More stories

  • in

    Genetic identity and genotype × genotype interactions between symbionts outweigh species level effects in an insect microbiome

    1.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci. 2013;110:3229–36.
    CAS  PubMed  Article  Google Scholar 
    2.
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Feldhaar H, Gross R. Insects as hosts for mutualistic bacteria. Int J Med Microbiol. 2009;299:1–8.
    PubMed  Article  Google Scholar 

    4.
    Hosokawa T, Ishii Y, Nikoh N, Fujie M, Satoh N, Fukatsu T. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat Microbiol. 2016;1:15011.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    de Bekker C, Merrow M, Hughes DP. From behavior to mechanisms: an integrative approach to the manipulation by a parasitic fungus (Ophiocordyceps unilateralis s.l.) of its host ants (Camponotus spp.). Integr Comp Biol. 2014;54:166–76.
    PubMed  Article  Google Scholar 

    6.
    Koskella B, Meaden S, Crowther WJ, Leimu R, Metcalf CJE. A signature of tree health? Shifts in the microbiome and the ecological drivers of horse chestnut bleeding canker disease. N. Phytol. 2017;215:737–46.
    CAS  Article  Google Scholar 

    7.
    Smee MR, Baltrus DA, Hendry TA. Entomopathogenicity to two Hemipteran insects is common but variable across epiphytic Pseudomonas syringae strains. Front Plant Sci. 2017;8:2149.
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol. 2010;55:247–66.
    CAS  PubMed  Article  Google Scholar 

    9.
    McLean AH. Cascading effects of defensive endosymbionts. Curr Opin Insect Sci. 2019;32:42–46.
    PubMed  Article  Google Scholar 

    10.
    Adair KL, Douglas AE. Making a microbiome: the many determinants of host-associated microbial community composition. Curr Opin Microbiol. 2017;35:23–29.
    PubMed  Article  Google Scholar 

    11.
    Wedin M, Maier S, Fernandez-Brime S, Cronholm B, Westberg M, Grube M. Microbiome change by symbiotic invasion in lichens. Environ Microbiol. 2015;18:1428–39.
    PubMed  Article  CAS  Google Scholar 

    12.
    King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A, Ford SA, et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 2016;10:1915–24.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Ford SA, Williams D, Paterson S, King KC. Co-evolutionary dynamics between a defensive microbe and a pathogen driven by fluctuating selection. Mol Ecol. 2017;26:1778–89.
    CAS  PubMed  Article  Google Scholar 

    14.
    Weldon SR, Russell JA, Oliver KM. More is not always better: coinfections with defensive symbionts generate highly variable outcomes. Appl Environ Microbiol. 2020;86:e02537-19.
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Bongrand C, Ruby EG. Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME J 2019;13:698-706.
    PubMed  Article  Google Scholar 

    16.
    Doremus MR, Oliver KM. Aphid heritable symbiont exploits defensive mutualism. Appl Environ Microbiol. 2017;83:e03276–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    McLean AHC, Parker BJ, Hrček J, Kavanagh JC, Wellham PAD, Godfray HCJ. Consequences of symbiont co-infections for insect host phenotypes. J Anim Ecol 2018;87:478-488.
    PubMed  Article  Google Scholar 

    18.
    Oliver KM, Moran NA, Hunter MS. Costs and benefits of a superinfection of facultative symbionts in aphids. Proc R Soc B-Biol Sci. 2006;273:1273–80.
    Article  Google Scholar 

    19.
    Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species. Cell. 2015;160:583–94.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded human microbiome project. Nature. 2017;550:61–66.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Des Roches S, Post DM, Turley NE, Bailey JK, Hendry AP, Kinnison MT, et al. The ecological importance of intraspecific variation. Nat Ecol Evol. 2018;2:57–64.
    PubMed  Article  Google Scholar 

    22.
    Barbour MA, Fortuna MA, Bascompte J, Nicholson JR, Julkunen-Tiitto R, Jules ES, et al. Genetic specificity of a plant–insect food web: implications for linking genetic variation to network complexity. Proc Natl Acad Sci. 2016;113:2128–33.
    CAS  PubMed  Article  Google Scholar 

    23.
    Reznick DN, Losos J, Travis J. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol Lett. 2019;22:233–44.
    PubMed  Article  Google Scholar 

    24.
    Koskella B, Bergelson J. The study of host–microbiome (co)evolution across levels of selection. Philos Trans R Soc B Biol Sci. 2020;375:20190604.
    Article  Google Scholar 

    25.
    Whitham TG, Allan GJ, Cooper HF, Shuster SM. Intraspecific Genetic Variation and Species Interactions Contribute to Community Evolution. Annu Rev Ecol Evol Syst. 2020;51:587–612.
    Article  Google Scholar 

    26.
    Ferrari J, West JA, Via S, Godfray HCJ. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution. 2012;66:375–90.
    PubMed  Article  Google Scholar 

    27.
    Henry LM, Peccoud J, Simon J-C, Hadfield JD, Maiden MJC, Ferrari J, et al. Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol. 2013;23:1713–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Reuter M, Keller L. High levels of multiple Wolbachia infection and recombination in the ant Formica exsecta. Mol Biol Evol. 2003;20:748–53.
    CAS  PubMed  Article  Google Scholar 

    29.
    Gauthier J-P, Outreman Y, Mieuzet L, Simon J-C. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PloS One. 2015;10:e0120664.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Douglas AE. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Douglas AE. The nutritional physiology of aphids. Advances in Insect Physiology. Oxford, UK: Academic Press; 2003. pp 73–140.

    32.
    Zytynska SE, Weisser WW. The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol. 2016;41:13–26.
    Article  Google Scholar 

    33.
    Smith AH, Łukasik P, O’Connor MP, Lee A, Mayo G, Drott MT, et al. Patterns, causes, and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol. 2015;24:1135–49.
    PubMed  Article  Google Scholar 

    34.
    Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA. 2003;100:1803–7.
    CAS  PubMed  Article  Google Scholar 

    35.
    Scarborough CL, Ferrari J, Godfray HCJ. Aphid protected from pathogen by endosymbiont. Science. 2005;310:1781–1781.
    CAS  PubMed  Article  Google Scholar 

    36.
    Montllor CB, Maxmen A, Purcell AH. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol. 2002;27:189–95.
    Article  Google Scholar 

    37.
    Hrček J, McLean AHC, Godfray HCJ. Symbionts modify interactions between insects and natural enemies in the field. J Anim Ecol. 2016;85:1605–12.
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Rock DI, Smith AH, Joffe J, Albertus A, Wong N, O’Connor M, et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol Ecol. 2018;27:2039–56.
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol. 2005;71:3302–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Manzano-Marín A, Szabó G, Simon J-C, Horn M, Latorre A. Happens in the best of subfamilies: establishment and repeated replacements of co-obligate secondary endosymbionts within Lachninae aphids. Environ Microbiol. 2017;19:393–408.
    PubMed  Article  CAS  Google Scholar 

    41.
    Henry LM, Maiden MCJ, Ferrari J, Godfray HCJ. Insect life history and the evolution of bacterial mutualism. Ecol Lett. 2015;18:516–25.
    PubMed  Article  Google Scholar 

    42.
    Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA. 2005;102:12795–12800.
    CAS  PubMed  Article  Google Scholar 

    43.
    Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science. 2009;325:992–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Degnan PH, Moran NA. Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol Ecol. 2008;17:916–29.
    CAS  PubMed  Article  Google Scholar 

    45.
    Chevignon G, Boyd BM, Brandt JW, Oliver KM, Strand MR. Culture-facilitated comparative genomics of the facultative symbiont Hamiltonella defensa. Genome Biol Evol. 2018;10:786–802.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Heyworth ER, Ferrari J. A facultative endosymbiont in aphids can provide diverse ecological benefits. J Evol Biol. 2015;28:1753–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H. The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci USA. 2005;102:16919–26.
    CAS  PubMed  Article  Google Scholar 

    48.
    Oliver KM, Higashi CH. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr Opin Insect Sci. 2019;32:1–7.
    PubMed  Article  Google Scholar 

    49.
    Martinez AJ, Doremus MR, Kraft LJ, Kim KL, Oliver KM. Multi-modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism. J Anim Ecol. 2018;87:464–77.
    PubMed  Article  Google Scholar 

    50.
    Łukasik P, van Asch M, Guo H, Ferrari J, Charles J, Godfray H. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett. 2013;16:214–8.
    PubMed  Article  Google Scholar 

    51.
    Parker BJ, Hrček J, McLean AHC, Godfray HCJ. Genotype specificity among hosts, pathogens, and beneficial microbes influences the strength of symbiont-mediated protection. Evolution. 2017;71:1222–31.
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Vorburger C. The evolutionary ecology of symbiont-conferred resistance to parasitoids in aphids. Insect Sci. 2014;21:251–64.
    PubMed  Google Scholar 

    53.
    Ferrari J, Via S, Godfray HCJ. Population differentiation and genetic variation in performance on eight hosts in the pea aphid complex. Evolution. 2008;62:2508–24.
    PubMed  Article  Google Scholar 

    54.
    McLean AHC, van Asch M, Ferrari J, Godfray HCJ. Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc R Soc B-Biol Sci. 2011;278:760–6.
    CAS  Article  Google Scholar 

    55.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

    56.
    Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
    Article  Google Scholar 

    57.
    Russell JA, Weldon S, Smith AH, Kim KL, Hu Y, Łukasik P, et al. Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol Ecol. 2013;22:2045–59.
    PubMed  Article  Google Scholar 

    58.
    Jayakar SD. A mathematical model for interaction of gene frequencies in a parasite and its host. Theor Popul Biol. 1970;1:140–64.
    CAS  PubMed  Article  Google Scholar 

    59.
    Tellier A, Brown JKM. Stability of genetic polymorphism in host–parasite interactions. Proc R Soc B Biol Sci. 2007;274:809–17.
    Article  Google Scholar 

    60.
    Eren AM, Sogin ML, Morrison HG, Vineis JH, Fisher JC, Newton RJ, et al. A single genus in the gut microbiome reflects host preference and specificity. ISME J. 2015;9:90–100.
    CAS  PubMed  Article  Google Scholar 

    61.
    Yin Y, Wang Y, Zhu L, Liu W, Liao N, Jiang M, et al. Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME J. 2013;7:615–21.
    CAS  PubMed  Article  Google Scholar 

