More stories

  • in

    Contrasting effects of male immigration and rainfall on rank-related patterns of miscarriage in female olive baboons

    1.
    Hrdy, S. B. Infanticide among animals: A review, classification, and examination of the implications for the reproductive strategies of females. Ethol. Sociobiol. 1, 13–40 (1979).
    Article  Google Scholar 
    2.
    Lukas, D. & Huchard, E. The evolution of infanticide by males in mammalian societies. Science 346, 841–844 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Berger, J. Induced abortion and social factors in wild horses. Nature 303, 59–61 (1983).
    ADS  CAS  Article  Google Scholar 

    4.
    Packer, C. & Pusey, A. E. Infanticide in carnivores. In Infanticide: Comparative and Evolutionary Perspectives (eds Hausfater, G. & Hrdy, S. B.) 31–42 (Aldine, New York, 1984).
    Google Scholar 

    5.
    Zipple, M. N. et al. Conditional fetal and infant killing by male baboons. Proc. R. Soc. B 284(1847), 20162561 (2017).
    Article  Google Scholar 

    6.
    Zipple, M. N., Roberts, E. K., Alberts, S. C. & Beehner, J. C. Male-mediated prenatal loss: Functions and mechanisms. Evol. Anthropol. Issues News Rev. 28(3), 114–125 (2019).
    Article  Google Scholar 

    7.
    Bruce, H. M. An exteroceptive block to pregnancy in the mouse. Nature 184, 105 (1959).
    ADS  CAS  Article  Google Scholar 

    8.
    Schwagmeyer, P. L. The Bruce effect: An evaluation of male/female advantages. Am. Nat. 114(6), 932–938 (1979).
    Article  Google Scholar 

    9.
    Labov, J. B. Pregnancy blocking in rodents: Adaptive advantages for females. Am. Nat. 118, 361–371 (1981).
    Article  Google Scholar 

    10.
    Roberts, E. K., Lu, A., Bergman, T. J. & Beehner, J. C. A Bruce effect in wild geladas. Science 335, 1222–1225 (2012).
    ADS  CAS  Article  Google Scholar 

    11.
    Busse, C. & Hamilton, W. J. Infant carrying by male chacma baboons. Science 212(4500), 1281–1283 (1981).
    ADS  CAS  Article  Google Scholar 

    12.
    Palombit, R. A., Seyfarth, R. M. & Cheney, D. L. The adaptive value of “friendships” to female baboons: Experimental and observational evidence. Anim. Behav. 54, 599–614 (1997).
    CAS  Article  Google Scholar 

    13.
    Palombit, R. A. Male infanticide in wild savanna baboons: Adaptive significance and intraspecific variation. In Sexual Selection and Reproductive Competition in Primates: New Perspectives and Directions (ed. Jones, C. B.) 367–412 (The American Society of Primatologists, Norman, 2003).
    Google Scholar 

    14.
    Weingrill, T. Infanticide and the value of male-female relationships in mountain chacma baboons. Behaviour 137, 337–359 (2000).
    Article  Google Scholar 

    15.
    Packer, C. Male dominance and reproductive activity in Papio anubis. Anim. Behav. 27, 37–45 (1979).
    Article  Google Scholar 

    16.
    Smuts, B. B. Sex and Friendship in Baboons (Aldine, New York, 1985).
    Google Scholar 

    17.
    Bercovitch, F. B. Coalitions, cooperation and reproductive tactics among adult male baboons. Anim. Behav. 36, 1198–1209 (1988).
    Article  Google Scholar 

    18.
    Packer, C. Male care and exploitation of infants in Papio anubis. Anim. Behav. 28, 512–520 (1980).
    Article  Google Scholar 

    19.
    Alberts, S. C., Sapolsky, R. M. & Altmann, J. Behavioral, endocrine, and immunological correlates of immigration by an aggressive male into a natural primate group. Horm. Behav. 26, 167–178 (1992).
    CAS  Article  Google Scholar 

    20.
    Packer, C., Collins, D., Sindimwo, A. & Goodall, J. Reproductive constraints on aggressive competition in female baboons. Nature 373, 60–63 (1995).
    ADS  CAS  Article  Google Scholar 

    21.
    Pusey, A., Williams, J. & Goodall, J. The influence of dominance rank on the reproductive success of female chimpanzees. Science 277, 828–831 (1997).
    CAS  Article  Google Scholar 

    22.
    Storey, A. E. & Snow, D. T. Postimplantation pregnancy disruptions in meadow voles: Relationship to variation in male sexual and aggressive behavior. Physiol. Behav. 47(1), 19–25 (1990).
    CAS  Article  Google Scholar 

    23.
    Beehner, J. C., Nguyen, N., Wango, E. O., Alberts, S. C. & Altmann, J. The endocrinology of pregnancy and fetal loss in wild baboons. Horm. Behav. 49, 688 (2006).
    CAS  Article  Google Scholar 

    24.
    Ransom, T. Beach Troop of the Gombe (Bucknell Press, Lewisburg, 1981).
    Google Scholar 

    25.
    Bailey, A., Eberly, L. E. & Packer, C. Does pregnancy coloration reduce female conspecific aggression in the presence of maternal kin?. Anim. Behav. 108, 199–206 (2015).
    Article  Google Scholar 

    26.
    Pratt, N. C. & Lisk, R. D. Effects of social stress during early pregnancy on litter size and sex ratio in the golden hamster (Mesocricetus auratus). J. Reprod. Fertil. 87, 763–769 (1989).
    CAS  Article  Google Scholar 

    27.
    Young, A. J. et al. Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proc. Natl. Acad. Sci. U.S.A. 103, 12005–12010 (2006).
    ADS  CAS  Article  Google Scholar 

    28.
    Arck, P., Hansen, P. J., Mulac Jericevic, B., Piccinni, M. & Szekeres-Bartho, J. Progesterone during pregnancy: endocrine–immune cross talk in mammalian species and the role of stress. Am. J. Reprod. Immunol. 58, 268–279 (2007).
    CAS  Article  Google Scholar 

    29.
    Beehner, J. C. & Lu, A. Reproductive suppression in female primates: A review. Evol. Anthropol. Issues News Rev. 22, 226–238 (2013).
    Article  Google Scholar 

    30.
    Sapolsky, R. M. Endocrine aspects of social instability in the olive baboon (Papio anubis). Am. J. Primatol. 5, 365–379 (1983).
    CAS  Article  Google Scholar 

    31.
    van Lawick-Goodall, J. The behavior of free-living chimpanzees in the Gombe stream reserve. Anim. Behav. Monogr. 1, 161–311 (1968).
    Article  Google Scholar 

    32.
    Altmann, S. A. The pregnancy sign in savannah baboons. J. Zoo Anim. Med. 4, 8–12 (1973).
    Article  Google Scholar 

    33.
    Beehner, J. C., Onderdonk, D. A., Alberts, S. C. & Altmann, J. The ecology of conception and pregnancy failure in wild baboons. Behav. Ecol. 17(5), 741–750 (2006).
    Article  Google Scholar 

    34.
    Higham, J. The reproductive ecology of female olive baboons (Papio hamadryas anubis) at Gashaka-Gumti National Park, Nigeria. PhD Thesis. Roehampton University: London (2006).

    35.
    Tinsley Johnson, E., Snyder-Mackler, N., Lu, A., Bergman, T. J. & Beehner, J. C. Social and ecological drivers of reproductive seasonality in geladas. Behav. Ecol. 29(3), 574–588 (2018).
    Article  Google Scholar  More

  • in

    Reply to: Concerns about phytoplankton bloom trends in global lakes

    1.
    Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).
    ADS  CAS  Article  Google Scholar 
    2.
    Feng, L. et al. Concerns about phytoplankton bloom trends in global lakes. Nature https://doi.org/10.1038/s41586-021-03254-3 (2021).

