More stories

  • in

    Timely poacher detection and localization using sentinel animal movement

    Study system and species
    This study was performed in Welgevonden Game Reserve (WGR), a privately owned game reserve in the Limpopo province, South Africa (24° 10′ S; 27° 45′ E to 24° 25′ S; 27° 56′ E). The reserve is located in the mountainous Waterberg region. WGR was established on former agricultural lands in the early 1980s and the main occurring vegetation types are Waterberg Mountain Bushveld and Sour Bushveld. The Waterberg region has a temperate climate, with two distinct seasons, characterized by the rainfall regime: a dry season ranging from April to September and a wet season ranging from October to March, with an average annual precipitation in WGR of 634 mm. Our study area is an enclosed breeding camp within WGR, with a size of approximately 1200 ha. Main predator species such as lion, cheetah and spotted hyena were excluded from this study area, as well as elephant and rhino.
    WGR equipped 35 impala (Aepyceros melampus), 34 blue wildebeest (Connochaetes taurinus), 35 plains zebra (Equus burchellii) and 34 common eland (Taurotragus oryx) with a GPS and accelerometer sensor equipped custom made collar; an estimated 23% of the individual impalas present in the area, 48% of the eland, 40% of the wildebeest and 40% of the zebra. However, due to malfunctioning and errors made in the sensor development process, only 83 of the sensors yielded data at any point in time, thus lowering the effective density of sentinel animals. During the experimental intrusions (see below), the median number of data-yielding sensors was 47, and minimally 30. The animal movement data were recorded day and night and transmitted wirelessly in near real-time to five long-range low-power LoRa radiocommunication gateways in the study area, from where data packages were routed to an on-line data warehouse via a 3G/4G backhaul. The deployment of these sentinel animals were approved by the board and CEO of WGR as a management action and was performed in accordance with relevant guidelines and regulations (see Supplementary GPS Collaring letter).
    Experimental intrusions
    Between September 2017 and March 2018, WGR employees performed experimental intrusions (lasting ca. 2 h) on foot and by car through the study area, at varying locations and movement routes through the study area, independent from the locations of the sentinel animals. The movement of the intrusions were tracked by GPS, and the relevant metadata for each intrusion recorded (mode of transport, group size, start time, end time). The intrusions were distributed in a stratified way over the mornings, middays and afternoons (with time slots relative to specific solar positions: sunrise, solar noon and sunset). Furthermore, the intrusions were temporally spread in such a way to avoid a disturbance overflow for the sentinel animals, by performing a maximum of five experiments per week and a maximum of two experiments per day (and then only with one intrusion in the morning and one in the afternoon).
    Data gathering
    The animal sensors gathered location data via GPS and overall dynamic body accelerations47 (ODBA) via a tri-axial accelerometer (range ± 2 g; sampling frequency 100 Hz, down-sampled to 10 Hz prior to analysis). The GPS was scheduled to record spatial position at irregular intervals depending on the level of activity as gauged by ODBA. All sensors were scheduled to record locations every 15 min in the absence of sufficient activity (given that successive fixes were further than 5 m apart, else a geofence was applied and the new coordinate was omitted to save bandwidth and battery power, thereby assuming that the animal still was at its previous location). The GPS fix rate was increased up to 2- or 10-min intervals (depending on two different sensor settings) when ODBA indicated sufficient activity (after checking for the geofence). ODBA data were sampled continuously and summarized per 15 s window in a mean, maximum and variance value.
    The experimentally intruding groups were outfitted with handheld GPS devices that recorded their location every 5 s and these groups logged and timestamped all their pre-defined activities and metadata on a tablet using CyberTracker48 during their intrusion. Most cars traveling through the study area were tracked by GPS as well to filter the animal data for disturbances by cars unrelated to the experimental intrusions.
    Weather data (temperature, radiation, precipitation and wind) in the study area were recorded on a 3-min resolution with a weather station in the north of the study area. We assumed the 1200 ha study area to be sufficiently small to assume the weather station data to be representable for the prevailing weather conditions throughout the study area. GIS data of the study area (summarized in Supplementary Table S1) consisted of information on topography, infrastructure (e.g., fences, roads, powerlines, etc.) and vegetation cover (supervised classification of 25 cm resolution aerial imagery into four classes: trees, herbaceous/grass, sand/soil and other/built-up area).
    All further data processing and algorithm development was done in the software R3.5.049.
    Data pre-processing
    To link the animal location data with the intrusion location data, as well as to correct for the substantial level of positional noise present in the animal location data, we modelled the animal location data to regular 1-min resolution trajectories using the following five steps. First, we filtered out large obvious errors (e.g., obvious outliers and irregularities such as locations far outside the study area) from the data. Second, we corrected systematic medium-scale outliers: ‘spikes’ that occurred due to positional outliers. Such spike-like outliers were visible during sensor testing while following known straight-line trajectories along an airstrip, thereby confirming that these spike-like geometries most likely resulted from positional error rather than true animal movement. Points were classified as anomalous spike points when (a) the displacement to and away from this point was high ( > 500 m), (b) when the distance between the locations before and after this point was small, and (c) when the turning angle at this point approached 180 degrees. Therefore, we corrected the locations that were classified as spike-like anomalies by shifting them closer to the straight line between the neighboring points. The extent of this shift was set relative to the degree of spikiness of the points (the spikier the pattern, the larger the shift towards the midpoint of the adjacent coordinates). Third, after filtering and correcting the original locations we smoothed the timeseries of x/y coordinates at each original timepoint with a Kalman smoother using a dynamic linear model. Fourth, we linearly interpolated the locations to a 10 s resolution based on ODBA, where we considered the animal to be stationary between multiple timepoints if the accelerometer signal suggested the animal was not moving. Fifth, we fitted an X-spline through the data, where we gave the linearly ODBA-interpolated locations a smaller weight, and sampled the fitted spline on a regular 1-min resolution. These pre-processing steps resulted in the modelled animal trajectory data, composed of spatial locations every minute, and averaged ODBA statistics per step (i.e., the segments between consecutive coordinates). These data were used as input for the next steps in the analyses. In contrast to the animal data, the raw intrusion data were of a high temporal resolution and spatial accuracy so that we only needed to subset the data in order to acquire 1-min resolution time-synchronized intrusion trajectories.
    The first three parts of the data pre-processing were only needed because of firmware issues in our custom-made sensors. Without these issues, a simple denoising technique like a Kalman filter will suffice.
    Feature engineering and processing
    We computed a plethora of human-engineered features from the animal trajectories, ODBA data, weather data and several GIS layers with environmental data from the study area (summarized in Supplementary Table S1). All features were computed such that they could not directly be linked to specific points in space or time (by computing movement features relative to the environmental variables), so that only behavioral patterns and abnormalities therein could be linked to intrusion presence. After engineering these base features, we transformed certain features (after visual inspection of the histograms) to approximately symmetric distributions using logarithms. Then we truncated the distributions to the lower and upper 0.001 percentile to correct possible outliers. After that, we standardized all computed features to zero mean and unit variance per species. We also computed scaled versions of selected features by subtracting the mean and dividing by the variance of the selected features per reference set to capture deviations from normal behavior: (1) per area (characterized by a 30 by 30 m neighborhood around each grid cell), (2) per time of day (morning, midday, afternoon) in a period of 5 weeks around each intrusion or control, (3) per area per time of day per 5 weeks, and (4) per individual sentinel per time of day per 5 weeks (Supplementary Table S1). Furthermore, after computing and standardizing the features, we computed more features by applying moving window computations (5 min centered, 10 and 20 min lagging, and the difference between these: 5 min centered minus 10 and 20 min lagging) on the standardized features to capture (the change in) the recent history of animal movement descriptors (mean and standard deviation of all features, fitted Mean Squared Displacement exponential function parameters, net-gross distance ratio and variance of log First Passage Times). Finally, we discretized all features to ordinal values to avoid odd-, fat- and heavy-tailed distributions. In total we computed 2117 features describing different aspects of movement geometry of individual trajectories, herd topology and the interactions with landscape variation.
    Subsetting and dimensionality reduction
    Before analyzing the computed animal movement features, we applied some filtering on the data. We removed all periods with an experimental intrusion during which there were less than 30 active animal sensors in total. We also removed data of both animals and intrusion when they were close to the reserve’s main gate in order to avoid dilution of the data with other known disturbances. This resulted in 57 intrusions that were selected for further analyses. For every intrusion we selected control data of the same period one or 2 days earlier or later during which no intrusion took place, resulting in an approximately balanced intrusion-control dataset. Furthermore, we removed data from animals that were located within 250 m and within 20 min of a vehicle moving through the area that was not part of our experiment.
    For each feature, we computed 4 importance metrics based on binary labelled data: records associated to locations within 1 km from the intrusion (subscript 1) versus an equally-sized random selection of data points during control periods (subscript 0): Mahalanobis distance, marginality (computed as (frac{{mu }_{1}-{mu }_{0}}{{sigma }_{0}}), for sample mean (mu) and sample standard deviation (sigma)), specialization (computed as (frac{{sigma }_{1}}{{sigma }_{0}})) and the Mean Decrease Accuracy of a Random Forest classifier (with default hyperparameters). We then ranked the features according to their importance and selected a feature for further analyses if it occurred in the top 125 features for any of the 4 importance measures described above (resulting in a total of 361 selected features). Subsequently, we converted the selected features per main feature class (Supplementary Table S1) to principal components, keeping those principal components that capture the most variation (in total 95%), which resulted in 99 selected components in total. Finally, we transformed these components again via a second principal component analysis, now across all the selected 99 components. In subsequent training of the animal behavior classifier, we optimized the total number of included components as a hyperparameter, which resulted in the first 8 principal components in the best performing classifier.
    Labelling
    We labelled the sentinel movement data through visual inspection of the animal and intruder trajectories, where we considered the animals’ behavior to be undisturbed when the animal was not near an intrusion, or when the animal was close to an intrusion yet did not visually display a change in behavior. However, when the animal was near the intrusion and displayed a sudden or gradual behavioral change in response to intrusion proximity, we labelled the data as ‘flight’ (changing the movement direction away from the intrusion, possibly with increased speed) or ‘regroup’ (when individuals clustered together). In total, only ca. 1% of the animal data were associated to either flight or regroup behavior (which we will refer to as ‘response’ behavior). A few animals also appeared to exhibit behavior we could label as ‘freeze’, i.e., halting movement in the proximity of the intrusion, yet this class was too underrepresented to be accurately predicted and hence dropped from the final dataset. Furthermore, we assigned a qualitative measure of intensity to each labelled behavioral response (‘low’, ‘medium’, ‘high’) to describe how visually pronounced this response was. Besides the supervised labelling based on visual inspection of behavioral responses via video animations of the trajectories, we also labelled data using an unsupervised k-means nearest neighbor classifier, where we clustered the feature space consisting of the 99 features selected as described above into 25 clusters per species.
    Animal behavior classification
    We trained an RBF kernel C-classification Support Vector Machine (SVM) with a subsequent moving window over the outputted probabilities to distinguish undisturbed versus response behavior. In the training datasets we only included the data separated by more than 1 km from the intrusion and labelled as ‘undisturbed’, and removed 90% thereof to train algorithms with a more balanced dataset. Furthermore, we only trained and validated on data with intrusions present in the area. We trained another SVM to distinguish the flight response from the regroup response. All computations were done in R 3.5.0 with the e1071 package on the Linux High Performance Cluster of Wageningen University and Research. We optimized the following hyperparameters and model settings during the training phase for the Average Precision via a grid search (with the selected values between brackets):

    gamma (undisturbed-response: 10–3.2; flight-regroup: 10–2.0);

    cost (undisturbed-response: 10–2.2; flight-regroup: 10–1.5);

    number of principal components to include as features (undisturbed-response: 8; flight-regroup: 12);

    species-specific models versus one model with species dummy variables included in the features (species-specific models);

    specific models for the different times of day versus one model with time of day dummy variables (one model);

    response intensities to include in the training data (only medium and high intensities);

    weights to assign to the classes (equal weights);

    the quantile to be computed of the SVM probabilities by the moving window (100%, i.e., maximum value);

    the alignment of the moving window (centered);

    the size of the moving window (15 min on both sides).