    62.
    Parker BJ, McLean AHC, Hrček J, Gerardo NM, Godfray HCJ. Establishment and maintenance of aphid endosymbionts after horizontal transfer is dependent on host genotype. Biol Lett. 2017;13:20170016.
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Nyabuga FN, Outreman Y, Simon J-C, Heckel DG, Weisser WW. Effects of pea aphid secondary endosymbionts on aphid resistance and development of the aphid parasitoid Aphidius ervi: a correlative study. Entomol Exp Appl. 2010;136:243–53.
    Google Scholar 

    64.
    Leclair M, Polin S, Jousseaume T, Simon J-C, Sugio A, Morlière S, et al. Consequences of coinfection with protective symbionts on the host phenotype and symbiont titres in the pea aphid system. Insect Sci. 2016;24:798–808.
    PubMed  Article  Google Scholar 

    65.
    Zhao D, Hoffmann AA, Zhang Z, Niu H, Guo H. Interactions between facultative symbionts Hamiltonella and Cardinium in Bemisia tabaci (Hemiptera: Aleyrodoidea): cooperation or conflict? J Econ Entomol. 2018;111:2660-2666.
    PubMed  Article  CAS  Google Scholar 

    66.
    Vorburger C, Gehrer L, Rodriguez P. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett. 2010;6:109–11.
    PubMed  Article  Google Scholar 

    67.
    McLean AHC, Godfray HCJ. Evidence for specificity in symbiont-conferred protection against parasitoids. Proc R Soc B. 2015;282:20150977.
    Article  Google Scholar 

    68.
    Patel V, Chevignon G, Manzano-Marín A, Brandt JW, Strand MR, Russell JA, et al. Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic ‘X-type’ symbiont of aphids. Genome Biol Evol. 2019;11:3510-3522.
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Rouchet R, Vorburger C. Strong specificity in the interaction between parasitoids and symbiont-protected hosts. J Evol Biol. 2012;25:2369–75.
    PubMed  Article  Google Scholar 

    70.
    Sanders D, Kehoe R, Veen FF, van, McLean A, Godfray HCJ, Dicke M, et al. Defensive insect symbiont leads to cascading extinctions and community collapse. Ecol Lett. 2016;19:789–99.
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    A multifaceted approach to understanding bat community response to disturbance in a seasonally dry tropical forest

    1.
    Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).
    PubMed  Article  Google Scholar 

    4.
    Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R. & Racey, P. A. Carpe noctem: the importance of bats as bioindicators. Endanger. Species Res. 8, 93–115 (2009).
    Article  Google Scholar 

    5.
    Rocha, R. et al. Design matters: an evaluation of the impact of small man-made forest clearings on tropical bats using a before-after-control-impact design. For. Ecol. Manag. 401, 8–16 (2017).
    Article  Google Scholar 

    6.
    Wood, J. R. et al. No single driver of biodiversity: divergent responses of multiple taxa across land use types. Ecosphere 8, e01997 (2017).
    Article  Google Scholar 

    7.
    Coutinho Cunto, G. C. & Bernard, E. Neotropical bats as indicators of environmental disturbance: what is the emerging message?. Acta Chiropterologica 14, 143–151 (2012).
    Article  Google Scholar 

    8.
    Medellín, R. A., Equihua, M. & Amin, M. A. Bat diversity and abundance as indicators of disturbance in neotropical rainforest. Conserv. Biol. 14, 1666–1675 (2000).
    Article  Google Scholar 

    9.
    Russo, D., Bosso, L. & Ancillotto, L. Novel perspectives on bat insectivory highlight the value of this ecosystem service in farmland: research frontiers and management implications. Agric. Ecosyst. Environ. 266, 31–38 (2018).
    Article  Google Scholar 

    10.
    Avila-Cabadilla, L. D., Stoner, K. E., Henry, M. & Alvarez Añorve, M. Y. Composition, structure and diversity of phyllostomid bat assemblages in different successional stages of a tropical dry forest. For. Ecol. Manag. 258, 986–996 (2009).
    Article  Google Scholar 

    11.
    Castro-Luna, A. A., Sosa, V. J. & Castillo-Campos, G. Quantifying phyllostomid bats at different taxonomic levels as ecological indicators in a disturbed tropical forest. Acta Chiropterologica 9, 219–228 (2007).
    Article  Google Scholar 

    12.
    García-Morales, R., Badano, E. I. & Moreno, C. E. Response of neotropical bat assemblages to human land use. Conserv. Biol. 27, 1096–1106 (2013).
    PubMed  Article  Google Scholar 

    13.
    Meyer, C. F. J. & Kalko, E. K. V. Bat assemblages on neotropical land-bridge islands: nested subsets and null model analyses of species co-occurrence patterns. Divers. Distrib. 14, 644–654 (2008).
    Article  Google Scholar 

    14.
    Farneda, F. Z. et al. Predicting biodiversity loss in island and countryside ecosystems through the lens of taxonomic and functional biogeography. Ecography 43, 97–106 (2020).
    Article  Google Scholar 

    15.
    Cisneros, L. M., Fagan, M. E. & Willig, M. R. Season-specific and guild-specific effects of anthropogenic landscape modification on metacommunity structure of tropical bats. J. Anim. Ecol. 84, 373–385 (2015).
    PubMed  Article  Google Scholar 

    16.
    Peña-Cuellar, E., Stoner, K. E., Avila-Cabadilla, L. D., Martínez-Ramos, M. & Estrada, A. Phyllostomid bat assemblages in different successional stages of tropical rain forest in Chiapas, Mexico. Biodivers. Conserv. 21, 1381–1397 (2012).
    Article  Google Scholar 

    17.
    Fenton, A. M. B. et al. Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. Biotropica 24, 440–446 (1992).
    Article  Google Scholar 

    18.
    Avila-Cabadilla, L. D. et al. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests. PLoS ONE 7, e35228 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Falcão, L. A. D., do Espírito-Santo, M. M., Fernandes, G. W. & Paglia, A. P. Effects of habitat structure, plant cover, and successional stage on the bat assemblage of a tropical dry forest at different spatial scales. Diversity 10, 1–11 (2018).
    Article  Google Scholar 

    20.
    Avila-Cabadilla, L. D. et al. Phyllostomid bat occurrence in successional stages of neotropical dry forests. PLoS ONE 9, e84572 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Falcão, L. A. D., do Espírito-Santo, M. M., Leite, L. O., Garro, R. N. S. L., Avila-Cabadilla, L. D. & Stoner, K. E. Spatiotemporal variation in phyllostomid bat assemblages over a successional gradient in a tropical dry forest in southeastern Brazil. J. Trop. Ecol. 30, 123–132 (2014).
    Article  Google Scholar 

    22.
    Zarazúa-Carbajal, M., Avila-Cabadilla, L. D., Alvarez-Añorve, M. Y., Benítez-Malvido, J. & Stoner, K. E. Importance of riparian habitat for frugivorous bats in a tropical dry forest in western Mexico. J. Trop. Ecol. 33, 74–82 (2017).
    Article  Google Scholar 

    23.
    Meyer, C. F. J., Struebig, M. J. & Willig, M. R. Responses of tropical bats to habitat fragmentation, logging, and deforestation. In Bats in the Anthropocene: conservation of bats in a changing world (eds. Voigt, C. C. & Kingston, T.) 63–103 (Springer International Publishing) doi:https://doi.org/10.1007/978-3-319-25220-9 (2016).

    24.
    Estrada, A. & Coates-Estrada, R. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biol. Conserv. 103, 237–245 (2002).
    Article  Google Scholar 

    25.
    Galindo-González, J. Clasificación de los murciélagos de la región de Los Tuxtlas, Veracruz, respecto a su respuesta a la fragmentación del hábitat. Acta Zoológica Mex. 20, 239–243 (2004).
    Google Scholar 

    26.
    Gorrensen, M. & Willing, M. R. Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. J. Mammal. 85, 688–697 (2004).
    Article  Google Scholar 

    27.
    de Oliveira, H. F. M., de Camargo, N. F., Gager, Y. & Aguiar, L. M. S. The response of bats (Mammalia: Chiroptera) to habitat modification in a neotropical savannah. Trop. Conserv. Sci. 10, 1–14 (2017).
    Article  Google Scholar 

    28.
    de la Peña-Cuéllar, E., Benítez-Malvido, J., Avila-Cabadilla, L. D., Martínez-Ramos, M. & Estrada, A. Structure and diversity of phyllostomid bat assemblages on riparian corridors in a human-dominated tropical landscape. Ecol. Evol. 5, 903–913 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    García-Morales, R. et al. Deforestation impacts on bat functional diversity in tropical landscapes. PLoS ONE 11, 1–16 (2016).
    Article  CAS  Google Scholar 

    30.
    Daniel, S., Korine, C. & Pinshow, B. Central-place foraging in nursing, arthropod-gleaning bats. Can. J. Zool. 86, 623–626 (2008).
    Article  Google Scholar 

    31.
    Galindo-González, J. & Sosa, V. J. Frugivorous bats in isolated trees and riparian vegetation associated with human-made pastures in a fragmented tropical landscape. Southwest. Nat. 48, 579–589 (2003).
    Article  Google Scholar 

    32.
    Chazdon, R. L. et al. Rates of change in tree communities of secondary neotropical forests following major disturbances. Philos. Trans. R. Soc. B Biol. Sci. 362, 273–289 (2007).
    Article  Google Scholar 

    33.
    Brito, J., Camacho, M. A., Romero, V. & Vallejo, A. F. Mamíferos del Ecuador. Versión 2019.0. Museo de Zoología, Pontificia Universidad Católica del Ecuador. https://bioweb.bio/faunaweb/mammaliaweb (2019).

    34.
    Tirira, D. A field guide to the mammals of Ecuador. Asociación Ecuatoriana de Mastozoología and Murciélago Blanco Publishing House (2017).