    3.
    Ho, J. C., Stumpf, R. P., Bridgeman, T. B. & Michalak, A. M. Using Landsat to extend the historical record of lacustrine phytoplankton blooms: a Lake Erie case study. Remote Sens. Environ. 191, 273–285 (2017).
    ADS  Article  Google Scholar 

    4.
    Bridgeman, T. B., Chaffin, J. D. & Filbrun, J. E. A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011. J. Great Lakes Res. 39, 83–89 (2013).
    Article  Google Scholar 

    5.
    Wynne, T. T. & Stumpf, R. P. Spatial and temporal patterns in the seasonal distribution of toxic cyanobacteria in Western Lake Erie from 2002–2014. Toxins 7, 1649–1663 (2015).
    CAS  Article  Google Scholar 

    6.
    Mishra, S. et al. Measurement of cyanobacterial bloom magnitude using satellite remote sensing. Sci. Rep. 9, 18310 (2019).
    ADS  CAS  Article  Google Scholar 

    7.
    Ho, J. C. & Michalak, A. M. Challenges in tracking harmful algal blooms: a synthesis of evidence from Lake Erie. J. Great Lakes Res. 41, 317–325 (2015).
    Article  Google Scholar 

    8.
    Bertani, I. et al. Tracking cyanobacteria blooms: do different monitoring approaches tell the same story? Sci. Total Environ. 575, 294–308 (2017).
    ADS  CAS  Article  Google Scholar 

    9.
    Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

    10.
    Havens, K. et al. Extreme weather events and climate variability provide a lens to how shallow lakes may respond to climate change. Water 8, 229 (2016).
    ADS  Article  Google Scholar 

    11.
    King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A. & Hubanks, P. A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 51, 3826–3852 (2013).
    ADS  Article  Google Scholar 

    12.
    Ackerman, S. A. et al. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 103, 32141–32157 (1998).
    ADS  Article  Google Scholar 

    13.
    Hu, C. et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. 115, C04002 (2010).
    ADS  Google Scholar 

    14.
    Sharma, S. et al. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci. Data 2, 150008 (2015).
    Article  Google Scholar 

    15.
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Article  Google Scholar  More

  • in

    An integrated life cycle and water footprint assessment of nonfood crops based bioenergy production

    1.
    Li, B. et al. The contribution of China’s emissions to global climate forcing. Nature 531, 357–361 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Yang, Q. et al. Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China. J. Clean Prod. 205, 661–671 (2018).
    Article  Google Scholar 

    3.
    Amiri, S., Henning, D. & Karlsson, B. G. Simulation and introduction of a CHP plant in a Swedish biogas system. Renew. Energ. 49, 242–249 (2013).
    Article  Google Scholar 

    4.
    NDRC. National Development and Reform Committee of China, 2016. The “13th Five-year Plan” of Biomass Energy, Beijing (2016) [In Chinese].

    5.
    Serra, P., Giuntoli, J., Agostini, A., Colauzzi, M. & Amaducci, S. Coupling sorghum biomass and wheat straw to minimise the environmental impact of bioenergy production. J. Clean. Prod. 154, 242–254 (2017).
    CAS  Article  Google Scholar 

    6.
    Benoist, A., Dron, D. & Zoughaib, A. Origins of the debate on the life-cycle greenhouse gas emissions and energy consumption of first-generation biofuels: A sensitivity analysis approach. Biomass. Bioenerg. 40, 133–142 (2012).
    CAS  Article  Google Scholar 

    7.
    Klimiuk, E., Pokoj, T., Budzynski, W. & Dubis, B. Theoretical and observed biogas production from plant biomass of different fibre contents. Biosour. Technol. 101, 9527–9535 (2010).
    CAS  Article  Google Scholar 

    8.
    Mela, G. & Canali, G. How distorting policies can affect energy efficiency and sustainability: the case of biogas production in the Po Valley. AgBio Forum 16, 194–206 (2014) ([In Chinese]).
    Google Scholar 

    9.
    International Energy Agency. World energy outlook 2011 (International Energy Agency, Paris, 2011).
    Google Scholar 

    10.
    Gerbens-Leenes, P. W., Hoekstra, A. Y. & van der Meer, T. The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol. Econ. 68, 1052–1060 (2009).
    Article  Google Scholar 

    11.
    Lijó, L. et al. Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renew. Energ. 68, 625–635 (2014).
    Article  CAS  Google Scholar 

    12.
    Zheng, Y., Zhao, J., Xu, F. & Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energ Combust 42, 35–53 (2014).
    Article  Google Scholar 

    13.
    Cuellar, M. C. & Straathof, A. J. Biochemical conversion: biofuels by industrial fermentation. Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes. (Eds Wiley, J. et al.) 403 (New Jersey, USA. Press, 2015).

    14.
    Schittenhelm, S. Chemical composition and methane yield of maize hybrids with contrasting maturity. Eur. J. Agron. 29, 72–79 (2008).
    CAS  Article  Google Scholar 

    15.
    Ertem, F. C., Neubauer, P. & Junne, S. Environmental life cycle assessment of biogas production from marine macroalgal feedstock for the substitution of energy crops. J. Clean. Prod. 140, 977–985 (2017).
    CAS  Article  Google Scholar 

    16.
    Rathor, D., Nizami, A.-S., Singh, A. & Pant, D. Key issues in estimating energy and greenhouse gas savings of biofuels: Challenges and perspectives. Biofuel Res. J. 3, 380–393 (2016).
    Article  Google Scholar 

    17.
    Lemus, R. & Lal, R. Bioenergy Crops and Carbon Sequestration. Crit Rev Plant Sci 24, 1–21 (2005).
    CAS  Article  Google Scholar 

    18.
    Lewandowski, I., Scurlock, J. M. O., Lindvall, E. & Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg. 25, 335–361 (2003).
    Article  Google Scholar 

    19.
    Amon, T. et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Biosour Technol 98, 3204–3212 (2007).
    CAS  Article  Google Scholar 

    20.
    Igliński, B., Buczkowski, R. & Cichosz, M. Biogas production in Poland—Current state, potential and perspectives. Renew. Sust. Energ. Rev. 50, 686–695 (2015).
    Article  CAS  Google Scholar 

    21.
    Shete, M., Rutten, M., Schoneveld, G. C. & Zewude, E. Land-use changes by large-scale plantations and their effects on soil organic carbon, micronutrients and bulk density: empirical evidence from Ethiopia. Agr. Hum. Values 33, 689–704 (2015).
    Article  Google Scholar 

    22.
    He, P. & Li, D. Develop bio-energy on marginal land from the perspective of food security. Rural Econ. 51–53 (2011).

    23.
    Blengini, G. A., Brizio, E., Cibrario, M. & Genon, G. LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability. Resour. Conserv. Recycle 57, 36–47 (2011).
    Article  Google Scholar 

    24.
    Zhao, C., Chen, B. & Yang, J. Embodied water consumption of biogas–digestate utilization. Energy Proc. 61, 615–618 (2014).
    Article  Google Scholar 

    25.
    Pacetti, T., Lombardi, L. & Federici, G. Water–energy Nexus: a case of biogas production from energy crops evaluated by Water Footprint and Life Cycle Assessment (LCA) methods. J. Clean. Prod. 101, 278–291 (2015).
    Article  Google Scholar 

    26.
    Chapagain, A. K. & Hoekstra, A. Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 70, 749–758 (2011).
    Article  Google Scholar 

    27.
    Lovarelli, D., Bacenetti, J. & Fiala, M. Water Footprint of crop productions: A review. Sci. Total Environ. 548–549, 236–251 (2016).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    28.
    Zhang, L., Dawes, W. R. & Walker, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37, 701–708 (2001).
    ADS  Article  Google Scholar 

    29.
    Yasar, A., Rasheed, R., Tabinda, A. B., Tahir, A. & Sarwar, F. Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry. Renew. Sust. Energ. Rev. 67, 364–371 (2017).
    CAS  Article  Google Scholar 

    30.
    Xu, C., Shi, W., Hong, J., Zhang, F. & Chen, W. Life cycle assessment of food waste-based biogas generation. Renew. Sust. Energ. Rev. 49, 169–177 (2015).
    CAS  Article  Google Scholar 

    31.
    Van Stappen, F. et al. Consequential environmental life cycle assessment of a farm-scale biogas plant. J. Environ. Manag. 175, 20–32 (2016).
    Article  CAS  Google Scholar 

    32.
    Collet, P. et al. Techno-economic and life cycle assessment of methane production via biogas upgrading and power to gas technology. Appl. Energ. 192, 282–295 (2017).
    CAS  Article  Google Scholar 

    33.
    Chen, B. & Chen, S. Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system. Energ Policy 62, 707–716 (2013).
    CAS  Article  Google Scholar 

    34.
    Torquati, B., Venanzi, S., Ciani, A., Diotallevi, F. & Tamburi, V. Environmental sustainability and economic benefits of dairy farm biogas energy production: A case study in Umbria. Sustainability 6, 6696–6713 (2014).
    Article  Google Scholar 

    35.
    Boulay, A.-M., Hoekstra, A. Y. & Vionnet, S. Complementarities of water-focused life cycle assessment and water footprint assessment. Environ. Sci. Technol. 47, 11926–11927 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Jefferies, D. et al. Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 33, 155–166 (2012).

