Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale
1.
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Article Google Scholar
2.
Carson, W. & Schnitzer, S. Tropical Forest Community Ecology (John Wiley & Sons, 2011).
3.
Givnish, T. J. On the causes of gradients in tropical tree diversity. J. Ecol. 87, 193–210 (1999).
Article Google Scholar
4.
Condit, R., Engelbrecht, B. M. J., Pino, D., Pérez, R. & Turner, B. L. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc. Natl Acad. Sci. USA 110, 5064–5068 (2013).
CAS PubMed Article PubMed Central Google Scholar
5.
Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).
CAS PubMed Article PubMed Central Google Scholar
6.
Zalamea, P.-C. et al. Seedling growth responses to phosphorus reflect adult distribution patterns of tropical trees. New Phytol. 212, 400–408 (2016).
CAS PubMed Article PubMed Central Google Scholar
7.
Sarmiento, C. et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc. Natl Acad. Sci. USA 114, 11458–11463 (2017).
CAS PubMed Article PubMed Central Google Scholar
8.
Ter Steege, H., Pitman, N. & Sabatier, D. A spatial model of tree alpha-diversity and tree density for the Amazon. Biodivers. Conserv. 12, 2255–2277 (2003).
Article Google Scholar
9.
Leigh, E. G. Jr. et al. Why do some tropical forests have so many species of trees? Biotropica 36, 447–473 (2004).
Google Scholar
10.
Rahbek, C. & Graves, G. R. Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale. Proc. R. Soc. Lond. B. 267, 2259–2265 (2000).
CAS Article Google Scholar
11.
Abrahamczyk, S., Kluge, J., Gareca, Y., Reichle, S. & Kessler, M. The influence of climatic seasonality on the diversity of different tropical pollinator groups. PLoS ONE 6, e27115 (2011).
CAS PubMed PubMed Central Article Google Scholar
12.
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
PubMed Article CAS PubMed Central Google Scholar
13.
Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).
PubMed Article PubMed Central Google Scholar
14.
Doležal, J., Lanta, V., Mudrák, O. & Lepš, J. Seasonality promotes grassland diversity: interactions with mowing, fertilization and removal of dominant species. J. Ecol. 107, 203–215 (2019).
15.
Arnold, A. E. et al. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl Acad. Sci. USA 100, 15649–15654 (2003).
CAS PubMed Article PubMed Central Google Scholar
16.
Arnold, A. E. & Engelbrecht, B. M. J. Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. J. Trop. Ecol. 23, 369–372 (2007).
Article Google Scholar
17.
Costa Pinto, L. S., Azevedo, J. L., Pereira, J. O., Carneiro Vieira, M. L. & Labate, C. A. Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol. 147, 609–615 (2000).
Article Google Scholar
18.
U’Ren, J. M. et al. Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples. Mycol. Res. 113, 432–449 (2009).
PubMed Article CAS PubMed Central Google Scholar
19.
Sanchez-Azofeifa, A., Oki, Y., Wilson Fernandes, G., Ball, R. A. & Gamon, J. Relationships between endophyte diversity and leaf optical properties. Trees 26, 291–299 (2012).
Article Google Scholar
20.
Vincent, J. B., Weiblen, G. D. & May, G. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Mol. Ecol. 25, 825–841 (2016).
CAS PubMed Article Google Scholar
21.
Suryanarayanan, T. S., Murali, T. S. & Venkatesan, G. Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can. J. Bot. 80, 818–826 (2002).
Article Google Scholar
22.
Zimmerman, N. B. & Vitousek, P. M. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc. Natl Acad. Sci. USA 109, 13022–13027 (2012).
CAS PubMed Article Google Scholar
23.
Higgins, K. L., Arnold, A. E., Coley, P. D. & Kursar, T. A. Communities of fungal endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol. 8, 1–11 (2014).
Article Google Scholar
24.
Darcy, J. L. et al. Fungal communities living within leaves of native Hawaiian dicots are structured by landscape-scale variables as well as by host plants. Mol. Ecol. 29, 3102–3115 (2020).
Article Google Scholar
25.
Arnold, A. E. & Lutzoni, F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88, 541–549 (2007).
PubMed Article Google Scholar
26.
Tellez, P. H. Tropical plants and fungal symbionts: Leaf functional traits as drivers of plant-fungal interactions. PhD dissertation (Tulane University, 2019).
27.
U’Ren, J. M. et al. Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nat. Ecol. Evol. 3, 1430–1437 (2019).
PubMed Article Google Scholar
28.
Arnold, A. E. & Herre, E. A. Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95, 388–398 (2003).
PubMed Article PubMed Central Google Scholar
29.
Rodríguez-Quiel, E. E., Mendieta-Leiva, G. & Bader, M. Y. Elevational patterns of bryophyte and lichen biomass differ among substrates in the tropical montane forest of Baru Volcano, Panama. J. Bryol. 41, 95–106 (2019).
Article Google Scholar
30.