    35.
    Jara-Guerrero, A., Maldonado Riofrío, D., Espinosa, C. I. & Duncan, D. H. Beyond the blame game: a restoration pathway reconciles ecologists’ and local leaders’ divergent models of seasonally dry tropical forest degradation. Ecol. Soc. 24, 22 (2019).
    Article  Google Scholar 

    36.
    Cueva Ortiz, J. et al. Influence of anthropogenic factors on the diversity and structure of a dry forest in the central part of the Tumbesian region (Ecuador-Perú). Forests 10, 1–22 (2019).
    Article  Google Scholar 

    37.
    Medina, A., Harvey, C. A., Sánchez Merlo, D., Vílchez, S. & Hernández, B. Bat diversity and movement in an agricultural landscape in Matiguás, Nicaragua. Biotropica 39, 120–128 (2007).
    Article  Google Scholar 

    38.
    Davies, K. F., Margules, C. R. & Lawrence, J. F. Which traits of species predict population declines in experimental forest fragments?. Ecology 81, 1450–1461 (2000).
    Article  Google Scholar 

    39.
    Henle, K., Davies, K. F., Kleyer, M., Margules, C. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).
    Article  Google Scholar 

    40.
    Medellin, R. A. Chrotopterus auritus. Mamm. Species 343, 1–5 (1989).
    Google Scholar 

    41.
    Aguirre, L. F., Lens, L., Van Damme, R. & Matthysen, E. Consistency and variation in the bat assemblages inhabiting two forest islands within a neotropical savanna in Bolivia. J. Trop. Ecol. 19, 367–374 (2003).
    Article  Google Scholar 

    42.
    Stoner, K. E. Phyllostomid bat community structure and abundance in two contrasting tropical dry forests. Biotropica 37, 591–599 (2005).
    Article  Google Scholar 

    43.
    Gotelli, N. J. & Colwell, R. K. Estimating species richness. In Biological diversity: frontiers in measurement and assessment (eds. Magurran, A. & McGill, B. J.) 39–54 (Oxford University Press, 2011).

    44.
    Moreno, C. E. & Halffter, G. Assessing the completeness of bat biodiversity inventories using species accumulation curves. J. Appl. Ecol. 37, 149–158 (2000).
    Article  Google Scholar 

    45.
    Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. Biol. Sci. 345, 101–118 (1994).
    ADS  CAS  Article  Google Scholar 

    46.
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Article  Google Scholar 

    47.
    Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).
    Article  Google Scholar 

    48.
    Mena, J. L. & Williams de Castro, M. Diversidad y patrones reproductivos de quirópteros en un área urbana de Lima, Perú. Ecol. Apl. 1, 1–8 (2002).
    Article  Google Scholar 

    49.
    Pacheco, V., Cadenillas, R., Salas, E., Tello, C. & Zeballos, H. Diversidad y endemismo de los mamíferos del Perú. Rev. Peru. Biol. 16, 5–32 (2009).
    Google Scholar 

    50.
    Pinto, C. M., Marchán-Rivadeneira, M. R., Tapia, E. E., Carrera, J. P. & Baker, R. J. Distribution, abundance and roosts of the fruit bat Artibeus fraterculus (Chiroptera: Phyllostomidae). Acta Chiropterologica 15, 85–94 (2013).
    Article  Google Scholar 

    51.
    Homyack, J. A. Evaluating habitat quality of vertebrates using conservation physiology tools. Wildl. Res. 37, 332–342 (2010).
    Article  Google Scholar 

    52.
    Carrasco-Rueda, F. & Loiselle, B. A. Do riparian forest strips in modified forest landscapes aid in conserving bat diversity?. Ecol. Evol. 9, 4192–4209 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Lewis, S. E. Roost fidelity of bats: a review. Am. Soc. Mammal. Roost 76, 481–496 (1995).
    Google Scholar 

    54.
    Voss, R. S., Fleck, D. W., Strauss, R. E., Velazco, P. M. & Simmons, N. B. Roosting ecology of Amazonian bats: evidence for guild structure in hyperdiverse mammalian communities. Am. Museum Novit. 3870, 1–43 (2016).
    Article  Google Scholar 

    55.
    Hylander, K. & Ehrle, J. The mechanisms causing extinction debts. Trends Ecol. Evol. 28, 341–346 (2013).
    PubMed  Article  Google Scholar 

    56.
    Willig, M. R. et al. Guild-level responses of bats to habitat conversion in a lowland Amazonian rainforest: species composition and biodiversity. J. Mammal. 100, 223–238 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Meyer, C. F. J. Methodological challenges in monitoring bat population- and assemblage-level changes for anthropogenic impact assessment. Mamm. Biol. 80, 159–169 (2015).
    Article  Google Scholar 

    58.
    Gibb, R., Browning, E., Glover-Kapfer, P. & Jones, K. E. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. 10, 169–185 (2019).
    Article  Google Scholar 

    59.
    Sikes, R. S. & the Animal Care and Use Committee of the American Society of Mammalogists. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).

    60.
    Espinosa, C. I. et al. Bosques tropicales secos de la región Pacífico Ecuatorial: diversidad, estructura, funcionamiento e implicaciones para la conservación. Ecosistemas 21, 167–179 (2012).
    Google Scholar 

    61.
    García-Cervigón, A. I., Camarero, J. J. & Espinosa, C. I. Intra-annual stem increment patterns and climatic responses in five tree species from an Ecuadorian tropical dry forest. Trees 31, 1057–1067 (2017).
    Article  Google Scholar 

    62.
    Jara-Guerrero, A., De la Cruz, M. & Méndez, M. Seed dispersal spectrum of woody species in South Ecuadorian dry forests: environmental correlates and the effect of considering species abundance. Biotropica 43, 722–730 (2011).
    Article  Google Scholar 

    63.
    Vázquez, M., Larrea, M. & Ojeda, P. Biodiversidad en los bosques secos del suroccidente de la provincia de Loja (EcoCiencia, 2001).
    Google Scholar 

    64.
    Tapia-Armijos, M. F., Homeier, J., Espinosa, C. I., Leuschner, C. & De La Cruz, M. Deforestation and forest fragmentation in south Ecuador since the 1970s-losing a hotspot of biodiversity. PLoS ONE 10, e133701 (2015).
    Google Scholar 

    65.
    Cueva Ortiz, J. & Chalán, L. A. Cobertura vegetal y uso actual del suelo de la provincia de Loja. Informe Técnico (2010).

    66.
    Kalka, M. & Kalko, E. K. V. Gleaning bats as underestimated predators of herbivorous insects: diet of Micronycteris microtis (Phyllostomidae) in Panama. J. Trop. Ecol. 22, 1–10 (2006).
    Article  Google Scholar 

    67.
    Espinosa, C. I., Valle, D., Armijos, D., Jara-Guerrero, A. & Griffith, D. M. Bat abundance data from Zapotillo, Ecuador 2013–2017. Knowl. Netw. Biocomplexity https://doi.org/10.5063/F1765CQJ (2020).
    Article  Google Scholar 

    68.
    Barwell, L. J., Isaac, N. J. B. & Kunin, W. E. Measuring β-diversity with species abundance data. J. Anim. Ecol. 84, 1112–1122 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness: a comparison of body condition indices. Oikos 77, 61–67 (1996).
    Article  Google Scholar 

    70.
    Reist, J. D. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can. J. Zool. 63, 1429–1439 (1985).
    ADS  Article  Google Scholar 

    71.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).

    72.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2018). More

  • in

    Genetic structure of Malus sylvestris and potential link with preference/performance by the rosy apple aphid pest Dysaphis plantaginea

    Plant and insect materials
    A total of 56 apple plants were grown from seeds and sampled for this study. Cultivated apple plants resulting from crosses between various cultivated apple varieties were used (M. domestica, referred to as “Dom”, N = 14, Table S1). The seeds were kindly provided by INRAE IRHS Angers that performed every year crosses for apple breeding programs. A total of 42 M. sylvestris plants were grown from field-collected seeds. These wild apple seeds originated from three out of the five known European wild apple populations (referred to as Danish: Syl_Dk, French: Syl_Fr and Romanian: Syl_Ro, N = 14 per population). Each population was represented by a single sampling site, and within each site, each seed was sampled on a single mother tree, so that each seedling has a different parental origin. Though M. domestica is usually grafted, new plants were grown from seed to eliminate the rootstock effect.
    After field sampling, seeds were stored at -20 °C before vernalization for the experiment. Seeds were then vernalized for three months at 4 °C in the dark, then grown in controlled conditions for two months before being individually transferred to 3 L pots containing commercial sterilized potting soil. Potted plants were grown in a growth chamber for four weeks under the following conditions: 20 ± 1 °C, 75 ± 5% Relative Humidity (RH), and a 16:8 light:dark (L:D) photoperiod. The 56 plants were then genotyped using 13 previously published microsatellite markers (see below) to confirm their genetic status (i.e., belonging to one of the M. sylvestris European populations or crop-to-wild/wild-to-wild hybrid).
    A single colony of D. plantaginea (Hemiptera: Aphididae) was used and provided by INRAE which were sampled as a population in spring 2018 from an apple tree at the Agrocampus Ouest orchard (Angers, France) (Philippe Robert, personal communication). This aphid population was mass reared without differentiating individual aphid clones on M. domestica cv. “Jonagold” plants obtained by in vitro multiplication21. Pots containing three plants (90 × 90 × 70 mm) were placed in a Plexiglas cube (50 cm). Mass rearing and experiments were performed in growth chambers under 20 ± 1 °C, 60 ± 5% RH, and a 16:8 L:D cycle.
    Synchronized first instar nymphs were obtained by placing parthenogenetic adult females on plantlets for 24 h before removing them. They were then reared on M. domestica cv. “Jonagold” plants inside Plexiglas aerated boxes (36 × 24 × 14 cm) for ten days then used as the young adult RAA for the behavioral/performance experiments.
    Apple population genetic diversity and structure
    Genomic DNA was extracted with the NucleoSpin plant DNA extraction kit II (Macherey & Nagel, Düren, Germany) according to the manufacturer’s instructions. Microsatellites were amplified by multiplex PCR, with the Multiplex PCR Kit (QIAGEN, Inc.). We used 13 microsatellite markers, Ch01f02, Ch01f03, Ch01h01, Ch01h10, Ch02c06, Ch02c09, Ch02c11, Ch02d08, Ch03d07, Ch04c07, Ch05f06, GD12, and Hi02c07 in four multiplexes (MP01, MP02, MP03, MP04)4. PCR were performed in a final reaction volume of 15 ml (7.5 ml of QIAGEN Multiplex Master Mix, 10–20 mM of each primer, with the forward primer labelled with a fluorescent dye and 10 ng of template DNA) (See4 for more details). The final volume was achieved with distilled water. A touch-down PCR program (initial annealing temperature of 60 °C, decreasing by 1 °C per cycle down to 55 °C) was used. Genotyping was performed on the GENTYANE platform (INRAE Clermont-Ferrand) using an ABI PRISM X3730XL, with 2 ml of GS500LIZ size standard (Applied Biosystems). Alleles were scored with GENEMAPPER 4.0 software (Applied Biosystems). Only multilocus genotypes with  0.1 were classified as crop-to-wild hybrids (i.e., introgressed by M. domestica). Once crop-wild hybrids removed, plants assigned to a given wild gene pool with a cumulated membership coefficient  > 0.9 were defined as “pure wild” individuals. Plants assigned to the wild gene pool with a cumulated membership coefficient  More

  • in

    Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India

    1.
    Grigg, G. & Kirshner, D. Biology and Evolution of Crocodylians (CSIRO Publishing, 2015). https://doi.org/10.1071/9781486300679.
    Google Scholar 
    2.
    Singh, L. A. K. Ecological studies on the Indian gharial Gavialis gangeticus (Gmelin) (Reptilia, Crocodilia). PhD Thesis, Utkal University, Odisha (1978).

