More stories

  • in

    Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting

    1.
    Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11, 474–485 (2018).
    ADS  CAS  Article  Google Scholar 
    2.
    Diffenbaugh, N. S., Singh, D. & Mankin, J. S. Unprecedented climate events: historical changes, aspirational targets, and national commitments. Sci. Adv. 4, eaao3354 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).
    ADS  CAS  Article  Google Scholar 

    4.
    United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement (2015).

    5.
    Intergovernmental Panel on Climate Change (IPCC). Fifth Assessment Report: Climate Change (AR5) (2014).

    6.
    Nabuurs, G. J. et al. Forestry. In Climate Change 2007: Mitigation (Cambridge University Press, 2007).

    7.
    Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).
    ADS  Article  Google Scholar 

    8.
    Xu, Z., Smyth, C. E., Lemprière, T. C., Rampley, G. J. & Kurz, W. A. Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia. Can. Mitig. Adapt. Strateg. Glob. Change 23, 257–290 (2018).
    Article  Google Scholar 

    9.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Peterson St-Laurent, G., Hagerman, S., Kozak, R. & Hoberg, G. Public perceptions about climate change mitigation in British Columbia’s forest sector. PLoS ONE 13, e0195999 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).
    PubMed  Article  Google Scholar 

    13.
    Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).
    CAS  PubMed  Article  Google Scholar 

    14.
    Marchand, W. et al. Untangling methodological and scale considerations in growth and productivity trend estimates of Canada’s forests. Environ. Res. Lett. 13, 093001 (2018).
    ADS  Article  Google Scholar 

    15.
    Browne, L., Wright, J. W., Fitz-Gibbon, S., Gugger, P. F. & Sork, V. L. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proc. Natl Acad. Sci. USA. 116, 25179–25185 (2019).
    CAS  PubMed  Article  Google Scholar 

    16.
    Sally, N. A. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu Rev. Ecol. Evol. Syst. 44, 367–388 (2013).
    Article  Google Scholar 

    17.
    Lemprière, T. C. et al. Canadian boreal forests and climate change mitigation. Environ. Rev. 21, 293–321 (2013).
    Article  Google Scholar 

    18.
    Winder, R., Nelson, E. & Beardmore, T. Ecological implications for assisted migration in Canadian forests. For. Chron. 87, 731–744 (2011).
    Article  Google Scholar 

    19.
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).
    PubMed  Article  Google Scholar 

    20.
    Isaac-Renton, M. et al. Northern forest tree populations are physiologically maladapted to drought. Nat. Commun. 9, 5254 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Field, E., Schönrogge, K., Barsoum, N., Hector, A. & Gibbs, M. Individual tree traits shape insect and disease damage on oak in a climate‐matching tree diversity experiment. Ecol. Evol. 9, 8524–8540 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Depardieu, C. et al. Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate. N. Phytol. 227, 427–439 (2020).
    CAS  Article  Google Scholar 

    23.
    Montwé, D., Isaac-Renton, M., Hamann, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Commun. 9, 1574 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Girardin, M. P. et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Change Biol. 22, 627–643 (2016).
    ADS  Article  Google Scholar 

    25.
    Hember, R. A., Kurz, W. A. & Coops, N. C. Increasing net ecosystem biomass production of Canada’s boreal and temperate forests despite decline in dry climates. Glob. Biogeochem. Cycles 31, 134–158 (2017).
    CAS  Article  Google Scholar 

    26.
    Boucher, D. et al. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Ecol. Appl. 28, 1245–1259 (2018).
    PubMed  Article  Google Scholar 

    27.
    Klein, R. J. T., Schipper, E. L. F. & Dessai, S. Integrating mitigation and adaptation into climate and development policy: three research questions. Environ. Sci. Policy 8, 579–588 (2005).
    Article  Google Scholar 

    28.
    Zamudio, K. R., Bell, R. C. & Mason, N. A. Phenotypes in phylogeography: species’ traits, environmental variation, and vertebrate diversification. Proc. Natl Acad. Sci. USA 113, 8041–8048 (2016).
    CAS  PubMed  Article  Google Scholar 

    29.
    Massatti, R. et al. Population history provides foundational knowledge for utilizing and developing native plant restoration materials. Evol. Appl. 11, 2025–2039 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Sork, V. L. et al. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet. Genomes 9, 901–911 (2013).
    Article  Google Scholar 

    31.
    Morgenstern, E. K. & Mullin, T. J. Growth and survival of black spruce in the range-wide provenance study. Can. J. Res. 20, 130–143 (1990).
    Article  Google Scholar 

    32.
    Rehfeldt, G. E., Wykoff, W. R. & Ying, C. C. Physiologic plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim. Change 50, 355–376 (2001).
    Article  Google Scholar 

    33.
    Morgenstern, E. K. Range-wide genetic variation of black spruce. Can. J. Res. 8, 463–473 (1978).
    Article  Google Scholar 

    34.
    Thomson, A. M., Riddell, C. L. & Parker, W. H. Boreal forest provenance tests used to predict optimal growth and response to climate change: 2. Black spruce. Can. J. Res. 39, 143–153 (2009).
    Article  Google Scholar 

    35.
    Pedlar, J. H. & McKenney, D. W. Assessing the anticipated growth response of northern conifer populations to a warming climate. Sci. Rep. 7, 43881 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Mahony, C. R. et al. Evaluating genomic data for management of local adaptation in a changing climate: a lodgepole pine case study. Evol. Appl. 13, 116–131 (2020).
    PubMed  Article  Google Scholar 

    37.
    Housset, J. M. et al. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. N. Phytol. 218, 630–645 (2018).
    Article  Google Scholar 

    38.
    Heer, K. et al. Linking dendroecology and association genetics in natural populations: stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol. Ecol. 27, 1428–1438 (2018).
    CAS  PubMed  Article  Google Scholar 

    39.
    Bouriaud, O., Teodosiu, M., Kirdyanov, A. V. & Wirth, C. Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce. Biogeosciences 12, 6205–6217 (2015).
    ADS  CAS  Article  Google Scholar 

    40.
    Babst, F. et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018).
    ADS  Article  Google Scholar 

    41.
    Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Picea mariana), a transcontinental North American conifer. Mol. Ecol. 13, 2735–2747 (2004).
    CAS  PubMed  Article  Google Scholar 

    42.
    Gérardi, S., Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. From glacial refugia to modern populations: new assemblages of organelle genomes generated by differential cytoplasmic gene flow in transcontinental black spruce: assemblages of organelle genomes. Mol. Ecol. 19, 5265–5280 (2010).
    PubMed  Article  CAS  Google Scholar 

    43.
    Rehfeldt, G. E., Leites, L. P., Joyce, D. G. & Weiskittel, A. R. Role of population genetics in guiding ecological responses to climate. Glob. Change Biol. 24, 858–868 (2018).
    ADS  Article  Google Scholar 

    44.
    Beaulieu, J., Corriveau, A. & Daoust, G. Phenotypic Stability and Delineation of Black Spruce Breeding Zones in Quebec. Vol. LAU-X-85E (Forestry Canada, Quebec Region, Sainte-Foy, Quebec, 1989).

    45.
    Perrin, M., Rossi, S. & Isabel, N. Synchronisms between bud and cambium phenology in black spruce: early-flushing provenances exhibit early xylem formation. Tree Physiol. 37, 593–603 (2017).
    PubMed  Article  Google Scholar 

    46.
    Sniderhan, A. E., McNickle, G. G. & Baltzer, J. L. Assessing local adaptation vs. plasticity under different resource conditions in seedlings of a dominant boreal tree species. AoB Plants 10, ply004 (2018).

    47.
    Newton, P. F. Systematic review of yield responses of four North American conifers to forest tree improvement practices. Ecol. Manag. 172, 29–51 (2003).
    Article  Google Scholar 

    48.
    Marchand, W. et al. Strong overestimation of water‐use efficiency responses to rising CO2 in tree‐ring studies. Glob. Change Biol. https://doi.org/10.1111/gcb.15166 (2020).

    49.
    Metsaranta, J. M. Long-term tree-ring derived carbon dynamics of an experimental plantation in relation to species and density in Northwestern Ontario. Can. Ecol. Manag. 441, 229–241 (2019).
    Article  Google Scholar 

    50.
    Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    DOrangeville, L. et al. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science 352, 1452–1455 (2016).
    ADS  CAS  Article  Google Scholar 

    52.
    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Rossi, S. Bud break responds more strongly to daytime than night‐time temperature under asymmetric experimental warming. Glob. Change Biol. 9 (2016).

    54.
    Frechette, E., Ensminger, I., Bergeron, Y., Gessler, A. & Berninger, F. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate? Tree Physiol. 31, 1204–1216 (2011).
    CAS  PubMed  Article  Google Scholar 

    55.
    Verbyla, D. Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environ. Res. Lett. 10, 125016 (2015).
    ADS  Article  Google Scholar 

    56.
    Trujillo, E. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 5, 5 (2012).
    Article  CAS  Google Scholar 

    57.
    Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schweingruber, F. H. & Silkin, P. P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400, 149–151 (1999).
    ADS  CAS  Article  Google Scholar 

    58.
    Ols, C., Girardin, M. P., Hofgaard, A., Bergeron, Y. & Drobyshev, I. Monitoring climate sensitivity shifts in tree-rings of eastern boreal North America using model-data comparison: shifts in tree growth sensivity to climate. Ecosystems 21, 1042–1057 (2018).
    CAS  Article  Google Scholar 

    59.
    Prunier, J., Gérardi, S., Laroche, J., Beaulieu, J. & Bousquet, J. Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Mol. Ecol. 21, 4270–4286 (2012).
    CAS  PubMed  Article  Google Scholar 

    60.
    Capblancq, T. et al. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J. Evol. Biol. https://doi.org/10.1111/jeb.13610 (2020).

    61.
    Liepe, K. J., Hamann, A., Smets, P., Fitzpatrick, C. R. & Aitken, S. N. Adaptation of lodgepole pine and interior spruce to climate: implications for reforestation in a warming world. Evol. Appl. 9, 409–419 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).
    PubMed  Article  Google Scholar 

    63.
    Wegrzyn, J. L. et al. Cyberinfrastructure and resources to enable an integrative approach to studying forest trees. Evol. Appl. 13, 228–241 (2020).
    PubMed  Article  Google Scholar 

    64.
    Kurz, W. A. et al. Carbon in Canada’s boreal forest —a synthesis. Environ. Rev. 21, 260–292 (2013).
    CAS  Article  Google Scholar 

    65.
    Alberto, F. J. et al. Potential for evolutionary responses to climate change—evidence from tree populations. Glob. Change Biol. 19, 1645–1661 (2013).
    ADS  Article  Google Scholar 

    66.
    Splawinski, T. B., Cyr, D., Gauthier, S., Jetté, J.-P. & Bergeron, Y. Analyzing risk of regeneration failure in the managed boreal forest of northwestern Quebec. Can. J. Res. 49, 680–691 (2019).
    Article  Google Scholar 

    67.
    Chaste, E., Girardin, M. P., Kaplan, J. O., Bergeron, Y. & Hély, C. Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada’s managed boreal forest. Landsc. Ecol. https://doi.org/10.1007/s10980-019-00780-4 (2019).