    37.
    Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. & Ulgiati, S. Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies. Environments 5, 1–19 (2018).
    Article  Google Scholar 

    38.
    Ridoutt, B. G., Page, G., Opie, K., Huang, J. & Bellotti, W. Carbon, water and land use footprints of beef cattle production systems in southern Australia. J. Clean. Prod. 73, 24–30 (2014).
    Article  Google Scholar 

    39.
    Page, G., Ridoutt, B. & Bellotti, B. Carbon and water footprint tradeoffs in fresh tomato production. J. Clean. Prod. 32, 219–226 (2012).
    Article  Google Scholar 

    40.
    Hijazi, O., Munro, S., Zerhusen, B. & Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew Sust Energ Rev 54, 1291–1300 (2016).
    CAS  Article  Google Scholar 

    41.
    Rooney, W. L., Blumenthal, J., Bean, B. & Mullet, J. E. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Biofuel Bioprod. Bior 1, 147–157 (2007).
    CAS  Article  Google Scholar 

    42.
    Fracasso, A., Trindade, L. & Amaducci, S. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. J. Plant Physiol. 190, 1–14 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Duan, Q. Water footprint and Carbon balance in the cultivation, fermentation and energy utilization process of industrial biogas crops, Southwest University, (2017) (In Chinese).

    44.
    Fu, C., Dong, T. & Sun, Y. Selection of High Yield Energy Crops for marginal land and its biogas production potential. China Biogas 35, 72–76 (2017) ((In Chinese)).
    Google Scholar 

    45.
    Ming, Z., Shaojie, O., Hui, S., Yujian, G. & Qiqi, Q. Overall review of distributed energy development in China: Status quo, barriers and solutions. Renew. Sust. Energ. Rev. 50, 1226–1238 (2015).
    Article  Google Scholar 

    46.
    Lazarova, V., Choo, K.-H. & Cornel, P. Water-energy interactions in water reuse. (IWA, London, press, 2012).

    47.
    Holm-Nielsen, J. B., Al Seadi, T. & Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Biosour. Technol. 100, 5478–5484 (2009).

    48.
    Kristensen, P. G., Jensen, J. K., Nielsen, M. & Illerup, J. B. Emission factors for gas fired CHP units< 25 MW. (IGRC, 2004). 49. Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC guidelines for national greenhouse gas inventories (Institute for Global Environmental Strategies Hayama, Japan, 2006). Google Scholar  50. Mekonnen, M. & Hoekstra, A. Y. National water footprint accounts: the green, blue and grey water footprint of production and consumption. (UNESCO-IHE Institute for Water Education, Netherlands, 2017). 51. Gerbens-Leenes, W., Hoekstra, A. Y. & van der Meer, T. H. The water footprint of bioenergy. Proc. Natl. Acad. Sci. 106, 10219–10223 (2009). ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  52. Gai, L., Xie, G., Li, S., Zhang, C. & Chen, D. A study on production water footprint of winter wheat and maize in the North China Plain. Resour. Sci. 32, 2066–2071 (2010) ([In Chinese]). Google Scholar  53. Chapagain, A. K., Hoekstra, A. Y., Savenije, H. H. G. & Gautam, R. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol. Econ. 60, 186–203 (2006). Article  Google Scholar  54. Cao. et al. Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China. Sci. Total Environ. 610, 84–93 (2018). 55. Tian, J. 2013 Jinan effective utilization coefficient of irrigation water analysis and evaluation of estimates, Shandong University, (2014). 56. Hoekstra, A. Y., Chapagain, A. K., Mekonnen, M. M. & Aldaya, M. M. The water footprint assessment manual: Setting the global standard. (Routledge, 2011). 57. Wang, Z., Wu, Z. & Tang, S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Res. 43, 2504–2512 (2009). CAS  PubMed  Article  PubMed Central  Google Scholar  58. Li, X., Yang, D. & Xia, F. Analysis of the water footprint of suburban planting in arid lands and determination of suitable farmland scale: a case study of Urumqi. Acta Ecol. Sin. 35, 2860–2869 (2015). Google Scholar  59. Su, M.-H., Huang, C.-H., Li, W.-Y., Tso, C.-T. & Lur, H.-S. Water footprint analysis of bioethanol energy crops in Taiwan. J Clean Prod 88, 132–138 (2015). Article  Google Scholar  60. 60Gu, J. Study of water footprint of coal-based fuels with life cycle assessment, Shanghai Jiao Tong University, (2015) [In Chinses]. 61. European, C. State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in the EU-Commission staff working document (2014). 62. Yu, C. Study on regional difference of profuction water footprint of main crop based on cropwat in Shandong Province Jinan: Shandong Normal University (2014) [In Chinese]. 63. Lijó, L., González-García, S., Bacenetti, J. & Moreira, M. T. The environmental effect of substituting energy crops for food waste as feedstock for biogas production. Energy 137, 1130–1143 (2017). Article  Google Scholar  64. Wang, Q. L., Li, W., Gao, X. & Li, S. J. Life cycle assessment on biogas production from straw and its sensitivity analysis. Biosour. Technol. 201, 208–214 (2016). CAS  Article  Google Scholar  65. Flesch, T. K., Desjardins, R. L. & Worth, D. Fugitive methane emissions from an agricultural biodigester. Biomass Bioenerg. 35, 3927–3935 (2011). CAS  Article  Google Scholar  66. Li, J. Scenario analysis of tourism’s water footprint for China’s Beijing–Tianjin–Hebei region in 2020: implications for water policy. J. Sustain. Tour 26(1), 127–145 (2017). Article  Google Scholar  More

  • in

    Transition from unclassified Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environment

    1.
    Cady, S. L., Farmer, J. D., Grotzinger, J. P., Schopf, J. W. & Steele, A. Morphological biosignatures and the search for life on mars. Astrobiology 3, 351–368 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Squyres, S. W. et al. Detection of silica-rich deposits on Mars. Source Sci. New Ser. 320, 1063–1067 (2008).
    CAS  Google Scholar 

    3.
    Rice, M. S. et al. Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping. Icarus 205, 375–395 (2010).
    ADS  CAS  Article  Google Scholar 

    4.
    Ruff, S. W. et al. Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. J. Geophys. Res. E Planets 116, E00F23 (2011).
    Article  CAS  Google Scholar 

    5.
    Ruff, S. W. & Farmer, J. D. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat. Commun. 7, 13554 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Jones, B. & Renault, R. W. Hot spring and geyser sinters: the integrated product of precipitation, replacement, and deposition. Can. J. Earth Sci. 40, 1549–1569 (2003).
    ADS  CAS  Article  Google Scholar 

    7.
    Konhauser, K. O., Jones, B., Phoenix, V. R., Ferris, G. & Renaut, R. W. The microbial role in Hhot spring silicification. Ambio 33, 552–558 (2004).
    PubMed  Article  Google Scholar 

    8.
    Pepe-Ranney, C., Berelson, W. M., Corsetti, F. A., Treants, M. & Spear, J. R. Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park. Environ. Microbiol. 14, 1182–1197 (2012).
    CAS  PubMed  Article  Google Scholar 

    9.
    Barton, H. A. et al. Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1c. Front. Microbiol. 5, 615 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Sauro, F. et al. Microbial diversity and biosignatures of amorphous silica deposits in orthoquartzite caves. Sci. Rep. 8, 1–14 (2018).
    ADS  CAS  Article  Google Scholar 

    11.
    Wong, F. K. Y. et al. Hypolithic microbial community of quartz pavement in the high-altitude tundra of Central Tibet. Microb. Ecol. 60, 730–790 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Lacap, D. C., Warren-Rhodes, K. A., McKay, C. P. & Pointing, S. B. Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15, 31–38 (2011).
    PubMed  Article  Google Scholar 

    13.
    Lynch, R. C. et al. The potential for microbial life in the highest-elevation ( >6000 m.a.s.l.) mineral soils of the Atacama region. J. Geophys. Res. 117, G02028 (2012).
    Google Scholar 

