
    Mayer, G., Waloszek, D., Maier, G. & Maas, A. Mouthparts of the Ponto-Caspian Invader Dikerogammarus Villosus (Amphipoda: Pontogammaridae). J. Crustac. Biol. 28, 1–15 (2008).
    Article  Google Scholar 

    59.
    Vucic-Pestic, O., Rall, B. C., Kalinkat, G. & Brose, U. Allometric functional response model: Body masses constrain interaction strengths. J. Anim. Ecol. 79, 249–256 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Maazouzi, C., Piscart, C., Legier, F. & Hervant, F. Ecophysiological responses to temperature of the ‘killer shrimp’ Dikerogammarus villosus: Is the invader really stronger than the native Gammarus pulex? Comp. Biochem. Physiol. – A Mol. Integr. Physiol. 159, 268–274 (2011).

    61.
    Álvarez, D. & Nicieza, A. G. Differential success of prey escaping predators: tadpole vulnerability or predator selection??. Copeia 2009, 453–457 (2009).
    Article  Google Scholar 

    62.
    Ward, A. & Webster, M. Sociality. in Sociality: The Behaviour of Group-Living Animals 1–8 (Springer International Publishing, 2016).https://doi.org/10.1007/978-3-319-28585-6_1

    63.
    Price, P. W., Denno, R. F., Eubanks, M. D., Finke, D. L. & Kaplan, I. Insect Ecology: Behaviour, Populations and Communities. (Cambridge University Press, 2011).

    64.
    Juliano, S. A. Nonlinear Curve Fitting: Predation and Functional Response Curves. in Design and Analysis of Ecological Experiments (eds. Cheiner, S. M. & Gurven, J.) 178–196 (Chapman and Hall, 2001).

    65.
    Barrios-O’Neill, D. et al. Fortune favours the bold: A higher predator reduces the impact of a native but not an invasive intermediate predator. J. Anim. Ecol. 83, 693–701 (2014).

    66.
    Sentis, A. & Boukal, D. S. On the use of functional responses to quantify emergent multiple predator effects. Sci. Rep. 8, (2018).

    67.
    Médoc, V., Albert, H. & Spataro, T. Functional response comparisons among freshwater amphipods: ratio-dependence and higher predation for Gammarus pulex compared to the non-natives Dikerogammarus villosus and Echinogammarus berilloni. Biol. Invasions 17, 3625–3637 (2015).
    Article  Google Scholar 

    68.
    Laverty, C., Nentwig, W., Dick, J. & Lucy, F. Alien aquatics in Europe: assessing the relative environmental and socio-economic impacts of invasive aquatic macroinvertebrates and other taxa. Manag. Biol. Invasions 6, 341–350 (2015).
    Article  Google Scholar 

    69.
    Dickey, J. W. E. et al. On the RIP: using Relative Impact Potential to assess the ecological impacts of invasive alien species. NeoBiota 55, 27–60 (2020).
    Article  Google Scholar 

    70.
    Gallardo, B., Errea, M. P. & Aldridge, D. C. Application of bioclimatic models coupled with network analysis for risk assessment of the killer shrimp, Dikerogammarus villosus. Great Britain. Biol. Invasions 14, 1265–1278 (2012).
    Article  Google Scholar 

    71.
    Gallardo, B. & Aldridge, D. C. Priority setting for invasive species management by the water industry. Water Res. 178, 115771 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Gosner, K. L. A simplified table for staging anuran embryos larvae. Herpetodologists’ Leag. 16, 183–190 (1960).
    Google Scholar 

    73.
    Currie, S. P., Combes, D., Scott, N. W., Simmers, J. & Sillar, K. T. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles. J. Neurophysiol. 115, 1446–1457 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Müller, J. C., Schramm, S. & Seitz, A. Genetic and morphological differentiation of Dikerogammarus invaders and their invasion history in Central Europe. Freshw. Biol. 47, 2039–2048 (2002).
    Article  Google Scholar 

    75.
    Blackman, R. C. et al. Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples – first record of gammarus fossarum in the UK. Aquat. Invasions 12, 177–189 (2017).
    Article  Google Scholar 

    76.
    van der Velde, G. et al. Environmental and morphological factors influencing predatory behaviour by invasive non-indigenous gammaridean species. Biol. Invasions 11, 2043–2054 (2009).
    Article  Google Scholar 

    77.
    Dick, J. T. A. et al. Parasitism may enhance rather than reduce the predatory impact of an invader. Biol. Lett. 6, 636–638 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Iltis, C., Spataro, T., Wattier, R. & Médoc, V. Parasitism may alter functional response comparisons: a case study on the killer shrimp Dikerogammarus villosus and two non-invasive gammarids. Biol. Invasions 20, (2018).

    79.
    Welton, J. S. Life-history and production of the amphipod Gammarus pulex in a Dorset chalk stream. Freshw. Biol. 9, 263–275 (1979).
    Article  Google Scholar 

    80.
    Oertli, B. Leaf litter processing and energy flow through macroinvertebrates in a woodland pond (Switzerland). Oecologia 96, 466–477 (1993).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Lods-Crozet, B. & Reymond, O. Bathymetric expansion of an invasive gammarid (Dikerogammarus villosus, Crustacea, Amphipoda) in Lake Léman. J. Limnol. 65, 141–144 (2006).
    Article  Google Scholar 

    82.
    Harkness, J. B. The relationships between stressors, macroinvertebrate community structure and leaf processing in stream ecosystems. (University of Sheffield, 2008).

    83.
    Leberfinger, K. & Herrmann, J. Secondary production of invertebrate shredders in open-canopy, intermittent streams on the island of land, southeastern Sweden. J. North Am. Benthol. Soc. 29, 934–944 (2010).
    Article  Google Scholar 

    84.
    Lods-Crozet, B. Long-term biomonitoring of invertebrate neozoans in Lake Geneva. Arch. des Sci. 67, 101–108 (2014).
    Google Scholar 

    85.
    Johns, T., Smith, D. C., Homann, S. & England, J. A. Time-series analysis of a native and a non-native amphipod shrimp in two English rivers. BioInvasions Rec. 7, 101–110 (2018).
    Article  Google Scholar 

    86.
    Clinton, K. E., Mathers, K. L., Constable, D., Gerrard, C. & Wood, P. J. Substrate preferences of coexisting invasive amphipods, Dikerogammarus villosus and Dikerogammarus haemobaphes, under field and laboratory conditions. Biol. Invasions 20, 2187–2196 (2018).
    Article  Google Scholar 

    87.
    Haas, G., Brunke, M. & Streit, B. Fast Turnover in Dominance of Exotic Species in the Rhine River Determines Biodiversity and Ecosystem Function: An Affair Between Amphipods and Mussels. in Invasive Aquatic Species of Europe. Distribution, Impacts and Management 426–432 (2002). doi:https://doi.org/10.1007/978-94-015-9956-6_42

    88.
    Krisp, H. & Maier, G. Consumption of macroinvertebrates by invasive and native gammarids: A comparison. J. Limnol. 64, 55–59 (2005).
    Article  Google Scholar 

    89.
    Mulattieri, P. Etude de l’impact des aménagements riverains sur les macroinvertébrés benthiques des rives genevoises du Léman. (Université de Genève, 2006).

    90.
    Platvoet, D., Dick, J. T. A., MacNeil, C., van Riel, M. C. & van der Velde, G. Invader-invader interactions in relation to environmental heterogeneity leads to zonation of two invasive amphipods, dikerogammarus villosus (sowinsky) and gammarus tigrinus sexton: Amphipod pilot species project (ampis) report 6. Biol. Invasions 11, 2085–2093 (2009).
    Article  Google Scholar 

    91.
    Tricarico, E. et al. The killer shrimp, Dikerogammarus villosus (Sowinsky, 1894), is spreading in Italy. Aquat. Invasions 5, 211–214 (2010).
    Article  Google Scholar 

    92.
    Muskó, I. B., Balogh, C., Tóth, Á. P., Varga, É. & Lakatos, G. Differential response of invasive malacostracan species to lake level fluctuations. Hydrobiologia 590, 65–74 (2007).
    Article  Google Scholar 

    93.
    Hellmann, C., Schöll, F., Worischka, S., Becker, J. & Winkelmann, C. River-specific effects of the invasive amphipod Dikerogammarus villosus (Crustacea: Amphipoda) on benthic communities. Biol. Invasions 19, 381–398 (2017).
    Article  Google Scholar 

    94.
    GBIF.org. Global Biodiversity Information Facility. Choice Reviews Online 41, 41–5289–41–5289 (2004).

    95.
    INaturalist.org. iNaturalist. (2020). Available at: https://www.inaturalist.org/. (Accessed: 16th October 2020)

    96.
    R Core Team. R: A Language and Environment for Statistical Computing. (2018).

    97.
    Pritchard, D. W., Paterson, R. A., Bovy, H. C. & Barrios-O’Neill, D. frair: an R package for fitting and comparing consumer functional responses. Methods Ecol. Evol. 8, 1528–1534 (2017).

    98.
    Rogers, D. Random Search and Insect Population Models. J. Anim. Ecol. 41, 369 (1972).
    Article  Google Scholar 

    99.
    Bolker, B. & R Core Team. bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.20. (2017).

    100.
    Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).
    Article  Google Scholar 

    101.
    Cuthbert, R. N., Dick, J. T. A., Callaghan, A. & Dickey, J. W. E. Biological control agent selection under environmental change using functional responses, abundances and fecundities; the Relative Control Potential (RCP) metric. Biol. Control 121, 50–57 (2018).
    Article  Google Scholar 

    102.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical Journal 50, 346–363 (2008).
    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar  More

  • in

    Isotopic discrimination in helminths infecting coral reef fishes depends on parasite group, habitat within host, and host stable isotope value

    1.
    Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546. https://doi.org/10.1111/j.1461-0248.2008.01174.x (2008).
    Article  PubMed  PubMed Central  Google Scholar 
    2.
    Welicky, R. L., Demopoulos, A. W. J. & Sikkel, P. C. Host-dependent differences in resource use associated with Anilocra spp. parasitism in two coral reef fishes, as revealed by stable carbon and nitrogen isotope analyses. Mar. Ecol. https://doi.org/10.1111/maec.12413 (2017).
    Article  Google Scholar 

    3.
    Kuris, A. M. et al. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518. https://doi.org/10.1038/nature06970 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Dunne, J. A. et al. Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol. 11, e1001579 (2013).
    CAS  Article  Google Scholar 

    5.
    Poulin, R. Parasite species richness in New Zealand fishes: A grossly underestimated component of biodiversity?. Divers. Distrib. 10, 31–37 (2004).
    Article  Google Scholar 

    6.
    Justine, J.-L. Parasite biodiversity in a coral reef fish: Twelve species of monogeneans on the gills of the grouper Epinephelus maculatus (Perciformes: Serranidae) off New Caledonia, with a description of eight new species of Pseudorhabdosynochus (Monogenea: Diplectanidae). Syst. Parasitol. 66, 81 (2007).
    Article  Google Scholar 

    7.
    Lafferty, K. D. & Kuris, A. M. Trophic strategies, animal diversity and body size. Trends Ecol. Evol. 17, 507–513 (2002).
    Article  Google Scholar 

    8.
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7 (1984).
    ADS  CAS  Article  Google Scholar 

    9.
    Fry, B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol. Oceanogr. 33, 1182–1190. https://doi.org/10.4319/lo.1988.33.5.1182 (1988).
    ADS  CAS  Article  Google Scholar 

    10.
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:usitet]2.0.co;2 (2002).
    Article  Google Scholar 

    11.
    McCutchan, J. H., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).
    CAS  Article  Google Scholar 

    12.
    Caut, S., Angulo, E. & Courchamp, F. Variation in discrimination factors (Δ15N and Δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443–453. https://doi.org/10.1111/j.1365-2664.2009.01620.x (2009).
    CAS  Article  Google Scholar 

    13.
    Pinnegar, J. K., Campbell, N. & Polunin, N. V. C. Unusual stable isotope fractionation patterns observed for fish host–parasite trophic relationships. J. Fish Biol. 59, 494–503. https://doi.org/10.1111/j.1095-8649.2001.tb02355.x (2001).
    Article  Google Scholar 

    14.
    Thieltges, D. W., Goedknegt, M. A., O’Dwyer, K., Senior, A. M. & Kamiya, T. Parasites and stable isotopes: A comparative analysis of isotopic discrimination in parasitic trophic interactions. Oikos 128, 1329–1339. https://doi.org/10.1111/oik.06086 (2019).
    Article  Google Scholar 

    15.
    Deudero, S., Pinnegar, J. K. & Polunin, N. V. C. Insights into fish host-parasite trophic relationships revealed by stable isotope analysis. Dis. Aquat. Org. 52, 77–86 (2002).
    Article  Google Scholar 

    16.
    Power, M. & Klein, G. M. Fish host–cestode parasite stable isotope enrichment patterns in marine, estuarine and freshwater fishes from northern Canada. Isot. Environ. Health Stud. 40, 257–266 (2004).
    CAS  Article  Google Scholar 

    17.
    Navarro, J. et al. Isotopic discrimination of stable isotopes of nitrogen (δ15N) and carbon (δ13C) in a host-specific holocephalan tapeworm. J. Helminthol. 88, 371–375 (2014).
    CAS  Article  Google Scholar 

    18.
    Kamiya, E., Urabe, M. & Okuda, N. Does atypical 15N and 13C enrichment in parasites result from isotope ratio variation of host tissues they are infected?. Limnology https://doi.org/10.1007/s10201-019-00596-w (2019).
    Article  Google Scholar 

    19.
    Kanaya, G. et al. Application of stable isotopic analyses for fish host–parasite systems: An evaluation tool for parasite-mediated material flow in aquatic ecosystems. Aquat. Ecol. 53, 217–232. https://doi.org/10.1007/s10452-019-09684-6 (2019).
    CAS  Article  Google Scholar 

    20.
    Gilbert, B. M. et al. You are how you eat: Differences in trophic position of two parasite species infecting a single host according to stable isotopes. Parasitol. Res. 1–8. https://doi.org/10.1007/s00436-020-06619-1 (2020).

