Vivid biofluorescence discovered in the nocturnal Springhare (Pedetidae)
1.
Zhao, H. et al. The evolution of color vision in nocturnal mammals. PNAS 106, 8980–8985 (2009).
ADS CAS Article Google Scholar
2.
Douglas, R. H. & Jeffery, G. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proc. R. Soc. B. 281, 1471–2954. https://doi.org/10.1098/rspb.2013.2995 (2014).
Article Google Scholar
3.
Pearn, S. M., Bennett, A. T. & Cuthill, I. C. Ultraviolet vision, fluorescence and mate choice in a parrot, the budgerigar Melopsittacus undulates. Proc. R. Soc. B. 268, 2273–2279. https://doi.org/10.1098/rspb.2001.1813 (2001).
CAS Article PubMed Google Scholar
4.
Olofsson, M., Vallin, A., Jakobsson, S. & Wiklund, C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS ONE 5, e10798. https://doi.org/10.1371/journal.pone.0010798 (2010).
ADS CAS Article PubMed PubMed Central Google Scholar
5.
Honkavaara, J., Koivula, M., Korpimaki, E., Siitari, H. & Viitala, J. Ultraviolet vision and foraging in terrestrial vertebrates. Oikos 98, 505–511. https://doi.org/10.1034/j.1600-0706.2002.980315.x (2008).
Article Google Scholar
6.
McDonald, B., Geiger, B. & Vrla, S. Ultraviolet vision in Ord’s kangaroo rat (Dipodomys ordii). J. Mammal. https://doi.org/10.1093/jmammal/gyaa083 (2020).
Article Google Scholar
7.
Hunt, D. M., Carvalho, L. S., Cowing, J. A. & Davies, W. L. Evolution and spectral tuning of visual pigments in birds and mammals. Phil. Trans. R. Soc. B. 364, 2941–2955. https://doi.org/10.1098/rstb.2009.0044 (2009).
CAS Article PubMed Google Scholar
8.
Davies, W. L. et al. Visual pigments of the platypus: a novel route to mammalian colour vision. Curr. Biol. 17, R161–R163. https://doi.org/10.1016/j.cub.2007.01.037 (2007).
CAS Article PubMed Google Scholar
9.
Jeng, M.-L. Biofluorescence in terrestrial animals, with emphasis on fireflies: A review and field observation. In Bioluminescence – analytical applications and basic biology (ed. Suzuki, H.) Ch. 6, https://doi.org/10.5772/intechopen.86029 (IntechOpen, 2019).
10.
Sparks, J. S. et al. The covert world of fish biofluorescence: A phylogenetically widespread and phenotypically variable phenomenon. PLoS ONE https://doi.org/10.1371/journal.pone.0083259 (2014).
Article PubMed PubMed Central Google Scholar
11.
Park, H. B. et al. Bright green biofluorescence in sharks derives from Bromo-kynurenine metabolism. iScience 19, 1277–1286. https://doi.org/10.1016/j.isci.2019.07.019 (2019).
CAS Article Google Scholar
12.
Gruber, D. F. & Sparks, J. S. First observation of fluorescence in marine turtles. Am. Mus. Novit. 3845, 1–8. https://doi.org/10.1206/3845.1 (2015).
Article Google Scholar
13.
Taboada, C. et al. Naturally occurring fluorescence in frogs. PNAS 114, 3672–3677. https://doi.org/10.1073/pnas.1701053114 (2017).
CAS Article PubMed Google Scholar
14.
Prötzel, D. et al. Widespread bone-based fluorescence in chameleons. Sci. Rep. 8, 698. https://doi.org/10.1038/s41598-017-19070-7 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
15.
Goutte, S. et al. Intense bone fluorescence reveals hidden patterns in pumpkin toadlets. Sci. Rep. 9, 5388. https://doi.org/10.1038/s41598-019-41959-8 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
16.
Lamb, J. Y. & Davis, M. P. Salamanders and other amphibians are aglow with biofluorescence. Sci. Rep. 10, 2821. https://doi.org/10.1038/s41598-020-58528-9 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
17.
Weidensaul, C. S., Colvin, B. A., Brinker, D. F. & Huy, J. S. Use of ultraviolet light as an aid in age classification of owls. Wilson J Ornithol. 123, 373–377. https://doi.org/10.1676/09-125.1 (2011).
Article Google Scholar
18.
Camacho, C., Negro, J. J., Redondo, I., Palacios, S. & Sáez-Gómez, P. Correlates of individual variation in the porphyrin-based fluorescence of red-necked nightjars. Sci. Rep. 9, 19115. https://doi.org/10.1038/s41598-019-55522-y (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
19.
Kohler, A. M., Olson, E. R., Martin, J. G. & Anich, P. S. Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). J. Mammal. 100, 21–30. https://doi.org/10.1093/jmammal/gyy177 (2019).
Article Google Scholar
20.
Meisner, D. H. Psychedelic opossums: fluorescence of the skin and fur of Didelphis virginiana Kerr. Ohio J. Sci. 83, 4 (1983).
Google Scholar
21.
Pine, R. H., Rice, J. E., Bucher, J. E., Tank, D. J. Jr. & Greenhall, A. M. Labile pigments and fluorescent pelage in Didelphid marsupials. Mammalia 49, 249–256 (1985).
Article Google Scholar
22.