    68.
    McLane, S. C., Daniels, L. D. & Aitken, S. N. Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment. Ecol. Manag. 262, 115–123 (2011).
    Article  Google Scholar 

    69.
    Larsson, L. CooRecorder and Cdendro Programs of the CooRecorder/Cdendro Package (Version 7.6) (Cybis Elektronik, 2013).

    70.
    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 43, 69–78 (1983).

    71.
    de Lafontaine, G., Prunier, J., Gérardi, S. & Bousquet, J. Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana × P. rubens). Mol. Ecol. 24, 5229–5247 (2015).
    PubMed  Article  Google Scholar 

    72.
    Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl Acad. Sci. USA. 102, 15785–15790 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    73.
    Ung, C.-H., Jing Guo, X. & Fortin, M. Canadian national taper models. For. Chron. 89, 211–224 (2013).
    Article  Google Scholar 

    74.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Wang, J. The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Mol. Ecol. Resour. 17, 981–990 (2017).
    CAS  PubMed  Article  Google Scholar 

    76.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    77.
    Excoffier, L. Evolution of human mitochondrial DNA: evidence for departure from a pure neutral model of populations at equilibrium. J. Mol. Evol. 30, 125–139 (1990).
    ADS  CAS  PubMed  Article  Google Scholar 

    78.
    Meirmans, P. G. genodive version 3.0: easy‐to‐use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Regniere, J. & Bolstad, P. Statistical simulation of daily air temperature patterns Eastern North America to forecast seasonal events in insect pest management. Environ. Entomol. 23, 1368–1380 (1994).
    Article  Google Scholar 

    80.
    Hogg, E. H., Barr, A. G. & Black, T. A. A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. Agric. Meteorol. 178–179, 173–182 (2013).
    Article  Google Scholar 

    81.
    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 95–114 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    82.
    Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).
    CAS  PubMed  Article  Google Scholar 

    83.
    Wood, S. Generalized Additive Models: An Introduction with R. 2nd edn Vol. 66 (Chapman and Hall/CRC, 2006).

    84.
    R Development Core Team. R: A Language and Environment for Statistical Computing (2013).

    85.
    Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, https://doi.org/10.18637/jss.v022.i04 (2007).

    86.
    Fisher R. A. Statistical Methods for Research Workers 4th edn (Oliver and Boyd, London, 1932).

    87.
    Legendre, P. & Legendre, L. Numerical Ecology Vol. 24, 3rd edn (Elsevier Science BV, Amsterdam, 2012).

    88.
    Reiss, P. T. & Ogden, R. T. Smoothing parameter selection for a class of semiparametric linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 505–523 (2009).
    MathSciNet  MATH  Article  Google Scholar 

    89.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    90.
    Beaudoin, A. et al. Mapping attributes of Canada’s forests at moderate resolution through k NN and MODIS imagery. Can. J. Res. 44, 521–532 (2014).
    Article  Google Scholar  More

  • in

    Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo)

    1.
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229. https://doi.org/10.1038/nature20588 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. U.S.A. 113, 146–151. https://doi.org/10.1073/pnas.1517092112 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575. https://doi.org/10.1016/j.cub.2008.08.066 (2008).
    CAS  Article  PubMed  Google Scholar 

    5.
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than the agricultural demand for pollination. Curr. Biol. 19, 915–918. https://doi.org/10.1016/j.cub.2009.03.071 (2009).
    CAS  Article  PubMed  Google Scholar 

    6.
    Vanbergen, A. J. & Initiative, I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259. https://doi.org/10.1890/120126 (2013).
    Article  Google Scholar 

    7.
    Whitaker, T. & Davis, G. Cucurbits: Botany, Cultivation & Utilization (Biotech Books, Delhi, 2012).
    Google Scholar 

    8.
    Hurd, P. D. Jr., Linsley, E. G. & Whitaker, T. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25, 218–234. https://doi.org/10.2307/2406514 (1971).
    Article  PubMed  Google Scholar 

    9.
    Artz, D. R. & Nault, B. A. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. J. Econ. Entomol. 104, 1153–1161. https://doi.org/10.1603/EC10431 (2011).
    Article  PubMed  Google Scholar 

    10.
    Cane, J. H., Sampson, B. J. & Miller, S. Pollination value of male bees: the specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo). Environ. Entomol. 40, 614–620. https://doi.org/10.1603/EN10084 (2011).
    Article  PubMed  Google Scholar 

    11.
    Hurd, P. D. Jr. & Linsley, E. G. The squash and gourd bees-genera Peponapis Robertson and Xenoglossa Smith-inhabiting America north of Mexico (Hymenoptera: Apoidea). Hilgardia 35, 375–453. https://doi.org/10.3733/hilg.v35n15p375 (1964).
    Article  Google Scholar 

    12.
    López-Uribe, M. M., Cane, J. H., Minckley, R. L. & Danforth, B. N. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa. Proc. R. Soc. B-Biol. Sci. 283, 20160443. https://doi.org/10.1098/rspb.2016.0443 (2016).
    Article  Google Scholar 

    13.
    Tepedino, V. J. The pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J. Kansas Entomol. Soc. 54, 359–377. Retrieved from https://www.jstor.org/stable/25084168 (1981).

    14.
    Patton, W. Generic arrangement of the bees allied to Melissodes and Anthophora. Bull. U. S. Geolog. Surv. 5, 471–479. Retrieved from https://books.google.ca/books?hl=en&lr=&id=R38uAAAAYAAJ&oi=fnd&pg=PA469&ots=LVcsvi2gE5&sig=xlz2XhDKuN5qMenv47JIRhYfy_8&redir_esc=y#v=onepage&q&f=false (1879).

    15.
    Willis, D. S. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).
    Article  Google Scholar 

    16.
    Hurd, P. D. Jr., Linsley, E. G. & Michelbacher, A. E. Ecology of the squash and gourd bee, Peponapis pruinosa, on cultivated cucurbits in California (Hymenoptera: Apoidea). Smiths. Contrib. Zool. 168, 1–17. Smithsonian Institution Press. Retrieved from https://repository.si.edu/bitstream/handle/10088/5347/SCtZ-0168-Lo_res.pdf?sequence=2 (1974).

    17.
    Mathewson, J. A. Nest construction and life history of the eastern cucurbit bee, Peponapis pruinosa (Hymenoptera: Apoidea). J. Kansas Entomol. Soc. 41, 255–261. Retrieved from https://www.jstor.org/stable/25083703 (1968).

    18.
    Julier, H. E. & Roulston, T. H. Wild bee abundance and pollination service in cultivated pumpkins: Farm management, nesting landscape effects. J. Econ. Entomol. 102, 563–573. https://doi.org/10.1603/029.102.0214 (2009).
    Article  PubMed  Google Scholar 

    19.
    Willis Chan, D. S., Prosser, R. S., Rodríguez-Gil, J. L. & Raine, N. E. Risks of exposure to systemic insecticides in agricultural soil in Ontario, Canada for the hoary squash bee (Peponapis pruinosa) and other ground-nesting bee species. Sci. Rep. 9, 11870. https://doi.org/10.1038/s41598-019-47805-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Sgolastra, F. et al. Pesticide exposure assessment paradign for solitary bees. Environ. Entomol. 48, 22–35. https://doi.org/10.1093/ee/nvy105 (2019).
    Article  PubMed  Google Scholar 

    21.
    Franklin, E. L. & Raine, N. E. Moving beyond honey bee-centric pesticide risk assessments to protect all pollinators. Nat. Ecol. Evol. 3, 1373–1375. https://doi.org/10.1038/s41559-019-0987-y (2019).
    Article  PubMed  Google Scholar 

    22.
    Blacquière, T., Smagghe, G., van Gestel, C. A. M. & Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 24, 73–92. https://doi.org/10.1007/s10646-012-0863-x (2012).
    CAS  Article  Google Scholar 

    23.
    Godfray, H. C. J. et al. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 281, 20140558. https://doi.org/10.1098/rspb.2014.0558 (2014).
    Article  Google Scholar 

    24.
    Godfray, H. C. J. et al. A restatement of recent advances the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 281, 20151821. https://doi.org/10.1098/rspb.2015.1821 (2015).
    CAS  Article  Google Scholar 

    25.
    Samuelson, E. E. W., Chen-Wishart, Z. P., Gill, R. J. & Leadbeater, E. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Sci. Rep. 6, 38957. https://doi.org/10.1038/srep38957 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Stanley, D. A., Smith, K. E. & Raine, N. E. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci. Rep. 5, 16508. https://doi.org/10.1038/srep16508 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Gill, R. J., Ramos-Rodríguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 https://doi.org/10.1038/nature11585 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Gill, R. J. & Raine, N. E. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28, 1459–1471. https://doi.org/10.1111/1365-2435.12292 (2014).
    Article  Google Scholar 

    29.
    Feltham, H., Park, K. & Goulson, D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23, 317–323. https://doi.org/10.1007/s10646-014-1189-7 (2014).
    CAS  Article  PubMed  Google Scholar 

    30.
    Stanley, D. A. & Raine, N. E. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Funct. Ecol. 30, 1132–1139. https://doi.org/10.1111/1365-2435.12644 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53, 1440–1449. https://doi.org/10.1111/1365-2664.12689 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Muth, F. & Leonard, A. S. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Sci. Rep. 9, 4764. https://doi.org/10.1038/s41598-019-39701-5 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Baron, G. L., Jansen, V. A. A., Brown, M. J. F. & Raine, N. E. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nat. Ecol. Evol. 1, 1308–1316. https://doi.org/10.1038/s41559-017-0260-1 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Wu-Smart, J. & Spivak, M. Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation. Environ. Entomol. 47, 55–62. https://doi.org/10.1093/ee/nvx175 (2018).
    CAS  Article  PubMed  Google Scholar 

    35.
    Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352. https://doi.org/10.1126/science.1215025 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    36.
    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    37.
    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 571, 77–80. https://doi.org/10.1038/nature14420 (2015).
    ADS  CAS  Article  Google Scholar 

    38.
    Ellis, C., Park, K. J., Whitehorn, P., David, A. & Goulson, D. The neonicotinoid insecticide thiacloprid impacts upon bumblebee colony development under field conditions. Environ. Sci. Technol. 51, 1727–1732. https://doi.org/10.1021/acs.est.6b04791 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    39.
    Switzer, C. M. & Combes, S. A. The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50. Ecotoxicology 25, 1150–1159. https://doi.org/10.1007/s10646-016-1669-z (2016).
    CAS  Article  PubMed  Google Scholar 

    40.
    Stanley, D. A. et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548–550. https://doi.org/10.1038/nature16167 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Jin, N., Klein, S., Leimig, F., Bischoff, G. & Menzel, R. The neonicotinoid clothianidin interferes with navigation of the solitary bee Osmia cornuta in a laboratory test. J. Exp. Biol. 218, 2821–2825. https://doi.org/10.1242/jeb.123612 (2015).
    Article  PubMed  Google Scholar 

    42.
    Sandrock, C. et al. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric. For. Entomol. 16, 119–128. https://doi.org/10.1111/afe.12041 (2014).
    Article  Google Scholar 

    43.
    Anderson, N. L. & Harmon-Threatt, A. N. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci. Rep. 9, 3724. https://doi.org/10.1038/s41598-019-40031-9 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees: Biology, Evolution, Conservation (Princeton University Press, Princeton, 2019).