    21.
    Demopoulos, A. W. & Sikkel, P. C. Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis. Int. J. Parasitol. Parasites Wildl. 4, 125–134 (2015).
    Article  Google Scholar 

    22.
    Jenkins, W. G., Demopoulos, A. W., Nicholson, M. D. & Sikkel, P. C. Stable isotope dynamics of herbivorous reef fishes and their ectoparasites. Diversity 12, 429 (2020).
    CAS  Article  Google Scholar 

    23.
    Jenkins, W. G., Demopoulos, A. W. J. & Sikkel, P. C. Host feeding ecology and trophic position significantly influence isotopic discrimination between a generalist ectoparasite and its hosts: Implications for parasite–host trophic studies. Food Webs 16, e00092. https://doi.org/10.1016/j.fooweb.2018.e00092 (2018).
    Article  Google Scholar 

    24.
    International Helminth Genomes, C. Comparative genomics of the major parasitic worms. Nat. Genet. 51, 163–174. https://doi.org/10.1038/s41588-018-0262-1 (2019).
    CAS  Article  Google Scholar 

    25.
    Tyagi, R., Rosa, B. A., Lewis, W. G. & Mitreva, M. Pan-phylum comparison of nematode metabolic potential. PLoS Negl. Trop. Dis. 9, e0003788. https://doi.org/10.1371/journal.pntd.0003788 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Yohannes, E., Grimm, C., Rothhaupt, K.-O. & Behrmann-Godel, J. The effect of parasite infection on stable isotope turnover rates of δ15N, δ13C and δ34S in multiple tissues of Eurasian perch Perca fluviatilis. PLoS ONE 12, e0169058. https://doi.org/10.1371/journal.pone.0169058 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Behrmann-Godel, J. & Yohannes, E. Multiple isotope analyses of the pike tapeworm Triaenophorus nodulosus reveal peculiarities in consumer–diet discrimination patterns. J. Helminthol. 89, 238–243. https://doi.org/10.1017/S0022149X13000849 (2015).
    CAS  Article  PubMed  Google Scholar 

    28.
    Nachev, M. et al. Understanding trophic interactions in host-parasite associations using stable isotopes of carbon and nitrogen. Parasites Vectors 10, 90. https://doi.org/10.1186/s13071-017-2030-y (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Goedknegt, M. A. et al. Trophic relationship between the invasive parasitic copepod Mytilicola orientalis and its native blue mussel (Mytilus edulis) host. Parasitology 145, 814–821. https://doi.org/10.1017/S0031182017001779 (2017).
    CAS  Article  PubMed  Google Scholar 

    30.
    Persson, M. E., Larsson, P. & Stenroth, P. Fractionation of δ15N and δ13C for Atlantic salmon and its intestinal cestode Eubothrium crassum. J. Fish Biol. 71, 441–452. https://doi.org/10.1111/j.1095-8649.2007.01500.x (2007).
    CAS  Article  Google Scholar 

    31.
    McMahon, K. W. & McCarthy, M. D. Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, e01511. https://doi.org/10.1002/ecs2.1511 (2016).
    Article  Google Scholar 

    32.
    Brouwers, J. F., Smeenk, I. M., van Golde, L. M. & Tielens, A. G. The incorporation, modification and turnover of fatty acids in adult Schistosoma mansoni. Mol. Biochem. Parasitol. 88, 175–185 (1997).
    CAS  Article  Google Scholar 

    33.
    Briand, M. J., Bonnet, X., Goiran, C., Guillou, G. & Letourneur, Y. Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ13C and δ15N). PLoS ONE 10, e0131555–e0131555. https://doi.org/10.1371/journal.pone.0131555 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Greenwood, N. D. W., Sweeting, C. J. & Polunin, N. V. C. Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using δ15N and δ13C. Coral Reefs 29, 785–792. https://doi.org/10.1007/s00338-010-0626-1 (2010).
    ADS  Article  Google Scholar 

    35.
    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).
    Article  Google Scholar 

    36.
    McMahon, K. W., Thorrold, S. R., Elsdon, T. S. & McCarthy, M. D. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnol. Oceanogr. 60, 1076–1087. https://doi.org/10.1002/lno.10081 (2015).
    ADS  CAS  Article  Google Scholar 

    37.
    Mill, A. C., Pinnegar, J. K. & Polunin, N. V. C. Explaining isotope trophic-step fractionation: Why herbivorous fish are different. Funct. Ecol. 21, 1137–1145. https://doi.org/10.1111/j.1365-2435.2007.01330.x (2007).
    Article  Google Scholar 

    38.
    Kulbicki, M., Guillemot, N. & Amand, M. A general approach to length-weight relationships for New Caledonian lagoon fishes. Cybium 29, 235–252 (2005).
    Google Scholar 

    39.
    Woodland, D. J. Revision of the fish family Siganidae with descriptions of two new species and comments on distribution and biology. Indo-Pacific Fishes, Vol. 19 (Bishop Museum, 1990).

    40.
    Moléana, T. Etude de la reproduction, de l’alimentation et de la composition en acides gras du picot rayé Siganus lineatus. Application à la domestication d’une nouvelle espèce tropicale pour la piscuculture marine (Nouvelle-Calédonie; Aqualagon SARL), PhD Thesis, Université de la Nouvelle-Calédonie (2016).

    41.
    Justine, J.-L., Briand, M. J. & Bray, R. A. A quick and simple method, usable in the field, for collecting parasites in suitable condition for both morphological and molecular studies. Parasitol. Res. 111, 341–351 (2012).
    Article  Google Scholar 

    42.
    Pinnegar, J. K. & Polunin, N. V. C. Differential fractionation of δ13C and δ15N among fish tissues: Implications for the study of trophic interactions. Funct. Ecol. 13, 225–231. https://doi.org/10.1046/j.1365-2435.1999.00301.x (1999).
    Article  Google Scholar 

    43.
    Abrantes, K. & Sheaves, M. Incorporation of terrestrial wetland material into aquatic food webs in a tropical estuarine wetland. Estuar. Coast. Shelf Sci. 80, 401–412 (2008).
    ADS  Article  Google Scholar 

    44.
    Briand, M. J., Bonnet, X., Guillou, G. & Letourneur, Y. Complex food webs in highly diversified coral reefs: Insights from δ13C and δ15N stable isotopes. Food Webs 8, 12–22. https://doi.org/10.1016/j.fooweb.2016.07.002 (2016).
    Article  Google Scholar  More

  • in

    Coupling ITO3dE model and GIS for spatiotemporal evolution analysis of agricultural non-point source pollution risks in Chongqing in China

    Results of risk assessment by the ITO3dE model
    The results in the I dimension show that, overall, the distribution was high in the west and low in the northeast and the southeast in all three periods (Fig. 3, I, II, III; Table 2), and this tallies with the topography of Chongqing. The northwestern and central regions of Chongqing are mainly hilly and slightly mountainous, while the southeastern and northeastern regions represent the Dabashan Mountain system and the Daloushan Mountain system, respectively. Thus, farmland in Chongqing is mainly distributed in the western regions as well as in regions with extensive flat areas, such as Dianjiang and Liangping. Some regions in Dianjiang, Yongchuan, Dazu, Shapingba, Wansheng, and Jiangbei show relatively high risks, but the risk level is still medium. Hence, it can be concluded that the risk level in the I dimension during 2005–2015 is, overall, not high. Considering there are too many single-factor graphs, we omitted these graphs, but provide the following description: Among the three single factors, I1 has the highest value, and I1 and I2 both present a first increasing and then decreasing trend (the maximum values of I1 in 2005, 2010, and 2015 were 3.38, 4.08, and 2.78, respectively, and those of I2 in 2005, 2010, and 2015 were 2.71, 3.37, and 2.48, respectively). For the I1 results, the risk levels of the regions with higher levels in 2005, such as Yongchuan, Fuling, and Liangping, showed a certain decrease in 2015, but the risk levels of some regions such as Pengshui, Qianjiang, and Xiushan showed an increasing trend. The risk grade of I2 was relatively lower than that of I1, but overall, the spatiotemporal variation trend was consistent with that of I1, except for the increasing trend of the risk level of Qianjiang. Basically, the risk grade of I3 was zero; only the risk level of Bishan was in the medium risk status, while those of Hechuan and Fengdu were low.
    Figure 3

    Result distribution map of I, T, and O dimensions of Chongqing in 2005, 2010, 2015.

    Full size image

    Table 2 Statistical results of I, T, and O dimensions in 2005–2015.
    Full size table

    Spatially, the results in the T dimension presented, overall, an opposite distribution pattern when compared to the I dimension, that is, with low levels in the western regions and high levels in the northeastern and southeastern regions (Fig. 3, IV, V, VI; Table 2). The annual differences in the T dimension data are mainly determined by the variations in the factors I4 and I7, which showed relatively higher risk levels in all three periods. The values of I4 in the years 2005, 2010, and 2015 were 1.42–5.78, 0.84–6.12, and 0.14–6.93, respectively, while those of I7 were 0, 0–5.38, and 0–5.06, respectively. Because Chongqing is a typical mountainous city with purple soil33, high-risk and extremely high-risk regions, I5 and I6, are widely distributed across the city. In addition, due to the introduction of the factor I8, the water areas had a higher risk level, which is consistent with the actual situation of AGNPS.
    The results in the O dimension showed a smaller interannual variation, with a low overall risk level (Fig. 3, VII, VIII, IX; Table 2). The O dimension levels were mainly affected by the spatial changes in the paddy field area. As mentioned above, during the 10 years, the area of paddy fields in Chongqing was nearly reduced by half, which led to the decrease in the spatial distribution of I12 and an increased risk in counties such as Kaizhou, Fengjie, Liangping, and Changshou. Spatially, Yongchuan, Shapingba, Bishan, Dianjiang, Changshou, and Kaizhou showed higher risk levels, and the risk levels of Kaizhou, Fengjie, Wanzhou, Liangping, and Changshou showed a significantly increasing trend. The high risk values of I9 were mainly distributed in Yongchuan, Shapingba, Jiangbei, Changshou, Dianjiang, and Liangping, with Shapingba showing the highest value of 3.75, while Chengkou, Wushan, Fengjie, Shizhu, and Xiushan had lower values. The high risk values of I10 were mainly distributed in the western regions and were below the medium risk levels. The risk values in 2010 were higher than those in 2005 or 2015, but did not surpass 3.0, and the high values were mainly distributed in the western regions as well as in Dianjiang, Wanzhou, and Liangping. The risk values of I11 were all below 3.0, and the highest value of 2.78 was found for Fengjie; higher values were mainly distributed in the northeastern and southeastern counties. The high risk values of I12 were mainly distributed in the northeastern and southeastern counties, which mostly have only small areas of paddy fields.
    Figure 4 shows the data on AGNPS risks during 2005–2015 in Chongqing. The risk distribution trends in 2005, 2010, and 2015 were basically consistent and in the ranges of 0.40–2.28, 0.41–2.57, and 0.41–2.28, respectively. The maximum risk values were all below 3.0 for the three periods. Regions with medium levels were mostly distributed in the western regions of Chongqing (Dazu, Jiangjin, etc.) as well as in the counties Dianjiang, Liangping, Kaizhou, Wanzhou, and Zhongxian. Larger spatial differences were observed among different counties or different parts of a certain county; for example, the middle flatland part and the mountain systems at the two sides in Liangping or the northwestern and southeastern parts in Shizhu.
    Figure 4

    Spatiotemporal distribution graph of the evaluation results of agricultural NPSP risks in Chongqing during 2005–2015: (a) 2005; (b) 2010; (c) 2015.