    3.
    Whitaker, R. The management of crocodilians in India. In Wildlife Management; Crocodiles and Alligators (eds Webb, G. J. W. et al.) 63–72 (Surrey Beatty and Sons, 1987).
    Google Scholar 

    4.
    Hussain, S. A. Reproductive success, hatchling survival and rate of increase of gharial Gavialis gangeticus in National Chambal Sanctuary, India. Biol. Conserv. 87, 261–268 (1999).
    Article  Google Scholar 

    5.
    Bustard, H. R. A future for the Gharial. Cheetal 17, 3–8 (1975).
    Google Scholar 

    6.
    Hussain, S. A. Basking site and water depth selection by gharial Gavialis gangeticus Gmelin 1789 (Crocodylia, Reptilia) in National Chambal Sanctuary, India and its implication for river conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 127–133 (2009).
    Article  Google Scholar 

    7.
    Lang, J. W., Chowfin, S. & Ross, J. P. Gavialis gangeticus (errata version published in 2019). IUCN Red List Threat. Species 2019 (2019).

    8.
    Basu, D. Saving the gharial. Indian Wildlifer 1, 7–15 (1981).
    Google Scholar 

    9.
    Singh, V. B. The status of the gharial (Gavialis gangeticus) in U.P. and its rehabilitation. J. Bombay Nat. Hist. Soc. 75, 668–683 (1978).
    Google Scholar 

    10.
    Stevenson, C. & Whitaker, R. Indian Gharial Gavialis gangeticus. In Crocodiles. Status Survey and Conservation Action Plan (eds Manolis, S. C. & Stevenson, C.) 139–143 (Crocodile Specialist Group, 2010).
    Google Scholar 

    11.
    Whitaker, R. & Basu, D. The gharial (Gavialis gangeticus) a review. J. Bombay Nat. Hist. Soc. 79, 531–548 (1982).
    Google Scholar 

    12.
    Whitaker, R. The gharial: Going extinct again. Iguana 14, 25–33 (2007).
    Google Scholar 

    13.
    Lang, J. W., Jailabdeen, A. & Kumar, P. Gharial ecology project—Update 2018–2019. IUCN-SSC Crocodile Spec. Gr. Newsl. 37, 15–17 (2018).
    Google Scholar 

    14.
    IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations IUCN. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission viiii + 57 pp. (2013).

    15.
    Schwartz, M. K. Guidelines on the use of molecular genetics in reintroduction programs. EU LIFE-Nature Proj. to Guidel. reintroduction Threat. species 51–58 (2005).

    16.
    White, L. C., Moseby, K. E., Thomson, V. A., Donnellan, S. C. & Austin, J. J. Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biol. Conserv. 219, 1–11 (2018).
    Article  Google Scholar 

    17.
    Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 4, 709–725 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).
    PubMed  Article  Google Scholar 

    19.
    Katdare, S. et al. Gharial (Gavialis gangeticus) populations and human influences on habitat on the River Chambal, India. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 364–371 (2011).
    Article  Google Scholar 

    20.
    Nair, T., Thorbjarnarson, J. B., Aust, P. & Krishnaswamy, J. Rigorous gharial population estimation in the Chambal: Implications for conservation and management of a globally threatened crocodilian. J. Appl. Ecol. 49, 1046–1054 (2012).
    Article  Google Scholar 

    21.
    Hussain, S. A. Ecology of gharial (Gavialis gangeticus) in National Chambal Sanctuary. MPhil Thesis, Aligarh Muslim University, Uttar Pradesh (1991).

    22.
    Sharma, S. P. et al. Mitochondrial DNA analysis reveals extremely low genetic diversity in a managed population of the Critically Endangered Gharial (Gavialis gangeticus, Gmelin 1789). Herpetol. J. 30, 202–206 (2020).
    Article  Google Scholar 

    23.
    Jogayya, K. N., Meganathan, P. R., Dubey, B. & Haque, I. Novel microsatellite DNA markers for Indian Gharial (Gavialis gangeticus). Conserv. Genet. Resour. 5, 787–790 (2013).
    Article  Google Scholar 

    24.
    Zhu, H., Wu, X., Xue, H., Wei, L. & Hu, Y. Isolation of polymorphic microsatellite loci from the Chinease alligator (Alligator sinensis). Mol. Ecol. Resour. 9, 892–894 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Glenn, T. C. et al. Characterization of microsatellite DNA loci in American alligators. Copeia 3, 591–601 (1998).
    Article  Google Scholar 

    26.
    Ojeda, G. N., Amavet, P. S., Rueda, E. C., Siroski, P. A. & Larriera, A. Mating system of Caiman yacare (Reptilia: Alligatoridae) described from microsatellite genotypes. J. Hered. 108, 135–141 (2017).
    PubMed  PubMed Central  Google Scholar 

    27.
    Yu, D. et al. Analysis of genetic variation and bottleneck in a captive population of Siamese crocodile using novel microsatellite loci. Conserv. Genet. Resour. 3, 217–220 (2011).
    Article  Google Scholar 

    28.
    Hinlo, M. R. P. et al. Population genetics implications for the conservation of the Philippine Crocodile Crocodylus mindorensis Schmidt, 1935 (Crocodylia: Crocodylidae). J. Threat. Taxa 6, 5513–5533 (2014).
    Article  Google Scholar 

    29.
    Mcvay, J. D. et al. Evidence of multiple paternity in Morelet’s Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. J. Exp. Zool. Part A Ecol. Genet. Physiol. 309, 643–648 (2008).
    Article  Google Scholar 

    30.
    Dever, J. A., Strauss, R. E., Rainwater, T. R., McMurry, S. T. & Densmore, I. L. D. Genetic diversity, population subdivision, and gene flow in Morelet’s crocodile (Crocodylus moreletii) from Belize, Central America. Copeia 4, 1078–1091 (2002).
    Article  Google Scholar 

    31.
    Aggarwal, R. K., Lalremruata, A. & Dubey, B. Development of fourteen novel microsatellite markers of Crocodylus palustris, the Indian mugger, and their cross-species transferability in ten other crocodilians. Conserv. Genet. Resour. 7, 197–200 (2014).
    Article  Google Scholar 

    32.
    Campos, J. C., Mobaraki, A., Abtin, E., Godinho, R. & Brito, J. C. Preliminary assessment of genetic diversity and population connectivity of the Mugger Crocodile in Iran. Amphib. Reptil. 39, 126–131 (2018).
    Article  Google Scholar 

    33.
    Garner, A., Rachlow, J. L. & Hicks, J. F. Patterns of genetic diversity and its loss in mammalian populations. Conserv. Biol. 19, 1215–1221 (2005).
    Article  Google Scholar 

    34.
    Rossi, N. A. et al. High levels of population genetic differentiation in the American crocodile (Crocodylus acutus). PLoS ONE 15, e0235288 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    van Asch, B. et al. Phylogeography, genetic diversity, and population structure of Nile crocodile populations at the fringes of the southern African distribution. PLoS ONE 14, 1–20 (2019).
    Google Scholar 

    36.
    Luck, N. L. et al. Mitochondrial DNA analyses of the saltwater crocodile (Crocodylus porosus) from the Northern Territory of Australia. Aust. J. Zool. 60, 18–25 (2012).
    Article  Google Scholar 

    37.
    Russello, M. A., Brazaitis, P., Gratten, J., Watkins-Colwell, G. J. & Caccone, A. Molecular assessment of the genetic integrity, distinctiveness and phylogeographic context of the Saltwater crocodile (Crocodylus porosus) on Palau. Conserv. Genet. 8, 777–787 (2007).
    CAS  Article  Google Scholar 

    38.
    Ray, D. A. et al. Low levels of nucleotide diversity in Crocodylus moreletiiand evidence of hybridization with C. acutus. Conserv. Genet. 5, 449–462 (2004).
    CAS  Article  Google Scholar 

    39.
    Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).
    CAS  PubMed  Article  Google Scholar 

    41.
    Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Blackwell Publishing, 2007).
    Google Scholar 

    43.
    Guries, R. P. & Ledig, F. T. Genetic structure of populations and differentiation in forest trees. in Conkle, MT (tech. coord.) Proceedings of the symposium on isozymes of North American forest trees and forest insects. USDA For. Serv. Gen. Tech. Rep. PSW-48 42–47 (1979).

    44.
    Biebach, I. & Keller, L. F. Inbreeding in reintroduced populations: The effects of early reintroduction history and contemporary processes. Conserv. Genet. 11, 527–538 (2010).
    Article  Google Scholar 

    45.
    Wang, J. Estimating pairwise relatedness in a small sample of individuals. Heredity (Edinb). 119, 302–313 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Degiorgio, M. & Rosenberg, N. A. An unbiased estimator of gene diversity in samples containing related individuals p. Mol. Biol. Evol. 26, 501–512 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Girod, C., Vitalis, R., Leblois, R. & Fréville, H. Inferring population decline and expansion from microsatellite data: A simulation-based evaluation of the msvar method. Genetics 188, 165–179 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Luikart, G. & Cornuet, J. M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237 (1998).
    Article  Google Scholar 

    50.
    Keller, L. F. et al. Immigration and the ephemerality of a natural population bottleneck: Evidence from molecular markers. Proc. R Soc. London. Ser. B Biol. Sci. 268, 1387–1394 (2001).
    CAS  Article  Google Scholar 

    51.
    Cristescu, R., Sherwin, W. B., Handasyde, K., Cahill, V. & Cooper, D. W. Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: The importance of the microsatellite structure. Conserv. Genet. 11, 1043–1049 (2010).
    Article  Google Scholar 

    52.
    Peery, M. Z. et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21, 3403–3418 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Hoban, S. M., Gaggiotti, O. E. & Bertorelle, G. The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: A simulation-based study. Mol. Ecol. 22, 3444–3450 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).
    Google Scholar 

    56.
    Miquel, C. et al. Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol. Ecol. Notes 6, 985–988 (2006).
    Article  Google Scholar 

    57.
    Oaks, J. R. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution (N.Y.) 65, 3285–3297 (2011).
    Google Scholar 

    58.
    Broquet, T. & Petit, E. Quantifying genotyping errors in noninvasive population genetics. Mol. Ecol. 13, 3601–3608 (2004).
    CAS  PubMed  Article  Google Scholar 