    45.
    Wheelock, M. J., Rey, K. P. & O’Neal, M. E. Defining the insect pollinator community found in Iowa corn and soybean fields: Implications for pollinator conservation. Environ. Entomol. 4, 1099–1106. https://doi.org/10.1093/ee/nvw1087 (2016).
    Article  Google Scholar 

    46.
    USDA. Attractiveness of agricultural crops to pollinating bees for the collection of nectar and/or pollen. Retrieved from https://www.ars.usda.gov/ARSUserFiles/OPMP/Attractiveness%20of%20Agriculture%20Crops%20to%20Pollinating%20Bees%20Report-FINAL_Web%20Version_Jan%203_2018.pdf (2017).

    47.
    OMAFRA. Vegetable Crop Protection Guide, 82–83. Government of Ontario (2014).

    48.
    Leza, M., Watrous, K. M., Bratu, J. & Woodard, S. H. Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proc. R. Soc. B Biol. Sci. 285, 20180761. https://doi.org/10.1098/rspb.2018.0761 (2018).
    CAS  Article  Google Scholar 

    49.
    Baron, G. L., Raine, N. E. & Brown, M. J. F. General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proc. R. Soc. B Biol. Sci. 284, 20170123. https://doi.org/10.1098/rspb.2017.0123 (2017).
    CAS  Article  Google Scholar 

    50.
    Roulston, T. H. & Cane, J. H. The effect of diet breadth and nesting ecology on body size variation in bees (Apiformes). J. Kansas Entomol. Soc. 73, 129–142. Retrieved from https://www.jstor.org/stable/25085957 (2000).

    51.
    Klostermeyer, E., Mech, S. J. & Rasmussen, W. Sex and weight of Megachile rotundata (Hymenoptera: Megachilidae) progeny associated with provision weights. J. Kansas Entomol. Soc. 46, 536–548. Retrieved from https://www.jstor.org/stable/25082604 (1973).

    52.
    Bosch, J. & Vicens, N. Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav. Ecol. Sociobiol. 60, 26–33. https://doi.org/10.1007/s00265-005-0134-4 (2006).
    Article  Google Scholar 

    53.
    Bonmatin, J. M. et al. Environmental fate and exposure: Neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22, 35–67. https://doi.org/10.1007/s11356-014-3332-7 (2015).
    CAS  Article  Google Scholar 

    54.
    Hilton, M., Jarvis, T. & Ricketts, D. The degradation rate of thiamethoxam in European field studies. Pest Manag. Sci. 72, 388–397. https://doi.org/10.1002/ps.4024 (2016).
    CAS  Article  PubMed  Google Scholar 

    55.
    Scott-Dupree, C. D., Conroy, L. & Harris, C. R. Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymenoptera: Megachildidae), and Osmia lignaria (Hymenoptera: Megachilidae). J. Econ. Entomol. 102, 177–182. https://doi.org/10.1603/029.102.0125 (2009).
    CAS  Article  PubMed  Google Scholar 

    56.
    Stephen, W. P., Bohart, G. E. & Torchio, P. F. The biology and external morphology of bees with a synopsis of the genera of northwestern America. Corvallis: Oregon State University. Retrieved from https://www.jstor.org/stable/25082339 (1969).

    57.
    Seidelmann, K. & Ulbrich, K. M. Conditional sex allocation in the Red Mason bee Osmia rufa. Behav. Ecol. Sociobiol. 64, 337–347. https://doi.org/10.1007/s00265-009-0850-2 (2010).
    Article  Google Scholar 

    58.
    Dively, G. P. & Kamel, A. Insecticide residues in pollen and nectar of a cucurbit crop and their potential exposure to pollinators. J. Agric. Food Chem. 60, 4449–4456. https://doi.org/10.1021/jf205393x (2012).
    CAS  Article  PubMed  Google Scholar 

    59.
    Stoner, K. A. & Eitzer, B. D. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS ONE 7, e39114. https://doi.org/10.1371/journal.pone.0039114 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987. https://doi.org/10.1111/1365-2664.12111 (2013).
    Article  Google Scholar 

    61.
    Wang, T. T. et al. Suppression of chlorantraniliprole sorption on biochar in soil–biochar systems. Bull. Environ. Contam. Toxicol. 95, 401–406. https://doi.org/10.1007/s00128-015-1541-5 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    62.
    Winsor, J. A., Davis, L. E. & Stephenson, A. G. The relationship between pollen load and fruit maturation and the effect of pollen load on offspring vigor in Cucurbita pepo. Am. Nat. 129, 643–656. https://doi.org/10.1086/284664 (1987).
    Article  Google Scholar 

    63.
    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103, 1579–1588. https://doi.org/10.1093/aob/mcp076 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    McGrady, C. M., Troyer, R. & Fleischer, S. J. Wild bee visitation rates exceed pollination thresholds in commercial Cucurbita agroecosystems. J. Econ. Entomol. 113, 562–574. https://doi.org/10.1093/jee/toz295 (2020).
    CAS  Article  PubMed  Google Scholar 

    65.
    Pes, M. et al. Translocation of chlorantraniliprole and cyantraniliprole applied to corn as seed treatment and foliar spraying to control Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS ONE 15, e0229151–e0229151. https://doi.org/10.1371/journal.pone.0229151 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Dinter, A., Brugger, K. E., Frost, N.-M. & Woodward, M. D. Chlorantraniliprole (Rynaxypyr): A novel DuPont insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terrestris) providing excellent tools for uses in integrated pest management. Julius-Kühn-Arch. 423, 84–96 (2009).
    Google Scholar 

    67.
    Gradish, A. E., Scott-Dupree, C. D., Shipp, L., Harris, C. R. & Ferguson, G. Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera: Apidae). Pest Manag. Sci. 66, 142–146. https://doi.org/10.1002/ps.1846 (2010).
    CAS  Article  PubMed  Google Scholar 

    68.
    Tomé, H. V. V. et al. Reduced-risk insecticides in neotropical stingless bee species: impact on survival and activity. Ann. Appl. Biol. 167, 186–196. https://doi.org/10.1111/aab.12217 (2015).
    CAS  Article  Google Scholar 

    69.
    Williams, J. R., Swale, D. R. & Anderson, T. D. Comparative effects of technical-grade and formulated chlorantraniliprole to the survivorship and locomotor activity of the honey bee, Apis mellifera (L.). Pest Manag. Sci. 76, 2582–2588. https://doi.org/10.1002/ps.5832 (2020).
    CAS  Article  PubMed  Google Scholar 

    70.
    Larson, J. L., Redmond, C. T. & Potter, D. A. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. PLoS ONE 8, e66375. https://doi.org/10.1371/journal.pone.0066375 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    Brugger, K. E. et al. Selectivity of chlorantraniliprole to parasitoid wasps. Pest Manag. Sci. 66, 1075–1081. https://doi.org/10.1002/ps.1977 (2010).
    CAS  Article  PubMed  Google Scholar 

    72.
    Wang, J. et al. Molecular characterization of a ryanodine receptor gene in the rice leaf folder, Cnaphalocrocis medinalis (Guenée). PLoS ONE 7, e36623. https://doi.org/10.1371/journal.pone.0036623 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    73.
    Willis, D. S. The pollination system of Cucurbita pepo and Peponapis pruinosa in southern Ontario. MSc Thesis. University of Guelph, Guelph, Ontario, Canada (1991).

    74.
    Kiernan, K. Insights into using the GLIMMIX procedure to model categorical outcomes with random effects. SAS Institute Inc. Retrieved from https://blogs.sas.com/con60tent/iml/2019/04/03/g-matrix-is-not-positive-definite.html (2018). More

  • in

    Female fertile phase synchrony, and male mating and reproductive skew, in the crested macaque

    1.
    Darwin, C. The Descent of Man and the Selection in Relation to Sex (John Murray, London, 1871).
    Google Scholar 
    2.
    Miller, E. J., Eldridge, M. D. B., Cooper, D. W. & Herbert, C. A. Dominance, body size and internal relatedness influence male reproductive success in eastern grey kangaroos (Macropus giganteus). Reprod. Fertil. Dev. 22, 539–549 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Hirsch, B. T. & Maldonado, J. E. Familiarity breeds progeny: Sociality increases reproductive success in adult male ring-tailed coatis (Nasua nasua). Mol. Ecol. 20, 409–419 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Natoli, E., Schmid, M., Say, L. & Pontier, D. Male reproductive success in a social group of urban feral cats (Felis catus L.). Ethology 113, 283–289 (2007).
    Article  Google Scholar 

    5.
    Clutton-Brock, T. & Isvaran, K. Paternity loss in contrasting mammalian societies. Biol. Lett. 2, 513–516 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Altmann, S. A. A field study of the sociobiology of rhesus monkeys, Macaca mulatta. Ann. N. Y. Acad. Sci. 102, 338–435 (1962).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Kutsukake, N. & Nunn, C. L. Comparative tests of reproductive skew in male primates: The roles of demographic factors and incomplete control. Behav. Ecol. Sociobiol. 60, 695–706 (2006).
    Article  Google Scholar 

    8.
    Ostner, J., Nunn, C. L. & Schülke, O. Female reproductive synchrony predicts skewed paternity across primates. Behav Ecol 19, 1150–1158 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Janson, C. & Verdolin, J. Seasonality of primate births in relation to climate. In Seasonality in Primates—Studies of Living and Extinct Human and Non-human Primates (eds Brockmann, D. K. & Van Schaik, C.) 308–351 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    10.
    Gogarten, J. F. & Koenig, A. Reproductive seasonality is a poor predictor of receptive synchrony and male reproductive skew among nonhuman primates. Behav. Ecol. Sociobiol. 67, 123–134 (2012).
    Article  Google Scholar 

    11.
    Brockmann, D. K. & Van Schaik, C. P. Seasonality and reproductive function. In Seasonality in Primates: Studies of Living and Extinct Human and Non-human Primates (eds Brockmann, D. K. & Van Schaik, C. P.) 269–306 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    12.
    Sterck, E. H. M., Watts, D. P. & van Schaik, C. P. The evolution of female social relationships in nonhuman primates. Behav. Ecol. Sociobiol. 41, 291–309 (1997).
    Article  Google Scholar 