    The best model was selected via a leave-one-intrusion-out cross-validation approach. We summarized the predictive performance by computing the Average Precision of the least occurring class (i.e., ‘response’ for the undisturbed-response model: 46%, Supplementary Fig. S2; and ‘regroup’ for the flight-regroup model: 80%, Supplementary Fig. S3). After having computed these probabilities with an SVM and a temporal window smoother, we tried to improve the predicted performance by including the predicted animal response probabilities of nearby animals. However, this spatial explicit approach hardly improved the predictive performance, indicating that the spatial contextualization of behavioral response was sufficiently captured by the computed features. We therefore did not include this spatial contagion effect of predicted animal response probabilities in the final analysis.
    System classification—detection
    Based on the predicted SVM response probabilities and feature cluster analysis, we computed summary features per 15 min of each intrusion and control period. These summary features related to the odds ratios of the probability of association of unsupervised clusters with intrusions versus controls, the SVM predicted probabilities of behavioral response, and several features describing the values (and its spatial structure, e.g., clustering or autocorrelation) of these SVM predicted response probabilities. After computing summary features per 15 min, we summarized them even further for the intrusions versus controls using the following eight statistics: mean, standard deviation, minimum, maximum, mean of the lagged differences, standard deviation of the lagged differences, minimum of the lagged differences and maximum of the lagged differences.
    After computing the summary features, we build a logistic regression classifier to distinguish intrusions from controls. To create a parsimonious model, we iteratively added features to the model and evaluated its performance after each iteration. We evaluated the performance based on the model accuracy and performed validation through 25 times twofold cross-validation in a stratified way (by 25 times choosing a balanced random sample of intrusions and controls). We determined the sequence of adding features to the model by performing an independent two-sample t-test for each feature between the intrusions and controls. The feature with the largest t-value was then added to the model. After each feature addition, we removed its correlation with the remaining features using linear regressions with the added feature as independent variable and the remaining features as dependent variables, from which we extracted the residuals, standardized them to zero mean and unit variance, and applied the t-tests again. The (original) feature with the largest t-value was then added to the model again. This procedure was repeated until all features were ordered corresponding to their “importance”. We then performed logistic regressions without interactions between the features for an increasing number of features (Supplementary Fig. S4). The model already performed quite accurately with only 7 features (86.1% accuracy ± SD 3.3%, precision 82.6% ± SD 6.9%, recall 89.2% ± SD 5.1%). However, with 20 features and 2-way interactions the model achieved the maximum accuracy (90.9%).
    System classification—localization
    The data gathered during intrusions that were correctly predicted as such by the detection classifier were used to train the intrusion localization algorithm. The probability surface of the location of the intrusion was fitted relative to that of the sentinel animals using:

    $${O}_{i,j} sim frac{{p}_{j}left({f}_{wn}left({theta }_{i,j},{mu }_{j},{rho }_{1}right) {f}_{ln}left({gamma }_{i,j},{mu }_{1},{sigma }_{1}right)right) left(1-{p}_{j}right) left({f}_{wn}left({theta }_{i,j},{mu }_{j},{sigma }_{0}right) {f}_{ln}left({gamma }_{i,j},{mu }_{0},{sigma }_{0}right)right)}{{f}_{wn}left({theta }_{i,j},{mu }_{j},{rho }_{0}right) {f}_{ln}({gamma }_{i,j},{mu }_{0},{sigma }_{0})}$$

    where ({O}_{i,j}) is the odds ratio of intrusion presence at location (i) evaluated for individual (j), ({p}_{j}) is the SVM-predicted probability that individual (j) is exhibiting response behavior. The function ({f}_{wn}) is the wrapped normal probability density function, ({theta }_{i,j}) is the direction from location (i) to the location of the focal animal (j), ({mu }_{j}) is the movement direction of individual (j), ({rho }_{1}) and ({rho }_{0}) are the standard deviations of the unwrapped distributions. The function ({f}_{ln}) is the lognormal probability density function, where ({gamma }_{i,j}) is the distance of location (i) to (j), ({mu }_{1}) and ({mu }_{0}) as well as ({sigma }_{1}) and ({sigma }_{0}) are the log-normal distribution parameters (respectively log-mean and log-sd).
    The parameters ({mu }_{1}), ({sigma }_{1}) and ({rho }_{1}) capture the geometry of intrusion-animal topology for animals that exhibited a predicted behavioral response to the intrusion. Similarly, ({mu }_{0}), ({sigma }_{0}) and ({rho }_{0}) are the corresponding parameters for animals that were predicted to be undisturbed. The parameters ({mu }_{1}), (mathrm{log}({sigma }_{1})) and (mathrm{log}({rho }_{1})) were fitted to the data assuming a 3rd order polynomial relationship to ({t}_{s}): the time (in minutes) since the start of the predicted behavioral response (using the maximum F1 classification score). Since the behavioral response signature is lost over time, we truncated ({t}_{s}) to 45 min (thus ({t}_{s} >45) min was set to ({t}_{s}=45)). The parameters ({mu }_{0}), ({sigma }_{0}) and ({rho }_{0}) were estimated using the data of the controls and with randomly generated intrusion locations in the study area, in order to correct for the effects of geometry of the study area on the predicted response surfaces. The probability surface ({P}_{i}) was then calculated as:

    $${P}_{i}=alpha sum_{j}{O}_{i,j}$$

    where (alpha) is a normalization constant so that ({P}_{i}) integrates to 1 over the area covered by the rectangular axis-aligned bounding box around the study area.
    To measure the prediction accuracy of each localization surface, we simplified each surface to a point coordinate located at the location of maximum probability, and computed the Euclidian distance to the known true position of the intrusion. We then summarized each experimental intrusion by selecting the 10 prediction surfaces with the most condense highest probability density, i.e., those in which the top 5% probability density is contained in the smallest, most condense, area. The spatial error of the localization prediction associated with these selected predictions was further summarized by taking the average Euclidian distance over the 10 selected predictions. More

  • in

    Decadal changes in fire frequencies shift tree communities and functional traits

    1.
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).
    CAS  PubMed  Article  Google Scholar 

    3.
    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    van der Werf, G. R. G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).
    Article  Google Scholar 

    6.
    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl Acad. Sci. USA 108, 13165–13170 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).
    Article  Google Scholar 

    9.
    Lewis, T. Very frequent burning encourages tree growth in sub-tropical Australian eucalypt forest. Forest Ecol. Manag. 459, 117842 (2020).
    Article  Google Scholar 

    10.
    Peterson, D. W. & Reich, P. B. Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecol. Appl. 11, 914–927 (2001).
    Article  Google Scholar 

    11.
    Tilman, D. et al. Fire suppression and ecosystem carbon storage. Ecology 81, 2680–2685 (2000).
    Article  Google Scholar 

    12.
    Pellegrini, A. F. A., Hedin, L. O., Staver, A. C. & Govender, N. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96, 1275–1285 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).
    Article  Google Scholar 

    14.
    Uhl, C. & Kauffman, J. B. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71, 437–449 (1990).
    Article  Google Scholar 

    15.
    Case, M. F., Wigley‐Coetsee, C., Nzima, N., Scogings, P. F. & Staver, A. C. Severe drought limits trees in a semi‐arid savanna. Ecology 100, e02842 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Schoennagel, T., Turner, M. G. & Romme, W. H. The influence of fire interval and serotiny on postfire lodgepole pine density in Yellowstone National Park. Ecology 84, 2967–2978 (2003).
    Article  Google Scholar 

    18.
    Higgins, S. I. et al. Which traits determine shifts in the abundance of tree species in a fire-prone savanna? J. Ecol. 100, 1400–1410 (2012).
    Article  Google Scholar 

    19.
    Lehmann, C. E. R. et al. Savanna vegetation–fire–climate relationships differ among continents. Science 343, 548–552 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Higgins, S. I., Bond, J. I. & Trollope, W. S. Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna. J. Ecol. 88, 213–229 (2000).
    Article  Google Scholar 

    22.
    Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Reich, P. B., Peterson, D. W., Wedin, D. A. & Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest–grassland continuum. Ecology 82, 1703–1719 (2001).
    Google Scholar 

    24.
    Phillips, R., Brzostek, E. & Midgley, M. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 99, 41–51 (2013).
    Article  CAS  Google Scholar 

    25.
    Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Read, D. J. & Perez‐Moreno, J. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol. 157, 475–492 (2003).
    Article  Google Scholar 

    27.
    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Whitman, E., Parisien, M. A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 9, 18796 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2019).
    Article  Google Scholar 

    31.
    Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).
    CAS  PubMed  Article  Google Scholar 

    32.
    Steel, Z. L., Safford, H. D. & Viers, J. H. The fire frequency–severity relationship and the legacy of fire suppression in California forests. Ecosphere 6, 1–23 (2015).
    Article  Google Scholar 

    33.
    Scott, J. & Burgan, R. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model General Technical Report RMRS-GTR-153 (USDA, Forest Service and Rocky Mountain Research Station, 2005).

    34.
    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).
    Article  Google Scholar 

    35.
    Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Butler, O. M., Elser, J. J., Lewis, T., Mackey, B. & Chen, C. The phosphorus-rich signature of fire in the soil–plant system: a global meta-analysis. Ecol. Lett. 21, 335–344 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Raison, R. J., Khanna, P. K. & Woods, P. V. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests. Can. J. Forest Res. 15, 657–664 (1985).
    CAS  Article  Google Scholar 

    38.
    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1906655116 (2019).

    39.
    Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 209, 1705–1719 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Woinarski, J. C. Z., Risler, J. & Kean, L. Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical eucalyptus open forest, Northern Territory, Australia. Austral Ecol. 29, 156–176 (2004).
    Article  Google Scholar 

    41.
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest–tree symbioses. Nature 569, 404–408 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Pellegrini, A. F. A. et al. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90, e01409 (2020).
    Article  Google Scholar 

    43.
    Newland, J. A. & DeLuca, T. H. Influence of fire on native nitrogen-fixing plants and soil nitrogen status in ponderosa pine – Douglas-fir forests in western Montana. Can. J. Forest Res. 30, 274–282 (2000).
    Article  Google Scholar 

    44.
    Johnson, D. W. & Curtis, P. S. Effects of forest management on soil C and N storage: meta analysis. Forest Ecol. Manag. 140, 227–238 (2001).
    Article  Google Scholar 

    45.
    Pellegrini, A. F. A. Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313–324 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    47.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, e4794 (2018).
    Article  Google Scholar 

    48.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    49.
    Jackson, J. F., Adams, D. C. & Jackson, U. B. Allometry of constitutive defense: a model and a comparative test with tree bark and fire regime. Am. Nat. 153, 614–632 (1999).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Hoffmann, W. A., Marchin, R. M., Abit, P. & Lau, O. L. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob. Change Biol. 17, 2731–2742 (2011).
    Article  Google Scholar 

    52.
    Harmon, M. E. Decomposition of standing dead trees in the southern Appalachian Mountains. Oecologia 52, 214–215 (1982).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Article  Google Scholar 

    54.
    Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S. A meta-analysis of competition in field experiments. Am. Nat. 140, 539–572 (1992).
    Article  Google Scholar 

    55.
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Brockway, D. G. & Lewis, C. E. Long-term effects of dormant-season prescribed fire on plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem. Forest Ecol. Manag. 96, 167–183 (1997).
    Article  Google Scholar 

    59.
    Lewis, T. & Debuse, V. J. Resilience of a eucalypt forest woody understorey to long-term (34–55 years) repeated burning in subtropical Australia. Int. J. Wildl. Fire 21, 980–991 (2012).
    Article  Google Scholar 

    60.
    Scudieri, C. A., Sieg, C. H., Haase, S. M., Thode, A. E. & Sackett, S. S. Understory vegetation response after 30 years of interval prescribed burning in two ponderosa pine sites in northern Arizona, USA. Forest Ecol. Manag. 260, 2134–2142 (2010).
    Article  Google Scholar 

    61.
    Lewis, T., Reif, M., Prendergast, E. & Tran, C. The effect of long-term repeated burning and fire exclusion on above- and below-ground blackbutt (Eucalyptus pilularis) forest vegetation assemblages. Austral Ecol. 37, 767–778 (2012).
    Article  Google Scholar 

    62.
    Stratton, R. Effects of Long-Term Late Winter Prescribed Fire on Forest Stand Dynamics, Small Mammal Populations, and Habitat Demographics in a Tennessee Oak Barrens. MSc thesis, Univ. Tennessee (2007).