    14.
    Tebo, B. M. et al. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front. Microbiol. 6, 179 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Sauro, F. et al. Source and genesis of sulphate and phosphate-sulphate minerals in a quartz-sandstone cave environment. Sedimentology 61, 1433–1451 (2014).
    CAS  Article  Google Scholar 

    16.
    Mecchia, M., Sauro, F., Piccini, L., Columbu, A. & De Waele, J. A hybrid model to evaluate subsurface chemical weathering and fracture karstification in quartz sandstone. J. Hydrol. 572, 745–760 (2019).
    ADS  CAS  Article  Google Scholar 

    17.
    Mecchia, M. et al. Geochemistry of surface and subsurface waters in quartz-sandstones: significance for the geomorphic evolution of tepui table mountains (Gran Sabana, Venezuela). J. Hydrol. 511, 117–138 (2014).
    ADS  CAS  Article  Google Scholar 

    18.
    Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    King, G. M., Weber, C. F., Nanba, K., Sato, Y. & Ohta, H. Atmospheric CO and hydrogen uptake and CO oxidizer phylogeny for miyake-jima, Japan volcanic deposits. Microbes Environ. 23, 299–305 (2008).
    PubMed  Article  Google Scholar 

    20.
    Cordero, P. R. F. et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 13, 2868–2881 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Aubrecht, R., Brewer-Carías, C., Šmída, B., Audy, M. & Kováčik, Ľ. Anatomy of biologically mediated opal speleothems in the World’s largest sandstone cave: Cueva Charles Brewer, Chimantá Plateau, Venezuela. Sediment. Geol. 203, 181–195 (2008).
    ADS  Article  Google Scholar 

    22.
    Vidal Romanì, J. R., Sànchez, J. S., Rodrìguez, M. V. & Mosquera, D. F. Speleothem development and biological activity in granite cavities. Géomorphol. Relief Process. Environ. 16, 337–346 (2010).
    Article  Google Scholar 

    23.
    Miller, A. Z. et al. Siliceous speleothems and associated microbe-mineral interactions from Ana Heva lava tube in Easter Island (Chile). Geomicrobiol. J. 31, 236–245 (2014).
    CAS  Article  Google Scholar 

    24.
    Hill, C. A. & Forti, P. Cave Minerals of the World 1–463 (National Speleological Society, Alabama, 1997).
    Google Scholar 

    25.
    Willis, C., Desai, D. & LaRoche, J. Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol. Lett. 366, fnz152 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. U.S.A. 110, 6548–6553 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wang, F. et al. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express 8, 182 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Wu, X. et al. Impact of mitigation strategies on acid sulfate soil chemistry and microbial community. Sci. Total Environ. 526, 215–221 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Min, X., Wang, Y., Chai, L., Yang, Z. & Liao, Q. High-resolution analyses reveal structural diversity patterns of microbial communities in chromite ore processing residue (COPR) contaminated soils. Chemosphere 183, 266–276 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    30.
    Weber, C. F. & King, G. M. Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a succession gradient on a Hawaiian volcanic deposit. Environ. Microbiol. 12, 1855–1867 (2010).
    CAS  PubMed  Article  Google Scholar 

    31.
    Saitta, E. T. et al. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. Elife 8, e46205 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Aubrecht, R. Speleothems. In Encyclopedia of Earth Sciences Series, 836–840 (Springer Netherlands, 2011)

    33.
    Reitner, J. & Volker, T. Encyclopedia of Geobiology (Springer, Cham, 2011).
    Google Scholar 

    34.
    Miller, C. S. et al. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS ONE 8, e56018 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Miller, C. S., Baker, B. J., Thomas, B. C., Singer, S. W. & Banfield, J. F. EMIRGE: Reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 12, R44 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Aubrecht, R. Venezuelan Tepuis: Their Caves and Biota (Acta Geologica Slovaca, Comenius University, Bratislava, 2012).
    Google Scholar 

    37.
    Piccini, L. & Mecchia, M. Solution weathering rate and origin of karst landforms and caves in the quartzite of Auyan-tepui (Gran Sabana, Venezuela). Geomorphology 106, 15–25 (2009).
    ADS  Article  Google Scholar 

    38.
    Sauro, F. et al. Genesis of giant sinkholes and caves in the quartz sandstone of Sarisariñama tepui, Venezuela. Geomorphology 342, 223–238 (2019).
    ADS  Article  Google Scholar 

    39.
    Wray, R. A. & Sauro, F. An updated global review of solutional weathering processes and forms in quartz sandstones and quartzites. Earth-Sci. Rev. 171, 520–557 (2017).
    ADS  CAS  Article  Google Scholar 

    40.
    Hug, L. et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 22 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Islam, Z. F. et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 13, 1801–1813 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Oliveira, C. et al. 16S rRNA gene-based metagenomic analysis of Ozark cave bacteria. Diversity 9, 31 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Yabe, S., Aiba, Y., Sakai, Y., Hazaka, M. & Yokota, A. A life cycle of branched aerial mycelium- and multiple budding spore-forming bacterium Thermosporothrix hazakensis belonging to the phylum Chloroflexi. J. Gen. Appl. Microbiol. 56, 137–141 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Yabe, S., Sakai, Y., Abe, K. & Yokota, A. Diversity of Ktedonobacteria with Actinomycetes-like morphology in terrestrial environments. Microbes Environ. 32, 61–70 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Yabe, S. et al. Formation of Sporangiospores in Dictyobacter aurantiacus (Class Ktedonobacteria in Phylum Chloroflexi). J. Gen. Appl. Microbiol. 65, 316–319 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Zheng, Y. et al. Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Front. Microbiol. 10, 1–21 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Handley, K. M. et al. Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points. Environ. Microbiol. 17, 622–636 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Sáenz de Miera, L. E., Arroyo, P., de Luis Calabuig, E., Falagán, J. & Ansola, G. High-throughput sequencing of 16S RNA genes of soil bacterial communities from a naturally occurring CO2 gas vent. Int. J. Greenh. Gas Control 29, 176–184 (2014).
    Article  CAS  Google Scholar 

    49.
    Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).
    CAS  PubMed  Article  Google Scholar 

    50.
    Cavaletti, L. et al. New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Appl. Environ. Microbiol. 72, 4360–4369 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Yan, B., Guo, X., Liu, M. & Huang, Y. Ktedonosporobacter rubrisoli gen. nov., sp. Nov., a novel representative of the class Ktedonobacteria, isolated from red soil, and proposal of Ktedonosporobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 70, 1015–1025 (2019).
    Article  CAS  Google Scholar 

    52.
    Yabe, S., Aiba, Y., Sakai, Y., Hazaka, M. & Yokota, A. Thermosporothrix hazakensis gen. nov., sp. Nov., isolated from compost, description of Thermosporotrichaceae fam. Nov. within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria. Int. J. Syst. Evol. Microbiol. 60, 1794–1801 (2010).
    CAS  PubMed  Article  Google Scholar 

    53.
    Yabe, S., Aiba, Y., Sakai, Y., Hazaka, M. & Yokota, A. Thermogemmatispora onikobensis gen. nov., sp. Nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria. Int. J. Syst. Evol. Microbiol. 61, 903–910 (2011).
    CAS  PubMed  Article  Google Scholar 

    54.
    Jones, A. A. & Bennett, P. C. Mineral microniches control the diversity of subsurface microbial populations. Geomicrobiol. J. 31, 246–261 (2014).
    CAS  Article  Google Scholar 

    55.
    Urzì, C. & Realini, M. Colour changes of Noto’s calcareous sandstone as related to its colonisation by microorganisms. Int. Biodeter. Biodegr. 42, 45–54 (1998).
    Article  Google Scholar 

    56.
    Riquelme, C. et al. Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions. Front. Microbiol. 6, 1342 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Cañaveras, J. C. et al. On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 93, 27–32 (2006).
    ADS  PubMed  Article  CAS  Google Scholar 

    58.
    Cockell, C. S., Kelly, L. C. & Marteinsson, V. Actinobacteria–An ancient phylum active in volcanic rock weathering. Geomicrobiol. J. 30, 706–720 (2013).
    CAS  Article  Google Scholar 

    59.
    Lynch, R. C., Darcy, J. L., Kane, N. C., Nemergut, D. R. & Schmidt, S. K. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Front. Microbiol. 5, 698 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Sellstedt, A. & Richau, K. H. Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol. Lett. 342, 179–186 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Gonzalez-Pimentel, J. L. et al. Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria. Sci. Rep. 8, 1944 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Wu, Y. et al. Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China. Front. Microbiol. 6, 244 (2015).
    PubMed  PubMed Central  Google Scholar 

