Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting
1.
Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11, 474–485 (2018).
ADS CAS Article Google Scholar
2.
Diffenbaugh, N. S., Singh, D. & Mankin, J. S. Unprecedented climate events: historical changes, aspirational targets, and national commitments. Sci. Adv. 4, eaao3354 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
3.
Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).
ADS CAS Article Google Scholar
4.
United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement (2015).
5.
Intergovernmental Panel on Climate Change (IPCC). Fifth Assessment Report: Climate Change (AR5) (2014).
6.
Nabuurs, G. J. et al. Forestry. In Climate Change 2007: Mitigation (Cambridge University Press, 2007).
7.
Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).
ADS Article Google Scholar
8.
Xu, Z., Smyth, C. E., Lemprière, T. C., Rampley, G. J. & Kurz, W. A. Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia. Can. Mitig. Adapt. Strateg. Glob. Change 23, 257–290 (2018).
Article Google Scholar
9.
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
ADS CAS PubMed Article Google Scholar
10.
Peterson St-Laurent, G., Hagerman, S., Kozak, R. & Hoberg, G. Public perceptions about climate change mitigation in British Columbia’s forest sector. PLoS ONE 13, e0195999 (2018).
PubMed PubMed Central Article CAS Google Scholar
11.
Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).
ADS CAS PubMed Article Google Scholar
12.
Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).
PubMed Article Google Scholar
13.
Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).
CAS PubMed Article Google Scholar
14.
Marchand, W. et al. Untangling methodological and scale considerations in growth and productivity trend estimates of Canada’s forests. Environ. Res. Lett. 13, 093001 (2018).
ADS Article Google Scholar
15.
Browne, L., Wright, J. W., Fitz-Gibbon, S., Gugger, P. F. & Sork, V. L. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proc. Natl Acad. Sci. USA. 116, 25179–25185 (2019).
CAS PubMed Article Google Scholar
16.
Sally, N. A. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu Rev. Ecol. Evol. Syst. 44, 367–388 (2013).
Article Google Scholar
17.
Lemprière, T. C. et al. Canadian boreal forests and climate change mitigation. Environ. Rev. 21, 293–321 (2013).
Article Google Scholar
18.
Winder, R., Nelson, E. & Beardmore, T. Ecological implications for assisted migration in Canadian forests. For. Chron. 87, 731–744 (2011).
Article Google Scholar
19.
Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).
PubMed Article Google Scholar
20.
Isaac-Renton, M. et al. Northern forest tree populations are physiologically maladapted to drought. Nat. Commun. 9, 5254 (2018).
ADS CAS PubMed PubMed Central Article Google Scholar
21.
Field, E., Schönrogge, K., Barsoum, N., Hector, A. & Gibbs, M. Individual tree traits shape insect and disease damage on oak in a climate‐matching tree diversity experiment. Ecol. Evol. 9, 8524–8540 (2019).
PubMed PubMed Central Article Google Scholar
22.
Depardieu, C. et al. Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate. N. Phytol. 227, 427–439 (2020).
CAS Article Google Scholar
23.
Montwé, D., Isaac-Renton, M., Hamann, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Commun. 9, 1574 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
24.
Girardin, M. P. et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Change Biol. 22, 627–643 (2016).
ADS Article Google Scholar
25.
Hember, R. A., Kurz, W. A. & Coops, N. C. Increasing net ecosystem biomass production of Canada’s boreal and temperate forests despite decline in dry climates. Glob. Biogeochem. Cycles 31, 134–158 (2017).
CAS Article Google Scholar
26.
Boucher, D. et al. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Ecol. Appl. 28, 1245–1259 (2018).
PubMed Article Google Scholar
27.
Klein, R. J. T., Schipper, E. L. F. & Dessai, S. Integrating mitigation and adaptation into climate and development policy: three research questions. Environ. Sci. Policy 8, 579–588 (2005).
Article Google Scholar
28.
Zamudio, K. R., Bell, R. C. & Mason, N. A. Phenotypes in phylogeography: species’ traits, environmental variation, and vertebrate diversification. Proc. Natl Acad. Sci. USA 113, 8041–8048 (2016).
CAS PubMed Article Google Scholar
29.
Massatti, R. et al. Population history provides foundational knowledge for utilizing and developing native plant restoration materials. Evol. Appl. 11, 2025–2039 (2018).
PubMed PubMed Central Article Google Scholar
30.
Sork, V. L. et al. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet. Genomes 9, 901–911 (2013).
Article Google Scholar
31.
Morgenstern, E. K. & Mullin, T. J. Growth and survival of black spruce in the range-wide provenance study. Can. J. Res. 20, 130–143 (1990).
Article Google Scholar
32.
Rehfeldt, G. E., Wykoff, W. R. & Ying, C. C. Physiologic plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim. Change 50, 355–376 (2001).