    63.
    Wade, D. D. Long-Term Site Responses to Season and Interval of Underburns on the Georgia Piedmont (Forest Service Research Data Archive, 2016).

    64.
    Pellegrini, A. F. A., Hoffmann, W. A. & Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342–352 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Nesmith, C. B., Caprio, A. C., Pfaff, A. H., McGinnis, T. W. & Keeley, J. E. A comparison of effects from prescribed fires and wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks. Forest Ecol. Manag. 261, 1275–1282 (2011).
    Article  Google Scholar 

    66.
    Haywood, J. D., Harris, F. L., Grelen, H. E. & Pearson, H. A. Vegetative response to 37 years of seasonal burning on a Louisiana longleaf pine site. South. J. Appl. For. 25, 122–130 (2001).
    Article  Google Scholar 

    67.
    Higgins, S. I. et al. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88, 1119–1125 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Gignoux, J., Lahoreau, G., Julliard, R. & Barot, S. Establishment and early persistence of tree seedlings in an annually burned savanna. J. Ecol. 97, 484–495 (2009).
    Article  Google Scholar 

    69.
    Tizon, F. R., Pelaez, D. V. & Elia, O. R. The influence of controlled fires on a plant community in the south of the Caldenal and its relationship with a regional state and transition model. Int. J. Exp. Bot. 79, 141–146 (2010).
    Google Scholar 

    70.
    Neill, C., Patterson, W. A. & Crary, D. W. Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak–pine forest. Forest Ecol. Manag. 250, 234–243 (2007).
    Article  Google Scholar 

    71.
    Ryan, C. M., Williams, M. & Grace, J. Above‐ and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).
    Article  Google Scholar 

    72.
    Scharenbroch, B. C., Nix, B., Jacobs, K. A. & Bowles, M. L. Two decades of low-severity prescribed fire increases soil nutrient availability in a midwestern, USA oak (Quercus) forest. Geoderma 183–184, 80–91 (2012).
    Article  CAS  Google Scholar 

    73.
    Burton, J. A., Hallgren, S. W., Fuhlendorf, S. D. & Leslie, D. M. Jr. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest. Plant Ecol. 212, 1513–1525 (2011).
    Article  Google Scholar 

    74.
    Stewart, J. F., Will, R. E., Robertson, K. M. & Nelson, C. D. Frequent fire protects shortleaf pine (Pinus echinata) from introgression by loblolly pine (P. taeda). Conserv. Genet. 16, 491–495 (2015).
    Article  Google Scholar 

    75.
    Knapp, B. O., Stephan, K. & Hubbart, J. A. Structure and composition of an oak–hickory forest after over 60 years of repeated prescribed burning in Missouri, U.S.A. Forest Ecol. Manag. 344, 95–109 (2015).
    Article  Google Scholar 

    76.
    Olson, M. G. Tree regeneration in oak–pine stands with and without prescribed fire in the New Jersey Pine Barrens: management implications. North. J. Appl. For. 28, 47–49 (2011).
    Article  Google Scholar  More

  • in

    Consistent trait–environment relationships within and across tundra plant communities

    1.
    Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Billings, W. D. Arctic and Alpine vegetations: similarities, differences, and susceptibility to disturbance. BioScience 23, 697–704 (1973).
    Article  Google Scholar 

    6.
    Graae, B. J. et al. Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).
    Article  Google Scholar 

    7.
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Choler, P. Consistent shifts in alpine plant traits along a mesotopographical gradient. Arct. Antarct. Alp. Res. 37, 444–453 (2005).
    Article  Google Scholar 

    9.
    Wullschleger, S. D. et al. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann. Bot. 114, 1–16 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).
    Article  Google Scholar 

    11.
    Myers-Smith, I. H., Thomas, H. J. D. & Bjorkman, A. D. Plant traits inform predictions of tundra responses to global change. New Phytol. 221, 1742–1748 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).
    CAS  Article  Google Scholar 

    13.
    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Saros, J. E. et al. Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environ. Res. Lett. 14, 074027 (2019).
    Article  Google Scholar 

    15.
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Article  Google Scholar 

    16.
    Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    18.
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
    CAS  Article  Google Scholar 

    19.
    Thomas, H. J. D. et al. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat. Commun. 11, 1351 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Billings, W. D. & Bliss, L. C. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40, 388–397 (1959).
    Article  Google Scholar 

    21.
    Myers-Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Chapin, F. S. III et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Cahoon, S. M. P. et al. Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecol. Lett. 15, 1415–1422 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
    Article  Google Scholar 

    25.
    Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).
    Article  Google Scholar 

    26.
    Cornelissen, J. H. C. et al. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol. Lett. 10, 619–627 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    Article  Google Scholar 

    29.
    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

    31.
    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
    Article  Google Scholar 

    32.
    Bromwich, D. H. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 6, 139–145 (2013).
    CAS  Article  Google Scholar 

    33.
    Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).
    CAS  PubMed  Article  Google Scholar 

    34.
    Sonesson, M., Wielgolaski, F. E. & Kallio, P. in Fennoscandian Tundra Ecosystems. Ecological Studies (Analysis and Synthesis) Vol. 16 (ed. Wielgolaski, F. E.) 3–28 (Springer, 1975); https://doi.org/10.1007/978-3-642-80937-8_1

    35.
    Niittynen, P., Heikkinen, R. K. & Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).
    Article  Google Scholar 

    36.
    Klikoff, L. G. Photosynthetic response to temperature and moisture stress of three timberline meadow species. Ecology 46, 516–517 (1965).
    Article  Google Scholar 

    37.
    Oberbauer, S. F. & Billings, W. D. Drought tolerance and water use by plants along an alpine topographic gradient. Oecologia 50, 325–331 (1981).
    PubMed  Article  Google Scholar 

    38.
    Eskelinen, A., Stark, S. & Männistö, M. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161, 113–123 (2009).
    PubMed  Article  Google Scholar 

    39.
    Ernakovich, J. G. et al. Predicted responses of Arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).
    Article  Google Scholar 

    40.
    Galen, C. & Stanton, M. L. Responses of snowbed plant species to changes in growing-season length. Ecology 76, 1546–1557 (1995).
    Article  Google Scholar 

    41.
    Starr, G., Oberbauer, S. F. & Ahlquist, L. E. The photosynthetic response of Alaskan tundra plants to increased season length and soil warming. Arct. Antarct. Alp. Res. 40, 181–191 (2008).
    Article  Google Scholar 

    42.
    Happonen, K. et al. Snow is an important control of plant community functional composition in oroarctic tundra. Oecologia 191, 601–608 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Niittynen, P. & Luoto, M. The importance of snow in species distribution models of Arctic vegetation. Ecography 41, 1024–1037 (2018).
    Article  Google Scholar 

    44.
    le Roux, P. C., Aalto, J. & Luoto, M. Soil moisture’s underestimated role in climate change impact modelling in low-energy systems. Glob. Change Biol. 19, 2965–2975 (2013).
    Article  Google Scholar 

    45.
    Lembrechts, J. J. et al. SoilTemp: a global database of near-surface temperature. Glob. Change Biol. 26, 6616–6629 (2020).

    46.
    Bjorkman, A. D. et al. Tundra Trait Team: a database of plant traits spanning the tundra biome. Glob. Ecol. Biogeogr. 27, 1402–1411 (2018).
    Article  Google Scholar 

    47.
    Maitner, B. S. et al. The bien r package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).
    Article  Google Scholar 

    48.
    Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).
    Article  Google Scholar 

    49.
    Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Change 10, 1143–1148 (2020).

    51.
    Belluau, M. & Shipley, B. Predicting habitat affinities of herbaceous dicots to soil wetness based on physiological traits of drought tolerance. Ann. Bot. 119, 1073–1084 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Kemppinen, J., Niittynen, P., Riihimäki, H. & Luoto, M. Modelling soil moisture in a high-latitude landscape using LiDAR and soil data. Earth Surf. Proc. Land. 43, 1019–1031 (2018).
    Article  Google Scholar 

    53.
    Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C. & Luoto, M. Water as a resource, stress and disturbance shaping tundra vegetation. Oikos 128, 811–822 (2019).
    Article  Google Scholar 

    54.
    Giblin, A. E., Nadelhoffer, K. J., Shaver, G. R., Laundre, J. A. & McKerrow, A. J. Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecol. Monogr. 61, 415–435 (1991).
    Article  Google Scholar 

    55.
    le Roux, P. C., Virtanen, R. & Luoto, M. Geomorphological disturbance is necessary for predicting fine-scale species distributions. Ecography 36, 800–808 (2013).
    Article  Google Scholar 

    56.
    Finger Higgens, R., Hicks Pries, C. & Virginia, R. A. Trade-offs between wood and leaf production in Arctic shrubs along a temperature and moisture gradient in West Greenland. Ecosystems https://doi.org/10.1007/s10021-020-00541-4 (2020).

    57.
    Porporato, A. & Rodriguez-Iturbe, I. Ecohydrology-a challenging multidisciplinary research perspective / Ecohydrologie: une perspective stimulante de recherche multidisciplinaire. Hydrol. Sci. J. 47, 811–821 (2002).
    Article  Google Scholar 

    58.
    Legates, D. R. et al. Soil moisture: a central and unifying theme in physical geography. Prog. Phys. Geogr. 35, 65–86 (2011).
    Article  Google Scholar 

    59.
    McLaughlin, B. C. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).
    Article  Google Scholar 

    60.
    Choler, P. Winter soil temperature dependence of alpine plant distribution: implications for anticipating vegetation changes under a warming climate. Perspect. Plant Ecol. Evol. Syst. 30, 6–15 (2018).
    Article  Google Scholar 

    61.
    Happonen, K. et al. Snow is an important control of plant community functional composition in oroarctic tundra. Oecologia 191, 601–608 (2019).

    62.
    Doran, P. T. et al. Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517–520 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    French, D. D. & Smith, V. R. A comparison between Northern and Southern Hemisphere tundras and related ecosystems. Polar Biol. 5, 5–21 (1985).
    Article  Google Scholar 

    64.
    le Roux, P. C. in The Prince Edward Islands: Land–Sea Interactions in a Changing Ecosystem (eds Chown, S. L. & Froneman, P. W.) 39–64 (African Sun Media, 2008).

    65.
    Devau, N., Le Cadre, E., Jaillarda, B. & Gérarda, F. Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches. Appl. Geochem. 24, 2163–2174 (2009).