    63.
    Lavoie, K. H. et al. Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA. PLoS ONE 12, e0169339 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Barton, H. A. et al. The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. Int. J. Speleol. 36, 93–104 (2007).
    Article  Google Scholar 

    65.
    Li, Q., Zhang, B., Yang, X. & Ge, Q. Deterioration-associated microbiome of stone monuments: structure, variation, and assembly. Appl. Environ. Microbiol. 84, e02680 (2018).
    PubMed  PubMed Central  Google Scholar 

    66.
    Mohagheghi, A., Grohmann, K. & Himmel, M. Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int. J. Syst. Bacteriol. 36, 435–443 (1986).
    CAS  Article  Google Scholar 

    67.
    Borsodi, A. K. et al. Biofilm bacterial communities inhabiting the cave walls of the Buda thermal karst system, Hungary. Geomicrobiol. J. 29, 611–627 (2012).
    Article  Google Scholar 

    68.
    Huang, T.-Y. et al. Role of microbial communities in the weathering and stalactite formation in karst topography. Biogeosci. Discuss. https://doi.org/10.5194/bg-2019-12 (2019).
    Article  Google Scholar 

    69.
    Mohanty, A. et al. Iron mineralizing bacterioferritin A from Mycobacterium tuberculosis exhibits unique catalase-Dps-like dual activities. Inorg. Chem. 58, 4741–4752 (2019).
    CAS  PubMed  Article  Google Scholar 

    70.
    Kennedy, K., Hall, M. W., Lynch, M. D. J., Moreno-Hagelsieb, G. & Neufeld, J. D. Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol. 80, 5717–5722 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Oppenheimer-Shaanan, Y. et al. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms. NPJ Biofilms Microbiomes 2, 1–10 (2016).
    Article  Google Scholar 

    72.
    Nishiyama, M., Sugita, R., Otsuka, S. & Senoo, K. Community structure of bacteria on different types of mineral particles in a sandy soil. Soil Sci. Plant Nutr. 58, 562–567 (2012).
    CAS  Article  Google Scholar 

    73.
    Vasanthi, N., Saleena, L. M. & Anthoni Raj, S. Silica solubilization potential of certain bacterial species in the presence of different Ssilicate minerals. Silicon 10, 267–275 (2018).
    CAS  Article  Google Scholar 

    74.
    Mohammadi, S. S. et al. The acidophilic methanotroph Methylacidimicrobium tartarophylax 4AC grows as autotroph on H2 under microoxic conditions. Front. Microbiol. 10, 2352 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    75.
    Lorite, M. J., Tachil, J., Sanjuán, J., Meyer, O. & Bedmar, E. J. Carbon monoxide dehydrogenase activity in Bradyrhizobium japonicum. Appl. Environ. Microbiol. 66, 1871–1876 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Tran, P. et al. Microbial life under ice: metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered lakes. Environ. Microbiol. 20, 2568–2584 (2018).
    CAS  PubMed  Article  Google Scholar 

    77.
    Funari, V., Braga, R., Bokhari, S. N. H., Dinelli, E. & Meisel, T. Solid residues from Italian municipal solid waste incinerators: a source for ‘“critical”’ raw materials. Waste Manag. 45, 206–216 (2015).
    CAS  PubMed  Article  Google Scholar 

    78.
    Cappelletti, M., Ghezzi, D., Zannoni, D., Capaccioni, B. & Fedi, S. Diversity of methane-oxidizing bacteria in soils from “Hot Lands of Medolla” (Italy) featured by anomalous high-temperatures and biogenic CO2 emission. Microbes Environ. 31, 369–377 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    79.
    D’Angeli, I. M. et al. Geomicrobiology of a seawater-influenced active sulfuric acid cave. PLoS ONE 14, e0220706 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    80.
    Koskinen, K. et al. First insights into the diverse human archaeome: specific detection of Archaea in the gastrointestinal tract, lung, and nose and on skin. mBio 8, e00824-e917 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Klymiuk, I., Bambach, I., Patra, V., Trajanoski, S. & Wolf, P. 16S based microbiome analysis from healthy subjects’ skin swabs stored for different storage periods reveal phylum to genus level changes. Front. Microbiol. 7, 2012 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(Database issue), D590–D596 (2013).
    CAS  Google Scholar 

    83.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Pausan, M. R. et al. Exploring the archaeome: detection of archaeal signatures in the human body. Front. Microbiol. 10, 2796 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    King, G. M. Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl. Environ. Microbiol. 69, 7257–7265 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Beimgraben, C., Gutekunst, K., Opitz, F. & Appel, J. HypD as a marker for [NiFe]-hydrogenases in microbial communities of surface waters. Appl. Environ. Microbiol. 80, 3776–3782 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    87.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Prodan, A. et al. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS ONE 15, e0227434 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Recovery of tropical marine benthos after a trawl ban demonstrates linkage between abiotic and biotic changes

    1.
    FAO. The state of world fisheries and aquaculture 2016: Contributing to food security and nutrition for all (FAO, 2016).
    2.
    De Groot, S. J. The impact of bottom trawling on benthic fauna of the North Sea. Ocean Manag. 9, 177–190 (1984).
    Article  Google Scholar 

    3.
    Dayton, P. K., Thrush, S. F., Agardy, M. T. & Hofman, R. J. Environmental effects of marine fishing. Aquat. Conserv. 5, 205–232 (1995).
    Article  Google Scholar 

    4.
    Kumar, A. B. & Deepthi, G. R. Trawling and by-catch: implications on marine ecosystem. Curr. Sci. 90, 922–931 (2006).
    Google Scholar 

    5.
    Foden, J., Rogers, S. I. & Jones, A. P. Human pressures on UK seabed habitats: a cumulative impact assessment. Mar. Ecol. Prog. Ser. 428, 33–47 (2011).
    Article  Google Scholar 

    6.
    Jones, J. B. Environmental impact of trawling on the seabed: a review. N. Z. J. Mar. Freshwat. Res. 26, 59–67 (1992).
    Article  Google Scholar 

    7.
    Thrush, S. F. & Dayton, P. K. Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Annu. Rev. Ecol. Evol. Syst. 33, 449–473 (2002).
    Article  Google Scholar 

    8.
    Hiddink, J. G. et al. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl. Acad. Sci. USA 114, 8301–8306 (2017).
    CAS  Article  Google Scholar 

    9.
    Churchill, J. H. In Effects of Fishing Gear on the Sea Floor of New England (ed. Dorsey, E. M.) (Conservation Law Foundation, 1998).

    10.
    Pusceddu, A. et al. Impact of natural (storm) and anthropogenic (trawling) sediment resuspension on particulate organic matter in coastal environments. Cont. Shelf Res. 25, 2506–2520 (2005).
    Article  Google Scholar 

    11.
    Palanques, A., Guillén, J. & Puig, P. Impact of bottom trawling on water turbidity and muddy sediment of an unfished continental shelf. Limnol. Oceanogr. 46, 1100–1110 (2001).
    Article  Google Scholar 

    12.
    Riemann, B. & Hoffmann, E. Ecological consequences of dredging and bottom trawling in the Limfjord, Denmark. Mar. Ecol. Prog. Ser. Oldendorf 69, 171–178 (1991).
    CAS  Article  Google Scholar 

    13.
    Kaiser, M. J., Ramsay, K., Richardson, C. A., Spence, F. E. & Brand, A. R. Chronic fishing disturbance has changed shelf sea benthic community structure. J. Anim. Ecol. 69, 494–503 (2000).
    Article  Google Scholar 

    14.
    Jennings, S., Dinmore, T. A., Duplisea, D. E., Warr, K. J. & Lancaster, J. E. Trawling disturbance can modify benthic production processes. J. Anim. Ecol. 70, 459–475 (2001).
    Article  Google Scholar 

    15.
    Pipitone, C., Badalamenti, F., D’Anna, G. & Patti, B. Fish biomass increase after a four-year trawl ban in the Gulf of Castellammare (NW Sicily, Mediterranean Sea). Fish. Res. 48, 23–30 (2000).
    Article  Google Scholar 

    16.
    Pranovi, F., Monti, M. A., Caccin, A., Brigolin, D. & Zucchetta, M. Permanent trawl fishery closures in the Mediterranean Sea: an effective management strategy. Mar. Policy 60, 272–279 (2015).
    Article  Google Scholar 

    17.
    Ardron, J., Gjerde, K., Pullen, S. & Tilot, V. Marine spatial planning in the high seas. Mar. Policy 32, 832–839 (2008).
    Article  Google Scholar 

    18.
    Burridge, C. Y., Pitcher, C. R., Hill, B. J., Wassenberg, T. J. & Poiner, I. R. A comparison of demersal communities in an area closed to trawling with those in adjacent areas open to trawling: a study in the Great Barrier Reef Marine Park, Australia. Fish. Res. 79, 64–74 (2006).
    Article  Google Scholar 

    19.
    Buchary, E. A., Cheung, W. L., Sumaila, U. R. & Pitcher, T. J. Back to the future: a paradigm shift for restoring Hong Kong’s marine ecosystem. Am. Fish. Soc. Symp. 38, 727–746 (2003).
    Google Scholar 

    20.
    Cheung, W. W. L. Reconstructed catches in waters administrated by the Hong Kong Special Administrative Region (Fisheries Centre Working Paper #2015-93, University of British Columbia, 2015).