    Full size image

    Spatiotemporal change results of risk by transition matrix analysis
    By assigning no risk, low risk, and medium risk levels with 1, 2, and 3, respectively, in GIS, we can obtain the spatiotemporal transition matrix according to the formula of the transition matrix. Figure 5 shows the spatiotemporal transition situation of the AGNPS risk evaluation in Chongqing. Basically, high levels show no changes, and the proportions of ‘no-risk no-change’, ‘low-risk no-change’, and ‘medium-risk no-change’ situations were 10.86%, 33.42%, and 17.25%, respectively, accounting for 61.53% of the total area of Chongqing. Among these, the ‘no-risk no-change’ situation was mainly distributed in Rongchang, the east of Nanchuan, Shizhu, Pengshui, and Qianjiang; the ‘low-risk no-change’ situation was widely distributed in Wulong, the southeast of Fengdu, the south of Nanchuan, and the northeastern counties of Chongqing, while the ‘medium-risk no-change’ situation was mainly distributed in Shapingba, Yongchuan, Dianjiang, the north of Nanchuan, and Kaizhou.
    Figure 5

    Spatiotemporal transition situation of agricultural NPSP risks in Chongqing during 2005–2015.

    Full size image

    During 2005–2015, the proportions of risk increase, risk decline, and risk fluctuation were 13.45%, 17.66%, and 7.36%, respectively. Risk increases mainly occurred in central Jiangjin, central Fengdu, Pengshui, Qianjiang, the midwest of Yunyang, central Liangping, Wuxi, Wushan, and Chengkou, while risk declines were mainly observed for the main urban area of Chongqing, northern Tongliang, Dazu, Youyang, and Xiushan. Risk fluctuation was concentrated in Jiangjin, Bishan, Fuling, and Youyang.
    Results of risk concentration degree by Kernel density analysis
    Figure 6 shows the kernel density analysis results of the medium-risk regions. As seen in the figures, the peak values of the kernel density at these three periods were all around 1,110, suggesting that the maximum gathering degree of medium-risk pattern spots basically showed no changes. The spatial distribution of kernel density at these three periods showed a consistent trend, but the distribution differences at different periods were significant. In 2005, medium-risk regions were mainly concentrated in Shapingba, southern Dazu, central Yongchuan, eastern Beibei, Dianjiang, central Kaizhou, northwestern Shizhu, northern Nanchuan, central Wanzhou, southwestern Zhongxian, and southeastern Xiushan, while in 2010, such regions mainly occurred in Shapingba, eastern Jiangjin, southeastern Beibei, northern Nanchuan, northeastern Changshou, Dianjiang, northern Fuling, northern Fengdu, northeastern Shizhu, northeastern Liangping, central Kaizhou, Wanzhou, northeastern Pengshui, and eastern Xiushan. In 2015, medium-risk regions were mainly concentrated in Shapingba, Yongchuan, central Jiangjin, northwestern Nanchuan, northeastern Beibei, Dianjiang, Liangping, the junction of Fuling and Fengdu, central Kaizhou, northern Yunyang, eastern Pengshui, southeastern Qianjiang, and central Xiushan.
    Figure 6

    Kernel density graphs of medium-risk areas in Chongqing during 2005–2015: (a) 2005; (b) 2010; (c) 2015.

    Full size image

    To further explore the distribution of regions with the high-risk gathering zones (Table 3), we conducted a separate analysis on the regions with kernel density values higher than 1,000 (the kernel density values of these regions were divided into 10 grades with equal intervals, and the 10th grade had values from 1,000 to 1,110).
    Table 3 Distribution of regions with high-risk gathering zones.
    Full size table

    Results of hot and cold spots by Getis-Ord Gi* analysis
    Applying Getis-Ord Gi* analysis is helpful to clearly identify high-value hot spots (Hot Spot-99% Confidence) and low-value cold spots (Cold Spot-99% Confidence). Figure 7 shows the Getis-Ord Gi* analysis results; the overall variation trends of high-value hot spots and low-value cold spots were consistent in all periods, with significant distribution differences. The regions located in the high-value hot spot zones in all three periods were Yongchuan, Shapingba, Dianjiang, Liangping, northwestern Fengdu, and Zhongxian, while those located in the low-value cold spot zones were Chengkou, Wuxi, Wushan, Pengshui, and Rongchang. Throughout the 10 years, the high-value hot spot zones showed significant diffusion in Fengjie, Yunyang, Kaizhou, central Qianjiang, and northern Nanchuan, while the low-value cold spot zones showed significant diffusion in some parts of the midwestern counties such as central Fuling and southern Yubei. These high-value hot spots or low-value cold spots were mainly distributed in the above-mentioned regions and their surrounding areas and showed significant “gathering trends”. The spatiotemporal variation trend of the distribution of these high-value hot spots or low-value cold spots can reflect the variation tendencies of hot spots or cold spots in different regions. Over time, the high-value hot spot zones gradually migrated towards the northeastern counties of Chongqing, while the low-value cold spot zones in the midwestern counties presented an obvious diffusion trend. The low-value cold spot zones in the northeastern regions gradually decreased, while those in the southeastern regions tended to become more fragmented. These results indicate that the high-value hot spot zones gradually dominated the northeastern regions, while the low-value cold spot zones gradually dominated the midwestern regions.
    Figure 7

    Getis-Ord Gi analysis results in Chongqing during 2005–2015.

    Full size image More

  • in

    Environmental impact of the cultivation of energy willow in Poland

    1.
    Roy, P., Tokuyasu, K., Orikasa, T., Nakamura, N. & Shiixa, T. A Review of life cycle assessment (LCA) of bioethanol from lignocellulosic biomass. JARQ 46, 41–57 (2012).
    CAS  Article  Google Scholar 
    2.
    Palmer, M. M., Forrester, J. A., Rothstein, D. E. & Mladenoff, D. J. Establishment phase greenhouse gas emissions in short rotation woody biomass plantations in the Northern Lake States, USA. Biomass Bioenergy 62, 26–36 (2014).
    CAS  Article  Google Scholar 

    3.
    González-García, S., Iribarren, D., Susmozas, A., Dufour, J. & Murphy, R. J. Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: bioethanol production and power generation. Appl. Energy 95, 111–122 (2012).
    Article  CAS  Google Scholar 

    4.
    Mizsey, P. & Racz, P. Cleaner production alternatives: biomass utilisation options. J. Clean. Prod. 18, 767–770 (2010).
    CAS  Article  Google Scholar 

    5.
    Igliński, B., Cichosz, M., Skrzatek, M. & Buczkowski, R. Potencjał energetyczny biomasy na gruntach ugorowanych i nieużytkach w Polsce. Inżynieria i Ochrona Środowiska 21, 79–87 (2018).
    Google Scholar 

    6.
    Stolarski, M., Szczukowski, S. & Tworkowski, J. Biopaliwa z biomasy wieloletnich roślin energetycznych. Energetyka 1, 77–80 (2008).
    Google Scholar 

    7.
    Murphy, F., Devlin, G. & McDonnell, K. Energy requirements and environmental impacts associated with the production of short rotation willow (Salix sp.) chip in Ireland. GCB Bioenergy 6, 727–739 (2014).
    Article  Google Scholar 

    8.
    El Bassam, N. Handboook for Bioenergy Crops. Earthscan, London, 544 (2010).

    9.
    Eisenbies, M. H., Volk, T. A., Posselius, J., Foster, Ch. & Shi, S. Evaluation of a single-pass, cut and chip harvest system on commercial-scale, short-rotation shrub willow biomass crops. BioEnergy Res. 7(4), 1506–1518 (2014).
    Article  Google Scholar 

    10.
    Nathan, J., Sleight, N. & Volk, T. A. Recently Bred Willow (Salix spp.) Biomass crops show stable yield trends over three rotations at two sites. BioEnergy Res. 9, 782–797 (2016).
    Article  Google Scholar 

    11.
    Djomo, S. N., Kasmioui, O. E. & Ceulemans, R. Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenergy 3(3), 181–197 (2011).
    CAS  Article  Google Scholar 

    12.
    Hammar, T., Ericsson, N., Sundberg, C. & Hansson, P. A. Climate impact of willow grown for bioenergy in Sweden. BioEnergy Res. 7, 1529–1540 (2014).
    Article  Google Scholar 

    13.
    Argus, G. W. Infrageneric classification of Salix (Salicaceae) in the new world. Syst. Bot. Monogr. 52, 101–121 (1997).
    Article  Google Scholar 

    14.
    Keoleian, G. A. & Volk, T. A. Renewable energy from willow biomass crops: life cycle energy, environmental, and economic performance. Crit. Rev. Plant Sci. 24, 385–406 (2005).
    Article  Google Scholar 

    15.
    Christersson, L., Sennerby-Forsse, L. & Zsuffa, L. The role and significance of woody biomass plantations in Swedish agriculture. For. Chron. 69, 687–693 (1993).
    Article  Google Scholar 

    16.
    Schroeder, W., Kort, J., Savoie, P. & Preto, F. Biomass harvest from natural willow rings around prairie wetlands. BioEnergy Res. 2, 99–105 (2009).
    Article  Google Scholar 

    17.
    Abrahamson, L. P., Volk, T. A. & Smart, L. P. Shrub Willow Producers Handbook (SUNY-ESF, Syracuse, 2010).
    Google Scholar 

    18.
    Heller, M. C., Keoleian, G. A. & Volk, T. A. Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenerg. 25, 147–165 (2003).
    CAS  Article  Google Scholar 

    19.
    Volk, T. A., Verwijst, T., Tharakan, P. J., Abrahamson, L. P. & White, E. H. Growing fuel: a sustainability assessment of willow biomass crops. Front. Ecol. Evol. 2(8), 411–418 (2004).
    Article  Google Scholar 

    20.
    Rowe, R. L., Street, N. R. & Taylor, G. Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew. Sustain. Energy Rev. 13, 271–290 (2009).
    Article  Google Scholar 

    21.
    Lippke, B. et al. Comparing life-cycle carbon and energy impacts for biofuel, wood product, and forest management alternatives. Forest Prod. J. 62, 247–257 (2012).
    CAS  Article  Google Scholar 

    22.
    Caputo, J. et al. Incorporating uncertainty into a life cycle assessment (LCA) model of short-rotation willow biomass (Salix spp) crops. BioEnergy Res. 7(1), 48–59 (2014).
    CAS  Article  Google Scholar 

    23.
    Davis, S. C. et al. Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corngrowing regions of the US. Front. Ecol. Environ. 10, 69–74 (2012).
    Article  Google Scholar 

    24.
    Arevalo, C. B. M., Bhatti, J. S., Chang, S. X. & Skidders, D. Land use change effects on ecosystem carbon balance: from agricultural to hybrid poplar plantation. Agric. Ecosyst. Environ. 141, 342–349 (2011).
    Article  Google Scholar 

    25.
    Pietrzykowski, M. et al. Carbon sink potential and allocation in above-and below-ground biomass in willow coppice. J. For. Res. https://doi.org/10.1007/s11676-019-01089-3 (2020).
    Article  Google Scholar 

    26.
    Langholtz, M. et al. Economic comparative advantage of willow biomass in the Northeast USA. Biofuels Bioprod. Biorefin. 13(1), 74–85 (2019).
    CAS  Article  Google Scholar 

    27.
    Kimming, M. et al. Biomass from agriculture in small-scale combined heat and power plants. Comp. Life Cycle Assess. Biomass Bioenergy 35, 1572–1581 (2011).
    CAS  Article  Google Scholar 

    28.
    Fargione, J. E., Plevin, R. J. & Hill, J. D. The ecological impact of biofuels. Annu. Rev. Ecol. Evol. 41, 351–377 (2010).
    Article  Google Scholar 

    29.
    Zhao, F., Wu, J., Wang, L., Liu, S., Wei, X., Xiao, J., Qiu, L., & Sun, P. Multi-environmental impacts of biofuel production in the US Corn Belt: a coupled hydro-biogeochemical modeling approach. J. Clea. Prod. 251, 119561, ISSN 0959-6526 (2020).

    30.
    Wu, Y., Liu, S. & Li, Z. Identifying potential areas for biofuel production and evaluating the environmental effects: a case study of the James River Basin in the Midwestern United States. Glob. Change Biol. Bioenergy 4, 875–888 (2012).
    Article  Google Scholar 

    31.
    Wu, Y. et al. Bioenergy production and environmental impacts. Geosci. Lett. 5, 14 (2018).
    ADS  Article  Google Scholar 

    32.
    Meehan, T. D., Hurlbert, A. H. & Gratton, C. Bird communities in future bioenergy landscapes of the Upper Midwest. Proc. Natl. Acad. Sci. 107, 18533–18538 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Murphy, R., Woods, J., Black, M. & McManus, M. Global developments in the competition for land from biofuels. Food Policy 36, 52–61 (2011).
    Article  Google Scholar 

    34.
    Styles, D., Borjesson, P., d’Hertefeldt, T., Birkhofer, K., Dauber, J., Adams, P., & Vaneeckhaute, C. Climate regulation, energy provisioning and water purification (2019).

