Superior predatory ability and abundance predicts potential ecological impact towards early-stage anurans by invasive ‘Killer Shrimp’ (Dikerogammarus villosus)
1.
Hoffmann, B. D. & Broadhurst, L. M. The economic cost of managing invasive species in Australia. NeoBiota 31, 1–18 (2016).
Article Google Scholar
2.
Dueñas, M. A. et al. The role played by invasive species in interactions with endangered and threatened species in the United States: a systematic review. Biodivers. Conserv. 27, 3171–3183 (2018).
Article Google Scholar
3.
Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).
PubMed Article PubMed Central Google Scholar
4.
Ricciardi, A. & MacIsaac, H. J. Impacts of biological invasions on freshwater ecosystems. Fifty Years Invas. Ecol. Legacy Charles Elton https://doi.org/10.1002/9781444329988.ch16 (2010).
Article Google Scholar
5.
Moorhouse, T. P. & Macdonald, D. W. Are invasives worse in freshwater than terrestrial ecosystems?. Wiley Interdiscip. Rev. Water 2, 1–8 (2015).
Article Google Scholar
6.
Rosewarne, P. J. et al. Feeding behaviour, predatory functional responses and trophic interactions of the invasive Chinese mitten crab (Eriocheir sinensis) and signal crayfish (Pacifastacus leniusculus). Freshw. Biol. 61, 426–443 (2016).
Article Google Scholar
7.
Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).
Article Google Scholar
8.
Dick, J. T. A. et al. Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).
Article Google Scholar
9.
Cuthbert, R. N., Dickey, J. W. E., Coughlan, N. E., Joyce, P. W. S. & Dick, J. T. A. The Functional Response Ratio (FRR): advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 21, 2543–2547 (2019).
Article Google Scholar
10.
Devin, S., Piscart, C., Beisel, J. N. & Moreteau, J. C. Life History Traits of the Invader Dikerogammarus villosus (Crustacea: Amphipoda) in the Moselle River. France. Int. Rev. Hydrobiol. 89, 21–34 (2004).
ADS Article Google Scholar
11.
Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P. & Vilà, M. More than “100 worst” alien species in Europe. Biol. Invasions 20, 1611–1621 (2018).
Article Google Scholar
12.
Gallardo, B. & Aldridge, D. C. Is Great Britain heading for a Ponto-Caspian invasional meltdown?. J. Appl. Ecol. 52, 41–49 (2015).
Article Google Scholar
13.
Kramer, A. M. et al. Suitability of Laurentian Great Lakes for invasive species based on global species distribution models and local habitat. Ecosphere 8, e01883 (2017).
Article Google Scholar
14.
Van Riel, M. C. et al. Trophic relationships in the Rhine food web during invasion and after establishment of the Ponto-Caspian invader Dikerogammarus villosus. Hydrobiologia 565, 39–58 (2006).
Article Google Scholar
15.
MacNeil, C., Boets, P., Lock, K. & Goethals, P. L. M. Potential effects of the invasive ‘killer shrimp’ (Dikerogammarus villosus) on macroinvertebrate assemblages and biomonitoring indices. Freshw. Biol. 58, 171–182 (2013).
Article Google Scholar
16.
Dodd, J. A. et al. Predicting the ecological impacts of a new freshwater invader: Functional responses and prey selectivity of the ‘killer shrimp’, Dikerogammarus villosus, compared to the native Gammarus pulex. Freshw. Biol. 59, 337–352 (2014).
Article Google Scholar
17.
Bruijs, M. C. M., Kelleher, B., Van Der Velde, G. & De Vaate, A. B. Oxygen consumption, temperature and salinity tolerance of the invasive amphipod Dikerogammarus villosus: Indicators of further dispersal via ballast water transport. Arch. fur Hydrobiol. 152, 633–646 (2001).
Article Google Scholar
18.
Pöckl, M. Strategies of a successful new invader in European fresh waters: Fecundity and reproductive potential of the Ponto-Caspian amphipod Dikerogammarus villosus in the Austrian Danube, compared with the indigenous Gammarus fossarum and G. roeseli. Freshw. Biol. 52, 50–63 (2007).
19.
Rolla, M., Consuegra, S. & de Leaniz, C. G. Predator recognition and anti-predatory behaviour in a recent aquatic invader, the killer shrimp (Dikerogammarus villosus). Aquat. Invasions 15, 482–496 (2020).