    66.
    Stevens, R. J., Laughlin, R. J. & Malone, J. P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol. Biochem. 30, 1119–1126 (1998).
    CAS  Article  Google Scholar 

    67.
    Freschet, G. T., Cornelissen, J. H. C., Van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373 (2010).
    Article  Google Scholar 

    68.
    Bergholz, K. et al. Fertilization affects the establishment ability of species differing in seed mass via direct nutrient addition and indirect competition effects. Oikos 124, 1547–1554 (2015).
    Article  Google Scholar 

    69.
    Curtin, D., Campbell, C. A. & Jalil, A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 30, 57–64 (1998).
    CAS  Article  Google Scholar 

    70.
    Blondeel, H. et al. Light and warming drive forest understorey community development in different environments. Glob. Change Biol. 26, 1681–1696 (2020).
    Article  Google Scholar 

    71.
    Dahlgren, J. P., Eriksson, O., Bolmgren, K., Strindell, M. & Ehrlén, J. Specific leaf area as a superior predictor of changes in field layer abundance during forest succession. J. Veg. Sci. 17, 577–582 (2006).
    Article  Google Scholar 

    72.
    Lembrechts, J. J. et al. Comparing temperature data sources for use in species distribution models: from in‐situ logging to remote sensing. Glob. Ecol. Biogeogr. 28, 1578–1596 (2019).
    Article  Google Scholar 

    73.
    Körner, C. & Hiltbrunner, E. The 90 ways to describe plant temperature. Perspect. Plant Ecol. Evol. Syst. 30, 16–21 (2018).
    Article  Google Scholar 

    74.
    Maclean, I. M. D. Predicting future climate at high spatial and temporal resolution. Glob. Change Biol. 26, 1003–1011 (2019).

    75.
    Aalto, J., Scherrer, D., Lenoir, J., Guisan, A. & Luoto, M. Biogeophysical controls on soil–atmosphere thermal differences: implications on warming Arctic ecosystems. Environ. Res. Lett. 13, 074003 (2018).
    Article  Google Scholar 

    76.
    Aalto, J., le Roux, P. C. & Luoto, M. Vegetation mediates soil temperature and moisture in Arctic-alpine environments. Arct. Antarct. Alp. Res. 45, 429–439 (2013).
    Article  Google Scholar 

    77.
    Moles, A. T. et al. Which is a better predictor of plant traits: temperature or precipitation? J. Veg. Sci. 25, 1167–1180 (2014).
    Article  Google Scholar 

    78.
    Taylor, R. V. & Seastedt, T. R. Short- and long-term patterns of soil moisture in alpine tundra. Arct. Alp. Res. 26, 14–20 (1994).
    Article  Google Scholar 

    79.
    Lembrechts, J. J. & Lenoir, J. Microclimatic conditions anywhere at any time! Glob. Change Biol. https://doi.org/10.1111/gcb.14942 (2019).

    80.
    Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Bramer, I. et al. Advances in monitoring and modelling climate at ecologically relevant scales. Adv. Ecol. Res. 58, 101–161 (2018).

    82.
    Halbritter, A. H. et al. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods Ecol. Evol. 2, 16147 (2019).
    Google Scholar 

    83.
    Wild, J. et al. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agr. Forest Meteorol. 268, 40–47 (2019).
    Article  Google Scholar 

    84.
    Aalto, J., Riihimäki, H., Meineri, E., Hylander, K. & Luoto, M. Revealing topoclimatic heterogeneity using meteorological station data. Int. J. Climatol. 37, 544–556 (2017).
    Article  Google Scholar 

    85.
    Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P. & Maclean, I. M. D. A method for computing hourly, historical, terrain‐corrected microclimate anywhere on Earth. Methods Ecol. Evol. https://doi.org/10.1111/2041-210x.13330 (2019).

    86.
    Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    Vandvik, V., Halbritter, A. H. & Telford, R. J. Greening up the mountain. Proc. Natl Acad. Sci. USA 115, 833–835 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).
    Article  Google Scholar 

    89.
    Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).
    Article  Google Scholar 

    90.
    Robinson, D. A. et al. Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Glob. Change Biol. 25, 1895–1904 (2019).
    Article  Google Scholar 

    91.
    Loranty, M. M. et al. Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018).
    CAS  Article  Google Scholar 

    92.
    Parker, T. C., Subke, J.-A. & Wookey, P. A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Change Biol. 21, 2070–2081 (2015).
    Article  Google Scholar 

    93.
    DeMarco, J., Mack, M. C. & Bret-Harte, M. S. Effects of Arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95, 1861–1875 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    94.
    Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Change Biol. 16, 641–656 (2010).
    Article  Google Scholar 

    95.
    Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Climate in Svalbard 2100 – A Knowledge Base for Climate Adaptation (Norwegian Centre for Climate Services, 2019); https://go.nature.com/3tFTKAr

    97.
    Weather Observations from Greenland 1958–2018 – Observation Data with Description DMI Report 19-08 (Danish Meteorological Institute, 2019); https://go.nature.com/36RkdBk

    98.
    Enontekiö Kilpisjärvi Saana. Daily Climate Observations (Finnish Meteorological Institute, 2019); https://en.ilmatieteenlaitos.fi/download-observations

    99.
    Enontekiö Kilpisjärvi Kyläkeskus. Daily Climate Observations (Finnish Meteorological Institute, 2019); https://en.ilmatieteenlaitos.fi/download-observations

    100.
    Smith, V. R. & Steenkamp, M. Classification of the terrestrial habitats on Marion Island based on vegetation and soil chemistry. J. Veg. Sci. 12, 181–198 (2001).
    Article  Google Scholar 

    101.
    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    102.
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    103.
    Iversen, C. M. et al. The unseen iceberg: plant roots in Arctic tundra. New Phytol. 205, 34–58 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    104.
    Kern, R. et al. Comparative vegetation survey with focus on cryptogamic covers in the high Arctic along two differing catenas. Polar Biol. 42, 2131–2145 (2019).
    Article  Google Scholar 

    105.
    Miller, R. O. & Kissel, D. E. Comparison of soil pH methods on soils of North America. Soil Sci. Soc. Am. J. 74, 310–316 (2010).
    Article  CAS  Google Scholar 

    106.
    McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603 (2002).
    Article  Google Scholar 

    107.
    McCune, B. Improved estimates of incident radiation and heat load using non- parametric regression against topographic variables. J. Veg. Sci. 18, 751 (2007).
    Article  Google Scholar 

    108.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    109.
    NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team ASTER Global Digital Elevation Model (GDEM) V003 (NASA EOSDIS Land Processes DAAC, 2018); https://doi.org/10.5067/ASTER/ASTGTM.003

    110.
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    111.
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).

    112.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

    113.
    Husson, F., Le, S. & Pagès, J. Exploratory Multivariate Analysis by Example Using R (CRC, 2017).

    114.
    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 31844 (2008).
    Article  Google Scholar 

    115.
    Kemppinen, J. et al. Data from: Consistent trait–environment relationships within and across tundra plant communities. Zenodo https://doi.org/10.5281/zenodo.4362216 (2020). More

  • in

    The environmental and ecological determinants of elevated Ross River Virus exposure in koalas residing in urban coastal landscapes

    1.
    Gonzalez-Astudillo, V., Allavena, R., McKinnon, A., Larkin, R. & Henning, J. Decline causes of Koalas in South East Queensland, Australia: a 17-year retrospective study of mortality and morbidity. Sci. Rep. 7, 42587 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Ward, M. S. et al. Lots of loss with little scrutiny: The attrition of habitat critical for threatened species in Australia. Conserv. Sci. Pract. 1, e117 (2019).
    Google Scholar 

    3.
    Martin, R. & Handasyde, K. The Koala: Natural History, Conservation and Management (University of New South Wales Press Ltd (Hong Kong, Australian Natural History Series, 1999).
    Google Scholar 

    4.
    McAlpine, C. et al. Conserving koalas: A review of the contrasting regional trends, outlooks and policy challenges. Biol. Conserv. 192, 226–236 (2015).
    Article  Google Scholar 

    5.
    Shumway, N., Lunney, D., Seabrook, L. & McAlpine, C. Saving our national icon: An ecological analysis of the 2011 Australian Senate inquiry into status of the koala. Environ. Sci. Policy 54, 297–303 (2015).
    Article  Google Scholar 

    6.
    Adams-Hosking, C., Grantham, H. S., Rhodes, J. R., McAlpine, C. & Moss, P. T. Modelling climate-change-induced shifts in the distribution of the koala. Wildlife Res. 38, 122–130 (2011).
    Article  Google Scholar 

    7.
    Rhodes, J. R., Beyer, H., Preece, H. & McAlpine, C. South East Queensland koala population modelling study. UniQuest (2015).

    8.
    Dique, D. S., Preece, H. J., Thompson, J. & de Villiers, D. L. Determining the distribution and abundance of a regional koala population in south-east Queensland for conservation management. Wildlife Res. 31, 109–117 (2004).
    Article  Google Scholar 

    9.
    Thompson, J. The comparative ecology and population dynamics of koalas in the Koala Coast region of south-east Queensland. PhD Thesis, School of Integrative Biology, University of Queensland (2006).

    10.
    Rhodes, J. R. et al. Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biol. Conserv. 144, 1081–1088 (2011).
    Article  Google Scholar 

    11.
    Denner, J. & Young, P. R. Koala retroviruses: Characterization and impact on the life of koalas. Retrovirology 10, 108 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Nyari, S. et al. Epidemiology of chlamydial infection and disease in a free-ranging koala (Phascolarctos cinereus) population. PloS One 12 (2017).

    13.
    Waugh, C. A. et al. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus). Sci. Rep. 7, 1–11 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    McCallum, H., Kerlin, D. H., Ellis, W. & Carrick, F. Assessing the significance of endemic disease in conservation—koalas, chlamydia, and koala retrovirus as a case study. Conserv. Lett. 11, e12425 (2018).
    Article  Google Scholar 

    15.
    Aldred, J., Campbell, J., Mitchell, G., Davis, G. & Elliott, J. Involvement of wildlife in the natural cycle of Ross River and Barmah Forest viruses (Wildlife Disease Association Meeting, Melbourne, Australia, 1991).
    Google Scholar 

    16.
    Russell, R. C. Arboviruses and their vectors in Australia: An update on the ecology and epidemiology of some mosquito-borne arboviruses. Rev. Med. Vet. Entomol. 83, 141–158 (1995).
    Google Scholar 

    17.
    Harley, D., Sleigh, A. & Ritchie, S. Ross River virus transmission, infection, and disease: A cross-disciplinary review. Clin. Microbiol. Rev. 14, 909–932 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Seay, A. R. & Wolinsky, J. S. Ross river virus-induced demyelination: I Pathogenesis and histopathology. Ann. Neurol. 12, 380–389 (1982).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Azuolas, J., Wishart, E., Bibby, S. & Ainsworth, C. Isolation of Ross River virus from mosquitoes and from horses with signs of musculoskeletal disease. Aust. Vet. J. 81, 344–347 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Stephenson, E. B., Peel, A. J., Reid, S. A., Jansen, C. C. & McCallum, H. The non-human reservoirs of Ross River virus: A systematic review of the evidence. Parasite. Vector. 11, 188 (2018).
    Article  Google Scholar 

    21.
    Skinner, E. B. et al. Associations between Ross River Virus infection in humans and vector-vertebrate community ecology in Brisbane Australia. Vector-borne Zoonot. https://doi.org/10.1089/vbz.2019.2585 (2020).
    Article  Google Scholar 

    22.
    Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. T. R. Soc. B. 363, 321–339 (2008).
    Article  Google Scholar 

    23.
    Nelson, R. J. & Demas, G. E. Seasonal changes in immune function. Quart. Rev. Biol. 71, 511–548 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Old, J. M. & Deane, E. M. Antibodies to the Ross River virus in captive marsupials in urban areas of eastern New South Wales Australia. J. Wildlife Dis. 41, 611–614 (2005).
    Article  Google Scholar 

    25.
    Muhar, A., Dale, P. E., Thalib, L. & Arito, E. The spatial distribution of Ross River virus infections in Brisbane: Significance of residential location and relationships with vegetation types. Environ. Health Prev. 4, 184–189 (2000).
    CAS  Article  Google Scholar 

    26.
    Ryan, P., Alsemgeest, D., Gatton, M. & Kay, B. Ross River virus disease clusters and spatial relationship with mosquito biting exposure in Redland Shire, southern Queensland Australia. J. Med. Entomol. 43, 1042–1059 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Davies, N. et al. Movement patterns of an arboreal marsupial at the edge of its range: A case study of the koala. Movement Ecol. 1, 8 (2013).
    Article  Google Scholar 

    28.
    Murphy, A. K. et al. Spatial and temporal patterns of Ross River virus in South East Queensland, Australia: Identification of hot spots at the rural-urban interface. Preprint available at Research Square. https://doi.org/10.21203/rs.3.rs-16140/v1 (2020).