    35.
    Zhang, Y. K. & Schilling, K. E. Increasing streamflow and baseflow in Mississippi River since the 1940s: effect of land use change. J. Hydrol. 324, 412–422 (2006).
    ADS  Article  Google Scholar 

    36.
    Pacaldo, R. S., Volk, T. A. & Briggs, R. D. No significant differences in soil organic carbon contents along a chronosequence of shrub willow biomass crop fields. Biomass Bioenerg. 58, 136–142 (2013).
    CAS  Article  Google Scholar 

    37.
    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta-analysis. Glob. Change Biol. 8, 345–360 (2002).
    ADS  Article  Google Scholar 

    38.
    Gelfand, I., Snapp, S. S. & Robertson, G. P. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the US Midwest. Environ. Sci. Technol. 44, 4006–4011 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Zenone, T. et al. CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation. Glob. Change Biol. Bioenergy 3, 401–412 (2011).
    Article  Google Scholar 

    40.
    Henner, D., Smith, P., Davies, C., McNamara, N., Balkovic, J. Sustainable whole system: Miscanthus, Willow and Poplar bioenergy crops for carbon stabilisation and erosion control in agricultural systems. In Geophysical Research Abstracts 21 (2019).

    41.
    Bouwman, A. F., van Grinsven, J. M. & Eickhout, B. Consequences of the cultivation of energy crops for the global nitrogen cycle. Ecol. Appl. 20, 101–109 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319, 1238–1240 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Sikora, J. et al. The impact of a controlled-release fertilizer on greenhouse gas emissions and the efficiency of the production of Chinese cabbage. Energies 8(13), 2063 (2020).
    Article  CAS  Google Scholar 

    46.
    Tonini, D. & Astrup, T. LCA of biomass-based energy systems: a case 2008 study for Denmark. Appl. Energy 99, 234–246 (2012).
    CAS  Article  Google Scholar 

    47.
    Caserini, S., Livio, S., Giugliano, M., Grosso, M. & Rigamonti, L. LCA of domestic and centralized biomass combustion: the case of Lombardy (Italy). Biomass Bioenerg. 34, 474–482 (2010).
    CAS  Article  Google Scholar 

    48.
    Kowalczyk, Z. Environmental impact of potato cultivation on plantations covering areas of various sizes. In Web of Conferences, E3S Web Conferences, 2019, XXII International Scientific Conference POLSITA, Progress of Mechanical Engineering Supported by Information Technology Vol. 132 (2019).

    49.
    Kowalczyk, Z. Life cycle assessment (LCA) of potato production. In Web of Conferences, E3S Web Conferences, 2019, XXII International Scientific Conference POLSITA Progress of Mechanical Engineering Supported by Information Technology Vol. 132 (2019).

    50.
    Roy, P. et al. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 90, 1–10 (2009).
    Article  Google Scholar 

    51.
    Klein, D., Wolf, Ch., Schulz, Ch. & Weber-Blaschke, G. 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. Int. J. Life Cycle Assess. 20, 556–575 (2015).
    CAS  Article  Google Scholar 

    52.
    Cherubini, F. GHG balances of bioenergy systems—overview of key steps in the production chain and methodological concerns. Renew. Energy 35(7), 1565–1573 (2010).
    CAS  Article  Google Scholar 

    53.
    Supasri, T. et al. Life cycle assessment of maize cultivation and biomass utilization in northern Thailand. Sci. Rep. 10, 3516 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Turconi, R., Boldrin, A. & Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew. Sustain. Energy Rev. 28, 555–565 (2013).
    CAS  Article  Google Scholar 

    55.
    Finnveden, G. et al. Recent developments in life cycle assessment. J. Environ. Manage. 91(1), 1–21 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Guidi Nissim, W., Pitre, F. E., Teodorescu, T. I. & Labrecque, M. Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec Canada. Biomass Bioenergy 56, 361–369 (2013).
    Article  Google Scholar 

    57.
    Kowalczyk, Z. & Kwaśniewski, D. Life cycle assessment (LCA) in energy willow cultivation on plantations with varied surface area. Agric. Eng. 23(4), 11–19 (2019).
    Google Scholar 

    58.
    Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).
    Article  Google Scholar 

    59.
    IPCC Climate change 2013: the physical science basis. In: Stocker TF, QinD, PlattnerGK, TignorM, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, 1535 (2013).

    60.
    Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).
    ADS  Article  CAS  Google Scholar 

    61.
    WMO Scientific assessment of ozone depletion. 2010, Global Ozone Research and Monitoring Project-Report 52 (World Meteorological Organization, Geneva, 2011).
    Google Scholar 

    62.
    Frischknecht, R., Braunschweig, A., Hofstetter, P. & Suter, P. Human health damages due to ionising radiation in life cycle impact assessment. Environ. Impact Asses Rev. 20, 159–189 (2000).
    Article  Google Scholar 

    63.
    Van Zelm, R., Preiss, P., Van Goethem, T., Van Dingenen, R. & Huijbregts, M. A. J. Regionalized life cycle impact assessment of air pollution on the global scale: damage to human health and vegetation. Atmos. Environ. 134, 129–137 (2016).
    ADS  Article  CAS  Google Scholar 

    64.
    Roy, P. O. et al. Characterization factors for terrestrial acidification at the global scale: a systematic analysis of spatial variability and uncertainty. Sci. Total Environ. 500, 270–276 (2014).
    ADS  PubMed  Article  CAS  Google Scholar 

    65.
    Helmes, R. J. K., Huijbregts, M. A. J., Henderson, A. D. & Jolliet, O. Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int. J. Life Cycle Assess. 17, 646–654 (2012).
    CAS  Article  Google Scholar 

    66.
    VanZelm, R., Huijbregts, M. A. J. & VandeMeent, D. USES-LCA 2.0: aglobal nested multi-media fate, exposure and effects model. Int. J. Life Cycle Assess. 14(30), 282–284 (2009).
    Article  Google Scholar 

    67.
    De Baan, L., Alkemade, R. & Köllner, T. Land use impacts on biodiversity in LCA: a global approach. Int. J. Life Cycle Assess. 18, 1216–1230 (2013).
    Article  Google Scholar 

    68.
    Curran, M., Hellweg, S. & Beck, J. Is there any empirical support for biodiversity offset policy?. Ecol. Appl. 24, 617–632 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Döll, P. & Siebert, S. Global modelling of irrigation water requirements. Water Resour. Res. 38, 1037 (2002).
    ADS  Article  Google Scholar 

    70.
    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. PNAS 109, 3232–3237 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Vieira, M. D. M., Ponsioen, T. C., Goedkoop, M. & Huijbregts, M. A. J. Surplus ore potential as a scarcity indicator for resource extraction. J. Indus. Ecol. 21(2), 381–390 (2016).
    Article  Google Scholar 

    72.
    Jungbluth, N., & Frischknecht, R. Cumulative energy demand. In Hischier, R., Weidema, B. (Eds) Implementation of Life Cycle Impact Assessment Methods, St Gallen Ecoinvent Centre, pp. 33–40.

    73.
    Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F. et al. ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level report I. Charact. RIVM Rep. 2016–0104 (2016).

    74.
    Spinelli, R., Schweier, J. & De Francesco, F. Harvesting techniques for non-industrial biomass plantations. Biosyst. Eng. 113, 319–324 (2012).
    Article  Google Scholar 

    75.
    Kwaśniewski, D., Mudryk, K. & Wróbel, M. Zbiór wierzby energetycznej z użyciem piły łańcuchowej. Inżynieria Rolnicza 13, 271–277 (2006).
    Google Scholar 

    76.
    Wiloso, E. I. et al. Production of sorghum pellets for electricity generation in Indonesia: a life cycle assessment. Biofuel Res. J. 27, 1178–1194 (2020).
    Article  Google Scholar 

    77.
    Yang, Y. & Tilman, D. Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res. J. 26, 1143–1148 (2020).
    Article  Google Scholar 

    78.
    Heller, M. C., Keoleian, G. A., Mann, M. K. & Volk, T. A. Life cycle energy and environmental benefits of generating electricity from willow biomass. Renew. Energy 29(7), 1023–1042 (2004).
    CAS  Article  Google Scholar 

    79.
    Fernandez-Tirado, F. & Parra-Lo´pez C, Calatrava-Requena JA, ,. methodological proposal for life cycle inventory of fertilization in energy crops: the case of Argentinean soybean and Spanish rapeseed. Biomass Bioenergy 58, 104–116 (2013).
    CAS  Article  Google Scholar 

    80.
    Goglioa, P. & Owende, P. M. O. A screening LCA of short rotation coppice willow (Salix sp.) feedstock production system for small-scale electricity generation. Biosyst. Eng. 103, 389–394 (2009).
    Article  Google Scholar  More

  • in

    Tillage effects on soil properties and crop yield after land reclamation

    1.
    Han, J. & Zhang, Y. Land policy and land engineering. Land Use Policy 40, 64–68 (2014).
    Article  Google Scholar 
    2.
    Liu, Y. S. Introduction to land use and rural sustainability in China. Land Use Policy. 74, 1–4 (2018).
    Article  Google Scholar 

    3.
    Liu, Y. S., Li, J. T. & Yang, Y. Y. Strategic adjustment of land use policy under the economic transformation. Land Use Policy 74, 5–14 (2018).
    Article  Google Scholar 

    4.
    Yi, L. et al. Spatial-temporal change of major reserve resources of cultivated land in China in recent 30 years. Trans. CSAE (in Chinese) 29, 1–12 (2013).
    Google Scholar 

    5.
    Zhang, Y., Li, Z. B. & Dong, Q. G. Analysis of water and nutrients leakage on barren gravel land with different structure of topsoil. J. Soil Water Conserv. 32, 162–166 (2018).
    Google Scholar 

    6.
    Wu, X. L. et al. Improvement of new farmland soil in loess area under different fertilization treatments. Sci. Soil Water Conserv. 13, 99–104 (2015).
    Google Scholar 

    7.
    Hu, S. G., Wang, J. & Wang, Z. Q. Characterization of quantity-quality grade conversion coefficient of supplementary cultivated land in Jianghan Plain, China. Proc. SPIE Int. Soc. Opt. Eng. 7841, 1–9 (2009).
    Google Scholar 

    8.
    Liu, Y. S. et al. Progress of research on urbanrural transformation and rural development in China in the past decade and future prospects. J. Geogr. Sci. 26, 1117–1132 (2016).
    ADS  Article  Google Scholar 

    9.
    Sun, Z. & Han, J. Effect of soft rock amendment on soil hydraulic parameters and crop performance in Mu Us Sandy Land, China. Field Crops Res. 222, 85–93 (2018).
    Article  Google Scholar 

    10.
    Yang, J., Liu, L., Sun, C. M. & Liu, X. F. Soil components and fertility improvement of added cultivated land. Trans. CSAE 7, 102–105 (2008).
    Google Scholar 

    11.
    Li, Y., Liu, Y., Long, H. & Cui, W. Community-based rural residential land consolidation and allocation can help to revitalize hollowed villages in traditional agricultural areas of China: Evidence from Dancheng County, Henan Province. Land Use Policy 39, 188–198 (2014).
    CAS  Article  Google Scholar 

    12.
    Sağlam, M. & Selvi, K. C. Effects of different tillage managements on soil physical quality in a clayey soil. Environ. Monit. Assess. 187, 1–12 (2015).
    Article  CAS  Google Scholar 

    13.
    Márcio, R., Douglas, L. K. & Moorman, T. B. Tillage intensity effects on soil structure indicators—A US meta-analysis. Sustainability 12, 1–17 (2020).
    Article  Google Scholar 

    14.
    Blanco-Moure, N., Moret-Fernández, D. & López, M. V. Dynamics of aggregate destabilization by water in soils under long-term conservation tillage in semiarid Spain. CATENA 99, 34–41 (2012).
    CAS  Article  Google Scholar 

    15.
    Nunes, M. R., van Es, H. M., Schindelbeck, R., Ristow, A. J. & Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 328, 30–43 (2018).
    ADS  CAS  Article  Google Scholar 

    16.
    Steele, M. K., Coale, F. J. & Hill, R. L. Winter annual cover crop impacts on no-till soil physical properties and organic matter. Soil Sci. Soc. Am. J. 76, 2164–2173 (2012).
    ADS  CAS  Article  Google Scholar 

    17.
    Laura, T., Jacynthe, D. R. & Caron, J. Short-term improvement in soil physical properties of cultivated histosols through deep-rooted crop rotation and subsoiling. Agron. J. 111, 2084–2096 (2019).
    Article  CAS  Google Scholar 

    18.
    Sun, X. F. et al. Subsoiling practices change root distribution and increase post-anthesis dry matter accumulation and yield in summer maize. PLoS ONE 12, 1–18 (2017).
    Google Scholar 

    19.
    Huang, M., Liang, T., Wang, L. & Zhou, C. Effects of no-tillage systems on soil physical properties and carbon sequestration under long-term wheat–maize double cropping system. CATENA 128, 195–202 (2015).
    CAS  Article  Google Scholar 

    20.
    Martínez, I. et al. Two decades of no-till in the Oberacker long-term field experiment: Part II. Soil porosity and gas transport parameters. Soil Tillage Res. 163, 130–140 (2016).
    Article  Google Scholar 