    13.
    Nunn, C. L. The number of males in primate social groups: A comparative test of the socioecological model. Behav. Ecol. Sociobiol. 46, 1–13 (1999).
    Article  Google Scholar 

    14.
    Carnes, L. M., Nunn, C. L. & Lewis, R. J. Effects of the distribution of female primates on the number of males. PLoS One 6, 20 (2011).
    Google Scholar 

    15.
    Manson, J. H. Primate consortships: A critical review. Curr. Anthropol. 38(3), 353–374 (1997).
    Article  Google Scholar 

    16.
    Andersson, M. B. Sexual Selection (Princeton University Press, Princeton, 1994).
    Google Scholar 

    17.
    Fürtbauer, I., Heistermann, M., Schülke, O. & Ostner, J. Concealed fertility and extended female sexuality in a non-human primate (Macaca assamensis). PLoS One 6, e23105 (2011).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Plavcan, J. M. Understanding dimorphism as a function of changes in male and female traits. Evol. Anthropol. Issues News Rev. 20, 143–155 (2011).
    Article  Google Scholar 

    19.
    Setchell, J. M., Charpentier, M. & Wickings, E. J. Mate guarding and paternity in mandrills: Factors influencing alpha male monopoly. Anim. Behav. 70, 1105–1120 (2005).
    Article  Google Scholar 

    20.
    Bradley, B. J. et al. Mountain gorilla tug-of-war: Silverbacks have limited control over reproduction in multimale groups. Proc. Natl. Acad. Sci. USA 102, 9418–9423 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Nunn, C. L. The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Anim. Behav. 58(2), 229–246 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Rodriguez-Llanes, J. M., Verbeke, G. & Finlayson, C. Reproductive benefits of high social status in male macaques (Macaca). Anim. Behav. 78, 643–649 (2009).
    Article  Google Scholar 

    23.
    Paul, A., Kuester, J., Timme, A. & Arnemann, J. The association between rank, mating effort and reproductive success in male Barbary macaques (Macaca sylvanus). Primates 34, 491–502 (1993).
    Article  Google Scholar 

    24.
    Kümmerli, R. & Martin, R. D. Male and female reproductive success in Macaca sylvanus in Gibraltar: No evidence for rank dependence. Int. J. Primatol. 26, 1229–1249 (2005).
    ADS  Article  Google Scholar 

    25.
    Brauch, K. et al. Sex-specific reproductive behaviours and paternity in free-ranging Barbary macaques (Macaca sylvanus). Behav. Ecol. Sociobiol. 62, 1453–1466 (2008).
    Article  Google Scholar 

    26.
    Berard, J. D., Nurnberg, P., Epplen, J. T. & Schmidtke, J. Alternative reproductive tactics and reproductive success in male rhesus macaques. Behaviour 129, 177–201 (1994).
    Article  Google Scholar 

    27.
    Widdig, A. et al. A longitudinal analysis of reproductive skew in male rhesus macaques. Proc. Biol. Sci. 271, 819–826 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Dubuc, C., Muniz, L., Heistermann, M., Engelhardt, A. & Widdig, A. Testing the priority-of-access model in a seasonally breeding primate species. Behav. Ecol. Sociobiol. 65, 1615–1627 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    de Ruiter, J. R., van Hooff, J. A. R. A. M. & Scheffrahn, W. Social and genetic aspects of paternity in wild long-tailed macaques (Macaca fascicularis). Behaviour 129, 204–224 (1994).
    Article  Google Scholar 

    30.
    Engelhardt, A., Heistermann, M., Hodges, J. K., Nuernberg, P. & Niemitz, C. Determinants of male reproductive success in wild long-tailed macaques (Macaca fascicularis)—male monopolisation, female mate choice or post-copulatory mechanisms?. Behav. Ecol. Sociobiol. 59, 740–752 (2006).
    Article  Google Scholar 

    31.
    Plavcan, J. M. & van Schaik, C. P. Intrasexual competition and body weight dimorphism in anthropoid primates. Am. J. Phys. Anthropol. 103, 37–68 (1997).
    CAS  PubMed  Article  Google Scholar 

    32.
    Plavcan, J. M., van Schaik, C. P. & Kappeler, P. M. Competition, coalitions and canine size in primates. J. Hum. Evol. 28, 245–276 (1995).
    Article  Google Scholar 

    33.
    Groves, C. Primate Taxonomy (Smithsonian Books, Washington, 2001).
    Google Scholar 

    34.
    Thierry, B., Iwaniuk, A. N. & Pellis, S. M. The influence of phylogeny on the social behaviour of macaques (Primates: Cercopithecidae, genus Macaca). Ethology 106, 713–728 (2000).
    Article  Google Scholar 

    35.
    Duboscq, J. et al. Social tolerance in wild female crested macaques (Macaca nigra) in Tangkoko-Batuangus Nature Reserve, Sulawesi, Indonesia. Am. J. Primatol. 75, 361–375 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Plavcan, J. M., van Schaik, C. P. & McGraw, W. S. Seasonality, social organization, and sexual dimorphism in primates. In Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates (eds van Schaik, C. P. & Brockman, D. K.) 401–442 (Cambridge University Press, Cambridge, 2005). https://doi.org/10.1017/CBO9780511542343.015.
    Google Scholar 

    37.
    Marty, P. R., Hodges, K., Agil, M. & Engelhardt, A. Alpha male replacements and delayed dispersal in crested macaques (Macaca nigra). Am. J. Primatol. 79, e22448 (2017).
    Article  Google Scholar 

    38.
    Kerhoas, D., Perwitasari-Farajallah, D., Agil, M., Widdig, A. & Engelhardt, A. Social and ecological factors influencing offspring survival in wild macaques. Behav. Ecol. 25, 1164–1172 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Neumann, C., Assahad, G., Hammerschmidt, K., Perwitasari-Farajallah, D. & Engelhardt, A. Loud calls in male crested macaques, Macaca nigra: A signal of dominance in a tolerant species. Anim. Behav. 79, 187–193 (2010).
    Article  Google Scholar 

    40.
    Martinez-Iñigoa, L., Agil, M., Engelhardt, A., Pilot, M. & Majolo, B. Resource and mate defence influence the outcome of intergroup encounters in wild crested macaques (Macaca nigra). Primate Eye 123, 48–49 (2017).
    Google Scholar 

    41.
    Higham, J. P. et al. Sexual signalling in female crested macaques and the evolution of primate fertility signals. BMC Evol. Biol. 12, 89–99 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Engelhardt, A. & Perwitasari-Farajallah, D. Reproductive biology of Sulawesi crested black macaques (Macaca nigra). Folia Primatol. (Basel) 79, 326 (2008).
    Google Scholar 

    43.
    Marty, P. R., Hodges, K., Agil, M. & Engelhardt, A. Determinants of immigration strategies in male crested macaques (Macaca nigra). Sci. Rep. 6, 32028 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Wigby, S. & Chapman, T. Sperm competition. Curr. Biol. 14, R100–R103 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Tregenza, T. & Wedell, N. Benefits of multiple mates in the cricket gryllus bimaculatus. Evolution 52, 1726–1730 (1998).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Clutton-Brock, T. H. Reproductive skew, concessions and limited control. Trends Ecol. Evol. 13, 288–292 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Alberts, S. C., Buchan, J. C. & Altmann, J. Sexual selection in wild baboons: From mating opportunities to paternity success. Anim. Behav. 72, 1177–1196 (2006).
    Article  Google Scholar 

    48.
    Boesch, C., Kohou, G., Néné, H. & Vigilant, L. Male competition and paternity in wild chimpanzees of the Taï forest. Am. J. Phys. Anthropol. 130, 103–115 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Higham, J. P., Heistermann, M. & Maestripieri, D. The energetics of male-male endurance rivalry in free-ranging rhesus macaques, Macaca mulatta. Anim. Behav. 81, 1001–1007 (2011).
    Article  Google Scholar 

    50.
    Muniz, L. et al. Male dominance and reproductive success in wild white-faced capuchins (Cebus capucinus) at Lomas Barbudal, Costa Rica. Am. J. Primatol. 72, 1118–1130 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Strier, K. B., Chaves, P. B., Mendes, S. L., Fagundes, V. & Di Fiore, A. Low paternity skew and the influence of maternal kin in an egalitarian, patrilocal primate. Proc. Natl. Acad. Sci. 108, 18915–18919 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Daspre, A., Heistermann, M., Hodges, J. K., Lee, P. C. & Rosetta, L. Signals of female reproductive quality and fertility in colony-living baboons (Papio hanubis) in relation to ensuring paternal investment. Am. J. Primatol. 71, 529–538 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Weingrill, T., Lycett, J. E., Barrett, L., Hill, R. A. & Henzi, S. P. Male consortship behaviour in chacma baboons: The role of demographic factors and female conceptive probabilities. Behaviour 140, 405–427 (2003).
    Article  Google Scholar 

    54.
    Engelhardt, A. et al. Assessment of female reproductive status by male longtailed macaques, Macaca fascicularis, under natural conditions. Anim. Behav. 67, 915–924 (2004).
    Article  Google Scholar 

    55.
    Higham, J. P., Semple, S., MacLarnon, A., Heistermann, M. & Ross, C. Female reproductive signaling, and male mating behavior, in the olive baboon. Horm. Behav. 55, 60–67 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Schülke, O. & Ostner, J. Male reproductive skew, paternal relatedness, and female social relationships. Am. J. Primatol. 70, 695–698 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Schülke, O. & Ostner, J. Ecological and social influences on sociality. In The evolution of Primate Societies (eds Mitani, J. C. et al.) 193–219 (University of Chicago Press, Chicago, 2012).
    Google Scholar 

    58.
    Higham, J. P. et al. Female fertile phase synchrony, and male mating and reproductive skew, in the crested macaque. Dryad, Dataset. https://doi.org/10.5061/dryad.rfj6q578x. (2021).