Article Google Scholar
20.
Kobak, J., Rachalewski, M. & Bącela-Spychalska, K. Conquerors or exiles? Impact of interference competition among invasive Ponto-Caspian gammarideans on their dispersal rates. Biol. Invasions 18, 1953–1965 (2016).
Article Google Scholar
21.
Rewicz, T., Grabowski, M., MacNeil, C. & Bącela-Spychalska, K. The profile of a ‘perfect’ invader – the case of killer shrimp. Dikerogammarus villosus. Aquat. Invasions 9, 267–288 (2014).
Article Google Scholar
22.
Hellmann, C. et al. The trophic function of Dikerogammarus villosus (Sowinsky, 1894) in invaded rivers: a case study in the Elbe and Rhine. Aquat. Invasions 10, 385–397 (2015).
Article Google Scholar
23.
Platvoet, D., Van Der Velde, G., Dick, J. T. A. & Li, S. Flexible omnivory in Dikerogammarus villosus (Sowinsky, 1894) (Amphipoda) – Amphipod Pilot Species Project (AMPIS) Report 5. Crustaceana 82, 703–720 (2009).
Article Google Scholar
24.
Taylor, N. G. & Dunn, A. M. Size matters: predation of fish eggs and larvae by native and invasive amphipods. Biol. Invasions 19, 89–107 (2017).
CAS PubMed Article PubMed Central Google Scholar
25.
Alford, R. A. Ecology: Bleak future for amphibians. Nature 480, 461–462 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
26.
Alroy, J. Current extinction rates of reptiles and amphibians. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1508681112 (2015).
Article PubMed PubMed Central Google Scholar
27.
González-del-Pliego, P. et al. Phylogenetic and Trait-Based Prediction of Extinction Risk for Data-Deficient Amphibians. Curr. Biol. 29, 1557–1563.e3 (2019)
28.
Fisher, M. C. & Garner, T. W. J. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).
CAS PubMed Article PubMed Central Google Scholar
29.
Hayes, T. B., Falso, P., Gallipeau, S. & Stice, M. The cause of global amphibian declines: a developmental endocrinologist’s perspective. J. Exp. Biol. 213, 921–933 (2010).
CAS PubMed PubMed Central Article Google Scholar
30.
Bellard, C., Genovesi, P. & Jeschke, J. M. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2015.2454 (2016).
Article Google Scholar
31.
IUCN. The IUCN Red List of Threatened Species. (2020).
32.
Nunes, A. L. et al. A global meta-analysis of the ecological impacts of alien species on native amphibians. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2528 (2019).
Article Google Scholar
33.
Ilhéu, M., Bernardo, J. & Fernandes, S. Biological invaders in inland waters: Profiles, distribution, and threats. Biol. invaders Inl. waters profiles, Distrib. Threat. 2, 543–558 (2007).
34.
Kats, L. B. & Ferrer, R. P. Alien predators and amphibian declines: Review of two decades of science and the transition to conservation. Divers. Distrib. 9, 99–110 (2003).
Article Google Scholar
35.
Beebee, T. J. C. & Griffiths, R. A. The amphibian decline crisis: A watershed for conservation biology?. Biol. Conserv. 125, 271–285 (2005).
Article Google Scholar
36.
National Biodiversity Network. NBN Atlas. Nbn (2017).
37.
Uehlinger, U., Wantzen, K. M., Leuven, R. S. E. W. & Arndt, H. The Rhine River Basin. in Rivers of Europe 199–245 (2009). https://doi.org/10.1016/B978-0-12-369449-2.00006-0
38.
Koester, M., Bayer, B. & Gergs, R. Is Dikerogammarus villosus (Crustacea, Gammaridae) a ‘killer shrimp’ in the River Rhine system?. Hydrobiologia 768, 299–313 (2016).
Article Google Scholar
39.
Gergs, R. & Rothhaupt, K. O. Invasive species as driving factors for the structure of benthic communities in Lake Constance. Germany. Hydrobiologia 746, 245–254 (2014).
Article CAS Google Scholar
40.
Haubrock, P. J. et al. Shared histories of co-evolution may affect trophic interactions in a freshwater community dominated by alien species. Frontiers in Ecology and Evolution 7, 355 (2019).
Article Google Scholar
41.