    21.
    Suzuki, L. E. A. S., Reichert, J. M. & Reinert, D. J. Degree of compactness, soil physical properties and yield of soybean in six soils under no-tillage. Soil Res. 51, 311–321 (2013).
    Article  Google Scholar 

    22.
    López-Fando, C. & Pardo, M. T. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Tillage Res. 104, 278–284 (2009).
    Article  Google Scholar 

    23.
    Song, K. et al. Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil. Rep. U.K. 9, 4586 (2019).
    Google Scholar 

    24.
    Zhou, H., Li, B. G. & Lu, Y. Z. Micromorphological analysis of soil structure under no tillage management in the black soil zone of northeast china. J. Mt. Sci. 6, 173–180 (2009).
    Article  Google Scholar 

    25.
    Chang, I., Im, J., Prasidhi, A. K. & Cho, G. C. Effects of Xanthan gum biopolymer on soil strengthening. Constr. Build. Mater. 74, 65–72 (2015).
    Article  Google Scholar 

    26.
    Jiang, M., Zhang, F., Hu, H., Cui, Y. & Peng, J. Structural characterization of natural loess and remolded loess under triaxial tests. Eng. Geol. 181, 249–260 (2014).
    Article  Google Scholar 

    27.
    Lin, B. & Cerato, A. B. Applications of SEM and ESEM in microstructural investigation of shale-weathered expansive soils along swelling-shrinkage cycles. Ecol. Eng. 177, 66–74 (2014).
    Google Scholar 

    28.
    Mikha, M. M., Benjamin, J. G., Vigil, M. F. & Nielsen, C. Cropping intensity impacts on soil aggregation and carbon sequestration in the central Great Plains. Soil Sci. Soc. Am. J. 74, 1712–1719 (2010).
    ADS  CAS  Article  Google Scholar 

    29.
    Sodhi, G. P., Beri, V. & Benbi, D. K. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system. Soil Tillage Res. 103, 412–418 (2009).
    Article  Google Scholar 

    30.
    Mikha, M. M., Vigil, M. F. & Benjamin, J. G. Long-term tillage impacts on soil aggregation and carbon dynamics under wheat-fallow in the central Great Plains. Soil Sci. Soc. Am. J. 77, 594–605 (2013).
    ADS  CAS  Article  Google Scholar 

    31.
    Matson, P., Lohse, K. A. & Hall, S. J. The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. Ambio 31, 113–119 (2002).
    PubMed  Article  Google Scholar 

    32.
    Li, X. G. et al. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol. Biochem. 112, 47–55 (2017).
    CAS  Article  Google Scholar 

    33.
    Hou, X. Q. et al. Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China. Field Crops Res. 129, 7–13 (2012).
    Article  Google Scholar 

    34.
    Chen, H. Q. et al. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res. 106, 85–94 (2009).
    Article  Google Scholar 

    35.
    Hernanz, J. L., Sánchez-Girón, V. & Navarrete, L. Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agric. Ecosyst. Environ. 133, 114–122 (2009).
    CAS  Article  Google Scholar 

    36.
    Mazzoncini, M. et al. Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. Eur. J. Agron. 77, 156–165 (2016).
    CAS  Article  Google Scholar 

    37.
    Sombrero, A. & Benito, A. D. Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of castile-leon, spain. Soil Tillage Res. 107, 64–70 (2010).
    Article  Google Scholar 

    38.
    Bottinelli, N. et al. Tillage and fertilization practices affect soil aggregate stability in a Humic Cambisol of Northwest France. Soil Tillage Res. 170, 14–17 (2017).
    Article  Google Scholar 

    39.
    Du, Z., Ren, T., Hu, C., Zhang, Q. & Blanco-Canqui, H. Soil aggregate stability and aggregate-associated carbon under different tillage systems in the north China plain. J. Integr. Agric. 12, 2114–2123 (2013).
    Article  Google Scholar 

    40.
    Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva, A. K. & Gupta, H. S. Soil aggregation and organic matter in a sandy clay loam soil of the Indian Himalayas under different tillage and crop regimes. Agr. Ecosyst. Environ. 132, 126–134 (2009).
    Article  Google Scholar 

    41.
    Tripathi, R. et al. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years long-term fertilizer experiment in tropical rice-rice system. Geoderma 213, 280–286 (2014).
    ADS  CAS  Article  Google Scholar 

    42.
    Meng, Q. et al. Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen plain, northeast China. J. Soil Sediment 14, 1041–1049 (2014).
    CAS  Article  Google Scholar 

    43.
    Six, J., Bossuyt, H., Degryze, S. F. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).
    Article  Google Scholar 

    44.
    Gu, X., An, T. T., Li, S. Y., Li, H. & Wang, J. K. Effects of application of straw on organic carbon in brown soil aggregates by δ13c method. J. Soil Water Conserv. 28, 243–247 (2014).
    Google Scholar 

    45.
    Cremeens, D. L. Guidelines for analysis and description of soil and regolith thin sections. Geoarchaeology 19, 507–509 (2004).
    Article  Google Scholar 

    46.
    Wang, F., Tong, Y. A., Zhang, J. S., Gao, P. C. & Coffie, J. N. Effects of various organic materials on soil aggregate stability and soil microbiological properties on the Loess Plateau of China. Plant Soil Environ. 59, 162–168 (2013).
    CAS  Article  Google Scholar 

    47.
    Blanco-Canqui, H. & Lai, R. No-tillage and soil profile carbon sequestration: An onfarm assessment. Soil Sci. Soc. Am. J. 141, 355–362 (2007).
    CAS  Google Scholar 

    48.
    Pikul, J. L. & Zuzel, J. F. Soil crusting and water infiltration affected by long-term tillage and residue management. Soil Sci. Soc. Am. J. 58, 1524–1530 (1994).
    ADS  Article  Google Scholar 

    49.
    Kinoshita, R., Schindelbeck, R. R. & Harold, M. Quantitative soil profile-scale assessment of the sustainability of long-term maize residue and tillage management. Soil Tillage Res. 174, 34–44 (2017).
    Article  Google Scholar 

    50.
    Das, A. et al. Tillage and cropping sequence effect on physico-chemical and biological properties of soil in Eastern Himalayas, India. Soil Tillage Res. 180, 182–193 (2018).
    Article  Google Scholar 

    51.
    Xiao, J. et al. Comment on “The whole-soil carbon flux in response to warming”. Science 359, 0218 (2018).
    Article  CAS  Google Scholar 

    52.
    Awe, G. O., Reichert, J. M. & Wendroth, O. O. Temporal variability and covariance structures of soil temperature in a sugarcane field under different management practices in southern Brazil. Soil Tillage Res. 150, 93–106 (2015).
    Article  Google Scholar 

    53.
    Blanco-Canqui, H. & Ruis, S. J. No-tillage and soil physical environment. Geoderma 326, 164–200 (2018).
    ADS  Article  Google Scholar 

    54.
    Li, J. et al. Effect of mixing ratio and planting years on the micro structure of soft rock and sand compound soil: A scanning electron microscope study. Appl. Ecol. Environ. Res. 17, 10599–10610 (2019).
    Google Scholar 

    55.
    Zhang, W. et al. Residue incorporation enhances the effect of subsoiling on soil structure and increases soc accumulation. J Soils Sediments 20, 3537–3547 (2020).
    CAS  Article  Google Scholar 

    56.
    Kinoshita, R., Schindelbeck, R. R. & van Es, R. M. Quantitative soil profile-scale assessment of the sustainability of long-term maize residue and tillage management. Soil Tillage Res. 174, 34–44 (2017).
    Article  Google Scholar 

    57.
    Sharma, P., Singh, G. & Singh, R. P. Conservation tillage and optimal water supply enhances microbial enzyme (glucosidase, urease and phosphatase) activities in fields under wheat cultivation during various nitrogen management practices. Arch. Agron. Soil Sci. 59, 911–928 (2013).
    CAS  Article  Google Scholar 

    58.
    Daveiga, M., Horn, R., Reinert, D. & Reichert, J. Soil compressibility and penetrability of an Oxisol from southern Brazil, as affected by long-term tillage systems. Soil Tillage Res. 92, 104–113 (2007).
    Article  Google Scholar 

    59.
    Karlen, D. & Rice, C. Soil degradation: Will humankind ever learn?. Sustainability 7, 12490–12501 (2015).
    CAS  Article  Google Scholar 

    60.
    Rabot, E., Wiesmeier, M., Schlüter, S. & Vogel, H. J. Soil structure as an indicator of soil functions: A review. Geoderma 314, 122–137 (2018).
    ADS  Article  Google Scholar 

    61.
    Xue, B. et al. Effects of organic carbon and iron oxides on soil aggregate stability under different tillage systems in a rice–rape cropping system. CATENA 177, 1–12 (2019).
    CAS  Article  Google Scholar 

    62.
    Bremner, J. M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 55, 11–33 (1960).
    CAS  Article  Google Scholar 

    63.
    Tiessen, H. & Moir, J. O. Total and organic carbon. In: Carter, M.R. (Ed.), Soil sampling and methods of analysis. J. Environ. Qual. 38, 187–199 (1993).
    Google Scholar 

    64.
    Nimmo, J. R. & Perkins KS. Aggregates Stability and Size Distribution. In Methods of Soil Analysis, Part4-Physical Methods, 317–328 (Soil Sci. Soc. Am. J., Inc., Madison, 2002).

    65.
    Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H. & Basirat, S. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Ecosyst. Environ. 148, 22–28 (2012).
    CAS  Article  Google Scholar 

    66.
    Liu, Z. et al. Long-term effects of different planting patterns on greenhouse soil micromorphological features in the North China Plain. Sci. Rep. U.K. 6, 31118 (2016).
    ADS  Article  CAS  Google Scholar 

    67.
    Zhu, G., Shangguan, Z. & Deng, L. Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau. CATENA 149, 253–260 (2017).
    CAS  Article  Google Scholar  More