    21.
    ERM. Fisheries Resource and Fishing Operation in Hong Kong Waters, Final Report. (Agriculture, Fisheries and Conservation Department, 1998).

    22.
    Morton, B. Protecting Hong Kong’s marine biodiversity: present proposals, future challenges. Environ. Conserv. 23, 55–65 (1996).
    Article  Google Scholar 

    23.
    Leung, K. F. & Morton, B. In Perspectives on Marine Environment Change in Hong Kong and Southern China, 1977–2001 (ed. Morton, B.) (Hong Kong University Press, 2003).

    24.
    Leung, A. W. Y. In Perspectives on Marine Environment Change in Hong Kong and Southern China, 1977–2001 (ed. Morton, B.) (Hong Kong University Press, 2003).

    25.
    Agriculture, Fisheries and Conservation Department. Agriculture, Fisheries and Conservation Department Port Survey. https://www.afcd.gov.hk/english/fisheries/fish_cap/fish_cap_latest/fish_cap_latest.html (2006).

    26.
    Wilson, K. D., Leung, A. W. & Kennish, R. Restoration of Hong Kong fisheries through deployment of artificial reefs in marine protected areas. ICES J. Mar. Sci. 59, 157–163 (2002).
    Article  Google Scholar 

    27.
    Legislative Council of Hong Kong. Legislation Council Brief: A ban on trawling activities in Hong Kong waters (File Ref.: FH CR 1/2576/07). http://www.fhb.gov.hk/download/press_and_publications/otherinfo/101013_f_hkwaters/e_hk_waters.pdf (Food and Health Bureau, 2010).

    28.
    Wang, Z., Leung, K. M. Y., Li, X., Zhang, T. & Qiu, J. W. Macrobenthic communities in Hong Kong waters: comparison between 2001 and 2012 and potential link to pollution control. Mar. Pollut. Bull. 124, 694–700 (2017).
    CAS  Article  Google Scholar 

    29.
    Shin, P. K. S., Huang, Z. G. & Wu, R. S. S. An updated baseline of subtropical macrobenthic communities in Hong Kong. Mar. Pollut. Bull. 49, 119–141 (2004). [Data source: City U Professional Services Ltd. 2002. Consultancy Study on Marine Benthic Communities in Hong Kong: Final Report, prepared for Agriculture, Fisheries and Conservation Department, the Hong Kong Special Administrative Region Government.].
    Article  Google Scholar 

    30.
    Pitcher, T. J. et al. Marine reserves and the restoration of fisheries and marine ecosystems in the South China Sea. Bull. Mar. Sci. 66, 543–566 (2000).
    Google Scholar 

    31.
    Pitcher, T. J. A cover story: fisheries may drive stocks to extinction. Rev. Fish. Biol. Fish. 8, 367–370 (1998).
    Article  Google Scholar 

    32.
    Pearson, T. H. & Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev. 16, 229–311 (1978).
    Google Scholar 

    33.
    Kaiser, M. J. et al. Global analysis and prediction of the response of benthic biota and habitats to fishing. Mar. Ecol. Prog. Ser. 311, 1–14 (2006).
    Article  Google Scholar 

    34.
    Jennings, S. & Kaiser, M. J. The effects of fishing on marine ecosystems. Adv. Mar. Biol. 34, 201–352 (1998).
    Article  Google Scholar 

    35.
    Morton, B. The subsidiary impacts of dredging (and trawling) on a subtidal benthic molluscan community in the southern waters of Hong Kong. Mar. Pollut. Bull. 32, 701–710 (1996).
    CAS  Article  Google Scholar 

    36.
    Lindeboom, H. J. & de Groot, S. J. Impact-II: The effects of different types of fisheries on the North Sea and Irish Sea benthic ecosystems. (Netherlands Institute of Sea Research, 1998).

    37.
    Tao, L. S. R. et al. Trawl ban in a heavily exploited marine environment: responses in population dynamics of four stomatopod species. Sci. Rep. 8, 17876 (2018).
    CAS  Article  Google Scholar 

    38.
    Rijnsdorp, A. D. et al. Towards a framework for the quantitative assessment of trawling impact on the seabed and benthic ecosystem. ICES J. Mar. Sci. 73(suppl_1), i127–i138 (2015).
    Article  Google Scholar 

    39.
    Watling, L., Findlay, R. H., Mayer, L. M. & Schick, D. F. Impact of a scallop drag on the sediment chemistry, microbiota, and faunal assemblages of a shallow subtidal marine benthic community. J. Sea Res. 46, 309–324 (2001).
    CAS  Article  Google Scholar 

    40.
    Wu, R. S. S. Periodic defaunation and recovery in subtropical epibenthic community, in relation to organic pollution. J. Exp. Mar. Biol. Ecol. 64, 253–269 (1982).
    Article  Google Scholar 

    41.
    Dauer, D. M., Ranasinghe, J. A. & Weisberg, S. B. Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay. Estuaries 23, 80–96 (2000).
    Article  Google Scholar 

    42.
    Environmental Protection Department. Marine Water Quality Data. (EPD, 2018).

    43.
    Cheung, S. G., Lam, N. W. Y., Wu, R. S. S. & Shin, P. K. S. Spatio-temporal changes of marine macrobenthic community in sub-tropical waters upon recovery from eutrophication. II. Life-history traits and feeding guilds of polychaete community. Mar. Pollut. Bull. 56, 297–307 (2008).
    CAS  Article  Google Scholar 

    44.
    Fauchald, K. & Jumars, P. A. The diet of worms: a study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev. 17, 193–284 (1979).
    Google Scholar 

    45.
    Macdonald, T. A., Burd, B. J., Macdonald, V. I. & Van Roodselaar, A. Taxonomic and feeding guild classification for the marine benthic macroinvertebrates of the Strait of Georgia, British Columbia. Can. Tech. Rep. Fish. Aquat. Sci. 2874, 1–63 (2010).
    Google Scholar 

    46.
    Jumars, P. A., Dorgan, K. M. & Lindsay, S. M. Diet of worms emended: an update of polychaete feeding guilds. Annu. Rev. Mar. Sci. 7, 497–520 (2015). (2015).
    Article  Google Scholar 

    47.
    WoRMS Editorial Board. World Register of Marine Species. http://www.marinespecies.org (2019).

    48.
    Pagliosa, P. R. Another diet of worms: the applicability of polychaete feeding guilds as a useful conceptual framework and biological variable. Mar. Ecol. 26, 246–254 (2005).
    Article  Google Scholar 

    49.
    Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. (Primer-E Ltd, 2001).

    50.
    Grall, J. & Glémarec, M. Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest. Estuar. Coast. Shelf Sci. 44, 43–53 (1997).
    Article  Google Scholar 

    51.
    Borja, A., Franco, J. & Pérez, V. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar. Pollut. Bull. 40, 1100–1114 (2000).
    CAS  Article  Google Scholar 

    52.
    AZTI-Tecnalia. AMBI software. http://ambi.azti.es/descarga-de-ambi/ (2017).

    53.
    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Article  Google Scholar 

    54.
    RStudio Team. RStudio: Integrated Development for R. http://www.rstudio.com/ (2015).

    55.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Sage, 2011).