Marguillier, S. Stable isotope ratios and food web structure of aquatic ecosystems. (1998).
42.
Dick, J. T. A. & Platvoet, D. Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proc. R. Soc. B Biol. Sci. 267, 977–983 (2000).
CAS Article Google Scholar
43.
Bollache, L., Dick, J. T., Farnsworth, K. D. & Montgomery, W. I. Comparison of the functional responses of invasive and native amphipods. Biol Lett 4, 166–169 (2008).
PubMed Article PubMed Central Google Scholar
44.
MacNeil, C. et al. The Ponto-Caspian ‘killer shrimp’, Dikerogammarus villosus (Sowinsky, 1894), invades the British Isles. Aquat. Invasions 5, 441–445 (2010).
Article Google Scholar
45.
Worischka, S. et al. Food consumption of the invasive amphipod Dikerogammarus villosus in field mesocosms and its effects on leaf decomposition and periphyton. Aquat. Invasions 13, 261–275 (2018).
Article Google Scholar
46.
Jourdan, J. et al. Pronounced species turnover, but no functional equivalence in leaf consumption of invasive amphipods in the river Rhine. Biol. Invasions 18, 763–774 (2016).
Article Google Scholar
47.
Fries, G. & Der Tesch, F. W. Einfluss der Massenvorkommens von Gammarus tigrinus Sexton auf Fische und niedere Tierwelt in der Weser. Arch. für Fischer Wiss. 16, 133–150 (1965).
Google Scholar
48.
Hudgens, B. & Harbert, M. Amphipod Predation on Northern Red-Legged Frog (Rana Aurora) Embryos. Northwest. Nat. 100, 126 (2019).
Article Google Scholar
49.
Räsänen, K., Pahkala, M., Laurila, A. & Merilä, J. Does Jelly Envelope Protect the Common Frog Rana Temporaria Embryos From Uv-B Radiation?. Herpetologica 59, 293–300 (2003).
Article Google Scholar
50.
Ward, D. & Sexton, O. J. Anti-Predator Role of Salamander Egg Membranes. Copeia 1981, 724 (1981).
Article Google Scholar
51.
Henrikson, B.-I. Predation on amphibian eggs and tadpoles by common predators in acidified lakes. Ecography (Cop.) 13, 201–206 (1990).
Article Google Scholar
52.
Duellman, W. E. (William E. & Trueb, L. Biology of amphibians. (Johns Hopkins University Press, 1994).
53.
Latham, D., Jones, E. & Fasham, M. Amphibians. in Handbook of Biodiversity Methods: Survey, Evaluation and Monitoring (eds. Hill, D., Fasham, M., Tucker, G., Shewry, M. & Shaw, P.) (Cambridge University Press, 2005).
54.
Tinsley, R. C., Stott, L. C., Viney, M. E., Mable, B. K. & Tinsley, M. C. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events. Biol. Invasions 17, 3183–3195 (2015).
PubMed PubMed Central Article Google Scholar
55.
Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. B Biol. Sci. 367, 2923–2934 (2012).
56.
Glazier, D. S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 85, 111–138 (2010).
PubMed Article PubMed Central Google Scholar
57.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Article Google Scholar
58.
Mayer, G., Waloszek, D., Maier, G. & Maas, A. Mouthparts of the Ponto-Caspian Invader Dikerogammarus Villosus (Amphipoda: Pontogammaridae). J. Crustac. Biol. 28, 1–15 (2008).
Article Google Scholar
59.
Vucic-Pestic, O., Rall, B. C., Kalinkat, G. & Brose, U. Allometric functional response model: Body masses constrain interaction strengths. J. Anim. Ecol. 79, 249–256 (2010).
PubMed Article PubMed Central Google Scholar
60.
Maazouzi, C., Piscart, C., Legier, F. & Hervant, F. Ecophysiological responses to temperature of the ‘killer shrimp’ Dikerogammarus villosus: Is the invader really stronger than the native Gammarus pulex? Comp. Biochem. Physiol. – A Mol. Integr. Physiol. 159, 268–274 (2011).
61.
Álvarez, D. & Nicieza, A. G. Differential success of prey escaping predators: tadpole vulnerability or predator selection??. Copeia 2009, 453–457 (2009).
Article Google Scholar
62.