  • in

    Timely poacher detection and localization using sentinel animal movement

    Study system and species
    This study was performed in Welgevonden Game Reserve (WGR), a privately owned game reserve in the Limpopo province, South Africa (24° 10′ S; 27° 45′ E to 24° 25′ S; 27° 56′ E). The reserve is located in the mountainous Waterberg region. WGR was established on former agricultural lands in the early 1980s and the main occurring vegetation types are Waterberg Mountain Bushveld and Sour Bushveld. The Waterberg region has a temperate climate, with two distinct seasons, characterized by the rainfall regime: a dry season ranging from April to September and a wet season ranging from October to March, with an average annual precipitation in WGR of 634 mm. Our study area is an enclosed breeding camp within WGR, with a size of approximately 1200 ha. Main predator species such as lion, cheetah and spotted hyena were excluded from this study area, as well as elephant and rhino.
    WGR equipped 35 impala (Aepyceros melampus), 34 blue wildebeest (Connochaetes taurinus), 35 plains zebra (Equus burchellii) and 34 common eland (Taurotragus oryx) with a GPS and accelerometer sensor equipped custom made collar; an estimated 23% of the individual impalas present in the area, 48% of the eland, 40% of the wildebeest and 40% of the zebra. However, due to malfunctioning and errors made in the sensor development process, only 83 of the sensors yielded data at any point in time, thus lowering the effective density of sentinel animals. During the experimental intrusions (see below), the median number of data-yielding sensors was 47, and minimally 30. The animal movement data were recorded day and night and transmitted wirelessly in near real-time to five long-range low-power LoRa radiocommunication gateways in the study area, from where data packages were routed to an on-line data warehouse via a 3G/4G backhaul. The deployment of these sentinel animals were approved by the board and CEO of WGR as a management action and was performed in accordance with relevant guidelines and regulations (see Supplementary GPS Collaring letter).
    Experimental intrusions
    Between September 2017 and March 2018, WGR employees performed experimental intrusions (lasting ca. 2 h) on foot and by car through the study area, at varying locations and movement routes through the study area, independent from the locations of the sentinel animals. The movement of the intrusions were tracked by GPS, and the relevant metadata for each intrusion recorded (mode of transport, group size, start time, end time). The intrusions were distributed in a stratified way over the mornings, middays and afternoons (with time slots relative to specific solar positions: sunrise, solar noon and sunset). Furthermore, the intrusions were temporally spread in such a way to avoid a disturbance overflow for the sentinel animals, by performing a maximum of five experiments per week and a maximum of two experiments per day (and then only with one intrusion in the morning and one in the afternoon).
    Data gathering
    The animal sensors gathered location data via GPS and overall dynamic body accelerations47 (ODBA) via a tri-axial accelerometer (range ± 2 g; sampling frequency 100 Hz, down-sampled to 10 Hz prior to analysis). The GPS was scheduled to record spatial position at irregular intervals depending on the level of activity as gauged by ODBA. All sensors were scheduled to record locations every 15 min in the absence of sufficient activity (given that successive fixes were further than 5 m apart, else a geofence was applied and the new coordinate was omitted to save bandwidth and battery power, thereby assuming that the animal still was at its previous location). The GPS fix rate was increased up to 2- or 10-min intervals (depending on two different sensor settings) when ODBA indicated sufficient activity (after checking for the geofence). ODBA data were sampled continuously and summarized per 15 s window in a mean, maximum and variance value.
    The experimentally intruding groups were outfitted with handheld GPS devices that recorded their location every 5 s and these groups logged and timestamped all their pre-defined activities and metadata on a tablet using CyberTracker48 during their intrusion. Most cars traveling through the study area were tracked by GPS as well to filter the animal data for disturbances by cars unrelated to the experimental intrusions.
    Weather data (temperature, radiation, precipitation and wind) in the study area were recorded on a 3-min resolution with a weather station in the north of the study area. We assumed the 1200 ha study area to be sufficiently small to assume the weather station data to be representable for the prevailing weather conditions throughout the study area. GIS data of the study area (summarized in Supplementary Table S1) consisted of information on topography, infrastructure (e.g., fences, roads, powerlines, etc.) and vegetation cover (supervised classification of 25 cm resolution aerial imagery into four classes: trees, herbaceous/grass, sand/soil and other/built-up area).
    All further data processing and algorithm development was done in the software R3.5.049.
    Data pre-processing
    To link the animal location data with the intrusion location data, as well as to correct for the substantial level of positional noise present in the animal location data, we modelled the animal location data to regular 1-min resolution trajectories using the following five steps. First, we filtered out large obvious errors (e.g., obvious outliers and irregularities such as locations far outside the study area) from the data. Second, we corrected systematic medium-scale outliers: ‘spikes’ that occurred due to positional outliers. Such spike-like outliers were visible during sensor testing while following known straight-line trajectories along an airstrip, thereby confirming that these spike-like geometries most likely resulted from positional error rather than true animal movement. Points were classified as anomalous spike points when (a) the displacement to and away from this point was high ( > 500 m), (b) when the distance between the locations before and after this point was small, and (c) when the turning angle at this point approached 180 degrees. Therefore, we corrected the locations that were classified as spike-like anomalies by shifting them closer to the straight line between the neighboring points. The extent of this shift was set relative to the degree of spikiness of the points (the spikier the pattern, the larger the shift towards the midpoint of the adjacent coordinates). Third, after filtering and correcting the original locations we smoothed the timeseries of x/y coordinates at each original timepoint with a Kalman smoother using a dynamic linear model. Fourth, we linearly interpolated the locations to a 10 s resolution based on ODBA, where we considered the animal to be stationary between multiple timepoints if the accelerometer signal suggested the animal was not moving. Fifth, we fitted an X-spline through the data, where we gave the linearly ODBA-interpolated locations a smaller weight, and sampled the fitted spline on a regular 1-min resolution. These pre-processing steps resulted in the modelled animal trajectory data, composed of spatial locations every minute, and averaged ODBA statistics per step (i.e., the segments between consecutive coordinates). These data were used as input for the next steps in the analyses. In contrast to the animal data, the raw intrusion data were of a high temporal resolution and spatial accuracy so that we only needed to subset the data in order to acquire 1-min resolution time-synchronized intrusion trajectories.
    The first three parts of the data pre-processing were only needed because of firmware issues in our custom-made sensors. Without these issues, a simple denoising technique like a Kalman filter will suffice.
    Feature engineering and processing
    We computed a plethora of human-engineered features from the animal trajectories, ODBA data, weather data and several GIS layers with environmental data from the study area (summarized in Supplementary Table S1). All features were computed such that they could not directly be linked to specific points in space or time (by computing movement features relative to the environmental variables), so that only behavioral patterns and abnormalities therein could be linked to intrusion presence. After engineering these base features, we transformed certain features (after visual inspection of the histograms) to approximately symmetric distributions using logarithms. Then we truncated the distributions to the lower and upper 0.001 percentile to correct possible outliers. After that, we standardized all computed features to zero mean and unit variance per species. We also computed scaled versions of selected features by subtracting the mean and dividing by the variance of the selected features per reference set to capture deviations from normal behavior: (1) per area (characterized by a 30 by 30 m neighborhood around each grid cell), (2) per time of day (morning, midday, afternoon) in a period of 5 weeks around each intrusion or control, (3) per area per time of day per 5 weeks, and (4) per individual sentinel per time of day per 5 weeks (Supplementary Table S1). Furthermore, after computing and standardizing the features, we computed more features by applying moving window computations (5 min centered, 10 and 20 min lagging, and the difference between these: 5 min centered minus 10 and 20 min lagging) on the standardized features to capture (the change in) the recent history of animal movement descriptors (mean and standard deviation of all features, fitted Mean Squared Displacement exponential function parameters, net-gross distance ratio and variance of log First Passage Times). Finally, we discretized all features to ordinal values to avoid odd-, fat- and heavy-tailed distributions. In total we computed 2117 features describing different aspects of movement geometry of individual trajectories, herd topology and the interactions with landscape variation.
    Subsetting and dimensionality reduction
    Before analyzing the computed animal movement features, we applied some filtering on the data. We removed all periods with an experimental intrusion during which there were less than 30 active animal sensors in total. We also removed data of both animals and intrusion when they were close to the reserve’s main gate in order to avoid dilution of the data with other known disturbances. This resulted in 57 intrusions that were selected for further analyses. For every intrusion we selected control data of the same period one or 2 days earlier or later during which no intrusion took place, resulting in an approximately balanced intrusion-control dataset. Furthermore, we removed data from animals that were located within 250 m and within 20 min of a vehicle moving through the area that was not part of our experiment.
    For each feature, we computed 4 importance metrics based on binary labelled data: records associated to locations within 1 km from the intrusion (subscript 1) versus an equally-sized random selection of data points during control periods (subscript 0): Mahalanobis distance, marginality (computed as (frac{{mu }_{1}-{mu }_{0}}{{sigma }_{0}}), for sample mean (mu) and sample standard deviation (sigma)), specialization (computed as (frac{{sigma }_{1}}{{sigma }_{0}})) and the Mean Decrease Accuracy of a Random Forest classifier (with default hyperparameters). We then ranked the features according to their importance and selected a feature for further analyses if it occurred in the top 125 features for any of the 4 importance measures described above (resulting in a total of 361 selected features). Subsequently, we converted the selected features per main feature class (Supplementary Table S1) to principal components, keeping those principal components that capture the most variation (in total 95%), which resulted in 99 selected components in total. Finally, we transformed these components again via a second principal component analysis, now across all the selected 99 components. In subsequent training of the animal behavior classifier, we optimized the total number of included components as a hyperparameter, which resulted in the first 8 principal components in the best performing classifier.
    Labelling
    We labelled the sentinel movement data through visual inspection of the animal and intruder trajectories, where we considered the animals’ behavior to be undisturbed when the animal was not near an intrusion, or when the animal was close to an intrusion yet did not visually display a change in behavior. However, when the animal was near the intrusion and displayed a sudden or gradual behavioral change in response to intrusion proximity, we labelled the data as ‘flight’ (changing the movement direction away from the intrusion, possibly with increased speed) or ‘regroup’ (when individuals clustered together). In total, only ca. 1% of the animal data were associated to either flight or regroup behavior (which we will refer to as ‘response’ behavior). A few animals also appeared to exhibit behavior we could label as ‘freeze’, i.e., halting movement in the proximity of the intrusion, yet this class was too underrepresented to be accurately predicted and hence dropped from the final dataset. Furthermore, we assigned a qualitative measure of intensity to each labelled behavioral response (‘low’, ‘medium’, ‘high’) to describe how visually pronounced this response was. Besides the supervised labelling based on visual inspection of behavioral responses via video animations of the trajectories, we also labelled data using an unsupervised k-means nearest neighbor classifier, where we clustered the feature space consisting of the 99 features selected as described above into 25 clusters per species.
    Animal behavior classification
    We trained an RBF kernel C-classification Support Vector Machine (SVM) with a subsequent moving window over the outputted probabilities to distinguish undisturbed versus response behavior. In the training datasets we only included the data separated by more than 1 km from the intrusion and labelled as ‘undisturbed’, and removed 90% thereof to train algorithms with a more balanced dataset. Furthermore, we only trained and validated on data with intrusions present in the area. We trained another SVM to distinguish the flight response from the regroup response. All computations were done in R 3.5.0 with the e1071 package on the Linux High Performance Cluster of Wageningen University and Research. We optimized the following hyperparameters and model settings during the training phase for the Average Precision via a grid search (with the selected values between brackets):

    gamma (undisturbed-response: 10–3.2; flight-regroup: 10–2.0);

    cost (undisturbed-response: 10–2.2; flight-regroup: 10–1.5);

    number of principal components to include as features (undisturbed-response: 8; flight-regroup: 12);

    species-specific models versus one model with species dummy variables included in the features (species-specific models);

    specific models for the different times of day versus one model with time of day dummy variables (one model);

    response intensities to include in the training data (only medium and high intensities);

    weights to assign to the classes (equal weights);

    the quantile to be computed of the SVM probabilities by the moving window (100%, i.e., maximum value);

    the alignment of the moving window (centered);

    the size of the moving window (15 min on both sides).

    The best model was selected via a leave-one-intrusion-out cross-validation approach. We summarized the predictive performance by computing the Average Precision of the least occurring class (i.e., ‘response’ for the undisturbed-response model: 46%, Supplementary Fig. S2; and ‘regroup’ for the flight-regroup model: 80%, Supplementary Fig. S3). After having computed these probabilities with an SVM and a temporal window smoother, we tried to improve the predicted performance by including the predicted animal response probabilities of nearby animals. However, this spatial explicit approach hardly improved the predictive performance, indicating that the spatial contextualization of behavioral response was sufficiently captured by the computed features. We therefore did not include this spatial contagion effect of predicted animal response probabilities in the final analysis.
    System classification—detection
    Based on the predicted SVM response probabilities and feature cluster analysis, we computed summary features per 15 min of each intrusion and control period. These summary features related to the odds ratios of the probability of association of unsupervised clusters with intrusions versus controls, the SVM predicted probabilities of behavioral response, and several features describing the values (and its spatial structure, e.g., clustering or autocorrelation) of these SVM predicted response probabilities. After computing summary features per 15 min, we summarized them even further for the intrusions versus controls using the following eight statistics: mean, standard deviation, minimum, maximum, mean of the lagged differences, standard deviation of the lagged differences, minimum of the lagged differences and maximum of the lagged differences.
    After computing the summary features, we build a logistic regression classifier to distinguish intrusions from controls. To create a parsimonious model, we iteratively added features to the model and evaluated its performance after each iteration. We evaluated the performance based on the model accuracy and performed validation through 25 times twofold cross-validation in a stratified way (by 25 times choosing a balanced random sample of intrusions and controls). We determined the sequence of adding features to the model by performing an independent two-sample t-test for each feature between the intrusions and controls. The feature with the largest t-value was then added to the model. After each feature addition, we removed its correlation with the remaining features using linear regressions with the added feature as independent variable and the remaining features as dependent variables, from which we extracted the residuals, standardized them to zero mean and unit variance, and applied the t-tests again. The (original) feature with the largest t-value was then added to the model again. This procedure was repeated until all features were ordered corresponding to their “importance”. We then performed logistic regressions without interactions between the features for an increasing number of features (Supplementary Fig. S4). The model already performed quite accurately with only 7 features (86.1% accuracy ± SD 3.3%, precision 82.6% ± SD 6.9%, recall 89.2% ± SD 5.1%). However, with 20 features and 2-way interactions the model achieved the maximum accuracy (90.9%).
    System classification—localization
    The data gathered during intrusions that were correctly predicted as such by the detection classifier were used to train the intrusion localization algorithm. The probability surface of the location of the intrusion was fitted relative to that of the sentinel animals using:

    $${O}_{i,j} sim frac{{p}_{j}left({f}_{wn}left({theta }_{i,j},{mu }_{j},{rho }_{1}right) {f}_{ln}left({gamma }_{i,j},{mu }_{1},{sigma }_{1}right)right) left(1-{p}_{j}right) left({f}_{wn}left({theta }_{i,j},{mu }_{j},{sigma }_{0}right) {f}_{ln}left({gamma }_{i,j},{mu }_{0},{sigma }_{0}right)right)}{{f}_{wn}left({theta }_{i,j},{mu }_{j},{rho }_{0}right) {f}_{ln}({gamma }_{i,j},{mu }_{0},{sigma }_{0})}$$