    59.
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    61.
    Valière, N. GIMLET: A computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379 (2002).
    Google Scholar 

    62.
    Peakall, R. & Smouse, P. E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Kalinowski, S. T. HP-RARE 1.0—A computer program for performing rarefaction on measures of allelic richness.pdf. Mol. Ecol. Notes 5, 187–189 (2005).
    CAS  Article  Google Scholar 

    65.
    Weir, B. S. & Cockerham, C. Estimating F-statistics for the analysis of population structure. Evolution (N. Y.). 38, 1358–1370 (1984).
    CAS  Google Scholar 

    66.
    Hedrick, P. W. A standardized genetic differentiation measure. Evolution (N. Y.). 59, 1633–1638 (2005).
    CAS  Google Scholar 

    67.
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Archer, F. I., Adams, P. E. & Schneiders, B. B. stratag: An r package for manipulating, summarizing and analysing population genetic data. Mol. Ecol. Resour. 17, 5–11 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    72.
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Article  Google Scholar 

    73.
    Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
    Article  Google Scholar 

    74.
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).
    PubMed  PubMed Central  Google Scholar 

    75.
    Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinforma. Online. 1, 47–50 (2005).
    CAS  Google Scholar 

    76.
    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
    Article  Google Scholar 

    77.
    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).
    CAS  PubMed  Article  Google Scholar 

    78.
    Di Rienzo, A. et al. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 91, 3166–3170 (1994).
    ADS  PubMed  Article  Google Scholar 

    79.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    81.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  Article  Google Scholar  More

  • in

    Seeding the idea of encapsulating a representative synthetic metagenome in a single yeast cell

    1.
    Dixon, T. & Pretorius, I. S. Drawing on the past to shape the future of synthetic yeast research. Int. J. Mol. Sci. 21, 7156 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 
    2.
    Dixon, T., Curach, N. & Pretorius, I. S. Bio-informational futures: the convergence of artificial intelligence and synthetic biology. EMBO Rep. 21, e50036 (2020a). 1–5.
    CAS  Article  Google Scholar 

    3.
    Dixon, T., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Layeghifard, M., Hwang, D. W. & Guttman, D. S. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 25, 217–228 (2017).
    CAS  PubMed  Article  Google Scholar 

    5.
    Pretorius, I. S. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. 20, foz084 (2020).
    CAS  PubMed  Article  Google Scholar 

    6.
    Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Pretorius, I. S. & Boeke, J. D. Yeast 2.0 − Connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Res. 18, foy032 (2018).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    8.
    Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Muller, E. E. L. et al. Using metabolic networks to resolve ecological properties of microbiomes. Curr. Opin. Syst. Biol. 8, 73–80 (2018).
    Article  Google Scholar 

    10.
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).
    CAS  Article  Google Scholar 

    11.
    Roume, H. et al. Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. npj Biofilms Microbiomes 1, 15007 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    McCarty, N. S. & Ledesma-Amaro, R. Synthetic Biology tools to engineer microbial communities for Biotechnology. Trends Biotechnol. 37, 181–197 (2018).
    PubMed  Article  CAS  Google Scholar 

    14.
    Peris, D. et al. Synthetic hybrids of six yeast species. Nat. Commun. 11, 2085 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Yi, X. & Dean, A. M. Adaptive landscapes in the age of synthetic biology. Mol. Biol. Evol. 36, 890–907 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Goel, A., Wortel, M. T., Molenaar, D. & Teusink, B. Metabolic shifts: a fitness perspective for microbial cell factories. Biotechnol. Lett. 34, 2147–2160 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    De Vrieze, J. & Verstraete, W. Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. Environ. Microbiol. 18, 2797–2809 (2016).
    PubMed  Article  CAS  Google Scholar 

    18.
    Wolfe, B. E. & Dutton, R. J. Fermented foods as experimentally tractable microbial ecosystems. Cell 161, 49–55 (2015).
    CAS  PubMed  Article  Google Scholar 

    19.
    Lurgi, M., Thomas, T., Wemheuer, B., Webster, N. S. & Montoya, J. M. Modularity and predicted functions of the global sponge-microbiome network. Nat. Commun. 10, 992 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Cao, H., Gibson, T., Bashan, A. & Liu, Y. Inferring human microbial dynamics from temporal metagenomics data: Pitfalls and lessons. BioEssays 39, 1600188 (2016).
    Article  Google Scholar 

    21.
    Liu, Z. et al. Network analyses in microbiome based on high-throughput multi-omics data. Brief. Bioinform. 00, 1–17 (2020).
    Google Scholar 

    22.
    Danczak, R. E. et al. Using metacommunity ecology to understand environmental metabolomes. Nat. Commun. 11, 6369 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Dini-Andreote, F. et al. Dynamics of bacterial community succession in a saltmarsh chronosequence: evidences for temporal niche partitioning. ISME J. 8, 1989–2001 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Heintz-Buschart, A. et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat. Microbiol. 2, 16180 (2016).
    CAS  PubMed  Article  Google Scholar 

    25.
    Toju, H. et al. Scoring species for synthetic community design: Network analyses of functional core microbiomes. Front. Microbiol. 11, 1361 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Medlock, G. L. et al. Inferring metabolic mechanisms of interaction within a defined gut microbiota. Cell Syst. 7, 245–257 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Gibson, D. G. Programming biological operating systems: genome design, assembly and activation. Nat. Meth 11, 521–526 (2014).
    CAS  Article  Google Scholar 

    28.
    Hillson, N. et al. Building a global alliance of biofoundries. Nat. Commun. 10, 2040 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).
    CAS  PubMed  Article  Google Scholar 

    30.
    Coradini, A. L. V., Hull, C. B. & Ehrenreich, I. M. Building genomes to understand biology. Nat. Commun. 11, 6177 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Bartley, B. A. et al. Organizing genome engineering for the gigabase scale. Nat. Commun. 11, 689 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Lau, Y. H. et al. Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Res. 45, 6971–6980 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Kouprina, N. & Larionov, V. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 125, 621–632 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Benders, G. A. et al. Cloning whole bacterial genomes in yeast. Nucleic Acids Res. 38, 2558–2569 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Mortimer, R. K. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res. 9, 312–326 (1958).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Shao, Y. et al. Creating a functional single-chromosome yeast. Nature 560, 331–335 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Hossain, A. et al. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat. Biotechnol. 38, 1466–1475 (2020).
    PubMed  Article  CAS  Google Scholar 

    38.
    Decoene, T., Peters, G., De Maeseneire, S. L. & De Mey, M. Toward predictable 5′UTRs in Saccharomyces cerevisiae: Development of a yUTR calculator. ACS Synth. Biol. 7, 622–634 (2018).
    CAS  PubMed  Article  Google Scholar 

    39.
    Weenink, T., van der Hilst, J., McKiernan, R. M. & Ellis, T. Design of RNA hairpin modules that predictably tune translation in yeast. Synth. Biol. 3, ysy019 (2018).
    CAS  Article  Google Scholar 

    40.
    Kotopka, B. J. & Smolke, C. D. Model-driven generation of artificial yeast promoters. Nat. Commun. 11, 2113 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Curran, K. A. et al. Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth. Biol. 4, 824–832 (2015).
    CAS  PubMed  Article  Google Scholar 

    42.
    MacPherson, M. & Saka, Y. Short synthetic terminators for assembly of transcription units in vitro and stable chromosomal integration in yeast S. cerevisiae. ACS Synth. Biol. 6, 130–138 (2017).
    CAS  PubMed  Article  Google Scholar 

    43.
    Morse, N. J., Gopal, M. R., Wagner, J. M. & Alper, H. S. Yeast terminator function can be modulated and designed on the basis of predictions of nucleosome occupancy. ACS Synth. Biol. 6, 2086–2095 (2017).
    CAS  PubMed  Article  Google Scholar 

    44.
    Gräslund, S. et al. Structural Genomics Consortium: Protein production and purification. Nat. Methods 5, 135–146 (2008).
    PubMed  Article  Google Scholar 

    45.
    Lin, Y., Zou, X., Zheng, Y., Cai, Y. & Dai, J. Improving chromosome synthesis with a semiquantitative phenotypic assay and refined assembly strategy. ACS Synth. Biol. 8, 2203–2211 (2019).
    CAS  PubMed  Article  Google Scholar 

    46.
    Mitchell, L. A. et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 355, eaaf4831 (2017).
    PubMed  Article  CAS  Google Scholar 

    47.
    Wu, Y. et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science 355, eaaf4706 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Salinas, F. et al. Fungal light-oxygen-voltage domains for optogenetic control of gene expression and flocculation in yeast. mBio 9, e00626–18 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Shen, Y. et al. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res. 26, 36–49 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Jin, J., Jia, B. & Yuan, Y. J. Yeast chromosomal engineering to improve industrially-relevant phenotypes. Curr. Opin. Biotechnol. 66, 165–170 (2020).
    CAS  PubMed  Article  Google Scholar 

    51.
    Dymond, J. & Boeke, J. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng. Bugs 3, 168–171 (2012).
    PubMed  PubMed Central  Google Scholar 

    52.
    Lee, D., Lloyd, N. D. R., Pretorius, I. S. & Borneman, A. R. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Micro. Cell Fact. 15, 49 (2016).
    Article  CAS  Google Scholar 

    53.
    Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 34, 371–381 (2016).
    CAS  PubMed  Article  Google Scholar 

    54.
    Williams, T. C., Xu, X., Ostrowski, M., Pretorius, I. S. & Paulsen, I. T. Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synth. Biol. 2, ysw002 (2017).
    CAS  Article  Google Scholar 

    55.
    Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Belda, I. et al. Unraveling the enzymatic basis of wine ‘flavorome’: a phylo-functional study of wine related yeast species. Front. Microbiol. 7, 1–13 (2016).
    Article  Google Scholar 

    57.
    Belda, I. et al. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 22, 1–29 (2017).
    Article  CAS  Google Scholar 

    58.
    Bokulich, N. A. et al. Associations among wine grape microbiome, metabolome, and fermentation behaviour suggest contribution to regional wine characteristics. mBio 7, 1–12 (2016).
    Article  Google Scholar 

    59.
    Liu, D., Chen, Q., Zhang, P., Chen, D. & Howell, K. S. The fungal microbiome is an important component of vineyard ecosystems and correlates with regional distinctiveness of wine. mSphere 5, e00534–20 (2020).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment

    1.
    Estrada, B., Aroca, R., Maathuis, F. J., Barea, J. M. & Ruiz-Lozano, J. M. Arbuscular mycorrhizal fungi native from a mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 36, 1771–1782 (2013).
    CAS  PubMed  Article  Google Scholar 
    2.
    Uva, R. H. & Whitlow, T. H. Beach plum (Prunus maritima Marsh.): Small farm sustainability through crop diversification and value added products. HortScience 38, 793 (2003).
    Google Scholar 