    56.
    Neter, J., Wasserman, W. & Hutner M. H. Applied linear statistical models: Regression, analysis of variance, and experimental design (Irwin, 1990).

    57.
    Chatterjee, S. & Price, B. Regression Analysis by Example. (John Wiley & Sons, 1991). More

  • in

    Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America

    1.
    Haynes, G. in Encyclopedia of the Anthropocene (eds. DellaSala, D. & Goldstein, M.) 219–226 (Amsterdam: Elsevier, 2018).
    2.
    Meltzer, D. J. Pleistocene overkill and North American mammalian extinctions. Annu. Rev. Anthropol. 44, 33–53 (2015).
    Article  Google Scholar 

    3.
    Grayson, D. K. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 5–39 (The University of Arizona Press, Tucson, Arizona, 1984).

    4.
    Turner, G. Memoir on the extraneous fossils, denominated mammoth bones; principally designed to shew that they are the remains of more than one species of non-descript animal. Trans. Am. Philos. Soc. 4, 510–518 (1799).
    Article  Google Scholar 

    5.
    Martin, P. S. in Pleistocene Extinctions: The Search for a Cause (eds. Martin, P. S. & Wright, H. E.) 75–120 (Yale University Press, New Haven, CT, 1967).

    6.
    Martin, P. S. The discovery of America: the first Americans may have swept the Western Hemisphere and decimated its fauna within 1000 years. Science 179, 969–974 (1973).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Martin, P. S. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 354–403 (The University of Arizona Press, Tucson, Arizona, 1984).

    8.
    Long, A. & Martin, P. S. Death of american ground sloths. Science 186, 638–640 (1974).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Mosimann, J. E. & Martin, P. S. Simulating Overkill by Paleoindians: Did man hunt the giant mammals of the New World to extinction? Mathematical models show that the hypothesis is feasible. Am. Sci. 63, 304–313 (1975).
    ADS  Google Scholar 

    10.
    Diamond, J. M. Quaternary megafaunal extinctions: variations on a theme by paganini. J. Archaeol. Sci. 16, 167–175 (1989).
    Article  Google Scholar 

    11.
    Grayson, D. K. An analysis of the chronology of late Pleistocene mammalian extinctions in North America. Quat. Res. 28, 281–289 (1987).
    Article  Google Scholar 

    12.
    Shapiro, B. et al. Rise and fall of the Beringian steppe bison. Science 306, 1561–1565 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Hofreiter, M. & Barnes, I. Diversity lost: are all Holarctic large mammal species just relict populations? BMC Biol. 8, 46 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Orlando, L. & Cooper, A. Using ancient DNA to understand evolutionary and ecological processes. Annu. Rev. Ecol. Evol. Syst. 45, 573–598 (2014).
    Article  Google Scholar 

    15.
    Faith, J. T. in Encyclopedia of Global Archaeology (ed. Smith, C.) 5426–5435 (Springer, 2014).

    16.
    Jackson, S. T. & Weng, C. Late Quaternary extinction of a tree species in eastern North America. Proc. Natl Acad. Sci. USA 96, 13847–13852 (1999).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Guthrie, R. D. Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature 426, 169–171 (2003).
    ADS  PubMed  Article  CAS  Google Scholar 

    18.
    Hill, M. E., Hill, M. G. & Widga, C. C. Late Quaternary Bison diminution on the Great Plains of North America: evaluating the role of human hunting versus climate change. Quat. Sci. Rev. 27, 1752–1771 (2008).
    ADS  Article  Google Scholar 

    19.
    Lyman, R. L. Taphonomy, pathology, and paleoecology of the terminal Pleistocene Marmes Rockshelter (45FR50) “big elk” (Cervus elaphus), southeastern Washington State, USA. Can. J. Earth Sci. 47, 1367–1382 (2010).
    Article  Google Scholar 

    20.
    Lyman, R. L. The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA. Holocene 19, 143–150 (2009).
    ADS  Article  Google Scholar 

    21.
    Grayson, D. K. Deciphering North American pleistocene extinctions. J. Anthropol. Res. 63, 185–213 (2007).
    Article  Google Scholar 

    22.
    Signor, P. W. & Lipps, J. H. in Geological Implications of Impacts of Large Asteroids and Comets on the Earth (eds. Silver, L. T. & Schultz, P. H.) Vol. 190, p. 291–296 (Geological Society of America Boulder, CO, 1982).

    23.
    Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Broughton, J. M. & Weitzel, E. M. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat. Commun. 9, 5441 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Boulanger, M. T. & Lyman, R. L. Northeastern North American Pleistocene megafauna chronologically overlapped minimally with Paleoindians. Quat. Sci. Rev. 85, 35–46 (2014).
    ADS  Article  Google Scholar 

    26.
    Rick, J. W. Dates as data: an examination of the peruvian preceramic radiocarbon record. Am. Antiq. 52, 55–73 (1987).
    Article  Google Scholar 

    27.
    Mann, D. H. et al. Life and extinction of megafauna in the ice-age Arctic. Proc. Natl Acad. Sci. USA 112, 14301–14306 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    MacDonald, G. M. et al. Pattern of extinction of the woolly mammoth in Beringia. Nat. Commun. 3, 839 (2012).
    Article  CAS  Google Scholar 

    29.
    Pino, M. et al. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Sci. Rep. 9, 4413 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).
    Article  Google Scholar 

    31.
    Contreras, D. A. & Meadows, J. Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach. J. Archaeol. Sci. 52, 591–608 (2014).
    Article  Google Scholar 

    32.
    Carleton, W. C. & Groucutt, H. S. Sum things are not what they seem: Problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. Holocene 1–14 https://doi.org/10.1177/0959683620981700 (2020).

    33.
    Ramsey, C. B. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).
    CAS  Article  Google Scholar 

    34.
    Carleton, W. C. Evaluating Bayesian radiocarbon-dated event-count modelling for the study of long-term human and environmental processes. J. Quat. Sci. 36, 110–123 (2020).

    35.
    Brown, W. A. The past and future of growth rate estimation in demographic temporal frequency analysis: biodemographic interpretability and the ascendance of dynamic growth models. J. Archaeol. Sci. 80, 96–108 (2017).
    Article  Google Scholar 

    36.
    Wicks, K. & Mithen, S. The impact of the abrupt 8.2 ka cold event on the Mesolithic population of western Scotland: a Bayesian chronological analysis using ‘activity events’ as a population proxy. J. Archaeol. Sci. 45, 240–269 (2014).
    Article  Google Scholar 

    37.
    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Price, G. J., Louys, J., Faith, J. T., Lorenzen, E. & Westaway, M. C. Big data little help in megafauna mysteries. Nature 558, 23–25 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Surovell, T. A., Finley, J. B., Smith, G. M., Jeffrey Brantingham, P. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009).
    Article  Google Scholar 

    40.
    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    41.
    Metcalf, J. L. et al. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Sci. Adv. 2, e1501682 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Boers, N., Goswami, B. & Ghil, M. A complete representation of uncertainties in layer-counted paleoclimatic archives. Climate 13, 1169–1180 (2017).
    Google Scholar 

    43.
    Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    44.
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    45.
    Meltzer, D. J. & Mead, J. I. The timing of late pleistocene mammalian extinctions in North America. Quat. Res. 19, 130–135 (1983).
    Article  Google Scholar 

    46.
    Owen-Smith, N. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).
    Article  Google Scholar 

    47.
    Zimov, S. A. et al. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am. Nat. 146, 765–794 (1995).
    Article  Google Scholar 

    48.
    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    49.
    Forbes, E. S. et al. Synthesizing the effects of large, wild herbivore exclusion on ecosystem function. Funct. Ecol. 33, 1597–1610 (2019).
    Article  Google Scholar 

    50.
    Ripple, W. J. & Van Valkenburgh, B. Linking top-down forces to the pleistocene megafaunal extinctions. BioScience 60, 516–526 (2010).
    Article  Google Scholar 

    51.
    VanValkenburgh, B. & Hertel, F. Tough times at la brea: tooth breakage in large carnivores of the late pleistocene. Science 261, 456–459 (1993).
    ADS  CAS  PubMed  Article  Google Scholar 

    52.
    Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).
    Article  Google Scholar 

    53.
    Haynes, G. Extinctions in North America’s Late Glacial landscapes. Quat. Int. 285, 89–98 (2013).
    Article  Google Scholar 