Anich, P. S. et al. Biofluorescence in the platypus (Orinthorhynchus anatinus). Mammalia https://doi.org/10.1515/mammalia-2020-0027 (2020).
Article Google Scholar
23.
Matthee, C. A. & Robinson, T. J. Mitochondrial DNA phylogeography and comparative cytogenetics of the springhare, Pedetes capensis (Mammalia: Reodentia). J. Mammal. Evol. 4, 53–73. https://doi.org/10.1023/A:1027331727034 (1997).
Article Google Scholar
24.
Augustine, D. J., Manzon, A., Klopp, C. & Elter, J. Habitat selection and group foraging of the springhare, Pedetes capensis larvalis Hollister, East Africa. Afr. J. Ecol. 33, 347–357 (1995).
Article Google Scholar
25.
Peinke, D. M. & Brown, C. R. Habitat use by the southern springhare (Pedetes capensis) in the Eastern Cape Province, South Africa. S. Afr. J. Wildl. Res. 36(2), 103–111 (2006).
Google Scholar
26.
Kennedy, G. Y. & Vevers, H. G. The occurrence of porphyrins in certain marine invertebrates. J. Mar. Biol. Ass. UK 33, 663–576 (1954).
CAS Article Google Scholar
27.
Comfort, A. The pigmentation of molluscan shells. Biol. Rev. 26, 285–301. https://doi.org/10.1111/j.1469-185X.1951.tb01358.x (1951).
CAS Article Google Scholar
28.
Thomas, D. B., McGoverin, C. M., McGraw, K. J., James, H. F. & Madden, O. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins. J. R. Soc. Interface 10, 20121065. https://doi.org/10.1098/rsif.2012.1065 (2012).
Article Google Scholar
29.
With, T. K. On porphyrins in feathers of owls and bustards. Int. J. Biochem. 9, 893–895 (1978).
CAS Article Google Scholar
30.
With, T. K. Pure unequivocal uroporphyrin III simplified method of preparation from turaco feathers. J. Clin. Lab Invest. 9, 398–401 (1957).
CAS Article Google Scholar
31.
Dooley, A. C. Jr. & Moncrief, N. D. Fluorescence provides evidence of congenital erythropoietic porphyria in 7000-year-old specimens of the eastern fox squirrel (Sciurus niger) from the Devil’s Den. J. Vert. Paleontol. 32, 495–497 (2012).
Article Google Scholar
32.
Ajioka, R. S., Phillips, J. D. & Kushner, J. P. Biosynthesis of heme in mammals. Biochem. Biophys. Acta. 1763, 723–736. https://doi.org/10.1016/j.bbamcr.2006.05.005 (2006).
CAS Article PubMed Google Scholar
33.
Seo, I., Tseng, S. H., Cula, G. O., Bargo, P. R. & Kollias, N. Fluorescence spectroscopy for endogenous porphyrins in human facial skin. Proc. SPIE. https://doi.org/10.1117/12.811913 (2009).
Article Google Scholar
34.
Heckl, C. et al. Rapid spectrophotometric quantification of urinary porphyrins and porphobilinogen as screening tool for attacks of acute porphyria. Proc. SPIE. https://doi.org/10.1117/12.2527105 (2019).
Article Google Scholar
35.
Levin, E. Y. & Flyger, V. Erythropoietic Porphyria of Fox Squirrel Sciurus niger. J. Clin. Invest. 52, 96–105 (1973).
CAS Article Google Scholar
36.
Turner, W. J. Studies on porphyria. I. Observations on the fox squirrel, Sciurus niger. J. Biol. Chem. 118, 519–530 (1937).
CAS Article Google Scholar
37.
Rivera, D. F. & Leung, L.K.-P. A rare autosomal recessive condition, congenital erythropoietic porphyria, found in canefield rat Rattus sordidus Gould 1858. Integative Zool. 216–218, 2008. https://doi.org/10.1111/j.1749-4877.2008.00088.x (2008).
Article Google Scholar
38.
Bickers, D. R., Keogh, L., Rifkind, A. B., Harber, L. C. & Kappas, A. Studies in porphyria VI. Biosynthesis of porphyrins in mammalian skin and in the skin of porphyric patients. J. Invest. Dermatol. 68(1), 5–9. https://doi.org/10.1111/1523-1747.ep12485121 (1977).
CAS Article PubMed Google Scholar
39.
Yolton, R. L., Yolton, D. P., Renz, J. & Jacobs, G. H. Preretinal absorbance in sciurid eyes. J. Mammal. 55, 14–20 (1974).
CAS Article Google Scholar
40.
Friedmann, H. C. & Baldwin, E. T. Reverse-phase purification and silica gel thin-layer chromatography of porphyrin carboxylic acids. Anal. Biochem 137, 473–480 (1984).
CAS Article Google Scholar
41.
Lim, C. K. & Peters, T. J. Urine and faecal porphyrin profiles by reversed-phase high performance liquid chromatography in the porphyrias. Clin. Chim. Acta. 139, 55–63 (1984).
CAS Article Google Scholar
42.
To-Figueras, J., Ozalla, D. & Mateu, C. H. Long-standing changes in the urinary profile of porphyrin isomers after clinical remission of porphyria cutanea tarda. Ann. Clin. Lab. Sci. 33, 251–256 (2003).
CAS PubMed Google Scholar More