    29.
    Potter, A., Johansen, C. A., Fenwick, S., Reid, S. A. & Lindsay, M. D. The seroprevalence and factors associated with Ross River virus infection in western grey kangaroos (Macropus fuliginosus) in Western Australia. Vector-borne Zoonot. 14, 740–745 (2014).
    Article  Google Scholar 

    30.
    Kay, B. H., Boyd, A. M., Ryan, P. A. & Hall, R. A. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane Australia. Am. J. Trop. Med. Hyg. 76, 417–423 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Doak, D. F., Marino, P. C. & Kareiva, P. M. Spatial scale mediates the influence of habitat fragmentation on dispersal success: Implications for conservation. Theor. Popul. Biol. 41, 315–336 (1992).
    Article  Google Scholar 

    32.
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. S. 34, 487–515 (2003).
    Article  Google Scholar 

    33.
    Di Giulio, M., Holderegger, R. & Tobias, S. Effects of habitat and landscape fragmentation on humans and biodiversity in densely populated landscapes. J. Environ. Manag. 90, 2959–2968 (2009).
    Article  Google Scholar 

    34.
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Article  Google Scholar 

    35.
    Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17, 267–272 (2003).
    Article  Google Scholar 

    36.
    Ostfeld, R. S. Biodiversity loss and the rise of zoonotic pathogens. Clin. Microbiol. Infect. 15, 40–43 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Johnson, B. J. et al. The roles of mosquito and bird communities on the prevalence of West Nile virus in urban wetland and residential habitats. Urban Ecosyst. 15, 513–531 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Quigley, B. L., Ong, V. A., Hanger, J. & Timms, P. Molecular dynamics and mode of transmission of koala retrovirus as it invades and spreads through a wild Queensland koala population. J. Virology 92 (2018).

    39.
    Woodward, W. et al. Koalas on North Stradbroke Island: diet, tree use and reconstructed landscapes. Wildlife Res. 35, 606–611 (2008).
    Article  Google Scholar 

    40.
    De Oliveira, S., Murray, P., De Villiers, D. & Baxter, G. Ecology and movement of urban koalas adjacent to linear infrastructure in coastal south-east Queensland. Aust. Mammal. 36, 45–54 (2014).
    Article  Google Scholar 

    41.
    Callaghan, J. et al. Ranking and mapping koala habitat quality for conservation planning on the basis of indirect evidence of tree-species use: A case study of Noosa Shire, south-eastern Queensland. Wildlife Res. 38, 89–102 (2011).
    Article  Google Scholar 

    42.
    MBRC. Koala Management Plan: The Mill at Moreton Bay Redevelopment, Moreton Bay Regional Council. www.moretonbay.qld.gov.au/files/assets/public/services/projects/the-mill/the-mill-koala-management-plan.pdf (2016).

    43.
    Hanger, J. et al. Final Technical Report: Moreton Bay Rail Koala Management Program (Department of Transport and Main Roads, Queensland, 2017).
    Google Scholar 

    44.
    Fabijan, J. et al. Prevalence and clinical significance of koala retrovirus in two South Australian koala (Phascolarctos cinereus) populations. J. Med. Microbiol. 68, 1072–1080 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Whisson, D. A., Zylinski, S., Ferrari, A., Yokochi, K. & Ashman, K. R. Patchy resources and multiple threats: How do koalas navigate an urban landscape?. Landsc. Urban Plan. 201, 103854 (2020).
    Article  Google Scholar 

    46.
    Mitchell, P. in Biology of the Koala (eds AK Lee, KA Handasyde, & GD Sanson) 171–187 (1990).

    47.
    Jansen, C. C., Zborowski, P., Ritchie, S. A. & Van Den Hurk, A. F. Efficacy of bird-baited traps placed at different heights for collecting ornithophilic mosquitoes in eastern Queensland Australia. Aust. J. Med. Entomol. 48, 53–59 (2009).
    Article  Google Scholar 

    48.
    Johnston, E. et al. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: Implications for disease vector surveillance. J. Vect. Ecol. 39, 48–55 (2014).
    Article  Google Scholar 

    49.
    Kay, B., Boreham, P. & Fanning, I. Host-feeding patterns of Culex annulirostris and other mosquitoes (Diptera: Culicidae) at Charleville, southwestern Queensland Australia. J. Med. Entomol. 22, 529–535 (1985).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Johansen, C., Power, S. & Broom, A. Determination of mosquito (Diptera: Culicidae) bloodmeal sources in Western Australia: Implications for arbovirus transmission. J. Med. Entomol. 46, 1167–1175 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Kay, B., Fanning, I. & Carley, J. The vector competence of Australian Culex annulirostris with Murray Valley encephalitis and Kunjin viruses. A J. Exp. Biol. Med. 62, 641–650 (1984).
    Article  Google Scholar 

    52.
    Jacups, S. P., Whelan, P. I. & Currie, B. J. Ross River virus and Barmah Forest virus infections: A review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector-Borne Zoonot. 8, 283–298 (2008).
    Article  Google Scholar 

    53.
    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Kelly, T. R. et al. One Health proof of concept: Bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. Prev. Vet. Med. 137, 112–118 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jansen, C. C. et al. Epidemiologic, entomologic, and virologic factors of the 2014–15 Ross River Virus outbreak, Queensland Australia. Emerg. Infect. Dis. 25, 2243 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Woodruff, R. E. et al. Predicting Ross River virus epidemics from regional weather data. Epidemiology 1, 384–393 (2002).
    Article  Google Scholar 

    57.
    Kelly-Hope, L. A., Purdie, D. M. & Kay, B. H. Ross River virus disease in Australia, 1886–1998, with analysis of risk factors associated with outbreaks. J. Med. Entomol. 41, 133–150 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Flies, E. J., Flies, A. S., Fricker, S. R., Weinstein, P. & Williams, C. R. Regional comparison of mosquito bloodmeals in South Australia: Implications for Ross River virus ecology. J. Med. Entomol. 53, 902–910 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Stephenson, E. B., Murphy, A. K., Jansen, C. C., Peel, A. J. & McCallum, H. Interpreting mosquito feeding patterns in Australia through an ecological lens: An analysis of blood meal studies. Parasite. Vector. 12, 156 (2019).
    Article  Google Scholar 

    60.
    Gordon, G. Estimation of the age of the Koala, Phascolarctos cinereus (Marsupialia: Phascolarctidae), from tooth wear and growth. Aust. Mammal. 14, 5–12 (1991).
    Google Scholar 

    61.
    Robbins, A., Loader, J., Timms, P. & Hanger, J. Optimising the short and long-term clinical outcomes for koalas (Phascolarctos cinereus) during treatment for chlamydial infection and disease. PLoS ONE 13(12), e0209673. https://doi.org/10.1371/journal.pone.0209679 (2018).
    Article  Google Scholar 

    62.
    Calenge, C. Home range estimation in R: the adehabitatHR package (Saint Benoist, Auffargis, France, Office national de la classe et de la faune sauvage, 2011).
    Google Scholar 

    63.
    Quantum, G. QGIS geographic information system. Open source geospatial foundation project. https://qgis.osgeo.org (2015).

    64.
    Doherty, R., Whitehead, R. & Gorman, B. The isolation of a third group A arbovirus in Australia, with preliminary observations on its relationship to epidemic polyarthritis. Aust. J. Sci. 26, 183–184 (1963).
    Google Scholar 

    65.
    Gyawali, N., Taylor-Robinson, A. W., Bradbury, R. S., Potter, A. & Aaskov, J. G. Infection of Western Gray Kangaroos (Macropus fuliginosus) with Australian arboviruses associated with human infection. Vector-Born Zoonotic Dis. 20, 33–39 (2020).
    Article  Google Scholar 

    66.
    Togami, E. et al. First evidence of concurrent enzootic and endemic transmission of Ross River virus in the absence of marsupial reservoirs in Fiji. Int. J. Infect. Dis. 96, 94–96 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gyawali, N., Murphy, A. K., Hugo, L. E. & Devine, G. J. A micro-PRNT for the detection of Ross River virus antibodies in mosquito blood meals: A useful tool for inferring transmission pathways. PLoS ONE 15, e0229314. https://doi.org/10.1371/journal.pone.0229314 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    68.
    Gatton, M. L., Kay, B. H. & Ryan, P. A. Environmental predictors of Ross River virus disease outbreaks in Queensland Australia. Am. J. Trop. Med. Hyg. 72, 792–799 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    McGrath, J. C., Drummond, G. B., McLachlan, E. M., Kilkenny, C. & Wainwright, C. L. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br. J. Pharmacol. 160(7), 1573–1576 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    QDES. Queensland Department of Environment and Science, Wetland data – version 5 – Queensland series. https://www.des.qld.gov.au (2015).

    71.
    QDES. Queensland Department of Environment and Science, Matters of state environmental significance—wildlife habitat—koala habitat areas—core. https://www.des.qld.gov.au (2020).

