Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents
1.
Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Chang Biol. 20, 2221–2229 (2014).
ADS PubMed Article PubMed Central Google Scholar
2.
Boggs, C. L. & Inouye, D. W. A single climate driver has direct and indirect effects on insect population dynamics. Ecol. Lett. 15, 502–508 (2012).
PubMed Article PubMed Central Google Scholar
3.
Burkett, V. R. et al. Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications. Ecol. Complex. 2, 357–394 (2005).
Article Google Scholar
4.
Molnár, P. K., Sckrabulis, J. P., Altman, K. A. & Raffel, T. R. Thermal performance curves and the metabolic theory of ecology—a practical guide to models and experiments for parasitologists. J. Parasitol. 103, 423–439 (2017).
5.
Hortion, J. et al. Acute flavivirus and alphavirus infections among children in two different areas of Kenya, 2015. Am. J. Trop. Med. Hyg. 100, 170–173 (2019).
PubMed Article PubMed Central Google Scholar
6.
Stewart-Ibarra, A. M. & Lowe, R. Climate and non-climate drivers of dengue epidemics in Southern Coastal Ecuador. Am. J. Trop. Med. Hyg. 88, 971–981 (2013).
PubMed PubMed Central Article Google Scholar
7.
Jury, M. R. Climate influence on dengue epidemics in Puerto Rico. Int. J. Environ. Health Res. 18, 323–334 (2008).
PubMed Article PubMed Central Google Scholar
8.
Campbell, K. M. et al. Weather regulates location, timing, and intensity of dengue virus transmission between humans and mosquitoes. PLoS Negl. Trop. Dis. 9, e0003957 (2015).
9.
Adde, A. et al. Predicting dengue fever outbreaks in French Guiana using climate indicators. PLoS Negl. Trop. Dis. 10, e0004681 (2016).
10.
Dhimal, M. et al. Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in Central Nepal. PLoS Negl. Trop. Dis. 9, e0003545 (2015).
PubMed PubMed Central Article CAS Google Scholar
11.
Descloux, E. et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl. Trop. Dis. 6, e1470 (2012).
12.
Aswi, A., Cramb, S. M., Moraga, P. & Mengersen, K. Epidemiology and infection Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review. Epidemiol. Infect. 147, https://doi.org/10.1017/S0950268818002807 (2018).
13.
Johansson, M. A. et al. An open challenge to advance probabilistic forecasting for dengue epidemics. Proc. Natl Acad. Sci. USA 116, 24268–24274 (2019).
14.
Michael, E. et al. Continental-scale, data-driven predictive assessment of eliminating the vector-borne disease, lymphatic filariasis, in sub-Saharan Africa by 2020. BMC Med. 15, 176 (2017).
PubMed PubMed Central Article Google Scholar
15.
Smith, T. et al. Towards a comprehensive simulation model of malaria epidemiology and control. Parasitology 135, 1507–1516 (2008).
16.
Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 13, e0007213 (2019).
17.
Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).
18.
Powell, J. R., Tabachnick, W. J., Powell, J. R. & Tabachnick, W. J. History of domestication and spread of Aedes aegypti—a review. Mem. Inst. Oswaldo Cruz. 108, 11–17 (2013).
PubMed PubMed Central Article Google Scholar
19.
Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).
20.
Shocket, M. S., Ryan, S. J. & Mordecai, E. A. Temperature explains broad patterns of Ross River virus transmission. eLife 7, e37762 (2018).
21.
Paull, S. H. et al. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. R. Soc. B Biol. Sci. 284, 20162078 (2017).
Article Google Scholar
22.
Costa EAP de, A., Santos EM de, M., Correia, J. C. & Albuquerque de, C. M. R. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev. Bras. Entomol. 54, 488–493 (2010).
Article Google Scholar
23.
Gaaboub, I. A., El-Sawaf, S. K. & El-Latif, M. A. Effect of different relative humidities and temperatures on egg-production and longevity of adults of Anopheles (Myzomyia) pharoensis Theob.1. Z. f.ür. Angew. Entomol. 67, 88–94 (2009).
Article Google Scholar
24.
Koenraadt, C. J. M. & Harrington, L. C. Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 45, 28–35 (2009).
Google Scholar
25.
Paaijmans, K. P., Wandago, M. O., Githeko, A. K., Takken, W. & Vulule, J. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS ONE 2, e1146 (2007).
26.
Benedum, C. M., Seidahmed, O. M. E., Eltahir, E. A. B. & Markuzon, N. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS Negl. Trop. Dis. 12, e0006935 (2018).
27.
Stewart Ibarra, A. M. et al. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS ONE 8, e78263 (2013).
28.
Pontes, R. J., Spielman, A., Oliveira-Lima, J. W., Hodgson, J. C. & Freeman, J. Vector densities that potentiate dengue outbreaks in a Brazilian city. Am. J. Trop. Med Hyg. 62, 378–383 (2000).
CAS PubMed Article PubMed Central Google Scholar
29.
Anyamba, A. et al. Climate teleconnections and recent patterns of human and animal disease outbreaks. PLoS Negl. Trop. Dis. 6, e1465 (2012).