    59.
    Rosenbaum, B., O’Brien, T. G., Kinnaird, M. & Supriatna, J. Population densities of Sulawesi crested black macaques (Macaca nigra) on Bacan and Sulawesi, Indonesia: Effects of habitat disturbance and hunting. Am. J. Primatol. 44, 89–106 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Collins, N. M. The Conservation Atlas of Tropical Forests: Asia and the Pacifics (Springer, Berlin, 1991).
    Google Scholar 

    61.
    O’Brien, T. G. & Kinnaird, M. F. Behavior, diet, and movements of the Sulawesi crested black macaque (Macaca nigra). Int. J. Primatol. 18, 321–351 (1997).
    Article  Google Scholar 

    62.
    Kinnaird, M. F. & O’Brien, T. G. A contextual analysis of the loud call of the Sulawesi crested black macaque, Macaca nigra. Trop. Biodivers. 20, 37–42 (1999).
    Google Scholar 

    63.
    Neumann, C. et al. Assessing dominance hierarchies: Validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. 82, 911–921 (2011).
    Article  Google Scholar 

    64.
    Hadidian, J. & Bernstein, I. S. Female reproductive cycles and birth data from an Old World monkey colony. Primates 20, 429–442 (1979).
    Article  Google Scholar 

    65.
    Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49, 227–267 (1974).
    CAS  Article  Google Scholar 

    66.
    Danish, L. M. & Palombit, R. A. “Following”, an alternative mating strategy used by male olive baboons (Papio hamadryas anubis): Quantitative behavioral and functional description. Int. J. Primatol. 35, 394–410 (2014).
    Article  Google Scholar 

    67.
    Hodges, J. K. & Heistermann, M. Field Endocrinology: Monitoring Hormonal Changes in Free-Ranging Primates 353–370 (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    68.
    Heistermann, M. et al. Loss of oestrus, concealed ovulation and paternity confusion in free-ranging Hanuman langurs. Proc. Biol. Sci. 268, 2445–2451 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Engelhardt, A., Hodges, J. K., Niemitz, C. & Heistermann, M. Female sexual behavior, but not sex skin swelling, reliably indicates the timing of the fertile phase in wild long-tailed macaques (Macaca fascicularis). Horm. Behav. 47, 195–204 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Nsubuga, A. M. et al. Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Mol. Ecol. 13, 2089–2094 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Engelhardt, A., Muniz, L., Perwitasari-Farajallah, D. & Widdig, A. Highly polymorphic microsatellite markers for the assessment of male reproductive skew and genetic variation in Critically Endangered crested macaques (Macaca nigra). Int. J. Primatol. 38, 672–691 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    72.
    Taberlet, P. et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24, 3189–3194 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Taberlet, P. & Luikart, G. Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68, 41–55 (1999).
    Article  Google Scholar 

    74.
    Arandjelovic, M. et al. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol. Ecol. Resour. 9, 28–36 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
    PubMed  Article  Google Scholar 

    76.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm package. J. Stat. Softw. 33, 1–25 (2010).
    Article  Google Scholar 

    77.
    Nonacs, P. Measuring the reliability of skew indices: Is there one best index? Anim. Behav. 65, 615–627 (2003).
    Article  Google Scholar  More

  • in

    The evolution of critical thermal limits of life on Earth

    1.
    Webb, T. J. Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol. Evol. 27, 535–541 (2012).
    PubMed  Article  Google Scholar 
    2.
    Calosi, P., Bilton, D. T., Spicer, J. I., Votier, S. C. & Atfield, A. What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J. Anim. Ecol. 79, 194–204 (2010).
    PubMed  Article  Google Scholar 

    3.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).
    ADS  Article  Google Scholar 

    4.
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).
    PubMed  Article  Google Scholar 

    5.
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
    Article  Google Scholar 

    6.
    Wake, D. B., Roth, G. & Wake, M. H. On the problem of stasis in organismal evolution. J. Theor. Biol. 101, 211–224 (1983).
    Article  Google Scholar 

    7.
    Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).
    Article  Google Scholar 

    8.
    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Chang. Biol. 20, 3059–3067 (2014).
    ADS  PubMed  Article  Google Scholar 

    9.
    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B 267, 739–745 (2000).
    CAS  Article  Google Scholar 

    10.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Lond. B 278, 1823–1830 (2011).
    Google Scholar 

    11.
    van Berkum, F. H. Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. Am. Nat. 132, 327–343 (1988).

    12.
    Munoz, M. M. et al. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc. R. Soc. Lond. B 281, 20132433 (2014).
    Google Scholar 

    13.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Article  Google Scholar 

    14.
    Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Ruddiman, W. F. Earth’s Climate: Past and Future (Macmillan, 2001).

    17.
    Romdal, T. S., Araújo, M. B. & Rahbek, C. Life on a tropical planet: niche conservatism and the global diversity gradient. Glob. Ecol. Biogeogr. 22, 344–350 (2013).
    Article  Google Scholar 

    18.
    Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Herrando-Pérez, S. et al. Heat tolerance is more variable than cold tolerance across species of Iberian lizards after controlling for intraspecific variation. Funct. Ecol. 34, 631–645 (2020).
    Article  Google Scholar 

    20.
    Hamilton, W. J. Life’s Color Code (New York: McGraw-Hill, 1973).

    21.
    Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).
    Article  Google Scholar 

    22.
    Münkemüller, T., Boucher, F. C., Thuiller, W. & Lavergne, S. Phylogenetic niche conservatism—common pitfalls and ways forward. Funct. Ecol. 29, 627–639 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Chang. Biol. 22, 3829–3842 (2016).
    ADS  PubMed  Article  Google Scholar 

    24.
    Hoffmann, A. A. Physiological climatic limits in Drosophila: patterns and implications. J. Exp. Biol. 213, 870–880 (2010).
    CAS  PubMed  Article  Google Scholar 

    25.
    Bennett, J. M. et al. GlobTherm a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science (80-.) 361, eaar5452 (2018).
    Article  CAS  Google Scholar 

    27.
    Stephens, P. R. & Wiens, J. J. Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. Am. Nat. 161, 112–128 (2003).
    PubMed  Article  Google Scholar 

    28.
    Grosberg, R. K., Vermeij, G. J. & Wainwright, P. C. Biodiversity in water and on land. Curr. Biol. 22, R900–R903 (2012).
    CAS  PubMed  Article  Google Scholar 

    29.
    Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).
    Article  Google Scholar 

    30.
    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).
    ADS  PubMed  Article  Google Scholar 

    31.
    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science (80-.) 322, 258–261 (2008).
    ADS  CAS  Article  Google Scholar 

    32.
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science (80-.) 320, 1296–1297 (2008).
    CAS  Article  Google Scholar 

    33.
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science (80-.) 328, 894–899 (2010).
    ADS  CAS  Article  Google Scholar 

    34.
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Gavrilets, S. & Vose, A. Dynamic patterns of adaptive radiation. Proc. Natl Acad. Sci. USA 102, 18040–18045 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Porter, W. P. & Kearney, M. Size, shape, and the thermal niche of endotherms. Proc. Natl Acad. Sci. USA 106, 19666–19672 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Rubalcaba, J. G. & Olalla‐Tárraga, M. Á. The biogeography of thermal risk for terrestrial ectotherms: scaling of thermal tolerance with body size and latitude. J. Anim. Ecol. 89, 1277–1285 (2020).

    39.
    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).

    40.
    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

    41.
    IUCN. The IUCN Red List of Threatened Species http://www.iucnredlist.org (2015).

    42.
    Horton, T. et al. World Register of Marine Species (WoRMS) http://www.marinespecies.org (2017).

    43.
    Guiry, M. D. & Guiry, G. M. AlgaeBase. World-wide electronic publication http://www.algaebase.org (2016).

    44.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    45.
    Assis, J. et al. Bio‐ORACLE v2. 0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
    Article  Google Scholar 

    46.
    Tyberghein, L. et al. Bio‐ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
    Article  Google Scholar 

    47.
    Caspermeyer, J. New grand tree of life study shows a clock-like trend in the emergence of new species and diversity. Mol. Biol. Evol. 32, 1113 (2015).
    CAS  PubMed  Article  Google Scholar 

    48.
    Holt, B. G. & Jønsson, K. A. Reconciling hierarchical taxonomy with molecular phylogenies. Syst. Biol. 63, 1010–1017 (2014).
    PubMed  Article  Google Scholar 

    49.
    Ruggiero, M. A. et al. A higher level classification of all living organisms. PLoS ONE 10, e0119248 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Cooper, N. & Purvis, A. Body size evolution in mammals: complexity in tempo and mode. Am. Nat. 175, 727–738 (2010).
    PubMed  Article  Google Scholar 

    51.
    Felsenstein, J. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25, 471 (1973).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Alexander Pyron, R. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).
    PubMed  Article  Google Scholar 

    54.
    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    56.
    Faurby, S. & Svenning, J.-C. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84, 14–26 (2015).
    PubMed  Article  Google Scholar 

    57.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Article  Google Scholar 

    58.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Development Core Team, 2020).

    59.
    Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Zanne, A. E. et al. Data from: three keys to the radiation of angiosperms into freezing environments. Dryad Digit. Repos. 10, https://doi.org/10.5061/dryad.63q27 (2014).

    61.
    Pyron, R. A. & Wiens, J. J. Data from: a large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. https://doi.org/10.5061/dryad.vd0m7 (2011).

    62.
    Pyron, R. Alexander, Burbrink, Frank T., Wiens, J. J. Data from: a phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. Dryad Digit. Repos. https://doi.org/10.5061/dryad.82h0me (2013).

    63.
    Morales-Castilla, I. MoralesCastilla/ThermalEvolution: ThermalEvolution (Version v1.0). Zenodo https://doi.org/10.5281/zenodo.4311705 (2020). More

  • in

    Biogeography of the cosmopolitan terrestrial diatom Hantzschia amphioxys sensu lato based on molecular and morphological data

    In most of the forest soil samples used in this survey, specimens belonging to the genus Hantzschia are quite common. Based molecular as well as on light microscopy (LM) and scanning electron microscopy (SEM) observations of 25 strains, seven different taxa were recognized. Figure 1 contains the locations of the strain’s habitats. In anticipation of the nomenclatural consequences, we are using the new names already here but will describe them formally later.
    Figure 1

    Map with the habitat locations of the studied strains.

    Full size image

    Molecular data
    The obtained phylogenetic tree for representatives of the different strains Hantzschia contains several large clades, some of which are monophyletic, while others contain several different species names (Fig. 2). In the analyzed tree, the largest clade is represented by different strains of H. amphioxys, the structure of which is described in the corresponding molecular analysis section. At the same time, the most significant is that in the same clade there is strain H. amphioxys D27_008, which has been designated as epitype20. One of the largest is the clade with H. abundans, which, in addition to our strains, and some that have already been published, includes the group of strains referred to as “Hantzschia sp. 3” (Sterre6)e, (Sterre6)f from Souffreau et al.16. We propose to refer to all of these strains as H. abundans. The next clade consists of the new species of H. attractiva and three strains of Hantzschia sp. 2 (Mo1)a, (Mo1)e, (Mo1)m from Souffreau et al.16, the latter we propose to merge into the new species named H. pseudomongolica, which is sister to H. attractiva. Given the topology of the tree and the morphological features of the representatives, we can conclude that there is a close relation between H. abundans and H. attractiva plus H. pseudomongolica. A separate group consists of two clades with sufficient statistical support (likelihood bootstrap, LB 76; posterior probability, PP 100), one of which is represented by two strains of H. parva, and the other with strains of H. cf. amphioxys (Sterre1)f, (Sterre1)h. Another large clade represents a set of strains of Hantzschia sp. 1 and Hantzschia sp. 2 (Mo1)h, (Mo1)l from Souffreau et al.16, among which there are both large cells (86–89 µm length) and smaller ones (37–39 µm length); strains also differ by striation – from 18–20 striae in 10 μm (strain (Mo1)h) to 21–22 in 10 μm (strain (Ban1)h). It is possible that Hantzschia sp. 1 and Hantzschia sp. 2 (Mo1)h, (Mo1)l may be several closely related species. Besides the large clades, there are a number of separate branches in the tree, representing separate strains: Hantzschia sp. 1 (Ban1)d, and the new species H. belgica (H. cf. amphioxys (Sterre3)a from Souffreaua et al.16) and H. stepposa. Interesting is the position of the H. abundans (Tor3)c strain, which is very distant from other representatives of H. abundans and probably is a cryptic taxon, whose taxonomic status needs to be revised.
    Figure 2