    72.
    ESRI. Environmental Systems Research Institute. ArcGIS Desktop. Release 10.4 ed. Redlands, CA, USA. https://esri.com (2020). More

  • in

    Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes

    1.
    Fletcher, D. & Ross, K. Regulation of reproduction in eusocial Hymenoptera. Annu. Rev. Entomol. 30, 319–343. https://doi.org/10.1146/annurev.en.30.010185.001535 (1985).
    Article  Google Scholar 
    2.
    Bonabeau, E. Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443. https://doi.org/10.1007/s100219900038 (1998).
    Article  Google Scholar 

    3.
    Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University, Cambridge, 1990).
    Google Scholar 

    4.
    Beekman, M. & Oldroyd, B. P. Conflict and major transitions—why we need true queens. Curr. Opin. Insect Sci. 34, 73–79. https://doi.org/10.1016/j.cois.2019.03.009 (2019).
    Article  PubMed  Google Scholar 

    5.
    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16. https://doi.org/10.1016/0022-5193(64)90038-4 (1964).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fletcher, D. J. C. & Blum, M. S. Regulation of queen number by workers in colonies of social insects. Science 219, 312–314. https://doi.org/10.1126/science.219.4582.312 (1983).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    Liebig, J., Peeters, C. & Holldobler, B. Worker policing limits the number of reproductives in a ponerine ant. Proc. Biol. Sci. 266, 1865–1870 (1999).
    Article  Google Scholar 

    8.
    West, M. J. Foundress associations in polistine wasps: dominance hierarchies and the evolution of social behavior. Science 157, 1584–1585. https://doi.org/10.1126/science.157.3796.1584 (1967).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 218–222. https://doi.org/10.1038/nature02949 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Fukumoto, Y. A novel form of colony organization in the “queenless” ant Diacamma rugosum. Physiol. Ecol. Jpn. 26, 55–61 (1989).
    Google Scholar 

    11.
    Grüter, C. & Czaczkes, T. J. Communication in social insects and how it is shaped by individual experience. Anim. Behav. 151, 207–215. https://doi.org/10.1016/j.anbehav.2019.01.027 (2019).
    Article  Google Scholar 

    12.
    Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol. News 30, 1–26 (2020).
    Google Scholar 

    13.
    Blomquist, G. J. & Bagneres, A. G. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    14.
    Kather, R. & Martin, S. J. Evolution of cuticular hydrocarbons in the hymenoptera: a meta-analysis. J. Chem. Ecol. 41, 871–883. https://doi.org/10.1007/s10886-015-0631-5 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Van Oystaeyen, A. et al. Conserved class of queen pheromones stops social insect workers from reproducing. Science 343, 287–290. https://doi.org/10.1126/science.1244899 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    16.
    Keller, L. & Nonacs, P. The role of queen pheromones in social insects: queen control or queen signal?. Anim. Behav. 45, 787–794. https://doi.org/10.1006/anbe.1993.1092 (1993).
    Article  Google Scholar 

    17.
    Heinze, J. & d’Ettorre, P. Honest and dishonest communication in social Hymenoptera. J. Exp. Biol. 212, 1775–1779. https://doi.org/10.1242/jeb.015008 (2009).
    CAS  Article  PubMed  Google Scholar 

    18.
    Gobin, B., Billen, J. & Peeters, C. Policing behaviour towards virgin egg layers in a polygynous ponerine ant. Anim. Behav. 58, 1117–1122. https://doi.org/10.1006/anbe.1999.1245 (1999).
    CAS  Article  PubMed  Google Scholar 

    19.
    Holman, L., Dreier, S. & d’Ettorre, P. Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc. R. Soc. B Biol. Sci. 277, 2007–2015. https://doi.org/10.1098/rspb.2009.2311 (2010).
    CAS  Article  Google Scholar 

    20.
    Oi, C. A. et al. The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37, 808–821. https://doi.org/10.1002/bies.201400180 (2015).
    CAS  Article  PubMed  Google Scholar 

    21.
    Holman, L., Helanterä, H., Trontti, K. & Mikheyev, A. S. Comparative transcriptomics of social insect queen pheromones. Nat. Commun. 10, 1593. https://doi.org/10.1038/s41467-019-09567-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Kocher, S. D. & Grozinger, C. M. Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263–1275. https://doi.org/10.1007/s10886-011-0036-z (2011).
    CAS  Article  PubMed  Google Scholar 

    23.
    Butler, C. G., Callow, R. K. & Johnston, N. C. Extraction and purification of ‘queen substance’ from queen bees. Nature 184, 1871–1871. https://doi.org/10.1038/1841871a0 (1959).
    ADS  CAS  Article  Google Scholar 

    24.
    van Zweden, J. S., Bonckaert, W., Wenseleers, T. & d’Ettorre, P. Queen signaling in social wasps. Evolution 68, 976–986. https://doi.org/10.1111/evo.12314 (2014).
    Article  PubMed  Google Scholar 

    25.
    Mitra, A. & Gadagkar, R. Queen signal should be honest to be involved in maintenance of eusociality: chemical correlates of fertility in Ropalidia marginata. Insectes Soc. 59, 251–255. https://doi.org/10.1007/s00040-011-0214-6 (2012).
    Article  Google Scholar 

    26.
    Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. R. Soc. B Biol. Sci. 277, 3793–3800. https://doi.org/10.1098/rspb.2010.0984 (2010).
    CAS  Article  Google Scholar 

    27.
    Hanus, R., Vrkoslav, V., Hrdý, I., Cvačka, J. & Šobotník, J. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc. R. Soc. B Biol. Sci. 277, 995–1002. https://doi.org/10.1098/rspb.2009.1857 (2010).
    CAS  Article  Google Scholar 

    28.
    Myles, T. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–91 (1999).
    Google Scholar 

    29.
    Vargo, E. L. & Husseneder, C. Biology of subterranean termites: Insights from molecular studies of Reticulitermes and Coptotermes. Annu. Rev. Entomol. 54, 379–403. https://doi.org/10.1146/annurev.ento.54.110807.090443 (2009).
    CAS  Article  PubMed  Google Scholar 

    30.
    Lainé, L. V. & Wright, D. J. The life cycle of Reticulitermes spp. (Isoptera: Rhinotermitidae): what do we know?. Bull. Entomol. Res. 93, 267–278. https://doi.org/10.1079/ber2003238 (2003).
    Article  PubMed  Google Scholar 

    31.
    Thorne, B. L., Traniello, J. F. A., Adams, E. S. & Bulmer, M. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol. Ecol. Evol. 11, 149–169. https://doi.org/10.1080/08927014.1999.9522833 (1999).
    Article  Google Scholar 

    32.
    Hu, X. Recent Advances in Entomological Research: From Molecular Biology to Pest Management (eds Liu, T. & Kang, L.) 213–226 (Springer, Berlin, 2011).

    33.
    Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968. https://doi.org/10.1073/pnas.1004675107 (2010).
    ADS  Article  PubMed  Google Scholar 

    34.
    Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79. https://doi.org/10.1007/s00114-017-1501-5 (2017).
    CAS  Article  Google Scholar 

    35.
    Havlíčková, J. et al. (3R,6E)-nerolidol, a fertility-related volatile secreted by the queens of higher termites (Termitidae: Syntermitinae). Zeitschrift für Naturforschung C 74, 251–264. https://doi.org/10.1515/znc-2018-0197 (2019).
    CAS  Article  Google Scholar 

    36.
    Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1721419115 (2018).
    Article  PubMed  Google Scholar 

    37.
    Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, e0209810. https://doi.org/10.1371/journal.pone.0209810 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898. https://doi.org/10.1002/ece3.6325 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Yamamoto, Y. & Matsuura, K. Queen pheromone regulates egg production in a termite. Biol. Let. 7, 727–729. https://doi.org/10.1098/rsbl.2011.0353 (2011).
    Article  Google Scholar 

    40.
    Sun, Q., Haynes, K. F. & Zhou, X. Temporal changes in cuticular hydrocarbons during worker-reproductive transition in the eastern subterranean termite (Blattodea: Rhinotermitidae). Ann. Entomol. Soc. Am. https://doi.org/10.1093/aesa/saaa027 (2020).
    Article  Google Scholar 

    41.
    Perdereau, E., Dedeine, F., Christidès, J.-P. & Bagnères, A.-G. Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J. Chem. Ecol. 36, 1189–1198. https://doi.org/10.1007/s10886-010-9860-9 (2010).
    CAS  Article  PubMed  Google Scholar 

    42.
    Tarver, M. R., Schmelz, E. A., Rocca, J. R. & Scharf, M. E. Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes. J. Chem. Ecol. 35, 256–264. https://doi.org/10.1007/s10886-009-9594-8 (2009).
    CAS  Article  PubMed  Google Scholar 

    43.
    Tarver, M. R., Zhou, X. & Scharf, M. E. Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Mol. Biol. 11, 28. https://doi.org/10.1186/1471-2199-11-28 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780. https://doi.org/10.1098/rspb.2020.0780 (2020).
    Article  Google Scholar 

    45.
    Chen, Y. P. & Vinson, S. B. Effects of queen attractiveness to workers on the queen nutritional status and egg production in the polygynous Solenopsis invicta (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 93, 295–302. https://doi.org/10.1603/0013-8746(2000)093[0295:eoqatw]2.0.co;2 (2000).
    Article  Google Scholar 

    46.
    Ortius, D. & Heinze, J. Fertility signaling in queens of a North American ant. Behav. Ecol. Sociobiol. 45, 151–159 (1999).
    Article  Google Scholar 

    47.
    Hannonen, M. & Sundström, L. Proximate determinants of reproductive skew in polygyne colonies of the ant Formica fusca. Ethology 108, 961–973. https://doi.org/10.1046/j.1439-0310.2002.00829.x (2002).
    Article  Google Scholar 

    48.
    Keller, L. Evolutionary implications of polygyny in the Argentine ant, Iridomyrmex humilis (Mayr) (Hymenoptera: Formicinae): an experimental study. Anim. Behav. 36, 159–165 (1988).
    Article  Google Scholar 

    49.
    Vargo, E. L. Mutual pheromonal inhibition among queens in polygyne colonies of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 31, 205–210. https://doi.org/10.1007/bf00168648 (1992).
    Article  Google Scholar 

    50.
    Vander Meer, R. K., Morel, L. & Lofgren, C. S. A comparison of queen oviposition rates from monogyne and polygyne fire ant, Solenopsis invicta, colonies. Physiol. Entomol. 17, 384–390. https://doi.org/10.1111/j.1365-3032.1992.tb01036.x (1992).
    Article  Google Scholar 

    51.
    Lenoir, A., D’Ettorre, P., Errard, C. & Hefetz, A. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599. https://doi.org/10.1146/annurev.ento.46.1.573 (2001).
    CAS  Article  PubMed  Google Scholar 

    52.
    Martin, S. J., Carruthers, J. M., Williams, P. H. & Drijfhout, F. P. Host specific social parasites (Psithyrus) indicate chemical recognition system in bumblebees. J. Chem. Ecol. 36, 855–863. https://doi.org/10.1007/s10886-010-9805-3 (2010).
    CAS  Article  PubMed  Google Scholar 

    53.
    Kreuter, K. et al. How the social parasitic bumblebee Bombus bohemicus sneaks into power of reproduction. Behav. Ecol. Sociobiol. 66, 475–486 (2012).
    Article  Google Scholar 

    54.
    Mori, A. et al. Behavioural assays testing the appeasement allomone of Polyergus rufescens queens during host-colony usurpation. Ethol. Ecol. Evol. 12, 315–322. https://doi.org/10.1080/08927014.2000.9522804 (2000).
    Article  Google Scholar 

    55.
    Ruano, F., Hefetz, A., Lenoir, A., Francke, W. & Tinaut, A. Dufour’s gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. J. Insect Physiol. 51, 1158–1164. https://doi.org/10.1016/j.jinsphys.2005.06.005 (2005).
    CAS  Article  PubMed  Google Scholar 

    56.
    Martin, S. J., Jenner, E. A. & Drijfhout, F. P. Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proc. Biol. Sci. 274, 2717–2721. https://doi.org/10.1098/rspb.2007.0795 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Lhomme, P., Ayasse, M., Valterová, I., Lecocq, T. & Rasmont, P. Born in an alien nest: how do social parasite male offspring escape from host aggression?. PLoS ONE 7, e43053. https://doi.org/10.1371/journal.pone.0043053 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Hanus, R., Piskorski, R., Šobotník, J., Urbanová, K. & Valterová, I. Congress of Entomology 2008 (Durban, South Africa, 2008).