30.
Huber, J. H., Childs, M. L., Caldwell, J. M. & Mordecai, E. A. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLoS Negl. Trop. Dis. 12, e0006451 (2018).
31.
Stewart-Ibarra, A. M. et al. Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect. Dis. 14, 610 (2014).
PubMed PubMed Central Article Google Scholar
32.
Agha, S. B., Tchouassi, D. P., Turell, M. J., Bastos, A. D. S. & Sang, R. Entomological assessment of dengue virus transmission risk in three urban areas of Kenya. PLoS Negl. Trop. Dis. 13, e0007686 (2019).
33.
Agha, S. B., Tchouassi, D. P., Bastos, A. D. S. & Sang, R. Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities. Parasit. Vectors 10, 628 (2017).
PubMed PubMed Central Article Google Scholar
34.
Chretien, J.-P. et al. Drought-associated chikungunya emergence along coastal East Africa. Am. J. Trop. Med. Hyg. 76, 405–407 (2007).
PubMed PubMed Central Article Google Scholar
35.
Vu, D. M. et al. Unrecognized dengue virus infections in children, Western Kenya, 2014–2015. Emerg. Infect. Dis. 23, 1915–1917 (2017).
PubMed PubMed Central Article Google Scholar
36.
Gubler, D. J., Nalim, S., Saroso, J. S., Saipan, H. & Tan, R. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes Aegypti *. Am. J. Trop. Med. Hyg. 28, 1045–1052 (1979).
CAS PubMed Article Google Scholar
37.
Xavier-Carvalho, C., Chester Cardoso, C., de Souza Kehdya, F., Guilherme Pacheco, A. & Ozório Moraesa, M. Host genetics and dengue fever. Infect. Genet. Evol. 56, 99–110 (2017).
PubMed Article Google Scholar
38.
Lourenço, J. & Recker, M. The 2012 Madeira Dengue Outbreak: epidemiological determinants and future epidemic potential. PLoS Negl. Trop. Dis. 8, e3083 (2014).
39.
Li, R. et al. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc. Natl Acad. Sci. USA 119, 3624–3629 (2019).
Article CAS Google Scholar
40.
Wang, X., Tang, S. & Cheke, R. A. A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations. J. Theor. Biol. 411, 27–36 (2016).
PubMed MATH Article PubMed Central Google Scholar
41.
Siraj, A. S. et al. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLoS Negl. Trop. Dis. 11, e0005797 (2017).
42.
Oidtman, R. J. et al. Inter-annual variation in seasonal dengue epidemics driven by multiple interacting factors in Guangzhou, China. Nat. Commun. 10, 1–12 (2019).
43.
Pyper, B. J. & Peterman, R. M. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci. 55, 2127–2140 (1998).
Article Google Scholar
44.
Hurtado-Daz, M., Riojas-Rodrguez, H., Rothenberg, S., Gomez-Dantes, H. & Cifuentes, E. Impact of climate variability on the incidence of dengue in Mexico. Trop. Med. Int. Heal. 12, 1327–1337 (2007).
45.
Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).
46.
Carrington, L. B., Armijos, M. V., Lambrechts, L., Barker, C. M. & Scott, T. W. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS ONE 8, e58824 (2013).
47.
Ngugi, H. N. et al. Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya. Parasit. Vectors 10, 331 (2017).
PubMed PubMed Central Article Google Scholar
48.
Lowe, R. et al. Nonlinear and delayed impacts of climate on dengue risk in Barbados: a modelling study. PLoS Med. 15, e1002613 (2018).
49.
Laureano-Rosario, A. E., Garcia-Rejon, J. E., Gomez-Carro, S., Farfan-Ale, J. A. & Muller-Kargera, F. E. Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature. Acta Trop. 172, 50–57 (2017).
PubMed Article PubMed Central Google Scholar
50.
Li, C. et al. Modeling and projection of dengue fever cases in Guangzhou based on variation of weather factors. Sci. Total Environ. 605–606, 867–873 (2017).
ADS PubMed Article CAS PubMed Central Google Scholar
51.
Li, C. F., Lim, T. W., Han, L. L. & Fang, R. Rainfall, abundance of Aedes aegypti and dengue infection in Selangor, Malaysia. Southeast Asian J. Trop. Med Public Health 16, 560–568 (1985).
CAS PubMed PubMed Central Google Scholar
52.
Johansson, M. A., Dominici, F. & Glass, G. E. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl. Trop. Dis. 3, e382 (2009).
53.
Kenneson, A. et al. Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: Results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Negl. Trop. Dis. 11, e0006150 (2017).
54.
Reich, N. G. et al. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J. R. Soc. Interface 10, 20130414 (2013).
PubMed PubMed Central Article Google Scholar
55.
Wen, J. et al. Dengue virus-reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nat. Commun. 8, 1459 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
56.
Rodriguez-Barraquer, I., Salje, H. & Cummings, D. A. Opportunities for improved surveillance and control of dengue from age-specific case data. eLife 8, e45474 (2019).
57.