Article Google Scholar
33.
Morgenstern, E. K. Range-wide genetic variation of black spruce. Can. J. Res. 8, 463–473 (1978).
Article Google Scholar
34.
Thomson, A. M., Riddell, C. L. & Parker, W. H. Boreal forest provenance tests used to predict optimal growth and response to climate change: 2. Black spruce. Can. J. Res. 39, 143–153 (2009).
Article Google Scholar
35.
Pedlar, J. H. & McKenney, D. W. Assessing the anticipated growth response of northern conifer populations to a warming climate. Sci. Rep. 7, 43881 (2017).
ADS PubMed PubMed Central Article Google Scholar
36.
Mahony, C. R. et al. Evaluating genomic data for management of local adaptation in a changing climate: a lodgepole pine case study. Evol. Appl. 13, 116–131 (2020).
PubMed Article Google Scholar
37.
Housset, J. M. et al. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. N. Phytol. 218, 630–645 (2018).
Article Google Scholar
38.
Heer, K. et al. Linking dendroecology and association genetics in natural populations: stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol. Ecol. 27, 1428–1438 (2018).
CAS PubMed Article Google Scholar
39.
Bouriaud, O., Teodosiu, M., Kirdyanov, A. V. & Wirth, C. Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce. Biogeosciences 12, 6205–6217 (2015).
ADS CAS Article Google Scholar
40.
Babst, F. et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018).
ADS Article Google Scholar
41.
Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Picea mariana), a transcontinental North American conifer. Mol. Ecol. 13, 2735–2747 (2004).
CAS PubMed Article Google Scholar
42.
Gérardi, S., Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. From glacial refugia to modern populations: new assemblages of organelle genomes generated by differential cytoplasmic gene flow in transcontinental black spruce: assemblages of organelle genomes. Mol. Ecol. 19, 5265–5280 (2010).
PubMed Article CAS Google Scholar
43.
Rehfeldt, G. E., Leites, L. P., Joyce, D. G. & Weiskittel, A. R. Role of population genetics in guiding ecological responses to climate. Glob. Change Biol. 24, 858–868 (2018).
ADS Article Google Scholar
44.
Beaulieu, J., Corriveau, A. & Daoust, G. Phenotypic Stability and Delineation of Black Spruce Breeding Zones in Quebec. Vol. LAU-X-85E (Forestry Canada, Quebec Region, Sainte-Foy, Quebec, 1989).
45.
Perrin, M., Rossi, S. & Isabel, N. Synchronisms between bud and cambium phenology in black spruce: early-flushing provenances exhibit early xylem formation. Tree Physiol. 37, 593–603 (2017).
PubMed Article Google Scholar
46.
Sniderhan, A. E., McNickle, G. G. & Baltzer, J. L. Assessing local adaptation vs. plasticity under different resource conditions in seedlings of a dominant boreal tree species. AoB Plants 10, ply004 (2018).
47.
Newton, P. F. Systematic review of yield responses of four North American conifers to forest tree improvement practices. Ecol. Manag. 172, 29–51 (2003).
Article Google Scholar
48.
Marchand, W. et al. Strong overestimation of water‐use efficiency responses to rising CO2 in tree‐ring studies. Glob. Change Biol. https://doi.org/10.1111/gcb.15166 (2020).
49.
Metsaranta, J. M. Long-term tree-ring derived carbon dynamics of an experimental plantation in relation to species and density in Northwestern Ontario. Can. Ecol. Manag. 441, 229–241 (2019).
Article Google Scholar
50.
Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
51.
DOrangeville, L. et al. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science 352, 1452–1455 (2016).
ADS CAS Article Google Scholar
52.
Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).
ADS PubMed PubMed Central Article Google Scholar
53.
Rossi, S. Bud break responds more strongly to daytime than night‐time temperature under asymmetric experimental warming. Glob. Change Biol. 9 (2016).
54.
Frechette, E., Ensminger, I., Bergeron, Y., Gessler, A. & Berninger, F. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate? Tree Physiol. 31, 1204–1216 (2011).
CAS PubMed Article Google Scholar
55.
Verbyla, D. Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environ. Res. Lett. 10, 125016 (2015).
ADS Article Google Scholar
56.
Trujillo, E. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 5, 5 (2012).
Article CAS Google Scholar
57.
Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schweingruber, F. H. & Silkin, P. P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400, 149–151 (1999).
ADS CAS Article Google Scholar
58.
Ols, C., Girardin, M. P., Hofgaard, A., Bergeron, Y. & Drobyshev, I. Monitoring climate sensitivity shifts in tree-rings of eastern boreal North America using model-data comparison: shifts in tree growth sensivity to climate. Ecosystems 21, 1042–1057 (2018).
CAS Article Google Scholar
59.