    where ({O}_{i,j}) is the odds ratio of intrusion presence at location (i) evaluated for individual (j), ({p}_{j}) is the SVM-predicted probability that individual (j) is exhibiting response behavior. The function ({f}_{wn}) is the wrapped normal probability density function, ({theta }_{i,j}) is the direction from location (i) to the location of the focal animal (j), ({mu }_{j}) is the movement direction of individual (j), ({rho }_{1}) and ({rho }_{0}) are the standard deviations of the unwrapped distributions. The function ({f}_{ln}) is the lognormal probability density function, where ({gamma }_{i,j}) is the distance of location (i) to (j), ({mu }_{1}) and ({mu }_{0}) as well as ({sigma }_{1}) and ({sigma }_{0}) are the log-normal distribution parameters (respectively log-mean and log-sd).
    The parameters ({mu }_{1}), ({sigma }_{1}) and ({rho }_{1}) capture the geometry of intrusion-animal topology for animals that exhibited a predicted behavioral response to the intrusion. Similarly, ({mu }_{0}), ({sigma }_{0}) and ({rho }_{0}) are the corresponding parameters for animals that were predicted to be undisturbed. The parameters ({mu }_{1}), (mathrm{log}({sigma }_{1})) and (mathrm{log}({rho }_{1})) were fitted to the data assuming a 3rd order polynomial relationship to ({t}_{s}): the time (in minutes) since the start of the predicted behavioral response (using the maximum F1 classification score). Since the behavioral response signature is lost over time, we truncated ({t}_{s}) to 45 min (thus ({t}_{s} >45) min was set to ({t}_{s}=45)). The parameters ({mu }_{0}), ({sigma }_{0}) and ({rho }_{0}) were estimated using the data of the controls and with randomly generated intrusion locations in the study area, in order to correct for the effects of geometry of the study area on the predicted response surfaces. The probability surface ({P}_{i}) was then calculated as:

    $${P}_{i}=alpha sum_{j}{O}_{i,j}$$

    where (alpha) is a normalization constant so that ({P}_{i}) integrates to 1 over the area covered by the rectangular axis-aligned bounding box around the study area.
    To measure the prediction accuracy of each localization surface, we simplified each surface to a point coordinate located at the location of maximum probability, and computed the Euclidian distance to the known true position of the intrusion. We then summarized each experimental intrusion by selecting the 10 prediction surfaces with the most condense highest probability density, i.e., those in which the top 5% probability density is contained in the smallest, most condense, area. The spatial error of the localization prediction associated with these selected predictions was further summarized by taking the average Euclidian distance over the 10 selected predictions. More

  • in

    Decadal changes in fire frequencies shift tree communities and functional traits

    1.
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).
    CAS  PubMed  Article  Google Scholar 

    3.
    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    van der Werf, G. R. G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).
    Article  Google Scholar 

    6.
    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl Acad. Sci. USA 108, 13165–13170 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).
    Article  Google Scholar 

    9.
    Lewis, T. Very frequent burning encourages tree growth in sub-tropical Australian eucalypt forest. Forest Ecol. Manag. 459, 117842 (2020).
    Article  Google Scholar 

    10.
    Peterson, D. W. & Reich, P. B. Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecol. Appl. 11, 914–927 (2001).
    Article  Google Scholar 

    11.
    Tilman, D. et al. Fire suppression and ecosystem carbon storage. Ecology 81, 2680–2685 (2000).
    Article  Google Scholar 

    12.
    Pellegrini, A. F. A., Hedin, L. O., Staver, A. C. & Govender, N. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96, 1275–1285 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).
    Article  Google Scholar 

    14.
    Uhl, C. & Kauffman, J. B. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71, 437–449 (1990).
    Article  Google Scholar 

    15.
    Case, M. F., Wigley‐Coetsee, C., Nzima, N., Scogings, P. F. & Staver, A. C. Severe drought limits trees in a semi‐arid savanna. Ecology 100, e02842 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Schoennagel, T., Turner, M. G. & Romme, W. H. The influence of fire interval and serotiny on postfire lodgepole pine density in Yellowstone National Park. Ecology 84, 2967–2978 (2003).
    Article  Google Scholar 

    18.
    Higgins, S. I. et al. Which traits determine shifts in the abundance of tree species in a fire-prone savanna? J. Ecol. 100, 1400–1410 (2012).
    Article  Google Scholar 

    19.
    Lehmann, C. E. R. et al. Savanna vegetation–fire–climate relationships differ among continents. Science 343, 548–552 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Higgins, S. I., Bond, J. I. & Trollope, W. S. Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna. J. Ecol. 88, 213–229 (2000).
    Article  Google Scholar 

    22.
    Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Reich, P. B., Peterson, D. W., Wedin, D. A. & Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest–grassland continuum. Ecology 82, 1703–1719 (2001).
    Google Scholar 

    24.
    Phillips, R., Brzostek, E. & Midgley, M. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 99, 41–51 (2013).
    Article  CAS  Google Scholar 

    25.
    Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Read, D. J. & Perez‐Moreno, J. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol. 157, 475–492 (2003).
    Article  Google Scholar 

    27.
    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Whitman, E., Parisien, M. A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 9, 18796 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2019).
    Article  Google Scholar 

    31.
    Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).
    CAS  PubMed  Article  Google Scholar 

    32.
    Steel, Z. L., Safford, H. D. & Viers, J. H. The fire frequency–severity relationship and the legacy of fire suppression in California forests. Ecosphere 6, 1–23 (2015).
    Article  Google Scholar 

    33.
    Scott, J. & Burgan, R. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model General Technical Report RMRS-GTR-153 (USDA, Forest Service and Rocky Mountain Research Station, 2005).

    34.
    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).
    Article  Google Scholar 

    35.
    Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Butler, O. M., Elser, J. J., Lewis, T., Mackey, B. & Chen, C. The phosphorus-rich signature of fire in the soil–plant system: a global meta-analysis. Ecol. Lett. 21, 335–344 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Raison, R. J., Khanna, P. K. & Woods, P. V. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests. Can. J. Forest Res. 15, 657–664 (1985).
    CAS  Article  Google Scholar 

    38.
    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1906655116 (2019).

    39.
    Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 209, 1705–1719 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Woinarski, J. C. Z., Risler, J. & Kean, L. Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical eucalyptus open forest, Northern Territory, Australia. Austral Ecol. 29, 156–176 (2004).
    Article  Google Scholar 

    41.
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest–tree symbioses. Nature 569, 404–408 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Pellegrini, A. F. A. et al. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90, e01409 (2020).
    Article  Google Scholar 

    43.
    Newland, J. A. & DeLuca, T. H. Influence of fire on native nitrogen-fixing plants and soil nitrogen status in ponderosa pine – Douglas-fir forests in western Montana. Can. J. Forest Res. 30, 274–282 (2000).
    Article  Google Scholar 

    44.
    Johnson, D. W. & Curtis, P. S. Effects of forest management on soil C and N storage: meta analysis. Forest Ecol. Manag. 140, 227–238 (2001).
    Article  Google Scholar 

    45.
    Pellegrini, A. F. A. Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313–324 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    47.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, e4794 (2018).
    Article  Google Scholar 

    48.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    49.
    Jackson, J. F., Adams, D. C. & Jackson, U. B. Allometry of constitutive defense: a model and a comparative test with tree bark and fire regime. Am. Nat. 153, 614–632 (1999).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Hoffmann, W. A., Marchin, R. M., Abit, P. & Lau, O. L. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob. Change Biol. 17, 2731–2742 (2011).
    Article  Google Scholar 

    52.
    Harmon, M. E. Decomposition of standing dead trees in the southern Appalachian Mountains. Oecologia 52, 214–215 (1982).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Article  Google Scholar 

    54.
    Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S. A meta-analysis of competition in field experiments. Am. Nat. 140, 539–572 (1992).
    Article  Google Scholar 

    55.
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Brockway, D. G. & Lewis, C. E. Long-term effects of dormant-season prescribed fire on plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem. Forest Ecol. Manag. 96, 167–183 (1997).
    Article  Google Scholar 

    59.
    Lewis, T. & Debuse, V. J. Resilience of a eucalypt forest woody understorey to long-term (34–55 years) repeated burning in subtropical Australia. Int. J. Wildl. Fire 21, 980–991 (2012).
    Article  Google Scholar 

    60.
    Scudieri, C. A., Sieg, C. H., Haase, S. M., Thode, A. E. & Sackett, S. S. Understory vegetation response after 30 years of interval prescribed burning in two ponderosa pine sites in northern Arizona, USA. Forest Ecol. Manag. 260, 2134–2142 (2010).
    Article  Google Scholar 

    61.
    Lewis, T., Reif, M., Prendergast, E. & Tran, C. The effect of long-term repeated burning and fire exclusion on above- and below-ground blackbutt (Eucalyptus pilularis) forest vegetation assemblages. Austral Ecol. 37, 767–778 (2012).
    Article  Google Scholar 

    62.
    Stratton, R. Effects of Long-Term Late Winter Prescribed Fire on Forest Stand Dynamics, Small Mammal Populations, and Habitat Demographics in a Tennessee Oak Barrens. MSc thesis, Univ. Tennessee (2007).

    63.
    Wade, D. D. Long-Term Site Responses to Season and Interval of Underburns on the Georgia Piedmont (Forest Service Research Data Archive, 2016).

    64.
    Pellegrini, A. F. A., Hoffmann, W. A. & Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342–352 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Nesmith, C. B., Caprio, A. C., Pfaff, A. H., McGinnis, T. W. & Keeley, J. E. A comparison of effects from prescribed fires and wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks. Forest Ecol. Manag. 261, 1275–1282 (2011).
    Article  Google Scholar 

    66.
    Haywood, J. D., Harris, F. L., Grelen, H. E. & Pearson, H. A. Vegetative response to 37 years of seasonal burning on a Louisiana longleaf pine site. South. J. Appl. For. 25, 122–130 (2001).
    Article  Google Scholar 

    67.
    Higgins, S. I. et al. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88, 1119–1125 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Gignoux, J., Lahoreau, G., Julliard, R. & Barot, S. Establishment and early persistence of tree seedlings in an annually burned savanna. J. Ecol. 97, 484–495 (2009).
    Article  Google Scholar 

    69.
    Tizon, F. R., Pelaez, D. V. & Elia, O. R. The influence of controlled fires on a plant community in the south of the Caldenal and its relationship with a regional state and transition model. Int. J. Exp. Bot. 79, 141–146 (2010).
    Google Scholar 

    70.
    Neill, C., Patterson, W. A. & Crary, D. W. Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak–pine forest. Forest Ecol. Manag. 250, 234–243 (2007).
    Article  Google Scholar 

    71.
    Ryan, C. M., Williams, M. & Grace, J. Above‐ and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).
    Article  Google Scholar 

    72.
    Scharenbroch, B. C., Nix, B., Jacobs, K. A. & Bowles, M. L. Two decades of low-severity prescribed fire increases soil nutrient availability in a midwestern, USA oak (Quercus) forest. Geoderma 183–184, 80–91 (2012).
    Article  CAS  Google Scholar 

    73.
    Burton, J. A., Hallgren, S. W., Fuhlendorf, S. D. & Leslie, D. M. Jr. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest. Plant Ecol. 212, 1513–1525 (2011).
    Article  Google Scholar 

    74.
    Stewart, J. F., Will, R. E., Robertson, K. M. & Nelson, C. D. Frequent fire protects shortleaf pine (Pinus echinata) from introgression by loblolly pine (P. taeda). Conserv. Genet. 16, 491–495 (2015).
    Article  Google Scholar 

    75.
    Knapp, B. O., Stephan, K. & Hubbart, J. A. Structure and composition of an oak–hickory forest after over 60 years of repeated prescribed burning in Missouri, U.S.A. Forest Ecol. Manag. 344, 95–109 (2015).
    Article  Google Scholar 

    76.
    Olson, M. G. Tree regeneration in oak–pine stands with and without prescribed fire in the New Jersey Pine Barrens: management implications. North. J. Appl. For. 28, 47–49 (2011).
    Article  Google Scholar  More

  • in

    Consistent trait–environment relationships within and across tundra plant communities

    1.
    Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Billings, W. D. Arctic and Alpine vegetations: similarities, differences, and susceptibility to disturbance. BioScience 23, 697–704 (1973).
    Article  Google Scholar 

    6.
    Graae, B. J. et al. Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).
    Article  Google Scholar 

    7.
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Choler, P. Consistent shifts in alpine plant traits along a mesotopographical gradient. Arct. Antarct. Alp. Res. 37, 444–453 (2005).
    Article  Google Scholar 

    9.
    Wullschleger, S. D. et al. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann. Bot. 114, 1–16 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).
    Article  Google Scholar 

    11.
    Myers-Smith, I. H., Thomas, H. J. D. & Bjorkman, A. D. Plant traits inform predictions of tundra responses to global change. New Phytol. 221, 1742–1748 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).
    CAS  Article  Google Scholar 

    13.
    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Saros, J. E. et al. Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environ. Res. Lett. 14, 074027 (2019).
    Article  Google Scholar 

    15.
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Article  Google Scholar 

    16.
    Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    18.
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
    CAS  Article  Google Scholar 

    19.
    Thomas, H. J. D. et al. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat. Commun. 11, 1351 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Billings, W. D. & Bliss, L. C. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40, 388–397 (1959).
    Article  Google Scholar 

    21.
    Myers-Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Chapin, F. S. III et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Cahoon, S. M. P. et al. Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecol. Lett. 15, 1415–1422 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
    Article  Google Scholar 