    3.
    Yan, D. L., Wang, G., Fang, K., Zai, X. M. & Qin, P. Introduction, cultivation and utilization of salt-tolerance beach plum. China For. Sci. Technol. 20, 67–69 (2006).
    Google Scholar 

    4.
    Zhang, H. S., Wu, X. H. & Li, G. Interactions between arbuscular mycorrhizal fungi and phosphate solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol. Fert. Soils 47, 543–554 (2011).
    CAS  Article  Google Scholar 

    5.
    Ait-El-Mokhtar, M. et al. Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Front. Sustain. Food Syst. 4, 131 (2020).
    Article  Google Scholar 

    6.
    Porcel, R., Redondo-Gómez, S. & Mateos-Naranjo, E. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J. Plant Physiol. 185, 75–83 (2015).
    CAS  PubMed  Article  Google Scholar 

    7.
    Sheng, M., Tang, M. & Chen, H. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18, 287–296 (2008).
    CAS  PubMed  Article  Google Scholar 

    8.
    Harbinson, J. Improving the accuracy of chlorophyll fluorescence measurements. Plant Cell Environ. 36, 1751–1754 (2013).
    PubMed  Article  Google Scholar 

    9.
    Zhu, X. C., Song, F. B., Liu, S. Q. & Liu, T. D. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ. 58, 186–191 (2012).
    CAS  Article  Google Scholar 

    10.
    Wang, F., Sun, Y. & Shi, Z. Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms 7, 289 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    11.
    Qiu, Y. J. et al. Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity. Physiol. Mol. Plant Pathol. 112, 101522 (2020).
    CAS  Article  Google Scholar 

    12.
    Zhang, H. S., Qin, P. & Zhang, W. M. Effects of inoculation of arbuscular mycorrhizal fungus and Apophysomyces spartina on P-uptake of castor oil plant (Ricinus communis L.) and rhizosphere soil enzyme activities under salt stress. Agri. Sci. Technol. 15, 659 (2014).
    CAS  Google Scholar 

    13.
    Ghorchiani, M., Etesami, H. & Alikhani, H. A. Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric. Ecosyst. Environ. 258, 59–70 (2018).
    CAS  Article  Google Scholar 

    14.
    Augé, R. M., Toler, H. D., Sams, C. E. & Nasim, G. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18, 115–121 (2008).
    PubMed  Article  Google Scholar 

    15.
    Sharma, S., Compant, S., Ballhausen, M. B., Ruppel, S. & Franken, P. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiol. Res. 240, 126556 (2020).
    CAS  PubMed  Article  Google Scholar 

    16.
    Vassilev, N., Eichler-Löbermann, B. & Vassileva, M. Stress-tolerant P-solubilizing microorganisms. Appl. Microbiol. Biot. 95, 851–859 (2012).
    CAS  Article  Google Scholar 

    17.
    Ait-El-Mokhtar, M. et al. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci. Hort. 253, 429–438 (2019).
    Article  Google Scholar 

    18.
    Zai, X. M., Zhu, S. N., Qin, P., Che, L. & Luo, F. X. Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica 50, 323–328 (2012).
    CAS  Article  Google Scholar 

    19.
    Navarro, J. M., Pérez-Tornero, O. & Morte, A. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J. Plant Physiol. 171, 76–85 (2014).
    CAS  PubMed  Article  Google Scholar 

    20.
    Toro, M., Azcon, R. & Herrera, R. Effects on yield and nutrition of mycorrhizal and nodulated Pueraria phaseolides exerted by P-solubilizing rhizobacteria. Biol. Fertil. Soils 21, 23–29 (1996).
    Article  Google Scholar 

    21.
    Singh, S. & Kapoor, K. K. Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol. Fertil. Soils 28, 139–144 (1999).
    CAS  Article  Google Scholar 

    22.
    Osorio, N. W. & Habte, M. Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res. Manag. 15, 263–274 (2001).
    CAS  Article  Google Scholar 

    23.
    Khan, M. S., Zaidi, A. & Wani, P. A. Role of phosphate-solubilizing microorganisms in sustainable agriculture—A review. Agron. Sustain Dev. 27, 29–43 (2007).
    Article  Google Scholar 

    24.
    Saxena, J., Saini, A., Ravi, I., Chandra, S. & Garg, V. Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J. Crop Improv. 29, 353–369 (2015).
    CAS  Article  Google Scholar 

    25.
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008).
    Google Scholar 

    26.
    Ben-Laouane, R., Baslam, M., Ait-El-Mokhtar, M., Anli, M. & Meddich, A. Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms 8, 1695 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    27.
    Hodge, A., Campbell, C. D. & Fitter, A. H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413, 297–299 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Johansen, A., Finlay, R. D. & Olsson, P. A. Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133, 705–712 (1996).
    CAS  Article  Google Scholar 

    29.
    Vicente-Sánchez, J. et al. Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza 24, 339–348 (2014).
    PubMed  Article  CAS  Google Scholar 

    30.
    Abdel-Fattah, G. M. & Asrar, A. W. A. Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol. Plant. 34, 267–277 (2012).
    CAS  Article  Google Scholar 

    31.
    Marschner, P. Rhizosphere biology. In Marschner’s Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 369–388 (Academic Press, 2012).
    Google Scholar 

    32.
    Abd-Allah, E. F. & Egamberdieva, D. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak. J. Bot. 48, 37–45 (2016).
    Google Scholar 

    33.
    Van den Driessche, R. Effects of nutrients on stock performance in the forest. In Mineral Nutrition of Conifer Seedlings (ed. van den Driessche, R.) 229–260 (CRC Press, 1991).
    Google Scholar 

    34.
    Ebel, R. C., Duan, X., Still, D. W. & Augé, R. M. Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil. New Phytol. 135, 755–761 (1997).
    CAS  Article  Google Scholar 

    35.
    Ruiz-Lozano, J. M. & Aroca, R. Host response to osmotic stresses: Stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In Arbuscular Mycorrhizas: Physiology and Function 239–256 (Springer, 2010).
    Google Scholar 

    36.
    Birhane, E., Sterck, F. J., Fetene, M., Bongers, F. & Kuyper, T. W. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169, 895–904 (2012).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Evelin, H., Giri, B. & Kapoor, R. Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonellafoenum graecum. Mycorrhiza 23, 71–86 (2012).
    PubMed  Article  CAS  Google Scholar 

    38.
    Aroca, R. et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170, 47–55 (2013).
    CAS  PubMed  Article  Google Scholar 

    39.
    Jungklang, J. Physiological and biochemical mechanisms of salt tolerance in Sesbania rostrata Berm and Obem. PhD Thesis (Agric Univ Teckuba, 2005).

    40.
    Baker, N. R. & Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: Examination of future possibilities. J. Exp. Bot. 55, 1607–1621 (2004).
    CAS  PubMed  Article  Google Scholar 

    41.
    Nwugo, C. C. & Huerta, A. J. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311, 73–86 (2008).
    CAS  Article  Google Scholar 

    42.
    Henriques, F. S. Leaf chlorophyll fluorescence: Background and fundamentals for plant biologist. Bot. Rev. 75, 249–270 (2009).
    Article  Google Scholar 

    43.
    Gong, M. G., Tang, M., Chen, H., Zhang, Q. & Feng, X. Effects of two Glomus species on the growth and physiological performance of Sophor davidii seedlings under water stress. New For. 44, 399–408 (2013).
    Article  Google Scholar 

    44.
    Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M. & Giller, K. E. Are the rate of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses. Soil Biol. Biochem. 41, 1233–1244 (2009).
    CAS  Article  Google Scholar 

    45.
    Hoagland, D. R. & Arnon, D. I. The water-culture method for growing plants without soil. Univ. Calif. Agric. Res. Stn. Circ. 347, 1–39 (1950).
    Google Scholar 

    46.
    Bradstreet, R. B. The kjeldahl method of organic nitrogen. Anal. Chem. 26, 185–187 (1965).
    Article  Google Scholar 

    47.
    Li, Z. G., Luo, Y. M. & Teng, Y. Research Methods of Soil and Environmental Microorganisms 64–83 (Science Press, 2008).
    Google Scholar 

    48.
    Mcgonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
    Article  Google Scholar 

    49.
    Xie, Z., Song, F., Xu, H., Shao, H. & Song, R. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. Sci. World J. 2014, 1–6 (2014).
    Google Scholar 

    50.
    Chen, X. L., Li, S. Q., Ren, X. L. & Li, S. X. Effect of atmospheric NH3 and hydroponic solution nitrogen levels on chlorophyll fluorescence of corn genotypes with different nitrogen use efficiencies. Acta Ecol. Sin. 28, 1026–1032 (2008).
    CAS  Google Scholar  More

  • in

    An ecological network approach to predict ecosystem service vulnerability to species losses

    1.
    Millennium Ecosystem Assessment (Program). Ecosystems and human well-being: our human planet: summary for decision-makers. The Millennium Ecosystem Assessment series. https://doi.org/10.1196/annals.1439.003 (2005).
    2.
    Mulder, C. et al. 10 Years later: revisiting priorities for science and society a decade after the millennium ecosystem assessment. Adv. Ecol. Res. 53, 1–53 (2015).

    3.
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270 (2018).

    4.
    Díaz, S. et al. The IPBES Conceptual Framework—connecting nature and people. Curr. Opin. Environ. Sustainab. 14, 1–16 (2015).

    5.
    Hungate, B. A. et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64, 49–57 (2014).
    Article  Google Scholar 

    6.
    Díaz, S., Fargione, J., Chapin, F. S. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).
    PubMed  Article  Google Scholar 

    8.
    Harvey, E., Gounand, I., Ward, C. L. & Altermatt, F. Bridging ecology and conservation: from ecological networks to ecosystem function. J. Appl. Ecol. 54, 371–379 (2017).
    Article  Google Scholar 

    9.
    Jacob, U. et al. Valuing biodiversity and ecosystem services in a complex marine ecosystem. (eds Belgrano, A., Woodward, G. & Jacob U.) in Aquatic Functional Biodiversity. 189–207 (Academic Press, 2015).

