Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates
1.
Sakschewski B, von Bloh W, Boit A, Poorter L, Peña-Claros M, Heinke J, et al. Resilience of Amazon forests emerges from plant trait diversity. Nat Clim Change. 2016;6:1032–6.
Article Google Scholar
2.
Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature. 2008;451:293–6.
CAS PubMed Article Google Scholar
3.
Kicklighter DW, Melillo JM, Monier E, Sokolov AP, Zhuang Q. Future nitrogen availability and its effect on carbon sequestration in Northern Eurasia. Nat Commun. 2019;10:1–19.
CAS Article Google Scholar
4.
Liu L, Greaver TL. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett. 2010;13:819–28.
PubMed Article Google Scholar
5.
Maaroufi NI, Nordin A, Hasselquist NJ, Bach LH, Palmqvist K, Gundale MJ. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Glob Chang. Glob Change Biol. 2015;21:3169–80.
Article Google Scholar
6.
Lu M, Zhou X, Luo Y, Yang Y, Fang C, Chen J, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agr Ecosyst Environ. 2011;140:234–44.
CAS Article Google Scholar
7.
Chen J, Luo Y, van Groenigen KJ, Hungate BA, Cao J, Zhou X, et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci Adv. 2018;4:q1689.
Article CAS Google Scholar
8.
Cusack DF, Torn MS, Mcdowell WH, Silver WL. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob Change Biol. 2010;16:2555–72.
Google Scholar
9.
Zhang J, Balkovic J, Azevedo LB, Skalsky R, Bouwman AF, Xu G, et al. Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China. Sci Total Environ. 2018;627:361–72.
CAS PubMed Article Google Scholar
10.
Bending GD, Putland C, Rayns F. Changes in microbial community metabolism and labile organic matter fractions as early indicators of the impact of management on soil biological quality. Biol Fertil Soils. 2000;31:78–84.
CAS Article Google Scholar
11.
Kallenbach CM, Frey SD, Grandy AS. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun. 2016;7:13630.
CAS PubMed PubMed Central Article Google Scholar
12.
Leinweber P, Jandl G, Baum C, Eckhardt K, Kandeler E. Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol Biochem. 2008;40:1496–505.
CAS Article Google Scholar
13.
Roth V, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat Geosci. 2019;12:755–61.
CAS Article Google Scholar
14.
Kallenbach CM, Grandy AS, Frey SD, Diefendorf AF. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol Biochem. 2015;91:279–90.
CAS Article Google Scholar
15.
Chen L, Liu L, Qin S, Yang G, Fang K, Zhu B, et al. Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nat Commun. 2019;10:5112.
PubMed PubMed Central Article CAS Google Scholar
16.
Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T, Aufdenkampe AK, et al. Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry. 2009;96:209–31.
CAS Article Google Scholar
17.
Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.
CAS PubMed Article Google Scholar
18.
Ding X, Chen S, Zhang B, Liang C, He H, Horwath WR. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biol Biochem. 2019;135:13–9.
CAS Article Google Scholar
19.
Ni X, Liao S, Tan S, Peng Y, Wang D, Yue K, et al. The vertical distribution and control of microbial necromass carbon in forest soils. Glob Ecol Biogeogr. 2020;29:1829–39.
Article Google Scholar
20.
Shao P, Lynch L, Xie H, Bao X, Liang C. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biol Biochem. 2021;153:108112.
CAS Article Google Scholar
21.
Ma T, Zhu S, Wang Z, Chen D, Dai G, Feng B, et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat Commun. 2018;9:3480.
PubMed PubMed Central Article CAS Google Scholar
22.
Malik AA, Puissant J, Buckeridge KM, Goodall T, Jehmlich N, Chowdhury S, et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat Commun. 2018;9:3591.
PubMed PubMed Central Article CAS Google Scholar
23.
Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol. 2007;73:5111–7.
CAS PubMed PubMed Central Article Google Scholar
24.
Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol. 2010;76:999–1007.
CAS PubMed Article Google Scholar
25.
Rinnan R, MichelsenI A, Bååth E, Jonasson S. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Change Biol. 2007;13:28–39.
Article Google Scholar
26.
Liang Y, Xiao X, Nuccio EE, Yuan M, Zhang N, Xue K, et al. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environ Microbiol. 2020;22:1327–40.
CAS PubMed Article Google Scholar
27.
Wang M, Ding J, Sun B, Zhang J, Wyckoff KN, Yue H, et al. Microbial responses to inorganic nutrient amendment overridden by warming: consequences on soil carbon stability. Environ Microbiol. 2018;20:2509–22.
CAS PubMed Article Google Scholar
28.
Zhao M, Xue K, Wang F, Liu S, Bai S, Sun B, et al. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. ISME J. 2014;8:2045–55.
CAS PubMed PubMed Central Article Google Scholar
29.
Liang Y, Jiang Y, Wang F, Wen C, Deng Y, Xue K, et al. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. ISME J. 2015;9:2561–72.
PubMed PubMed Central Article Google Scholar
30.
Sun B, Wang F, Jiang Y, Li Y, Dong Z, Li Z, et al. A long-term field experiment of soil transplantation demonstrating the role of contemporary geographic separation in shaping soil microbial community structure. Ecol Evol. 2014;4:1073–87.
PubMed PubMed Central Article Google Scholar
31.
Fernandez I, Álvarez-González JG, Carrasco B, Ruíz-González AD, Cabaneiro A. Post-thinning soil organic matter evolution and soil CO2 effluxes in temperate radiata pine plantations: impacts of moderate thinning regimes on the forest C cycle. Can J Res. 2012;42:1953–64.