    59.
    Penick, C., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).
    Article  Google Scholar 

    60.
    Monnin, T. Chemical recognition of reproductive status in social insects. Ann. Zoolgici Fenn. 43, 515–530 (2006).
    Google Scholar 

    61.
    Endler, A., Liebig, J. & Hölldobler, B. Queen fertility, egg marking and colony size in the ant Camponotus floridanus. Behav. Ecol. Sociobiol. 59, 490–499 (2006).
    Article  Google Scholar 

    62.
    Foster, K. R. & Ratnieks, F. L. W. Facultative worker policing in a wasp. Nature 407, 692–693. https://doi.org/10.1038/35037665 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Bonckaert, W., Van Zweden, J. S., D’Ettorre, P., Billen, J. & Wenseleers, T. Colony stage and not facultative policing explains pattern of worker reproduction in the Saxon wasp. Mol. Ecol. 20, 3455–3468. https://doi.org/10.1111/j.1365-294X.2011.05200.x (2011).
    CAS  Article  PubMed  Google Scholar 

    64.
    Haverty, M. I., Grace, J. K., Nelson, L. J. & Yamamoto, R. T. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Copotermes formosanus shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22, 1813–1834. https://doi.org/10.1007/bf02028506 (1996).
    CAS  Article  PubMed  Google Scholar 

    65.
    Howard, R. & Haverty, M. I. Seasonal variation in caste proportions of field colonies of Reticulitermes flavipes (Kollar) 1. Environ. Entomol. 10, 546–549. https://doi.org/10.1093/ee/10.4.546 (1981).
    Article  Google Scholar 

    66.
    Gordon, J. M., Šobotník, J. & Chouvenc, T. Colony-age-dependent variation in cuticular hydrocarbon profiles in subterranean termite colonies. Ecol. Evol. 10, 10095–10104. https://doi.org/10.1002/ece3.6669 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).
    Article  Google Scholar 

    68.
    Eyer, P. A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Authorea 1, 1–20 (2020).

    69.
    Dronnet, S., Chapuisat, M., Vargo, E. L., Lohou, C. & Bagnères, A.-G. Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol. Ecol. 14, 1311–1320. https://doi.org/10.1111/j.1365-294X.2005.02508.x (2005).
    CAS  Article  PubMed  Google Scholar 

    70.
    Junker, R. R. et al. Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications. New Phytol. 220, 739–749. https://doi.org/10.1111/nph.14505 (2018).
    Article  PubMed  Google Scholar 

    71.
    Aguero, C., Eyer, P. A. & Vargo, E. L. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10, 4212 (2020).
    ADS  CAS  Article  Google Scholar 

    72.
    polymorphism and chemotaxonomy. Bagneres, A. G. et al. Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud). J. Chem. Ecol. 16, 3213–3244 (1990).
    Article  Google Scholar 

    73.
    Clément, J. L. et al. Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Soc. 408, 202–215 (2001).
    Article  Google Scholar 

    74.
    Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R package. https://CRAN.R-project.org/package=PMCMR (2014).

    75.
    Kassambara, A. & Mundt, F. Extract and visualize the results of multivariate data analyses. Package ‘factoextra’, vol. 76. http://www.sthda.com/english/rpkgs/factoextra (2017).

    76.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020). More

  • in

    Identification of microalgae cultured in Bold’s Basal medium from freshwater samples, from a high-rise city

    1.
    Mobin, S., Chowdhury, H. & Alam, F. Commercially important bioproducts from microalgae and their current applications—a review. Energy Procedia. 60, 752–760 (2002).
    Google Scholar 
    2.
    Tragin, M. & Vaulot, D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci. Rep. https://doi.org/10.1038/s41598-018-32338-w (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Phang, S. M. et al. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore Thailand and Vietnam. Raffles B Zool. 34, 13–59 (2016).
    Google Scholar 

    4.
    Pham, M. N., Tan, H. T. W., Mitrovic, S., & Yeo, H. H. T. A checklist of the algae of Singapore. In Raffles Museum of Biodiversity Research, 2nd edn (2011).

    5.
    Omar, W. M. W. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop. Life Sci. Res. 21, 51–67 (2010).
    PubMed  PubMed Central  Google Scholar 

    6.
    Emporis GMBH. https://www.emporis.com/city/100422/singapore-singapore (2020).

    7.
    Waterways and Waterbodies. https://www.mewr.gov.sg/ssb/our-targets/green-blue-spaces/waterways-and-waterbodies (2020).

    8.
    Darienko, T., Gustavs, L., Eggert, A., Wolf, W., Proschold, T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE. 10; e0127838. https://doi.org/10.1371/journal.pone.0127838 (2015).

    9.
    Radha, S., Fathima, A., Iyappan, S. & Mohandas, R. Direct colony PCR for rapid identification of varied microalgae from freshwater environment. J. Appl. Phycol. https://doi.org/10.1007/s10811-012-9895-0 (2013).
    Article  Google Scholar 

    10.
    Domozych, D. et al. The cell walls of green algae: a journey through evolution and diversity. Front. Plant. Sci. https://doi.org/10.3389/fpls.2012.00082 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Te, S. & Gin, K. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae. 10(3), 319–329. https://doi.org/10.1016/j.hal.2010.11.006 (2011).
    CAS  Article  Google Scholar 

    12.
    Hirano, K. et al. Detection of the oil-producing microalga Botryococcus braunii in natural freshwater environments by targeting the hydrocarbon biosynthesis gene SSL-3. Sci. Rep. https://doi.org/10.1038/s41598-019-53619-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Newman, S. M. et al. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126, 875–888 (1990).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Martin-Laurent, F. et al. DNA extraction from soils: Old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67, 2354–2359 (2001).
    CAS  Article  Google Scholar 

    15.
    Eland, L., Davenport, R. & Mota, C. R. Evaluation of DNA extraction methods for freshwater eukaryotic microalgae. Water Res. 46, 5355–5364 (2012).
    CAS  Article  Google Scholar 

    16.
    Simonelli, P. et al. Evaluation of DNA extraction and handling procedures for PCR-based copepod feeding studies. J. Plankton Res. 31, 1465–1474 (2009).
    CAS  Article  Google Scholar 

    17.
    Frazão, B. & Silva, A. Molecular tools for phytoplankton monitoring samples. BioRxiv https://doi.org/10.1101/339655 (2018).
    Article  Google Scholar 

    18.
    Fei, C. et al. A quick method for obtaining high-quality DNA barcodes without DNA extraction in microalgae. J. Appl. Phycol. https://doi.org/10.1007/s10811-019-01926-2 (2020).
    Article  Google Scholar 

    19.
    Sonnenberg, R., Nolte, A. W. & Tautz, D. An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Front. Zool. https://doi.org/10.1186/1742-9994-4-6 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Beals, L., Gross, M., & Harrell, S. Diversity indices. http://www.tiem.utk.edu/~gross/bioed/bealsmodules/shannonDI.html (2000).

    21.
    Khan, M. I., Jin, H. S. & Jong, D. K. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. https://doi.org/10.1186/s12934-018-0879-x (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Ji, M. K. et al. Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus. J. Environ. Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000726 (2020).
    Article  Google Scholar 

    23.
    Patnaik, R., Singh, N., Bagchi, S., Rao, P. S. & Mallick, N. Utilization of Scenedesmus obliquus protein as a replacement of the commercially available fish meal under an algal refinery approach. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02114 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Mata, T. et al. Potential of microalgae Scendesmus obliquus grown in brewery wastewater for biodiesel production. Chem. Eng. Trans. 32, 901–906 (2013).
    Google Scholar 

    25.
    Afify, A. E. M. M. R., ElBaroty, G. S., ElBaz, F. K., AbdElBaky, H. H. & Murad, S. A. Scenedesmus obliquus: antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. J. Gen. Eng. Biotech. 16, 399–408 (2018).
    Article  Google Scholar 

    26.
    Kent, M., Welladsen, H. M., Mangott, A. & Lee, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE https://doi.org/10.1371/journal.pone.0118985 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Unpaprom, Y., Tipnee, S. & Ramaraj, R. Biodiesel from green alga Scenedesmus acuminatus. Int. J. Sustain. Green Energy 4, 1–6 (2015).
    CAS  Article  Google Scholar 

    28.
    De Alva, S. M., Luna-Pabello, V., Cadena, E. & Ortíz, E. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresour. Technol. 146, 744–748 (2013).
    Article  Google Scholar 

    29.
    Patil, L. & Kaliwal, B. B. Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess. Biosyst. Eng. 42, 1–16 (2019).
    CAS  Article  Google Scholar 

    30.
    Henard, C., Guarnieri, M. & Knoshaug, E. The Chlorella vulgaris S-nitrosoproteome under nitrogen-replete and -deplete conditions. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2016.00100 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Chai, S. et al. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS ONE https://doi.org/10.1371/journal.pone.0199873 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    32.
    Ishiguro, S. et al. Cell wall membrane fraction of Chlorella sorokiniana enhances host antitumor immunity and inhibits colon carcinoma growth in mice. Integr. Cancer Ther. https://doi.org/10.1177/1534735419900555 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Barone, R. S. C., Sonoda, D. Y., Lorenz, E. K. & Cyrino, J. E. P. Digestibility and pricing of Chlorella sorokiniana meal for use in tilapia feeds. Sci. Agric. https://doi.org/10.1590/1678-992x-2016-0457 (2018).
    Article  Google Scholar 

    34.
    Guo, M. et al. Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague-Dawley rats, as revealed by high-throughput 16S rRNA sequencing. World J. Microbiol. Biotechnol. https://doi.org/10.1007/s11274-015-1994-z (2016).
    Article  PubMed  Google Scholar 

    35.
    El-Dalatony, M. et al. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol. Bioproc. E 19, 510–518 (2014).
    Article  Google Scholar 

    36.
    Scaife, M. et al. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 82, 532–546 (2015).
    CAS  Article  Google Scholar 

    37.
    Kamyab, H. et al. Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia. 75, 2400–2408 (2015).
    CAS  Article  Google Scholar 

    38.
    Ciorba, D. & Truta, A. A. C. Cytotoxic exposure of green algas Chlamydomonas peterfii Gerloff in radon aerosols. J. Phys. Rom. https://doi.org/10.1016/j.biortech.2013.07.061 (2013).
    Article  Google Scholar 

    39.
    Santhakumaran, P., Kookal, S., Mathew, L. & Ray, J. G. Bioprospecting of three rapid-growing freshwater green algae, promising biomass for biodiesel production. BioEnergy Res. 12, 680–693 (2019).
    CAS  Article  Google Scholar 

    40.
    Rauytanapanit, M. et al. Nutrient deprivation-associated changes in green microalga Coelastrum sp. TISTR 9501RE enhanced potent antioxidant carotenoids. Mar. Drugs https://doi.org/10.3390/md17060328 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Kumar, M. S. et al. Influence of CO2 and light spectra on the enhancement of microalgal growth and lipid content. J. Renew. Sustain. Energ. https://doi.org/10.1063/1.4901541 (2014).
    Article  Google Scholar 

    42.
    Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R. & Singh, R. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS ONE 14(e0221930), 2019. https://doi.org/10.1371/journal.pone.0221930 (2019).
    CAS  Article  Google Scholar 

    43.
    Mourelle, M., Gómez, C. & Legido, J. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics. https://doi.org/10.3390/cosmetics4040046 (2017).
    Article  Google Scholar 

    44.
    Singh, G. & Thomas, P. Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresour. Technol. 117, 80–85 (2012).
    CAS  Article  Google Scholar 

    45.
    Sathasivam, R., Radhakrishnan, R., Hashem, A. & AbdAllah, E. F. Microalgae metabolites: a rich source for food and medicine. Saudi J. Biol. Sci. 26, 709–722 (2019).
    CAS  Article  Google Scholar 

    46.
    Neustupa, J. & Škaloud, P. Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant. Ecol. Evol. 143, 51–62 (2010).
    Article  Google Scholar 

    47.
    Prakash, J., Antonisamy, J. & Jeeva, S. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac. J. Trop. Biomed. 1, S170–S173. https://doi.org/10.1016/s2221-1691(11)60149-4 (2011).
    Article  Google Scholar 