Stoddard, S. T. et al. House-to-house human movement drives dengue virus transmission. Proc. Natl Acad. Sci. USA 110, 994–999 (2013).
ADS CAS PubMed Article Google Scholar
58.
Wesolowski, A. et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl Acad. Sci. USA 112, 11887–11892 (2015).
ADS CAS PubMed Article Google Scholar
59.
Vaidya, A., Bravo-Salgado, A. D. & Mikler, A. R.. Modeling climate-dependent population dynamics of mosquitoes to guide public health policies. in Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics Vol. 14 (eds Baldi, P. & Wang, W.) 380–389 (Newport Beach, CA, USA, 2014).
60.
Schmidt, C. A., Comeau, G., Monaghan, A. J., Williamson, D. J. & Ernst, K. C. Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis. Parasit. Vectors 11, 267 (2018).
PubMed PubMed Central Article Google Scholar
61.
Vazquez-Prokopec, G. M., Galvin, W. A., Kelly, R. & Kitron, U. A new, cost-effective, battery-powered aspirator for adult mosquito collections. J. Med. Entomol. 46, 1256–1259 (2009).
PubMed PubMed Central Article Google Scholar
62.
Waggoner, J. J. et al. Single-reaction multiplex reverse transcription PCR for detection of Zika, chikungunya, and dengue viruses. Emerg. Infect. Dis. 22, 1295–1297 (2016).
CAS PubMed PubMed Central Article Google Scholar
63.
Lanciotti, R. S., Calisher, C. H., Gubler, D. J., Chang, G. J. & Vorndam, A. V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J. Clin. Microbiol. 30, 545–551 (1992).
CAS PubMed PubMed Central Article Google Scholar
64.
Grossi-Soyster, E. N. et al. Serological and spatial analysis of alphavirus and flavivirus prevalence and risk factors in a rural community in western Kenya. PLoS Negl. Trop. Dis. 11, e0005998 (2017).
65.
Palamara, G. M. et al. Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm. Ecol. Evol. 4, 4736–4750 (2014).
PubMed PubMed Central Article Google Scholar
66.
Team R. C. R.: A language and environment for statistical computing. R Found Stat. Comput. https://www.r-project.org (2018).
67.
Shocket, M. S. et al. Environmental drivers of vector-borne disease. in Population Biology of Vector-borne Diseases. (eds Drake, J. M., Bonsall, M. B. & Strand, M. R.) 85–118 (Oxford University Press, 2020).
68.
Colón-González, F. J., Bentham, G. & Lake, I. R. Climate variability and dengue fever in warm and humid Mexico. Am. J. Trop. Med. Hyg. 84, 757–763 (2011).
PubMed PubMed Central Article Google Scholar
69.
Wang, C., Jiang, B., Fan, J., Wang, F. & Liu, Q. A study of the dengue epidemic and meteorological factors in Guangzhou, China, by using a zero-inflated Poisson regression model. Asia Pac. J. Public Heal. 26, 48–57 (2014).
Article Google Scholar
70.
Minh An, D. T. & Rocklöv, J. Epidemiology of dengue fever in Hanoi from 2002 to 2010 and its meteorological determinants. Glob. Health Action. 7, 23074 (2014).
PubMed Article PubMed Central Google Scholar
71.
Wu, P.-C., Guoa, H.-R., Lung, S.-C., Lin, C.-Y. & Su, H.-J. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop. 103, 50–57 (2007).
PubMed Article PubMed Central Google Scholar
72.
Karim, M. N., Munshi, S. U., Anwar, N. & Alam, M. S. Climatic factors influencing dengue cases in Dhaka city: a model for dengue prediction. Indian J. Med. Res. 136, 32–39 (2012).
PubMed PubMed Central Google Scholar
73.
Nakhapakorn, K. & Tripathi, N. An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int. J. Health Geogr. 4, 13 (2005).
PubMed PubMed Central Article Google Scholar
74.
Gharbi, M. et al. Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect. Dis. 11, 166 (2011).
PubMed PubMed Central Article Google Scholar
75.
Sharmin, S., Glass, K., Viennet, E. & Harley, D. Interaction of mean temperature and daily fluctuation influences dengue incidence in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 9, e0003901 (2015).
76.
Sriprom, M., Chalvet-Monfray, K., Chaimane, T., Vongsawat, K. & Bicout, D. J. Monthly district level risk of dengue occurrences in Sakon Nakhon Province, Thailand. Sci. Total Environ. 408, 5521–5528 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar
77.
Martínez-Bello, D., López-Quílez, A. & Prieto, A. T. Spatiotemporal modeling of relative risk of dengue disease in Colombia. Stoch. Environ. Res. Risk Assess. 32, 1587–1601 (2018).
Article Google Scholar
78.
Didan, K., Barreto Munoz, A., Solano, R. & Huete, A. MODIS vegetation index user’s guide (MOD13 Series) [Internet]. https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_June_2015_C6.pdf (2015).
79.
Sulla-Menashe, D. & Friedl, M. A. User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/MODIS/mcd12_user_guide_v6.pdf (2018). More