Ward, A. & Webster, M. Sociality. in Sociality: The Behaviour of Group-Living Animals 1–8 (Springer International Publishing, 2016).https://doi.org/10.1007/978-3-319-28585-6_1
63.
Price, P. W., Denno, R. F., Eubanks, M. D., Finke, D. L. & Kaplan, I. Insect Ecology: Behaviour, Populations and Communities. (Cambridge University Press, 2011).
64.
Juliano, S. A. Nonlinear Curve Fitting: Predation and Functional Response Curves. in Design and Analysis of Ecological Experiments (eds. Cheiner, S. M. & Gurven, J.) 178–196 (Chapman and Hall, 2001).
65.
Barrios-O’Neill, D. et al. Fortune favours the bold: A higher predator reduces the impact of a native but not an invasive intermediate predator. J. Anim. Ecol. 83, 693–701 (2014).
66.
Sentis, A. & Boukal, D. S. On the use of functional responses to quantify emergent multiple predator effects. Sci. Rep. 8, (2018).
67.
Médoc, V., Albert, H. & Spataro, T. Functional response comparisons among freshwater amphipods: ratio-dependence and higher predation for Gammarus pulex compared to the non-natives Dikerogammarus villosus and Echinogammarus berilloni. Biol. Invasions 17, 3625–3637 (2015).
Article Google Scholar
68.
Laverty, C., Nentwig, W., Dick, J. & Lucy, F. Alien aquatics in Europe: assessing the relative environmental and socio-economic impacts of invasive aquatic macroinvertebrates and other taxa. Manag. Biol. Invasions 6, 341–350 (2015).
Article Google Scholar
69.
Dickey, J. W. E. et al. On the RIP: using Relative Impact Potential to assess the ecological impacts of invasive alien species. NeoBiota 55, 27–60 (2020).
Article Google Scholar
70.
Gallardo, B., Errea, M. P. & Aldridge, D. C. Application of bioclimatic models coupled with network analysis for risk assessment of the killer shrimp, Dikerogammarus villosus. Great Britain. Biol. Invasions 14, 1265–1278 (2012).
Article Google Scholar
71.
Gallardo, B. & Aldridge, D. C. Priority setting for invasive species management by the water industry. Water Res. 178, 115771 (2020).
CAS PubMed Article PubMed Central Google Scholar
72.
Gosner, K. L. A simplified table for staging anuran embryos larvae. Herpetodologists’ Leag. 16, 183–190 (1960).
Google Scholar
73.
Currie, S. P., Combes, D., Scott, N. W., Simmers, J. & Sillar, K. T. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles. J. Neurophysiol. 115, 1446–1457 (2016).
PubMed PubMed Central Article Google Scholar
74.
Müller, J. C., Schramm, S. & Seitz, A. Genetic and morphological differentiation of Dikerogammarus invaders and their invasion history in Central Europe. Freshw. Biol. 47, 2039–2048 (2002).
Article Google Scholar
75.
Blackman, R. C. et al. Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples – first record of gammarus fossarum in the UK. Aquat. Invasions 12, 177–189 (2017).
Article Google Scholar
76.
van der Velde, G. et al. Environmental and morphological factors influencing predatory behaviour by invasive non-indigenous gammaridean species. Biol. Invasions 11, 2043–2054 (2009).
Article Google Scholar
77.
Dick, J. T. A. et al. Parasitism may enhance rather than reduce the predatory impact of an invader. Biol. Lett. 6, 636–638 (2010).
PubMed PubMed Central Article Google Scholar
78.
Iltis, C., Spataro, T., Wattier, R. & Médoc, V. Parasitism may alter functional response comparisons: a case study on the killer shrimp Dikerogammarus villosus and two non-invasive gammarids. Biol. Invasions 20, (2018).
79.
Welton, J. S. Life-history and production of the amphipod Gammarus pulex in a Dorset chalk stream. Freshw. Biol. 9, 263–275 (1979).
Article Google Scholar
80.
Oertli, B. Leaf litter processing and energy flow through macroinvertebrates in a woodland pond (Switzerland). Oecologia 96, 466–477 (1993).
ADS CAS PubMed Article PubMed Central Google Scholar
81.
Lods-Crozet, B. & Reymond, O. Bathymetric expansion of an invasive gammarid (Dikerogammarus villosus, Crustacea, Amphipoda) in Lake Léman. J. Limnol. 65, 141–144 (2006).