CAS Article Google Scholar
32.
Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wilson MA. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry. 1992;16:1–42.
CAS Article Google Scholar
33.
Coxall HK, Wilson PA, Pälike H, Lear CH, Backman J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature. 2005;433:53–7.
CAS PubMed Article Google Scholar
34.
Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N, et al. is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.
PubMed Article CAS Google Scholar
35.
Li H, Bi Q, Yang K, Zheng B, Pu Q, Cui L. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell raman spectroscopy. Anal Chem. 2019;91:2239–46.
CAS PubMed Article Google Scholar
36.
Cui L, Butler HJ, Martin-Hirsch PL, Martin FL. Aluminium foil as a potential substrate for ATR-FTIR, transflection FTIR or Raman spectrochemical analysis of biological specimens. Anal Methods. 2016;8:481–7.
CAS Article Google Scholar
37.
Bååth E, Pettersson M, Söderberg KH. Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Biol Biochem. 2001;33:1571–4.
Article Google Scholar
38.
Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC, et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J. 2016;10:2593–604.
CAS PubMed PubMed Central Article Google Scholar
39.
Zhang X, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem. 1996;28:1201–6.
CAS Article Google Scholar
40.
Schermelleh-Engel K, Moosbrugger H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychological Res Online. 2003;8:23–74.
Google Scholar
41.
Clarke KR. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 1993;18:117–43.
Article Google Scholar
42.
Kruskal JB. Nonmetric multidimensional scaling: a numerical method. Psychometrika. 1964;29:115–29.
Article Google Scholar
43.
Legendre P, Legendre L. Numerical Ecology, 3rd English Edition. Oxford, UK: Elsevier; 2012.
44.
Liaw A, Wiener M. Classification and regression by randomForest. R N. 2002;2:18–22.
Google Scholar
45.
Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.
CAS PubMed PubMed Central Article Google Scholar
46.
Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol. 2019;4:1183–95.
CAS PubMed Article Google Scholar
47.
Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.
CAS PubMed Article Google Scholar
48.
Hicks Pries CE, Castanha C, Porras RC, Torn MS. The whole-soil carbon flux in response to warming. Science. 2017;355:1420–3.
CAS PubMed Article Google Scholar
49.
Peñuelas J, Ciais P, Canadell JG, Janssens IA, Fernández-Martínez M, Carnicer J, et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat Ecol Evol. 2017;1:1438–45.
PubMed Article Google Scholar
50.
Sokol NW, Bradford MA. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci. 2019;12:46–53.
CAS Article Google Scholar
51.
Trumbore SE, Chadwick OA, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science. 1996;272:393–6.
CAS Article Google Scholar
52.
Liang C, Cheng G, Wixon DL, Balser TC. An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry. 2011;106:303–9.
Article Google Scholar
53.
Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Change Biol. 2019;00:1–13.
Google Scholar
54.
Tian J, Zong N, Hartley IP. Microbial metabolic response to winter warming stabilizes soil carbon. Glob Change Biol. 2021;00:1–18.
Google Scholar
55.
Coxall HK, Wilson PA, Pälike H, Lear CH, Backman J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature. 2005;433:53–7.
CAS PubMed Article Google Scholar
56.
Ding X, Chen S, Zhang B, He H, Filley TR, Horwath WR. Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau. Biol Fertil Soils. 2020;56:881–92.
CAS Article Google Scholar
57.
Jia J, Feng X, He J, He H, Lin L, Liu Z. Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland. Soil Biol Biochem. 2017;104:141–51.
CAS Article Google Scholar
58.
Zhou X, Chen C, Wang Y, Xu Z, Duan J, Hao Y, et al. Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland. Geoderma. 2013;206:24–31.
CAS Article Google Scholar
59.
Chen J, Ji C, Fang J, He H, Zhu B. Dynamics of microbial residues control the responses of mineral-associated soil organic carbon to N addition in two temperate forests. Sci Total Environ. 2020;748:141318.
CAS PubMed Article Google Scholar
60.
Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature. 2007;450:277–80.
CAS PubMed Article Google Scholar
61.
Wang C, Wang X, Pei G, Xia Z, Peng B, Sun L, et al. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biol Biochem. 2020;141:107687.
CAS Article Google Scholar
62.
Zhou J, Xue K, Xie J, Deng Y, Wu L, Cheng X, et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Change. 2011;2:106–10.
Article CAS Google Scholar
63.
Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Change Biol. 2014;20:2356–67.
Article Google Scholar
64.
Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem. 2011;43:86–96.
CAS Article Google Scholar
65.
Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil. 2009;321:5–33.
CAS Article Google Scholar
66.
Zang H, Wang J, Kuzyakov Y. N fertilization decreases soil organic matter decomposition in the rhizosphere. Appl Soil Ecol. 2016;108:47–53.
Article Google Scholar
67.
Mason-Jones K, Schmücker N, Kuzyakov Y. Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biol Biochem. 2018;124:38–46.
CAS Article Google Scholar
68.
Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology. 2000;81:2359–65.
Article Google Scholar
69.
Sinsabaugh RL, Hill BH, Follstad Shah JJ. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature. 2009;462:795–98.
CAS PubMed Article Google Scholar
70.
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, et al. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem. 2013;58:216–34.
CAS Article Google Scholar
71.
Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett. 2015;10:24019.
Article CAS Google Scholar
72.
Zhou Z, Wang C, Zheng M, Jiang L, Luo Y. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol Biochem. 2017;115:433–41.
CAS Article Google Scholar More