Prunier, J., Gérardi, S., Laroche, J., Beaulieu, J. & Bousquet, J. Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Mol. Ecol. 21, 4270–4286 (2012).
CAS PubMed Article Google Scholar
60.
Capblancq, T. et al. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J. Evol. Biol. https://doi.org/10.1111/jeb.13610 (2020).
61.
Liepe, K. J., Hamann, A., Smets, P., Fitzpatrick, C. R. & Aitken, S. N. Adaptation of lodgepole pine and interior spruce to climate: implications for reforestation in a warming world. Evol. Appl. 9, 409–419 (2016).
PubMed PubMed Central Article Google Scholar
62.
Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).
PubMed Article Google Scholar
63.
Wegrzyn, J. L. et al. Cyberinfrastructure and resources to enable an integrative approach to studying forest trees. Evol. Appl. 13, 228–241 (2020).
PubMed Article Google Scholar
64.
Kurz, W. A. et al. Carbon in Canada’s boreal forest —a synthesis. Environ. Rev. 21, 260–292 (2013).
CAS Article Google Scholar
65.
Alberto, F. J. et al. Potential for evolutionary responses to climate change—evidence from tree populations. Glob. Change Biol. 19, 1645–1661 (2013).
ADS Article Google Scholar
66.
Splawinski, T. B., Cyr, D., Gauthier, S., Jetté, J.-P. & Bergeron, Y. Analyzing risk of regeneration failure in the managed boreal forest of northwestern Quebec. Can. J. Res. 49, 680–691 (2019).
Article Google Scholar
67.
Chaste, E., Girardin, M. P., Kaplan, J. O., Bergeron, Y. & Hély, C. Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada’s managed boreal forest. Landsc. Ecol. https://doi.org/10.1007/s10980-019-00780-4 (2019).
68.
McLane, S. C., Daniels, L. D. & Aitken, S. N. Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment. Ecol. Manag. 262, 115–123 (2011).
Article Google Scholar
69.
Larsson, L. CooRecorder and Cdendro Programs of the CooRecorder/Cdendro Package (Version 7.6) (Cybis Elektronik, 2013).
70.
Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 43, 69–78 (1983).
71.
de Lafontaine, G., Prunier, J., Gérardi, S. & Bousquet, J. Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana × P. rubens). Mol. Ecol. 24, 5229–5247 (2015).
PubMed Article Google Scholar
72.
Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl Acad. Sci. USA. 102, 15785–15790 (2005).
ADS CAS PubMed Article Google Scholar
73.
Ung, C.-H., Jing Guo, X. & Fortin, M. Canadian national taper models. For. Chron. 89, 211–224 (2013).
Article Google Scholar
74.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
75.
Wang, J. The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Mol. Ecol. Resour. 17, 981–990 (2017).
CAS PubMed Article Google Scholar
76.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
CAS PubMed Article Google Scholar
77.
Excoffier, L. Evolution of human mitochondrial DNA: evidence for departure from a pure neutral model of populations at equilibrium. J. Mol. Evol. 30, 125–139 (1990).
ADS CAS PubMed Article Google Scholar
78.
Meirmans, P. G. genodive version 3.0: easy‐to‐use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131 (2020).
CAS PubMed PubMed Central Article Google Scholar
79.
Regniere, J. & Bolstad, P. Statistical simulation of daily air temperature patterns Eastern North America to forecast seasonal events in insect pest management. Environ. Entomol. 23, 1368–1380 (1994).
Article Google Scholar
80.
Hogg, E. H., Barr, A. G. & Black, T. A. A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. Agric. Meteorol. 178–179, 173–182 (2013).
Article Google Scholar
81.
Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 95–114 (2003).
MathSciNet MATH Article Google Scholar
82.
Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).
CAS PubMed Article Google Scholar
83.
Wood, S. Generalized Additive Models: An Introduction with R. 2nd edn Vol. 66 (Chapman and Hall/CRC, 2006).
84.
R Development Core Team. R: A Language and Environment for Statistical Computing (2013).
85.
Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, https://doi.org/10.18637/jss.v022.i04 (2007).
86.
Fisher R. A. Statistical Methods for Research Workers 4th edn (Oliver and Boyd, London, 1932).
87.
Legendre, P. & Legendre, L. Numerical Ecology Vol. 24, 3rd edn (Elsevier Science BV, Amsterdam, 2012).
88.
Reiss, P. T. & Ogden, R. T. Smoothing parameter selection for a class of semiparametric linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 505–523 (2009).
MathSciNet MATH Article Google Scholar
89.
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).
MathSciNet MATH Article Google Scholar
90.
Beaudoin, A. et al. Mapping attributes of Canada’s forests at moderate resolution through k NN and MODIS imagery. Can. J. Res. 44, 521–532 (2014).
Article Google Scholar More