    Bayesian tree for representatives of the different strains Hantzschia, from an alignment with 40 sequences and 1785 characters (partial rbcL gene and 28S rDNA fragments). Type strains indicated in bold. The epitype of Hantzschia amphioxys is underlined. Values above the horizontal lines (on the left of slash) are bootstrap support from RAxML analyses ( More

  • in

    Endocranial volume is variable and heritable, but not related to fitness, in a free-ranging primate

    1.
    Healy, S. D. & Rowe, C. A critique of comparative studies of brain size. Proc. R. Soc. B Biol. Sci. 274, 453–464 (2007).
    Article  Google Scholar 
    2.
    Roth, G. & Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257 (2005).
    PubMed  Article  Google Scholar 

    3.
    Logan, C. J., Kruuk, L. E. B., Stanley, R., Thompson, A. M. & Clutton-Brock, T. H. Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal. R. Soc. Open Sci. 3, 160622 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Dunbar, R. I. M. Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22, 469–493 (1992).
    Article  Google Scholar 

    5.
    Innocenti, G. M. & Kaas, J. H. The cortex. Trends Neurosci. 18, 371–372 (1995).
    CAS  Article  Google Scholar 

    6.
    Kaas, J. H. The evolution of isocortex. Brain. Behav. Evol. 46, 187–196 (1995).
    CAS  PubMed  Article  Google Scholar 

    7.
    Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl. Acad. Sci. 99, 4436–4441 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Sol, D., Székely, T., Liker, A. & Lefebvre, L. Big-brained birds survive better in nature. Proc. R. Soc. B Biol. Sci. 274, 763–769 (2007).
    Article  Google Scholar 

    10.
    Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl. Acad. Sci. USA 113, 2532–2537 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Cartmill, M. New views on primate origins. Evol. Anthropol. Issues News Rev. 1, 105–111 (2005).
    Article  Google Scholar 

    12.
    Allman, J., McLaughlin, T. & Hakeem, A. Brain weight and life-span in primate species. Proc. Natl. Acad. Sci. 90, 118–122 (1993).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).
    PubMed  Article  Google Scholar 

    14.
    Harvey, P. H. & Bennett, P. M. Evolutionary biology: Brain size, energetics, ecology and life history patterns. Nature 306, 314–315 (1983).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).
    Article  Google Scholar 

    16.
    Kudo, H. & Dunbar, R. I. M. Neocortex size and social network size in primates. Anim. Behav. 62, 711–722 (2001).
    Article  Google Scholar 

    17.
    Schillaci, M. A. Sexual selection and the evolution of brain size in primates. PLoS ONE 1, e62 (2006).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Shultz, S. & Dunbar, R. I. M. The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc. R. Soc. B Biol. Sci. 274, 2429–2436 (2007).
    Article  Google Scholar 

    19.
    King, B. J. Extractive foraging and the evolution of primate intelligence. Hum. Evol. 1, 361–372 (1986).
    Article  Google Scholar 

    20.
    Barton, R. A. Neocortex size and behavioural ecology in primates. Proc. R. Soc. Lond. B 263, 173–177 (1996).
    ADS  CAS  Article  Google Scholar 

    21.
    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).
    Article  Google Scholar 

    22.
    Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci. 284, 20171765 (2017).
    Article  Google Scholar 

    23.
    Dunbar, R. I. M. & Shultz, S. Why are there so many explanations for primate brain evolution?. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160244 (2017).
    Article  Google Scholar 

    24.
    Van Schaik, C. P. Why are diurnal primates living in groups?. Behaviour 87, 120–144 (1983).
    Article  Google Scholar 

    25.
    Van Schaik, C. P. & Van Hooff, J. A. R. A. M. On the ultimate causes of primate social systems. Behaviour 85, 91–117 (1983).
    Article  Google Scholar 

    26.
    Wrangham, R. W. An ecological model of female-bonded primate groups. Behaviour 75, 262–300 (1980).
    Article  Google Scholar 

    27.
    Atchley, W. R., Riska, B., Kohn, L. A. P., Plummer, A. A. & Rutledge, J. J. A quantitative genetic analysis of brain and body size associations, their origin and ontogeny: Data from mice. Evolution 38, 1165 (1984).
    PubMed  Article  Google Scholar 

    28.
    Riska, B. & Atchley, W. R. Genetics of growth predict patterns of brain-size evolution. Science 229, 668–671 (1985).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Rogers, J. et al. Heritability of brain volume, surface area and shape: An MRI study in an extended pedigree of baboons. Hum. Brain Mapp. 28, 576–583 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Gómez-Robles, A., Hopkins, W. D., Schapiro, S. J. & Sherwood, C. C. Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc. Natl. Acad. Sci. 112, 14799–14804 (2015).
    ADS  PubMed  Article  CAS  Google Scholar 

    31.
    DeCasien, A. R., Sherwood, C. C., Schapiro, S. J. & Higham, J. P. Greater variability in chimpanzee (Pan troglodytes) brain structure among males. Proc. R. Soc. B 287, 20192858 (2020).
    PubMed  Article  Google Scholar 

    32.
    Fears, S. C. et al. Identifying heritable brain phenotypes in an extended pedigree of vervet monkeys. J. Neurosci. 29, 2867–2875 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Noreikiene, K. et al. Quantitative genetic analysis of brain size variation in sticklebacks: Support for the mosaic model of brain evolution. Proc. R. Soc. B Biol. Sci. 282, 20151008 (2015).
    Article  Google Scholar 

    34.
    Kotrschal, A. et al. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Cheverud, J. M. et al. Heritability of brain size and surface features in rhesus macaques (Macaca mulatta). J. Hered. 81, 51–57 (1990).
    CAS  PubMed  Article  Google Scholar 

    36.
    de Villemereuil, P. Tutorial estimation of a biological trait heritability using the animal model How to use the MCMCglmm R package. (2012).

    37.
    Axelrod, C. J., Laberge, F. & Robinson, B. W. Intraspecific brain size variation between coexisting sunfish ecotypes. Proc. R. Soc. B Biol. Sci. 285, 20181971 (2018).
    Article  Google Scholar 

    38.
    Blomquist, G. E. Fitness-related patterns of genetic variation in rhesus macaques. Genetica 135, 209–219 (2009).
    PubMed  Article  Google Scholar 

    39.
    Brent, L. J. N. et al. Personality traits in rhesus macaques (Macaca mulatta) are heritable but do not predict reproductive output. Int. J. Primatol. 35, 188–209 (2014).
    PubMed  Article  Google Scholar 

    40.
    Dubuc, C. et al. Sexually selected skin colour is heritable and related to fecundity in a non-human primate. Proc. R. Soc. B Biol. Sci. 281, 20141602 (2014).
    Article  Google Scholar 

    41.
    Kimock, C. M., Dubuc, C., Brent, L. J. N. & Higham, J. P. Male morphological traits are heritable but do not predict reproductive success in a sexually-dimorphic primate. Sci. Rep. 9, 19794 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model’. Philos. Trans. R. Soc. B 359, 873–890 (2004).
    Article  Google Scholar 

    43.
    Falk, D., Froese, N., Sade, D. S. & Dudek, B. C. Sex differences in brain/body relationships of Rhesus monkeys and humans. J. Hum. Evol. 36, 233–238 (1999).
    CAS  PubMed  Article  Google Scholar 

    44.
    Herndon, J. G., Tigges, J., Anderson, D. C., Klumpp, S. A. & McClure, H. M. Brain weight throughout the life span of the chimpanzee. J. Comp. Neurol. 409, 567–572 (1999).
    CAS  PubMed  Article  Google Scholar 

    45.
    Iwaniuk, A. N. Interspecific variation in sexual dimorphism in brain size in Nearctic ground squirrels (Spermophilus spp.). Can. J. Zool. 79, 759–765 (2001).
    Article  Google Scholar 

    46.
    Towe, A. L. & Mann, M. D. Habitat-related variations in brain and body size of pocket gophers. J. Hirnforsch. 36, 195–201 (1995).
    CAS  PubMed  Google Scholar 

    47.
    Kotrschal, A., Räsänen, K., Kristjánsson, B. K., Senn, M. & Kolm, N. Extreme sexual brain size dimorphism in sticklebacks: A consequence of the cognitive challenges of sex and parenting?. PLoS ONE 7, e30055 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Ritchie, S. J. et al. Sex differences in the adult human brain: Evidence from 5216 uk biobank participants. Cereb. Cortex 28, 2959–2975 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Whitten, P. L. Diet and dominance among female vervet monkeys (Cercopithecus aethiops). Am. J. Primatol. 5, 139–159 (1983).
    PubMed  Article  Google Scholar 

    50.
    Mori, A. Analysis of population changes by measurement of body weight in the Koshima troop of Japanese monkeys. Primates 20, 371–397 (1979).
    Article  Google Scholar 

    51.
    Small, M. F. Body fat, rank, and nutritional status in a captive group of Rhesus Macaques. Int. J. Primatol. 2, 91–95 (1981).
    Article  Google Scholar 

    52.
    Sade, D. S. Population dynamics in relation to social structure on Cayo Santiago. Ybk. Phys. Anthr. 20, 253–262 (1976).
    Google Scholar 

    53.
    Silk, J. B., Clark-Wheatley, C. B., Rodman, P. S. & Samuels, A. Differential reproductive success and facultative adjustment of sex ratios among captive female bonnet macaques (Macaca radiata). Anim. Behav. 29, 1106–1120 (1981).
    Article  Google Scholar 

    54.
    Rawlins, R. G. & Kessler, M. J. The Cayo Santiago macaques: History, behavior, and biology (SUNY Series Primatology, Suny, 1986).
    Google Scholar 

    55.
    Kessler, M. J. & Rawlins, R. G. A 75-year pictorial history of the Cayo Santiago rhesus monkey colony. Am. J. Primatol. 78, 6–43 (2016).
    PubMed  Article  Google Scholar 

    56.
    Widdig, A. et al. Genetic studies on the Cayo Santiago rhesus macaques: A review of 40 years of research. Am. J. Primatol. 78, 44–62 (2016).
    PubMed  Article  Google Scholar 

    57.
    Widdig, A. et al. Low incidence of inbreeding in a long-lived primate population isolated for 75 years. Behav. Ecol. Sociobiol. 71, 18 (2017).
    PubMed  Article  Google Scholar 

    58.
    Cheverud, J. M. Epiphyseal union and dental eruption in Macaca mulatta. Am. J. Phys. Anthropol. 56, 157–167 (1981).
    CAS  PubMed  Article  Google Scholar 

    59.
    Turnquist, J. E. & Kessler, M. J. Free-ranging Cayo Santiago rhesus monkeys (Macaca mulatta): I. Body size, proportion, and allometry. Am. J. Primatol. 19, 1–13 (1989).
    PubMed  Article  Google Scholar 

    60.
    Havill, L. M. Osteon remodeling dynamics in macaca mulatta: Normal variation with regard to age, sex, and skeletal maturity. Calcif. Tissue Int. 74, 95–102 (2004).
    CAS  PubMed  Article  Google Scholar 

    61.
    Konigsberg, L. et al. External brain morphology in rhesus macaques (Macaca mulatta). J. Hum. Evol. 19, 269–284 (1990).
    Article  Google Scholar 

    62.
    Logan, C. J. & Clutton-Brock, T. H. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behav. Process. 92, 143–146 (2013).
    Article  Google Scholar 

    63.
    Jolly, C. The classification and natural history of Theropithecus (Simopithecus) (Andrew, 1916) baboons of the African Plio-Pleistocene. (Bull. Brit. Mus. Nat. Hist., 1972).