Article Google Scholar
82.
Harkness, J. B. The relationships between stressors, macroinvertebrate community structure and leaf processing in stream ecosystems. (University of Sheffield, 2008).
83.
Leberfinger, K. & Herrmann, J. Secondary production of invertebrate shredders in open-canopy, intermittent streams on the island of land, southeastern Sweden. J. North Am. Benthol. Soc. 29, 934–944 (2010).
Article Google Scholar
84.
Lods-Crozet, B. Long-term biomonitoring of invertebrate neozoans in Lake Geneva. Arch. des Sci. 67, 101–108 (2014).
Google Scholar
85.
Johns, T., Smith, D. C., Homann, S. & England, J. A. Time-series analysis of a native and a non-native amphipod shrimp in two English rivers. BioInvasions Rec. 7, 101–110 (2018).
Article Google Scholar
86.
Clinton, K. E., Mathers, K. L., Constable, D., Gerrard, C. & Wood, P. J. Substrate preferences of coexisting invasive amphipods, Dikerogammarus villosus and Dikerogammarus haemobaphes, under field and laboratory conditions. Biol. Invasions 20, 2187–2196 (2018).
Article Google Scholar
87.
Haas, G., Brunke, M. & Streit, B. Fast Turnover in Dominance of Exotic Species in the Rhine River Determines Biodiversity and Ecosystem Function: An Affair Between Amphipods and Mussels. in Invasive Aquatic Species of Europe. Distribution, Impacts and Management 426–432 (2002). doi:https://doi.org/10.1007/978-94-015-9956-6_42
88.
Krisp, H. & Maier, G. Consumption of macroinvertebrates by invasive and native gammarids: A comparison. J. Limnol. 64, 55–59 (2005).
Article Google Scholar
89.
Mulattieri, P. Etude de l’impact des aménagements riverains sur les macroinvertébrés benthiques des rives genevoises du Léman. (Université de Genève, 2006).
90.
Platvoet, D., Dick, J. T. A., MacNeil, C., van Riel, M. C. & van der Velde, G. Invader-invader interactions in relation to environmental heterogeneity leads to zonation of two invasive amphipods, dikerogammarus villosus (sowinsky) and gammarus tigrinus sexton: Amphipod pilot species project (ampis) report 6. Biol. Invasions 11, 2085–2093 (2009).
Article Google Scholar
91.
Tricarico, E. et al. The killer shrimp, Dikerogammarus villosus (Sowinsky, 1894), is spreading in Italy. Aquat. Invasions 5, 211–214 (2010).
Article Google Scholar
92.
Muskó, I. B., Balogh, C., Tóth, Á. P., Varga, É. & Lakatos, G. Differential response of invasive malacostracan species to lake level fluctuations. Hydrobiologia 590, 65–74 (2007).
Article Google Scholar
93.
Hellmann, C., Schöll, F., Worischka, S., Becker, J. & Winkelmann, C. River-specific effects of the invasive amphipod Dikerogammarus villosus (Crustacea: Amphipoda) on benthic communities. Biol. Invasions 19, 381–398 (2017).
Article Google Scholar
94.
GBIF.org. Global Biodiversity Information Facility. Choice Reviews Online 41, 41–5289–41–5289 (2004).
95.
INaturalist.org. iNaturalist. (2020). Available at: https://www.inaturalist.org/. (Accessed: 16th October 2020)
96.
R Core Team. R: A Language and Environment for Statistical Computing. (2018).
97.
Pritchard, D. W., Paterson, R. A., Bovy, H. C. & Barrios-O’Neill, D. frair: an R package for fitting and comparing consumer functional responses. Methods Ecol. Evol. 8, 1528–1534 (2017).
98.
Rogers, D. Random Search and Insect Population Models. J. Anim. Ecol. 41, 369 (1972).
Article Google Scholar
99.
Bolker, B. & R Core Team. bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.20. (2017).
100.
Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).
Article Google Scholar
101.
Cuthbert, R. N., Dick, J. T. A., Callaghan, A. & Dickey, J. W. E. Biological control agent selection under environmental change using functional responses, abundances and fecundities; the Relative Control Potential (RCP) metric. Biol. Control 121, 50–57 (2018).
Article Google Scholar
102.
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical Journal 50, 346–363 (2008).
MathSciNet PubMed MATH Article PubMed Central Google Scholar More