    10.
    Dee, L. E. et al. Operationalizing network theory for ecosystem service assessments. Trends Ecol. Evol. 32, 118–130 (2017).
    PubMed  Article  Google Scholar 

    11.
    Bohan, D. et al. Networking our way to better ecosystem service provision. Trends Ecol. Evol. 31, 105–115 (2016).
    Article  Google Scholar 

    12.
    Dunne, A. J. et al. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Article  Google Scholar 

    13.
    Binzer, A. et al. The susceptibility of species to extinctions in model communities. Basic Appl. Ecol. 12, 590–599 (2011).
    Article  Google Scholar 

    14.
    Eklöf, A., Tang, S. & Allesina, S. Secondary extinctions in food webs: a Bayesian network approach. Methods Ecol. Evol. 4, 760–770 (2013).
    Article  Google Scholar 

    15.
    Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1711–1723 (2009).
    Article  Google Scholar 

    16.
    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Dobson, A. Food-web structure and ecosystem services: insights from the Serengeti. Philos. Trans. R. Soc. B Biol. Sci. 364, 1665–1682 (2009).
    Article  Google Scholar 

    18.
    Estrada, E. Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution. J. Theor. Biol. 244, 296–307 (2007).
    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

    19.
    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).

    20.
    Curtsdotter, A. et al. Robustness to secondary extinctions: comparing trait-based sequential deletions in static and dynamic food webs. Basic Appl. Ecol. 12, 571–580 (2011).
    Article  Google Scholar 

    21.
    Srinivasan, U. T., Dunne, J. A., Harte, J. & Martinez, N. D. Response of complex food webs to realistic extinction sequences. Ecology 88, 671–682 (2007).

    22.
    Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).

    23.
    Dee, L. E., De Lara, M., Costello, C. & Gaines, S. D. To what extent can ecosystem services motivate protecting biodiversity? Ecol. Lett. 20, 935–946 (2017).
    PubMed  Article  Google Scholar 

    24.
    Dunne, J., Williams Richard, J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Article  Google Scholar 

    25.
    Allesina, S., Bodini, A. & Pascual, M. Functional links and robustness in food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1701–1709 (2009).
    Article  Google Scholar 

    26.
    Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).
    PubMed  Article  Google Scholar 

    27.
    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).
    PubMed  Article  Google Scholar 

    28.
    Allesina, S. et al. The robustness and restoration of a network of ecological networks. Science 5, 1–8 (2013).
    Google Scholar 

    29.
    Bane, M. S., Pocock, M. J. O. & James, R. Effects of model choice, network structure, and interaction strengths on knockout extinction models of ecological robustness. Ecol. Evol. 8, 10794–10804 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and robustness of marine food webs. Mar. Ecol. Prog. Ser. 273, 291–302 (2004).
    ADS  Article  Google Scholar 

    31.
    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).
    PubMed  Article  Google Scholar 

    32.
    Thellmann, K. et al. Tipping points in the supply of ecosystem services of a mountainous watershed in Southeast Asia. Sustain 10, 1–15 (2018).
    Article  Google Scholar 

    33.
    Cardinale, B. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–68 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    Eklöf, A. & Ebenman, B. Species loss and secondary extinctions in simple and complex model communities. J. Anim. Ecol. 75, 239–246 (2006).
    PubMed  Article  Google Scholar 

    35.
    Vieira, M. C. & Almeida-Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).
    PubMed  Article  Google Scholar 

    36.
    Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. & Konar, B. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10, 409–415 (2012).
    Article  Google Scholar 

    37.
    Estes, J. A. et al. Trophic downgrading of planet earth. Science https://doi.org/10.1126/science.1205106 (2011).

    38.
    He, Q. & Silliman, B. R. Consumer control as a common driver of coastal vegetation worldwide. Ecol. Monogr. 86, 278–294 (2016).

    39.
    Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Brose, U. Complex food webs prevent competitive exclusion among producer species. Proc. R. Soc. B Biol. Sci. 275, 2507–2514 (2008).

    41.
    Rudolf, V. H. W. & Lafferty, K. D. Stage structure alters how complexity affects stability of ecological networks. Ecol. Lett. 14, 75–79 (2011).
    CAS  PubMed  Article  Google Scholar 

    42.
    De Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).
    PubMed  Article  Google Scholar 

    43.
    Perry, G. L. W., Moloney, K. A. & Etherington, T. R. Using network connectivity to prioritise sites for the control of invasive species. J. Appl. Ecol. 54, 1238–1250 (2017).
    Article  Google Scholar 

    44.
    Gross, K. & Cardinale, B. J. The functional consequences of random vs. ordered species extinctions. Ecol. Lett. 8, 409–418 (2005).
    Article  Google Scholar 

    45.
    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    46.
    Gaston, K. J. et al. Population abundance and ecosystem service provision: the case of birds. Bioscience 68, 264–272 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Davies, T. W. et al. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes. PLoS ONE 6, e28362 (2011).

    48.
    Balvanera, P., Kremen, C. & Martínez-Ramos, M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Appl. 15, 360–375 (2005).

    49.
    Xiao, H. et al. Win-wins for biodiversity and ecosystem service conservation depend on the trophic levels of the species providing services. J. Appl. Ecol. 55, 2160–2170 (2018).
    Article  Google Scholar 

    50.
    Dobson, A., Allesina, S., Lafferty, K. & Pascual, M. The assembly, collapse and restoration of food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1803–1806 (2009).
    Article  Google Scholar 

    51.
    McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 1–8 (2016).
    Article  CAS  Google Scholar 

    52.
    Hechinger, R. F. et al. Food webs including parasites, biomass, body sizes, and life stages for three California/Baja California estuaries. Ecology 92, 791 (2011).
    Article  Google Scholar 

    53.
    California Department of Fish and Wildlife. 2018-2019 California Saltwater Sport Fishing Regulations. p. 12–14 (2018).

    54.
    eBird. eBird: an online database of bird distribution and abundance. https://ebird.org. (2012).

    55.
    Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. xx, 1–13 (2019).
    Google Scholar 

    56.
    Strimas-Mackey, M., Miller, E. & Hochachka, W. Cornell Lab of Ornithology. eBird Data Extraction and Processing in R [R package auk version 0.3.2]. (Comprehensive R Archive Network (CRAN), 2019).

    57.
    Secretaria de Medio Ambiente Y Recursos Naturales. Secretaria de Medio Ambiente Y Recursos Naturales. Subsecretaria de gestion para la proteccion ambiental. (2018).

    58.
    Kones, J. K., Soetaert, K., van Oevelen, D. & Owino, J. O. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol. Modell. 220, 370–382 (2009).

    59.
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 426 (2006).
    Google Scholar 

    60.
    Booth, J. E., Gaston, K. J., Evans, K. L. & Armsworth, P. R. The value of species rarity in biodiversity recreation: a birdwatching example. Biol. Conserv. 144, 2728–2732 (2011).
    Article  Google Scholar 

    61.
    Wang, H., Zhewei, W., Junhao, G., Wang, S. & Huang, Z. Personalized PageRank to a Target Node (Cornell University, 2020).

    62.
    Bryan, K. & Leise, T. The linear algebra behind Google. SIAM Rev. 3, 13 (2009).
    MATH  Google Scholar 

    63.
    Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).

    64.
    Rabinwitz, D. Seven forms of rarity. (ed Sygne, H.) in The Biological Aspects of Rare Plant Conservation. 205–217 (John Wiley & Sons Ltd., 1981).

    65.
    Pimm, S. L., Jones, H. L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).
    Article  Google Scholar 

    66.
    Lyons, K. G., Brigham, C. A., Traut, B. H. & Schwartz, M. W. Rare species and ecosystem functioning. Conserv. Biol. 19, 1019–1024 (2005).
    Article  Google Scholar 

    67.
    Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

    68.
    Jacob, U. et al. The role of body size in complex food webs. A cold case. Adv. Ecol. Res. 45, 181–223 (2011).

    69.
    Lafferty, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Burrow emergence rhythms of Nephrops norvegicus by UWTV and surveying biases

    1.
    ICES. Final report of the Working Group on Nephrops Surveys (WGNEPS), 2–3 November 2017. (2017).
    2.
    EU. Council Regulation (EU) 2019/124 of 30 January 2019 fixing for 2019 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters. L29, 1–166 (2019).

    3.
    EUROSTAT. The collection and compilation of fish catch and landing statistics in member coutries of the European economic area. (2020).

    4.
    Aguzzi, J., Bozzano, A. & Sardà, F. First observations on Nephrops norvegicus (L.) burrow densites on the continental shelf off the Catalan coast (western Mediterranean). Crustaceana 77, 299–310 (2004).
    Article  Google Scholar 

    5.
    Maynou, F. X., Sardà, F. & Conan, G. Y. Assessment of the spatial structure and biomass evaluation of Nephrops norvegicus (L.) populations in the northwestern Mediterranean by geostatistics. ICES J. Mar. Sci. 55, 102–120 (1998).

    6.
    Sala, A. Influence of tow duration on catch performance of trawl survey in the Mediterranean Sea. PLoS ONE 13, (2018).

    7.
    Farmer, A. S. D. Synopsis of the biological data on the Norway lobster Nephrops norvegicus (Linnaeus, 1758). FAO Fish. Synopsis 112, 1–97 (1975).
    Google Scholar 

    8.
    Atkinson, R. J. A. & Eastman, L. B. Burrow dwelling in Crustacea. Nat. Hist. Crustac. 2, 78–117 (2015).
    Google Scholar 

    9.
    Sbragaglia, V. et al. Fighting over burrows: the emergence of dominance hierarchies in the Norway lobster (Nephrops norvegicus ). J. Exp. Biol. 220, 4624–4633 (2017).
    Article  Google Scholar 

    10.
    Aguzzi, J. & Sardà, F. A history of recent advancements on Nephrops norvegicus behavioral and physiological rhythms. Rev. Fish Biol. Fish. 18, 235–248 (2008).
    Article  Google Scholar 

    11.
    Aguzzi, J., Sardà, F., Abelló, P., Company, J. B. & Rotllant, G. Diel and seasonal patterns of Nephrops norvegicus (Decapoda: Nephropidae) catchability in the western Mediterranean. Mar. Ecol. Prog. Ser. 258, 201–211 (2003).
    ADS  Article  Google Scholar 

    12.
    Bell, M. C., Redant, F. & Tuck, I. Nephrops species. In Lobsters: Biology (ed. Phillips, B.) 412–461 (Oxford Blackwell Publishing, 2006).
    Google Scholar 

    13.
    Sbragaglia, V. et al. Dusk but not dawn burrow emergence rhythms of Nephrops norvegicus (Crustacea: Decapoda). Sci. Mar. 77, 641–647 (2014).
    Article  Google Scholar 

    14.
    Chapman, C. J., Johnstone, A. D. F. & Rice, A. L. The Behaviour and Ecology of the Norway Lobster, _Nephrops norvegicus_ (L). Barnes H Proc. 9th Eur. Mar. Biol. Symp. Aberdeen Univ. Press. Aberdeen 59–74 (1975).