    64.
    Delson, E. et al. Body mass in Cercopithecidae (Primates, mammalia): Estimation and scaling in extinct and extant taxa. (American Museum of Natural History, 2000).

    65.
    Hadfield, J. D., Richardson, D. S. & Burke, T. Towards unbiased parentage assignment: Combining genetic, behavioural and spatial data in a Bayesian framework. Mol. Ecol. 15, 3715–3730 (2006).
    CAS  PubMed  Article  Google Scholar 

    66.
    Hadfield, J. D. MCMCglmm Course Notes. (2016).

    67.
    Morrissey, M. B. & Wilson, A. J. pedantics: An r package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing: Computer program article. Mol. Ecol. Resour. 10, 711–719 (2009).
    PubMed  Article  Google Scholar 

    68.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Article  Google Scholar 

    69.
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).
    CAS  PubMed  Article  Google Scholar 

    70.
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).
    PubMed  Article  Google Scholar 

    71.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).
    Article  Google Scholar 

    72.
    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
    PubMed  Article  Google Scholar 

    73.
    Morrissey, M. B. & Sakrejda, K. Unification of regression-based methods for the analysis of natural selection. Evolution 67, 2094–2100 (2013).
    PubMed  Article  Google Scholar 

    74.
    Stinchcombe, J., Agrawal, A., Hohenlohe, P., Arnold, S. & Blows, M. Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing?. Evolution 62, 2435–2440 (2008).
    PubMed  Article  Google Scholar 

    75.
    Matsumura, S., Arlinghaus, R. & Dieckmann, U. Standardizing selection strengths to study selection in the wild: A critical comparison and suggestions for the future. Bioscience 62, 1039–1054 (2012).
    Article  Google Scholar  More

  • in

    Investigating an increase in Florida manatee mortalities using a proteomic approach

    This proteomic survey was conducted to identify proteins that were differentially expressed in the serum of manatees affected by two distinct mortality episodes: a red tide group and an unknown mortality episode group in the IRL. These groups were compared to a control group sampled at Crystal River. The red tide group’s exposure was evidenced by the presence of the PbTx antigen, with brevetoxin values in the 4.3 to 14.4 ng/ml range. The other group did not present with clinical symptoms except for mild cold stress in some animals. Two proteomics approaches were employed, 2D-DIGE and shot gun proteomics using LC–MS/MS, which provided similar results, suggesting that several serum proteins were specifically altered in each of the manatee mortality episode groups compared to the Crystal River control group. The differentially expressed serum proteins were cautiously identified based on annotation of the manatee genome6,7 and their amino acid sequence homologies with human serum proteins. While additional work still needs to be done to confirm that the identified manatee proteins function similarly to their human homologs, possible insight on the function of the proteins can be derived from human studies.
    The two proteomics methods used, 2D-DIGE and iTRAQ LC–MS/MS are complementary and both rely on LC–MS/MS for protein identification. 2D-DIGE is a top-down approach, quantifying the differentially expressed proteins at the protein level before identifying the protein by LC–MS/MS, while the iTRAQ method is a bottom-up approach, where the whole proteome is first digested with trypsin, the generated peptides are separated by chromatography and identified and measured by mass spectrometry. Mass spectrometry has become the primary method to analyze proteomes, benefitting from genomic sequences and bioinformatics tools that can translate the sequences into predicted proteins. There are excellent reviews of proteomics methods and how they may be used across species8,9.
    In total, 19 of the 26 proteins identified using the 2D-DIGE method were also identified by iTRAQ (Supplementary Table 1) which showed that these findings were replicated using two complementary experimental methods. In the 2D-DIGE method, most of the proteins were found in multiple spots, suggesting that they were differentially modified. 2D-DIGE can separate proteins based on a single charge difference. Some of the spots contained multiple proteins so it was difficult to determine the fold change of each of the proteins in these spots. For example, protein C4A was identified in 7 different spots, likely representing multiple isoforms. We were not able to corroborate the different post-translational modifications (PTMs) with iTRAQ, as the experiment was not designed to look for PTMs, only total protein quantitation. A drawback of 2D-DIGE is that keratin introduced into the sample from reagents at the time of electrophoresis or through the multiple steps required for protein extraction is also seen in the gels10,11,12. It is unlikely that the keratins were from the serum samples, as blood was collected directly into vacuum tubes. Because of the issue of keratin contamination, the 2D-DIGE method is considered more qualitative in its determination and thus in this study, iTRAQ data were the primary basis for quantitation.
    Pathway analysis detects groups of proteins that are linked in pathways that may be related to disease processes. We used Pathway Studio using subnetwork enrichment analysis to determine disease pathways potentially in place for the red tide and IRL manatees. The Pathway Studio database is constructed from relationships detected between proteins and diseases from articles present in Pubmed but is heavily directed towards human and rodent proteomes. To be able to use this tool, we assigned human homologs to the identified manatee proteins, assuming that based on their sequence homology the proteins would function in a similar way. There are many studies that suggest this assumption has merit, for example Nonaka and Kimura have examined the evolution of the complement system and found clear indications of homology among vertebrates13.
    The top 20 pathways for the red tide group (Table 3) and the IRL group (Table 4) show the diverse set of molecular pathways that may be affected by the exposures. Many of the same pathways appeared for both groups including thrombophilia, inflammation, wounds and injuries, acute phase reaction and amyloidosis. Thrombophilia was the most upregulated pathway for the IRL group (p-value 1.10E-19) and the second most upregulated pathway for the red tide group (p-value 4.1E-19). Thrombophilia, a condition in which blood clots occur in the absence of injury, happens when clotting factors become unbalanced. We obtained proteomics information on 12 of the proteins in this pathway, with some moving in opposing directions. The dysregulated proteins that were increased for both red tide and the IRL groups were SERPIN D1 (Serpin family member D 1), CRP (C-reactive protein), and PLAT (plasminogen activator) and the ones that were decreased in both groups, were SERPIN C1 (Serpin family member C 1), F5 (coagulation factor 5), and ALB (albumin). One protein, AGT (angiotensinogen), was upregulated in the red tide group but downregulated in the IRL. HRG (histidine rich glycoprotein), PROS1 (Protein S), C4BPA (complement component 4 binding protein alpha, and F2 (coagulation factor 2, also known as prothrombin) were downregulated in the red tide group but upregulated in the IRL group. The disparate regulation of proteins in this pathway suggests that clotting was among the pathways disrupted in the affected manatees. Red tide exposed manatees often present with hemorrhagic issues in their intestines, lungs and the brain (14), suggesting that downregulation of coagulation factors may be responsible for this clinical evaluation. Interestingly HRG was upregulated in the IRL by 1.34-fold and downregulated in the red tide group by 0.56-fold, making this protein a good biomarker to distinguish the two events.
    Table 3 Subnetwork enrichment pathways for serum proteins obtained from manatees exposed to red tide.
    Full size table

    Table 4 Subnetwork enrichment pathways for serum proteins obtained from manatees sampled in the IRL.
    Full size table

    Among the manatees in the red tide group, inflammation was ranked 3rd (p-value  More

  • in

    Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy

    Aægisdóttir HH, Kuss P, Stöcklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322
    Article  CAS  Google Scholar 

    Ahrens CW, James EA, Botanic R, Melbourne G, Ave B, Yarra S (2015) Range-wide genetic analysis reveals limited structure and suggests asexual patterns in the rare forb Senecio macrocarpus. Biol J Linn Soc 115:256–269
    Article  Google Scholar 

    Bouckaert R (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372–137
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourmet M, Gavryushkina A et al. (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:1–28
    Article  CAS  Google Scholar 

    Bowler J (1982) Aridity in the late tertiary and quaternary of Australia. In: Barker W, Greenslade P (eds) Evolution of the flora and fauna of arid Australia. Peacock Publications, Adelaide, p 35–45
    Google Scholar 

    Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJC et al. (2019) The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet 20:615–628
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Brown AHD, Young AG (2000) Genetic diversity in tetraploid populations of the endangered daisy Rutidosis leptorrhynchoides and implications for its conservation. Heredity (Edinb) 85:122–129
    CAS  Article  Google Scholar 

    Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, Roychoudhury A (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol 29:1917–1932
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Bull M, Stolfo G (2014) Flora of Melbourne. A guide to the indigenous plants of the greater Melbourne area, 4th edn. Hyland House, Melbourne
    Google Scholar 

    Buza L, Young A, Thrall P (2000) Genetic erosion, inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta. Biol Conserv 93:177–186
    Article  Google Scholar 

    Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2:379–384
    CAS  Article  Google Scholar 

    Chen C, Lu RS, Zhu SS, Tamaki I, Qiu YX (2017) Population structure and historical demography of Dipteronia dyeriana (Sapindaceae), an extremely narrow palaeoendemic plant from China: implications for conservation in a biodiversity hot spot. Heredity (Edinb) 119:95–106
    CAS  Article  Google Scholar 

    Clarke GM, O’Dwyer C (2000) Genetic variability and population structure of the endangered golden sun moth, Synemon plana. Biol Conserv 92:371–381
    Article  Google Scholar 

    Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237
    Article  Google Scholar 

    Coleman RA, Weeks AR, Hoffmann AA (2013) Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae). Mol Ecol 22:1820–1835
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Courtice B, Hoebee SE, Sinclair S, Morgan JW (2020) Local population density affects pollinator visitation in the endangered grassland daisy Rutidosis leptorhynchoides (Asteraceae). Aust J Bot 67:638–648
    Article  Google Scholar 

    Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. TREE 15:290–295
    CAS  PubMed  PubMed Central  Google Scholar 

    Delph LF, Kelly JK (2014) On the importance of balancing selection in plants. N Phytol 201:45–56
    Article  Google Scholar 

    DeMauro MM (1993) Relationship of breeding system to rarity in the Lakeside Daisy (Hymenoxys acaulis var. glabra). Conserv Biol 7:542–550
    Article  Google Scholar 

    Department of the Environment (2020) Senecio macrocarpus in Species Profile and Threats Database, Department of the Environment, Canberra. Available from: http://www.environment.gov.au/sprat. Accessed 27 May 2020.