    48.
    Gumbi, S., Majeke, B., Olaniran, A. & Mutanda, T. Isolation, identification and high-throughput screening of neutral lipid producing indigenous microalgae from South African aquatic habitats. Appl. Biochem. Biotech. 182, 382–399. https://doi.org/10.1007/s12010-016-2333-z (2016).
    CAS  Article  Google Scholar 

    49.
    Lee, K., Eisterhold, M. L., Rindi, F., Palanisami, S. & Nam, P. Isolation and screening of microalgae from natural habitats in the midwestern United States of America for biomass and biodiesel sources. J. Nat. Sci. Biol. Med. https://doi.org/10.4103/0976-9668.136178 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    Lewandowska, A., Śliwińska-Wilczewska, S. & Woźniczka, D. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Mar. Pollut. Bull. 125, 30–38. https://doi.org/10.1016/j.marpolbul.2017.07.064 (2017).
    CAS  Article  PubMed  Google Scholar  More

  • in

    Stress hormone-mediated antipredator morphology improves escape performance in amphibian tadpoles

    1.
    Tollrian, R. & Harvell, C. D. The Ecology and Evolution of Inducible Defenses (Princeton University Press, Princeton, 1998).
    Google Scholar 
    2.
    Ohgushi, T., Schmitz, O. J. & Holt, R. D. Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    3.
    Ellers, J. & Stuefer, J. F. Frontiers in phenotypic plasticity research: new questions about mechanisms, induced responses, and ecological impacts. Evol. Ecol. 24, 523–526 (2010).
    Article  Google Scholar 

    4.
    Mitchell, M. D., Bairos-Novak, K. R. & Ferrari, M. C. Mechanisms underlying the control of responses to predator odours in aquatic prey. J. Exp. Biol. 220, 1937–1946 (2017).
    PubMed  Article  Google Scholar 

    5.
    Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. Roy. Soc. B Biol. Sci. 272, 2627–2634 (2005).
    Google Scholar 

    6.
    Brönmark, C. & Hansson, L.-A. Chemical Ecology in Aquatic Systems (Oxford University Press, Oxford, 2012).
    Google Scholar 

    7.
    Middlemis Maher, J., Werner, E. E. & Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc. R. Soc. B Biol. Sci. 280, 20123075 (2013).
    Article  CAS  Google Scholar 

    8.
    Dennis, S. R., LeBlanc, G. A. & Beckerman, A. P. Endocrine regulation of predator-induced phenotypic plasticity. Oecologia 176, 625–635 (2014).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Matsunami, M. et al. Transcriptome analysis of predator- and prey-induced phenotypic plasticity in the Hokkaido salamander (Hynobius retardatus). Mol. Ecol. 24, 3064–3076 (2015).
    CAS  PubMed  Article  Google Scholar 

    10.
    Weiss, L. C. Sensory ecology of predator-induced phenotypic plasticity. Front. Behav. Neurosci. 12, 330 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).
    PubMed  Article  Google Scholar 

    12.
    Auld, J. R. & Relyea, R. A. Adaptive plasticity in predator-induced defenses in a common freshwater snail: altered selection and mode of predation due to prey phenotype. Evol. Ecol. 25, 189–202 (2011).
    Article  Google Scholar 

    13.
    Meuthen, D., Baldauf, S. A., Bakker, T. C. & Thünken, T. Neglected patterns of variation in phenotypic plasticity: age-and sex-specific antipredator plasticity in a cichlid fish. Am. Nat. 191, 475–490 (2018).
    PubMed  Article  Google Scholar 

    14.
    Schoeppner, N. M. & Relyea, R. A. Interpreting the smells of predation: how alarm cues and kairomones induce different prey defenses. Func. Ecol. 23, 1114–1121 (2009).
    Article  Google Scholar 

    15.
    Hettyey, A. et al. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia 179, 699–710 (2015).
    ADS  PubMed  Article  Google Scholar 

    16.
    Fraker, M. E. et al. Characterization of an alarm pheromone secreted by amphibian tadpoles that induces behavioral inhibition and suppression of the neuroendocrine stress axis. Horm. Behav. 55, 520–529 (2009).
    CAS  PubMed  Article  Google Scholar 

    17.
    Hossie, T. J., Ferland-Raymond, B., Burness, G. & Murray, D. L. Morphological and behavioural responses of frog tadpoles to perceived predation risk: a possible role for corticosterone mediation?. Écoscience 17, 100–108 (2010).
    Article  Google Scholar 

    18.
    McDiarmid, R. W. & Altig, R. Tadpoles: the Biology of Anuran Larvae (University of Chicago Press, Chicago, 1999).
    Google Scholar 

    19.
    Relyea, R. A. Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85, 172–179 (2004).
    Article  Google Scholar 

    20.
    Wilson, R. S., Kraft, P. G. & Van Damme, R. Predator-specific changes in the morphology and swimming performance of larval Rana lessonae. Func. Ecol. 19, 238–244 (2005).
    Article  Google Scholar 

    21.
    Van Buskirk, J. & McCollum, S. A. Influence of tail shape on tadpole swimming performance. J. Exp. Biol. 203, 2149–2158 (2000).
    PubMed  Google Scholar 

    22.
    Eidietis, L. Size-related performance variation in the wood frog (Rana sylvatica) tadpole tactile-stimulated startle response. Can. J. Zool. 83, 1117–1127 (2005).
    Article  Google Scholar 

    23.
    Perotti, M. G., Pueta, M., Jara, F. G., Úbeda, C. A. & Moreno Azocar, D. L. Lack of functional link in the tadpole morphology induced by predators. Curr. Zool. 62, 227–235 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Mori, T. et al. The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in Xenopus tadpoles. Biol. Open 6, 1726–1733 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Lindgren, B., Orizaola, G. & Laurila, A. Interacting effects of predation risk and resource level on escape speed of amphibian larvae along a latitudinal gradient. J. Evol. Biol. 31, 1216–1226 (2018).
    PubMed  Article  Google Scholar 

    26.
    Van Buskirk, J., Anderwald, P., Lüpold, S., Reinhardt, L. & Schuler, H. The lure effect, tadpole tail shape, and the target of dragonfly strikes. J. Herp. 37, 420–424 (2003).
    Article  Google Scholar 

    27.
    Dijk, B., Laurila, A., Orizaola, G. & Johansson, F. Is one defence enough? Disentangling the relative importance of morphological and behavioural predator-induced defences. Behav. Ecol. Sociobiol. 70, 237–246 (2016).
    Article  Google Scholar 

    28.
    Glennemeier, K. A. & Denver, R. J. Moderate elevation of corticosterone content affects fitness components in northern leopard frog (Rana pipiens) tadpoles. Gen. Comp. Endocrinol. 127, 16–25 (2002).
    CAS  PubMed  Article  Google Scholar 

    29.
    Glennemeier, K. A. & Denver, R. J. Role for corticoids in mediating the response of Rana pipiens tadpoles to intraspecific competition. J. Exp. Zool. 292, 32–40 (2002).
    CAS  PubMed  Article  Google Scholar 

    30.
    Muir, A. M., Vecsei, P. & Krueger, C. C. A perspective on perspectives: methods to reduce variation in shape analysis of digital images. Trans. Am. Fish. Soc. 141, 1161–1170 (2012).
    Article  Google Scholar 

    31.
    Fraker, M. E. & Luttbeg, B. Predator-prey space use and the spatial distribution of predation events. Behaviour 149, 555–574 (2012).
    Article  Google Scholar 

    32.
    Denver, R. J. Hormonal correlates of environmentally induced metamorphosis in the western spadefoot toad, Scaphiopus hammondii. Gen. Comp. Endocrinol. 110, 326–336 (1998).
    CAS  PubMed  Article  Google Scholar 

    33.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).
    Article  Google Scholar 

    34.
    R Core Team. R: A language and environment for statistical computing, version 3.6.1. (R Foundation for Statistical Computing, 2019).

    35.
    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Soft. 69, 1–33 (2016).
    Article  Google Scholar 

    36.
    Therneau, T. M. & Lumley, T. R Package ‘survival’ version 3.1-8 (2019).

    37.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 541–554 (2001).
    Article  Google Scholar 

    39.
    Berner, D. Size correction in biology: how reliable are approaches based on (common) principal component analysis?. Oecologia 166, 961–971 (2011).
    ADS  PubMed  Article  Google Scholar 

    40.
    Humphreys, R. K. & Ruxton, G. D. What is known and what is not yet known about deflection of the point of a predator’s attack. Biol. J. Linn. Soc. 123, 483–495 (2018).
    Article  Google Scholar 

    41.
    Blair, J. & Wassersug, R. J. Variation in the pattern of predator-induced damage to tadpole tails. Copeia 2000, 390–401 (2000).
    Article  Google Scholar 

    42.
    Van Buskirk, J., Ferrari, M., Kueng, D., Näpflin, K. & Ritter, N. Prey risk assessment depends on conspecific density. Oikos 120, 1235–1239 (2011).
    Article  Google Scholar 

    43.
    McCoy, M. W. Conspecific density determines the magnitude and character of predator-induced phenotype. Oecologia 153, 871–878 (2007).
    ADS  PubMed  Article  Google Scholar 

    44.
    Van Buskirk, J. & McCollum, S. A. Functional mechanisms of an inducible defence in tadpoles: morphology and behaviour influence mortality risk from predation. J. Evol. Biol 13, 336–347 (2000).
    Article  Google Scholar 

    45.
    Van Buskirk, J. Phenotypic lability and the evolution of predator-induced plasticity in tadpoles. Evolution 56, 361–370 (2002).
    PubMed  Article  Google Scholar 

    46.
    Hossie, T., Landolt, K. & Murray, D. L. Determinants and co-expression of anti-predator responses in amphibian tadpoles: a meta-analysis. Oikos 126, 173–184 (2017).
    Article  Google Scholar 

    47.
    Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).
    PubMed  Article  Google Scholar 

    48.
    Steiner, U. K. & Van Buskirk, J. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff. PLoS ONE 4, e6160 (2009).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Ferrari, M. C., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88, 698–724 (2010).
    Article  Google Scholar 

    50.
    Luttbeg, B., Ferrari, M. C., Blumstein, D. T. & Chivers, D. P. Safety cues can give prey more valuable information than danger cues. Am. Nat. 195, 636–648 (2020).
    PubMed  Article  Google Scholar 

    51.
    Schmitz, O. J. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions. F1000Research 6, 1767 (2017).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Experimentally constrained early reproduction shapes life history trajectories and behaviour

    Study system and study population
    We used the seed beetle Callosobruchus maculatus (Chrysomelidae, Bruchinae). In the laboratory, these beetles are kept under conditions (dry legume storage environments; see below) that mimic the conditions in which they have evolved for thousands of generations, since this species has adapted to exploiting dry seeds in human grain storages for several thousands of years16,17. In our study, we used one of the preferred hosts of this beetle, the mung bean (Vigna radiata, hereafter referred simply as beans). After mating, the inseminated females glue eggs on the surface of the beans. After hatching, the first larval instar burrows into the bean’s endosperm where it feeds and completes development. Importantly, females are able to discriminate clean from previously infested beans18. Whenever possible, females prefer to distribute their eggs uniformly (1 egg/seed), trying to avoid laying eggs on beans on which an egg (own or non-own) has already been deposited. This is because only a very small fraction of eggs deposited in an already parasitized bean develop successfully as a result of bean size limitations and larval competition19. When host deprivation is maintained for a long time ( > 4 days20) females may lay eggs on unsuitable substrates as well. In our population, infested Vigna radiata beans typically contain a single larva developing inside, and generally, a bean of this species provides resources to support only the development of one individual21. The species is sexually dimorphic, has a short generation time ( 0.95; p  More