Magill, B., Solomon, J. & Stimmel, H. Tropicos Specimen Data. http://www.tropicos.org (2019).
31.
Arnold, A. E. et al. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst. Biol. 58, 283–297 (2009).
PubMed Article PubMed Central Google Scholar
32.
U’Ren, J. M., Lutzoni, F., Miadlikowska, J., Laetsch, A. D. & Arnold, A. E. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am. J. Bot. 99, 898–914 (2012).
PubMed Article PubMed Central Google Scholar
33.
Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D. & Kursar, T. A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 3, 267–274 (2000).
Article Google Scholar
34.
Phillips, O. L., Hall, P., Gentry, A. H., Sawyer, S. A. & Vásquez, R. Dynamics and species richness of tropical rain forests. Proc. Natl Acad. Sci. USA 91, 2805–2809 (1994).
CAS PubMed Article PubMed Central Google Scholar
35.
Usinowicz, J. et al. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550, 105–108 (2017).
CAS PubMed Article PubMed Central Google Scholar
36.
Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).
Article Google Scholar
37.
Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).
Article Google Scholar
38.
Thrall, P. H., Hochberg, M. E., Burdon, J. J. & Bever, J. D. Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol. Evol. 22, 120–126 (2007).
PubMed Article PubMed Central Google Scholar
39.
Poisot, T., Bever, J. D., Nemri, A., Thrall, P. H. & Hochberg, M. E. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14, 841–851 (2011).
PubMed PubMed Central Article Google Scholar
40.
Van Bael, S., Estrada, C. & Arnold, A. E. Chapter 6: foliar endophyte communities and leaf traits in tropical trees. In The Fungal Community: Its Organization and Role in the Ecosystem. (eds Dighton, J. & White, J. F.) 79–94 (CRC Press, 2017).
41.
Oono, R. et al. Species diversity of fungal endophytes across a stress gradient for plants. New Phytol. 228, 210–225 (2020).
42.
Top, S. M., Preston, C. M., Dukes, J. S. & Tharayil, N. Climate influences the content and chemical composition of foliar tannins in green and senesced tissues of Quercus rubra. Front. Plant Sci. 8, 423 (2017).
PubMed PubMed Central Article Google Scholar
43.
Higginbotham, S. J. et al. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE 8, e73192 (2013).
CAS PubMed PubMed Central Article Google Scholar
44.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Article Google Scholar
45.
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).
Article Google Scholar
46.
Prada, C. M. et al. Soils and rainfall drive landscape-scale changes in the diversity and functional composition of tree communities in premontane tropical forest. J. Veg. Sci. 28, 859–870 (2017).
Article Google Scholar
47.
Walker, K. Capturing ephemeral forest dynamics with hybrid time-series and composite mapping in the Republic of Panama. Int. J. Appl. Earth Obs. Geoinf. 87, 102029 (2020).
Article Google Scholar
48.
Leung, B., Hudgins, E. J., Potapova, A. & Ruiz-Jaen, M. C. A new baseline for countrywide α-diversity and species distributions: illustration using > 6,000 plant species in Panama. Ecol. Appl. 29, e01866 (2019).
PubMed Article Google Scholar
49.
Pyke, C. R., Condit, R., Aguilar, S. & Lao, S. Floristic composition across a climatic gradient in a neotropical lowland forest. J. Veg. Sci. 12, 553–566 (2001).
Article Google Scholar
50.
Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. S. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol. 84, 137–152 (1996).
Article Google Scholar
51.
Bowman, E. A. & Arnold, A. E. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient. Am. J. Bot. 105, 687–699 (2018).
PubMed Article PubMed Central Google Scholar
52.
U’Ren, J. M. et al. Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi. Mol. Ecol. Resour. 14, 1032–1048 (2014).
PubMed PubMed Central Google Scholar
53.
U’Ren, J. M. & Arnold, A. E. 96 well DNA extraction protocol for plant and lichen tissue stored in CTAB. protocols.io. https://doi.org/10.17504/protocols.io.fscbnaw (2017).
54.
Daru, B. H., Bowman, E. A., Pfister, D. H. & Arnold, A. E. A novel proof of concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20170395 (2018).
55.
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
PubMed PubMed Central Article Google Scholar
56.
Oksanen, J. et al. Vegan: community ecology package, version 2.5-2. https://CRAN.R-project.org/package=vegan (2018).
57.
Schoener, T. W. Food webs from the small to the large: the Robert H. MacArthur award lecture. Ecology 70, 1559–1589 (1989).
Article Google Scholar
58.
Apigo, A. & Oono, R. Dimensions of host specificity in foliar fungal endophytes. In Endophytes of Forest Trees: Biology and Applications (eds Pirttilä, A. M. & Frank, A. C.) 15–42 (Springer International Publishing, 2018).
59.
Oita, S. et al. Data from: climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. figshare https://doi.org/10.6084/m9.figshare.c.5084366.v1 (2020). More