    15.
    Aguzzi, J., Company, J. B. & Sardà, F. The activity rhythm of berried and unberried females of Nephrops norvegicus (Decapoda, Nephropidae). Crustaceana 80, 1121–1134 (2007).
    Article  Google Scholar 

    16.
    Sbragaglia, V., García, J. A., Chiesa, J. J. & Aguzzi, J. Effect of simulated tidal currents on the burrow emergence rhythms of the Norway lobster (Nephrops norvegicus). Mar. Biol. 162, 2007–2016 (2015).
    Article  Google Scholar 

    17.
    Tuck, I. D., Parsons, D. M., Hartill, B. W. & Chiswell, S. M. Scampi (Metanephrops challengeri) emergence patterns and catchability. ICES J. Mar. Sci. 72, i199–i210 (2015).
    Article  Google Scholar 

    18.
    Aguzzi, J., Company, J. B. & Sardà, F. Feeding activity rhythm of Nephrops norvegicus of the western Mediterranean shelf and slope grounds. Mar. Biol. 144, 463–472 (2004).
    Article  Google Scholar 

    19.
    Hemmi, J. M. Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation. Anim. Behav. 69, 603–614 (2005).

    20.
    Leocadio, A., Weetman, A. & Wieland, K. Using UWTV surveys to assess and advise on Nephrops stocks. ICES Cooperative Research Report No. 340. 49 (2018).

    21.
    Morello, E. B., Antolini, B., Gramitto, M. E., Atkinson, R. J. A. & Froglia, C. The fishery for Nephrops norvegicus (Linnaeus, 1758) in the central Adriatic Sea (Italy): preliminary observations comparing bottom trawl and baited creels. Fish. Res. 95, 325–331 (2009).
    Article  Google Scholar 

    22.
    ICES. Report of the Working Group on Nephrops Surveys (WGNEPS) 6–8 November 2018. (2018).

    23.
    ICES. Working Group on Nephrops Surveys (WGNEPS; outputs from 2019). ICES Scientific Reports. 2:16. https://doi.org/10.17895/ices.pub.5968 (2020).

    24.
    Campbell, N., Dobby, H. & Bailey, N. Investigating and mitigating uncertainties in the assessment of Scottish Nephrops norvegicus populations using simulated underwater television data. ICES J. Mar. Sci. 66, 646–655 (2009).
    Article  Google Scholar 

    25.
    Martinelli, M. et al. Towed underwater television towards the quantification of Norway lobster, squat lobsters and sea pens in the Adriatic Sea. Acta Adriat. 54, 3–12 (2013).
    Google Scholar 

    26.
    ICES. Report of the Workshop and training course on Nephrops Burrow Identification (WKNEPHBID). (2008).

    27.
    ICES. Report on the Workshop on Nephrops Burrow Counting (WKNEPS) 9–11 November 2016. (2016).

    28.
    ICES. Report of the Study Group on Nephrops (WKNEPH), 28 February–1 March 2009. (2009).

    29.
    ICES. Report of the Benchmark Workshop on Nephrops (WKNEPH), 2–6 March 2009. (2009).

    30.
    Sardà, F. & Aguzzi, J. A review of burrow counting as an alternative to other typical methods of assessment of Norway lobster populations. Rev. Fish Biol. Fish. 22, 409–422 (2012).
    Article  Google Scholar 

    31.
    Rice, A. L. & Chapman, C. J. Observations on the burrows and burrowing behaviour of two mud-dwelling decapod crustaceans, Nephrops norvegicus and Goneplax rhomboides. Mar. Biol. Int. J. Life Ocean. Coast. Waters 10, 330–342 (1971).

    32.
    Chapman, C. J. & Rice, A. L. Some direct observations on the ecology and behaviour of the Norway lobster Nephrops norvegicus. Mar. Biol. Int. J. Life Ocean. Coast. Waters 10, 321–329 (1971).

    33.
    Cobb, J. S. & Wang, D. Fisheries biology of lobsters and crayfishes. Provenzano A.D. Biol. Crustac. 10, 167–247 (1985).

    34.
    Maynou, F. & Sardà, F. Nephrops norvegicus population and morphometrical characteristics in relation to substrate heterogeneity. Fish. Res. 30, 139–149 (1997).
    Article  Google Scholar 

    35.
    Tuck, I. D., Atkinson, R. J. A. & Chapman, C. J. The structure and seasonal variability in the spatial distribution of nephrops norvegicus burrows. Ophelia 40, (1994).

    36.
    Tuck, I. D., Chapman, C. J. & Atkinson, R. J. A. Population biology of the Norway lobster, Nephrops norvegicus (L.) in the Firth of Clyde, Scotland – I: Growth and density. ICES J. Mar. Sci. 54, 125–135 (1997).

    37.
    ICES. Report of the Study Group on Nephrops Surveys (SGNEPS), 6–8 March 2012. (2012).

    38.
    Gerritsen, H. & Lordan, C. Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES J. Mar. Sci. 68, 245–252 (2011).
    Article  Google Scholar 

    39.
    Ligas, A., Sartor, P. & Colloca, F. Trends in population dynamics and fishery of Parapenaeus longirostris and Nephrops norvegicus in the Tyrrhenian Sea (NW Mediterranean): the relative importance of fishery and environmental variables. Mar. Ecol. 32, 25–35 (2011).
    ADS  Article  Google Scholar 

    40.
    Morello, E. B., Froglia, C. & Atkinson, R. J. A. Underwater television as a fishery-independent method for stock assessment of Norway lobster (Nephrops norvegicus) in the central Adriatic Sea (Italy). ICES J. Mar. Sci. 64, 1116–1123 (2007).
    Article  Google Scholar 

    41.
    Atkinson, R. J. A. & Naylor, E. An endogenous activity rhythm and the rhythmicity of catches of Nephrops norvegicus (L). J. Exp. Mar. Bio. Ecol. 25, 95–108 (1976).
    Article  Google Scholar 

    42.
    Hammond, R. D. & Naylor, E. Effects of dusk and dawn on locomotor activity rhythms in the Norway lobster Nephrops norvegicus. Mar. Biol. 39, 253–260 (1977).
    Article  Google Scholar 

    43.
    Katoh, E., Sbragaglia, V., Aguzzi, J. & Breithaupt, T. Sensory biology and behaviour of Nephrops norvegicus. Adv. Mar. Biol. 64, 35–106 (2013).
    Google Scholar 

    44.
    Aguzzi, J., Allué, R. & Sardà, F. Characterisation of seasonal and diel variations in Nephrops norvegicus (Decapoda: Nephropidae) landings off the Catalan Coasts. Fish Res. 69, 293–300 (2004).

    45.
    Powell, A. & Eriksson, S. P. Reproduction: life cycle, larvae and larviculture. In Advances in Marine Biology 64, 201–245 (Elsevier, 2013).

    46.
    Refinetti, R. Circadian Physiology. Fr. Taylor, New York. https://doi.org/10.1201/b19527 (2006).

    47.
    Chiesa, J. J., Aguzzi, J., García, J. A., Sardà, F. & De La Iglesia, H. O. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J. Biol. Rhythms 25, 277–287 (2010).
    Article  Google Scholar 

    48.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73, 3–36 (2011).

    49.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2020).

    50.
    Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).
    MathSciNet  CAS  Article  Google Scholar 

    51.
    Aguzzi, J. & Company, J. B. Chronobiology of deep-water decapod crustaceans on continental margins. In Advances in Marine Biology 58, 155–225 (Elsevier, 2010).

    52.
    Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M. Challenges to the assessment of benthic populations and biodiversity as a result of rhythmic behaviour: video solutions from cabled observatories. Oceanogr. Mar. Biol. An Annu. Rev. 50, 233–284 (2012).
    Google Scholar 

    53.
    Catchpole, T. L. & Revill, A. S. Gear technology in Nephrops trawl fisheries. Rev. Fish Biol. Fish. 18, 17–31 (2008).
    Article  Google Scholar 

    54.
    Main, J. & Sangster, G. I. The Behaviour of the Norway Lobster, Nephrops norvegicus (L.), During Trawling. Scottish Fish. Res. Rep. 34, 1–23 (1985).

    55.
    Ungfors, A. et al. Nephrops fisheries in European waters. Adv. Mar. Biol. 64, 247–314 (2013).
    Article  Google Scholar 

    56.
    Jerlov, N. G. Optical Oceanography 194 (Elsevier, 1968).

    57.
    Herring, P. The biology of the deep ocean. J. Hered. 93, (2002).

    58.
    Laidre, M. E. Evolutionary ecology of burrow construction. In The Natural History of the Crustacea: Life Histories (eds. Thiel, M. & Wellborn, G.) 5, 279–302 (Oxford University Press, 2018).

    59.
    Trenkel, V. M., Rochet, M. & Mahevas, S. Interactions between fishing strategies of Nephrops trawlers in the Bay of Biscay and Norway lobster diel activity patterns. Fish. Manag. Ecol. 15, 11–18 (2008).
    Google Scholar 

    60.
    Aguzzi, J. et al. Monochromatic blue light entrains diel activity cycles in the Norway lobster, Nephrops norvegicus (L.) as measured by automated video-image analysis. Sci. Mar. 73, 773–783 (2009).

    61.
    Colloca, F., Scarcella, G. & Libralato, S. Recent trends and impacts of fisheries exploitation on Mediterranean stocks and ecosystems. Front. Mar. Sci. 4, (2017).

    62.
    Marine Institute. The Stock Book 2019: Annual Review of Fish Stocks in 2019 with Management Advice for 2020. Mar. Institute, Galway, Irel. (2019).

    63.
    Aguzzi, J. et al. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environ. Sci. Technol. 53, 6616–6631 (2019).
    ADS  CAS  Article  Google Scholar 

    64.
    Chatzievangelou, D., Aguzzi, J., Ogston, A., Suárez, A. & Thomsen, L. Visual monitoring of key deep-sea megafauna with an Internet operated crawler as a tool for ecological status assessment. Prog. Oceanogr. 102321 (2020).

    65.
    Rountree, R. A. et al. Towards an optimal design for ecosystem-level ocean observatories. Front. Mar. Sci. 1–69 (2019).

    66.
    Masmitja, I. et al. Mobile robotic platforms for the acoustic tracking of deep water demersal fishery resources. Sci. Robot. 5, eabc3701 (2020).

    67.
    Aguzzi, et al. Fish-stock assessment using video imagery from worldwide cabled observatory networks. ICES J. Mar. Sci. 77, 2396–2410 (2020).
    Article  Google Scholar  More