    Diekmann OE, Gouveia L, Perez JA, Gil-Rodriguez C, Serrão EA (2010) The possible origin of Zostera noltii in the Canary Islands and guidelines for restoration. Mar Biol 157:2109–2115
    Article  Google Scholar 

    Dorrough J, Ash JE (1999) Using past and present habitat to predict the current distribution and abundance of a rare cryptic lizard, Delma impar (Pygopodidae). Austral Ecol 24:614–624
    Article  Google Scholar 

    Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–241

    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620
    CAS  PubMed  PubMed Central  Google Scholar 

    Foll M, Gaggiotti OE (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993
    PubMed  PubMed Central  Article  Google Scholar 

    Frankham R (1996) Relationship between genetic variation and populations size in wildlife. Conserv Biol 10:1500–1508
    Article  Google Scholar 

    Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618
    PubMed  Article  PubMed Central  Google Scholar 

    Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR et al. (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475
    PubMed  Article  PubMed Central  Google Scholar 

    Frankham R, Ballou JD, Ralls K, Eldridge MDB, Dudash MR, Fenster CB, et al. (2017) Genetic management of fragmented animal and plant populations, 1st edn. Oxford University Press, Oxford

    Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63
    Article  Google Scholar 

    Frankham R, Lees K, Montgomery ME, England PR, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? Anim Conserv 2:255–260
    Article  Google Scholar 

    Georges A, Gruber B, Pauly GB, White D, Adams M, Young MJ et al. (2018) Genomewide SNP markers breathe new life into phylogeography and species delimitation for the problematic short-necked turtles (Chelidae: Emydura) of eastern Australia. Mol Ecol 27:5195–5213
    PubMed  Article  PubMed Central  Google Scholar 

    Glémin S, Gaude T, Guillemin ML, Lourmas M, Olivieri I, Mignot A (2005) Balancing selection in the wild: testing population genetics theory of self-incompatibility in the rare species Brassica insularis. Genetics 171:279–289
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F‐statistics. Mol Ecol Resour 5:184–186
    Article  Google Scholar 

    Gruber B, Unmack PJ, Berry OF, Georges A (2018) DARTR: an R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour 18:691–699
    PubMed  Article  PubMed Central  Google Scholar 

    Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information dependent genotyping. Nucl Acids Res 29:e25
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Janes JK, Malenfant M, Andrew RL, Miller JM, Dupuis JR, Gorrell JC et al. (2017) The K = 2 conundrum. Mol Ecol 26:3594–3602
    PubMed  Article  PubMed Central  Google Scholar 

    Jones RN (1997) The biogeography of the grasses and lowland grasslands of south-eastern Australia. Adv Nat Conserv 2:11–18
    Google Scholar 

    Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:1–10
    CAS  Article  Google Scholar 

    Knapp EE, Rice KJ (1996) Genetic structure and gene flow in Elymus glaucus (blue wildrye): implications for native grassland restoration. Restor Ecol 4:1–10
    Article  Google Scholar 

    Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Ro AY (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Kronenberger JA, Funk WC, Smith JW, Fitzpatrick SW, Angeloni LM, Broder ED et al. (2017) Testing the demographic effects of divergent immigrants on small populations of Trinidadian guppies. Anim Conserv 20:3–11
    Article  Google Scholar 

    Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution (NY) 50:434–437
    Article  Google Scholar 

    Liddell E, Cook CN, Sunnucks P (2020) Evaluating the use of risk assessment frameworks in the identification of population units for biodiversity conservation. Wildl Res 47:208–216
    Article  Google Scholar 

    Lippé C, Dumont P, Bernatchez L (2006) High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Catostomidae, Pisces): the positive sides of a long generation time. Mol Ecol 15:1769–1780
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    Lloyd MW, Burnett RK, Engelhardt KAM, Neel MC (2011) The structure of population genetic diversity in Vallisneria Americana in the Chesapeake Bay: implications for restoration. Conserv Genet 12:1269–1285
    Article  Google Scholar 

    Mable BK, Robertson AV, Dart S, Di Berardo C, Witham L (2005) Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution (NY) 59:1437–1448
    Article  Google Scholar 

    Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—a southern perspective. Trends Ecol Evol 10:143–147
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Melville J, Goebel S, Starr C, Keogh JS, Austin JJ (2007) Conservation genetics and species status of an endangered Australian dragon, Tympanocryptis pinguicolla (Reptilia: Agamidae). Conserv Genet 8:185–195
    Article  Google Scholar 

    Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 22:22–37
    Article  Google Scholar 

    Morgan JW (1995) Ecological studies of the endangered Rutidosis leptorrhynchoides: I. Seed production, soil seed bank dynamics, population density and their effects on recruitment. Aust J Bot 43:1–11
    Article  Google Scholar 

    Moritz C (1999) Conservation units and translocations: Strategies for conserving evolutionary processes. Hereditas 130:217–228
    Article  Google Scholar 

    Murray BG, Young AG (2001) Widespread chromosome variation in the endangered grassland forb Rutidosis leptorrhynchoides F. Muell. (Asteraceae: Gnaphalieae). Ann Bot 87:83–90
    Article  Google Scholar 

    NSW Office of Environment and Heritage (2012) National Recovery Plan for Button Wrinklewort Rutidosis leptorrhynchoides. NSW Office of Environment and Heritage, Hurstville

    Nybom H, Bartish I (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114
    Article  Google Scholar 

    Pacioni C, Hunt H, Allentoft ME, Vaughan TG, Wayne AF, Baynes A et al. (2015) Genetic diversity loss in a biodiversity hotspot: ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Mol Ecol 24:5813–5828
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Pavlova A, Selwood P, Harrisson KA, Murray N, Quin B, Menkhorst P et al. (2014) Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species. Biol Conserv 174:136–146
    Article  Google Scholar 

    Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8:1–17
    Article  CAS  Google Scholar 

    Pickup M, Field DL, Rowell DM, Young AG (2012) Predicting local adaptation in fragmented plant populations: Implications for restoration genetics. Evol Appl 5:913–924
    PubMed  PubMed Central  Article  Google Scholar 

    Pickup M, Field DL, Rowell DM, Young AG (2013) Source population characteristics affect heterosis following genetic rescue of fragmented plant populations. Proc R Soc B Biol Sci 280:20122058
    CAS  Article  Google Scholar 

    Pickup M, Young AG (2008) Population size, self-incompatibility and genetic rescue in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Heredity (Edinb) 100:268–274
    CAS  Article  Google Scholar 

    Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN et al. (2015) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752
    Article  CAS  Google Scholar 

    Potter S, Neaves LE, Lethbridge M, Eldridge MDB (2020) Understanding historical demographic processes to inform contemporary conservation of an arid zone specialist: the yellow-footed rock-wallaby. Genes (Basel) 11:1–24
    Article  CAS  Google Scholar 

    Powell JM (1969) The squatting occupation of Victoria 1834-60. Aust Geogr Stud 7:9–27
    Article  Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Pritchard JK, Wen W (2003) Documentation for STRUCTURE Software: Version 2.

    Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589
    PubMed  PubMed Central  Article  Google Scholar 

    Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC et al. (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11:1–6
    Article  Google Scholar 

    Rambaut A, Drummond AJ, Xie D, Baele G, Suchard M (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Rodger YS, Greenbaum G, Silver M, Bar-david S, Winters G (2018) Detecting hierarchical levels of connectivity in a population of Acacia tortilis at the northern edge of the species’ global distribution: combining classical population genetics and network analyses. PLoS ONE 13:1–16
    Article  CAS  Google Scholar 

    Rojas D, Lima AP, Momigliano P, Ivo P, Dudaniec RY, Sauer TC et al. (2020) The evolution of polymorphism in the warning coloration of the Amazonian poison frog Adelphobates galactonotus. Heredity 124:439–456

    Scarlett NH, Parsons RF (1990) Conservation biology of the southern Australian daisy Rutidosis leptorrhynchoides. In: Clark TW, Seebeck JH (eds) Management and conservation of small populations. Chicago Zoological Society, Chicago, p 195–205
    Google Scholar 

    Sinclair SJ (2010) National recovery plan for the large-fruit groundsel Senecio macrocarpus. Department of Sustainability and Environment, Melbourne

    Sjogren P, Wyoni PI (1994) Conservation genetics and detection of rare alleles in finite populations. Conserv Biol 8:267–270
    Article  Google Scholar 

    Spalink D, Mackay R, Sytsma KJ (2019) Phylogeography, population genetics and distribution modelling reveal vulnerability of Scirpus longii (Cyperaceae) and the Atlantic Coastal Plain Flora to climate change. Mol Ecol 28:2046–2061

    Team RC (2018) R: a language and environment for statistical computing

    Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-Allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. Am Nat 169:383–397
    PubMed  Article  PubMed Central  Google Scholar 

    Weaver JC (1996) Beyond the fatal shore: pastoral squatting and the occupation of Australia. Am Hist Rev 101:981–1007
    Article  Google Scholar 

    Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA et al. (2011) Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol Appl 4:709–725
    PubMed  PubMed Central  Article  Google Scholar 

    Weeks AR, Stoklosa J, Hoffmann AA (2016) Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Front Zool 13:1–9
    Article  CAS  Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution (NY) 38:1358–1370
    CAS  Google Scholar 

    Wells GP, Young AG (2002) Effects of seed dispersal on spatial genetic structure in populations of Rutidosis leptorrhychoides with different levels of correlated paternity. Genet Res 79:219–226

    Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49
    PubMed  Article  PubMed Central  Google Scholar 

    Young AG, Brown AHD, Murray BG, Thrall PH, Miller CH (2000) Genetic erosion, restricted mating and reduced viability in fragmented populations of the endangered grassland herb Rutidosis leptorrhynchoides. In: Young AG, Clarke G (eds) Genetics, demography and viability of fragmented populations, Cambridge University Press, London, p 335–359

    Young AG, Brown AHD, Zich FC (1999) Genetic structure of fragmented populations of the endangered Daisy Rutidosis leptorrhynchoides. Cons Biol 13:256–265

    Young AG, Miller C, Gregory E, Langston A (2000) Sporophytic self-incompatibility in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Aust J Bot 48:667–672

    Young AG, Murray BG (2000) Genetic bottlenecks and dysgenic gene flow into re-established populations of the grassland daisy, Rutidosis leptorrhynchoides. Aust J Bot 48:409–416

    Young AG, Pickup M (2010) Low S-allele numbers limit mate availability, reduce seed set and skew fitness in small populations of a self-incompatible plant. J Appl Ecol 47:541–548
    Article  Google Scholar  More