    25.
    Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).
    Article  Google Scholar 

    26.
    Cornelissen, J. H. C. et al. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol. Lett. 10, 619–627 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    Article  Google Scholar 

    29.
    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

    31.
    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
    Article  Google Scholar 

    32.
    Bromwich, D. H. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 6, 139–145 (2013).
    CAS  Article  Google Scholar 

    33.
    Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).
    CAS  PubMed  Article  Google Scholar 

    34.
    Sonesson, M., Wielgolaski, F. E. & Kallio, P. in Fennoscandian Tundra Ecosystems. Ecological Studies (Analysis and Synthesis) Vol. 16 (ed. Wielgolaski, F. E.) 3–28 (Springer, 1975); https://doi.org/10.1007/978-3-642-80937-8_1

    35.
    Niittynen, P., Heikkinen, R. K. & Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).
    Article  Google Scholar 

    36.
    Klikoff, L. G. Photosynthetic response to temperature and moisture stress of three timberline meadow species. Ecology 46, 516–517 (1965).
    Article  Google Scholar 

    37.
    Oberbauer, S. F. & Billings, W. D. Drought tolerance and water use by plants along an alpine topographic gradient. Oecologia 50, 325–331 (1981).
    PubMed  Article  Google Scholar 

    38.
    Eskelinen, A., Stark, S. & Männistö, M. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161, 113–123 (2009).
    PubMed  Article  Google Scholar 

    39.
    Ernakovich, J. G. et al. Predicted responses of Arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).
    Article  Google Scholar 

    40.
    Galen, C. & Stanton, M. L. Responses of snowbed plant species to changes in growing-season length. Ecology 76, 1546–1557 (1995).
    Article  Google Scholar 

    41.
    Starr, G., Oberbauer, S. F. & Ahlquist, L. E. The photosynthetic response of Alaskan tundra plants to increased season length and soil warming. Arct. Antarct. Alp. Res. 40, 181–191 (2008).
    Article  Google Scholar 

    42.
    Happonen, K. et al. Snow is an important control of plant community functional composition in oroarctic tundra. Oecologia 191, 601–608 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Niittynen, P. & Luoto, M. The importance of snow in species distribution models of Arctic vegetation. Ecography 41, 1024–1037 (2018).
    Article  Google Scholar 

    44.
    le Roux, P. C., Aalto, J. & Luoto, M. Soil moisture’s underestimated role in climate change impact modelling in low-energy systems. Glob. Change Biol. 19, 2965–2975 (2013).
    Article  Google Scholar 

    45.
    Lembrechts, J. J. et al. SoilTemp: a global database of near-surface temperature. Glob. Change Biol. 26, 6616–6629 (2020).

    46.
    Bjorkman, A. D. et al. Tundra Trait Team: a database of plant traits spanning the tundra biome. Glob. Ecol. Biogeogr. 27, 1402–1411 (2018).
    Article  Google Scholar 

    47.
    Maitner, B. S. et al. The bien r package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).
    Article  Google Scholar 

    48.
    Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).
    Article  Google Scholar 

    49.
    Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Change 10, 1143–1148 (2020).

    51.
    Belluau, M. & Shipley, B. Predicting habitat affinities of herbaceous dicots to soil wetness based on physiological traits of drought tolerance. Ann. Bot. 119, 1073–1084 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Kemppinen, J., Niittynen, P., Riihimäki, H. & Luoto, M. Modelling soil moisture in a high-latitude landscape using LiDAR and soil data. Earth Surf. Proc. Land. 43, 1019–1031 (2018).
    Article  Google Scholar 

    53.
    Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C. & Luoto, M. Water as a resource, stress and disturbance shaping tundra vegetation. Oikos 128, 811–822 (2019).
    Article  Google Scholar 

    54.
    Giblin, A. E., Nadelhoffer, K. J., Shaver, G. R., Laundre, J. A. & McKerrow, A. J. Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecol. Monogr. 61, 415–435 (1991).
    Article  Google Scholar 

    55.
    le Roux, P. C., Virtanen, R. & Luoto, M. Geomorphological disturbance is necessary for predicting fine-scale species distributions. Ecography 36, 800–808 (2013).
    Article  Google Scholar 

    56.
    Finger Higgens, R., Hicks Pries, C. & Virginia, R. A. Trade-offs between wood and leaf production in Arctic shrubs along a temperature and moisture gradient in West Greenland. Ecosystems https://doi.org/10.1007/s10021-020-00541-4 (2020).

    57.
    Porporato, A. & Rodriguez-Iturbe, I. Ecohydrology-a challenging multidisciplinary research perspective / Ecohydrologie: une perspective stimulante de recherche multidisciplinaire. Hydrol. Sci. J. 47, 811–821 (2002).
    Article  Google Scholar 

    58.
    Legates, D. R. et al. Soil moisture: a central and unifying theme in physical geography. Prog. Phys. Geogr. 35, 65–86 (2011).
    Article  Google Scholar 

    59.
    McLaughlin, B. C. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).
    Article  Google Scholar 

    60.
    Choler, P. Winter soil temperature dependence of alpine plant distribution: implications for anticipating vegetation changes under a warming climate. Perspect. Plant Ecol. Evol. Syst. 30, 6–15 (2018).
    Article  Google Scholar 

    61.
    Happonen, K. et al. Snow is an important control of plant community functional composition in oroarctic tundra. Oecologia 191, 601–608 (2019).

    62.
    Doran, P. T. et al. Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517–520 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    French, D. D. & Smith, V. R. A comparison between Northern and Southern Hemisphere tundras and related ecosystems. Polar Biol. 5, 5–21 (1985).
    Article  Google Scholar 

    64.
    le Roux, P. C. in The Prince Edward Islands: Land–Sea Interactions in a Changing Ecosystem (eds Chown, S. L. & Froneman, P. W.) 39–64 (African Sun Media, 2008).

    65.
    Devau, N., Le Cadre, E., Jaillarda, B. & Gérarda, F. Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches. Appl. Geochem. 24, 2163–2174 (2009).

    66.
    Stevens, R. J., Laughlin, R. J. & Malone, J. P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol. Biochem. 30, 1119–1126 (1998).
    CAS  Article  Google Scholar 

    67.
    Freschet, G. T., Cornelissen, J. H. C., Van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373 (2010).
    Article  Google Scholar 

    68.
    Bergholz, K. et al. Fertilization affects the establishment ability of species differing in seed mass via direct nutrient addition and indirect competition effects. Oikos 124, 1547–1554 (2015).
    Article  Google Scholar 

    69.
    Curtin, D., Campbell, C. A. & Jalil, A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 30, 57–64 (1998).
    CAS  Article  Google Scholar 

    70.
    Blondeel, H. et al. Light and warming drive forest understorey community development in different environments. Glob. Change Biol. 26, 1681–1696 (2020).
    Article  Google Scholar 

    71.
    Dahlgren, J. P., Eriksson, O., Bolmgren, K., Strindell, M. & Ehrlén, J. Specific leaf area as a superior predictor of changes in field layer abundance during forest succession. J. Veg. Sci. 17, 577–582 (2006).
    Article  Google Scholar 

    72.
    Lembrechts, J. J. et al. Comparing temperature data sources for use in species distribution models: from in‐situ logging to remote sensing. Glob. Ecol. Biogeogr. 28, 1578–1596 (2019).
    Article  Google Scholar 

    73.
    Körner, C. & Hiltbrunner, E. The 90 ways to describe plant temperature. Perspect. Plant Ecol. Evol. Syst. 30, 16–21 (2018).
    Article  Google Scholar 

    74.
    Maclean, I. M. D. Predicting future climate at high spatial and temporal resolution. Glob. Change Biol. 26, 1003–1011 (2019).

    75.
    Aalto, J., Scherrer, D., Lenoir, J., Guisan, A. & Luoto, M. Biogeophysical controls on soil–atmosphere thermal differences: implications on warming Arctic ecosystems. Environ. Res. Lett. 13, 074003 (2018).
    Article  Google Scholar 

    76.
    Aalto, J., le Roux, P. C. & Luoto, M. Vegetation mediates soil temperature and moisture in Arctic-alpine environments. Arct. Antarct. Alp. Res. 45, 429–439 (2013).
    Article  Google Scholar 

    77.
    Moles, A. T. et al. Which is a better predictor of plant traits: temperature or precipitation? J. Veg. Sci. 25, 1167–1180 (2014).
    Article  Google Scholar 

    78.
    Taylor, R. V. & Seastedt, T. R. Short- and long-term patterns of soil moisture in alpine tundra. Arct. Alp. Res. 26, 14–20 (1994).
    Article  Google Scholar 

    79.
    Lembrechts, J. J. & Lenoir, J. Microclimatic conditions anywhere at any time! Glob. Change Biol. https://doi.org/10.1111/gcb.14942 (2019).

    80.
    Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Bramer, I. et al. Advances in monitoring and modelling climate at ecologically relevant scales. Adv. Ecol. Res. 58, 101–161 (2018).

    82.
    Halbritter, A. H. et al. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods Ecol. Evol. 2, 16147 (2019).
    Google Scholar 

    83.
    Wild, J. et al. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agr. Forest Meteorol. 268, 40–47 (2019).
    Article  Google Scholar 

    84.
    Aalto, J., Riihimäki, H., Meineri, E., Hylander, K. & Luoto, M. Revealing topoclimatic heterogeneity using meteorological station data. Int. J. Climatol. 37, 544–556 (2017).
    Article  Google Scholar 

    85.
    Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P. & Maclean, I. M. D. A method for computing hourly, historical, terrain‐corrected microclimate anywhere on Earth. Methods Ecol. Evol. https://doi.org/10.1111/2041-210x.13330 (2019).

    86.
    Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    Vandvik, V., Halbritter, A. H. & Telford, R. J. Greening up the mountain. Proc. Natl Acad. Sci. USA 115, 833–835 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).
    Article  Google Scholar 

    89.
    Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).
    Article  Google Scholar 

    90.
    Robinson, D. A. et al. Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Glob. Change Biol. 25, 1895–1904 (2019).
    Article  Google Scholar 

    91.
    Loranty, M. M. et al. Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018).
    CAS  Article  Google Scholar 

    92.
    Parker, T. C., Subke, J.-A. & Wookey, P. A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Change Biol. 21, 2070–2081 (2015).
    Article  Google Scholar 

    93.
    DeMarco, J., Mack, M. C. & Bret-Harte, M. S. Effects of Arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95, 1861–1875 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    94.
    Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Change Biol. 16, 641–656 (2010).
    Article  Google Scholar 

    95.
    Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Climate in Svalbard 2100 – A Knowledge Base for Climate Adaptation (Norwegian Centre for Climate Services, 2019); https://go.nature.com/3tFTKAr

    97.
    Weather Observations from Greenland 1958–2018 – Observation Data with Description DMI Report 19-08 (Danish Meteorological Institute, 2019); https://go.nature.com/36RkdBk

    98.
    Enontekiö Kilpisjärvi Saana. Daily Climate Observations (Finnish Meteorological Institute, 2019); https://en.ilmatieteenlaitos.fi/download-observations

    99.
    Enontekiö Kilpisjärvi Kyläkeskus. Daily Climate Observations (Finnish Meteorological Institute, 2019); https://en.ilmatieteenlaitos.fi/download-observations

    100.
    Smith, V. R. & Steenkamp, M. Classification of the terrestrial habitats on Marion Island based on vegetation and soil chemistry. J. Veg. Sci. 12, 181–198 (2001).
    Article  Google Scholar 

    101.
    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    102.
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    103.
    Iversen, C. M. et al. The unseen iceberg: plant roots in Arctic tundra. New Phytol. 205, 34–58 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    104.
    Kern, R. et al. Comparative vegetation survey with focus on cryptogamic covers in the high Arctic along two differing catenas. Polar Biol. 42, 2131–2145 (2019).
    Article  Google Scholar 

    105.
    Miller, R. O. & Kissel, D. E. Comparison of soil pH methods on soils of North America. Soil Sci. Soc. Am. J. 74, 310–316 (2010).
    Article  CAS  Google Scholar 

    106.
    McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603 (2002).
    Article  Google Scholar 

    107.
    McCune, B. Improved estimates of incident radiation and heat load using non- parametric regression against topographic variables. J. Veg. Sci. 18, 751 (2007).
    Article  Google Scholar 

    108.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    109.
    NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team ASTER Global Digital Elevation Model (GDEM) V003 (NASA EOSDIS Land Processes DAAC, 2018); https://doi.org/10.5067/ASTER/ASTGTM.003

    110.
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    111.
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).

    112.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

    113.
    Husson, F., Le, S. & Pagès, J. Exploratory Multivariate Analysis by Example Using R (CRC, 2017).

    114.
    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 31844 (2008).
    Article  Google Scholar 

    115.
    Kemppinen, J. et al. Data from: Consistent trait–environment relationships within and across tundra plant communities. Zenodo https://doi.org/10.5281/zenodo.4362216 (2020). More