    54.
    Berti, E. & Svenning, J. Megafauna extinctions have reduced biotic connectivity worldwide. Glob. Ecol. Biogeogr. 373, 20170008 (2020).
    Google Scholar 

    55.
    Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    56.
    Robinson, G. S., Burney, L. P. & Burney, D. A. Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecol. Monogr. 75, 295–315 (2005).
    Article  Google Scholar 

    57.
    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Meltzer, D. J. & Holliday, V. T. Would North American paleoindians have noticed younger dryas age climate changes? J. World Prehistory 23, 1–41 (2010).
    Article  Google Scholar 

    59.
    Shuman, B., Webb, T., Bartlein, P. & Williams, J. W. The anatomy of a climatic oscillation: vegetation change in eastern North America during the Younger Dryas chronozone. Quat. Sci. Rev. 21, 1777–1791 (2002).
    ADS  Article  Google Scholar 

    60.
    Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    61.
    Williams, J. W., Shuman, B. N. & Webb, T. III Dissimilarity analyses of Late-Quaternary vegetation and climate in eastern North America. Ecology 82, 3346–3362 (2001).
    Google Scholar 

    62.
    Yu, Z. Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States. Quat. Res. 67, 297–303 (2007).
    Article  Google Scholar 

    63.
    Wolverton, S., Lee Lyman, R., Kennedy, J. H. & La Point, T. W. The terminal pleistocene extinctions in North America, hypermorphic evolution, and the dynamic equilibrium model. J. Ethnobiol. 29, 28–63 (2009).
    Article  Google Scholar 

    64.
    Guthrie, R. D. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 259–298 (The University of Arizona Press, Tucson, Arizona, 1984).

    65.
    Faith, J. T. Late Pleistocene climate change, nutrient cycling, and the megafaunal extinctions in North America. Quat. Sci. Rev. 30, 1675–1680 (2011).
    ADS  Article  Google Scholar 

    66.
    Haynes, C. V. Younger Dryas “black mats” and the Rancholabrean termination in North America. Proc. Natl Acad. Sci. USA 105, 6520–6525 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    67.
    Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).

    68.
    Firestone, R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc. Natl Acad. Sci. USA 104, 16016–16021 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    69.
    Holliday, V. T. & Meltzer, D. J. The 12.9-ka ET impact hypothesis and North American Paleoindians. Curr. Anthropol. 51, 575–607 (2010).
    Article  Google Scholar 

    70.
    Graham, R. W. & Lundelius, E. L. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 223–249 (The University of Arizona Press, Tucson, Arizona, 1984).

    71.
    Yu, Z. & Wright, H. E. Response of interior North America to abrupt climate oscillations in the North Atlantic region during the last deglaciation. Earth Sci. Rev. 52, 333–369 (2001).
    ADS  CAS  Article  Google Scholar 

    72.
    Gill, J. L., Williams, J. W., Jackson, S. T., Donnelly, J. P. & Schellinger, G. C. Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat. Sci. Rev. 34, 66–80 (2012).
    ADS  Article  Google Scholar 

    73.
    Yansa, C. H. & Adams, K. M. Mastodons and mammoths in the great lakes region, USA and Canada: new insights into their diets as they neared extinction. Geogr. Compass 6, 175–188 (2012).
    Article  Google Scholar 

    74.
    Asmerom, Y., Polyak, V. J. & Burns, S. J. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nat. Geosci. 3, 114–117 (2010).
    ADS  CAS  Article  Google Scholar 

    75.
    Wagner, J. D. M. et al. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nat. Geosci. 3, 110–113 (2010).
    ADS  CAS  Article  Google Scholar 

    76.
    Kirby, M. E., Feakins, S. J., Bonuso, N., Fantozzi, J. M. & Hiner, C. A. Latest pleistocene to holocene hydroclimates from Lake Elsinore, California. Quat. Sci. Rev. 76, 1–15 (2013).
    ADS  Article  Google Scholar 

    77.
    Polyak, V. J., Asmerom, Y., Burns, S. J. & Lachniet, M. S. Climatic backdrop to the terminal Pleistocene extinction of North American mammals. Geology 40, 1023–1026 (2012).
    ADS  Article  Google Scholar 

    78.
    MacDonald, G. M. et al. Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas Stade. Quat. Res. 70, 131–140 (2008).
    Article  Google Scholar 

    79.
    Polyak, V. J., Rasmussen, J. B. T. & Asmerom, Y. Prolonged wet period in the southwestern United States through the Younger Dryas. Geology 32, 5 (2004).
    ADS  CAS  Article  Google Scholar 

    80.
    Holliday, V. T. Folsom Drought and episodic drying on the southern high plains from 10,900–10,200 14C yr B.P. Quat. Res. 53, 1–12 (2000).
    Article  Google Scholar 

    81.
    Ballenger, J. A. M. et al. Evidence for Younger Dryas global climate oscillation and human response in the American Southwest. Quat. Int. 242, 502–519 (2011).
    Article  Google Scholar 

    82.
    Heusser, L. E., Kirby, M. E. & Nichols, J. E. Pollen-based evidence of extreme drought during the last Glacial (32.6–9.0 ka) in coastal southern California. Quat. Sci. Rev. 126, 242–253 (2015).
    ADS  Article  Google Scholar 

    83.
    Holmgren, C. A., Betancourt, J. L. & Rylander, K. A. A 36,000-yr vegetation history from the Peloncillo Mountains, southeastern Arizona, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 405–422 (2006).
    Article  Google Scholar 

    84.
    Van Devender, T. R. & Spaulding, W. G. Development of vegetation and climate in the Southwestern United States. Science 204, 701–710 (1979).
    ADS  PubMed  Article  Google Scholar 

    85.
    Marcus, L. F. & Berger, R. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 159–183 (The University of Arizona Press, Tucson, Arizona, 1984).

    86.
    Friscia, A. R., Van Valkenburgh, B., Spencer, L. & Harris, J. Chronology and spatial distribution of large mammal bones in Pit 91, Rancho La Brea. Palaios 23, 25–42 (2008).
    ADS  Article  Google Scholar 

    87.
    Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15, 565–569 (2000).
    ADS  Article  Google Scholar 

    88.
    Affolter, S. et al. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    89.
    RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, Boston, MA, 2020).

    90.
    NIMBLE Development Team. NIMBLE: MCMC, Particle Filtering, and Programmable Hierarchical Modeling (2020).

    91.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (2016).

    92.
    Kassambara, A. ggpubr: “ggplot2” Based Publication Ready Plots (2020). More

  • in

    European cephalopods distribution under climate-change scenarios

    1.
    SAUP. Sea Around Us. http://www.seaaroundus.org/data/ (2020).
    2.
    Coll, M., Navarro, J., Olson, R. J. & Christensen, V. Assessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models. Deep Sea Res. Part II Top. Stud. Oceanogr. 95, 21–36 (2013).
    ADS  Article  Google Scholar 

    3.
    Hastie, L. et al. Cephalopods in the north-eastern Atlantic: Species, biogeography, ecology, exploitation and conservation. In Oceanography and Marine Biology (eds. Gibson, R., Atkinson, R. & Gordon, J.) vol. 20092725, 111–190 (CRC Press, Boca Raton, 2009).

    4.
    Piatkowski, U. & Pierce, G. J. Impact of cephalopods in the food chain and their interaction with the environment and fisheries: An overview. Fish. Res. 6, 5–10 (2001).
    Article  Google Scholar 

    5.
    Pierce, G. J. et al. A review of cephalopod–environment interactions in European Seas. Hydrobiologia 612, 49–70 (2008).
    Article  Google Scholar 

    6.
    André, J., Haddon, M. & Pecl, G. T. Modelling climate-change-induced nonlinear thresholds in cephalopod population dynamics. Glob. Change Biol. 16, 2866–2875 (2010).
    ADS  Article  Google Scholar 

    7.
    Jereb, P. et al. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooper. Res. Rep. 325, 1–360 (2015).
    Google Scholar 

    8.
    Sims, D. W., Genner, M. J., Southward, A. J. & Hawkins, S. J. Timing of squid migration reflects North Atlantic climate variability. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 2607–2611 (2001).

    9.
    Dorey, N. et al. Ocean acidification and temperature rise: Effects on calcification during early development of the cuttlefish Sepia officinalis. Mar. Biol. 160, 2007–2022 (2013).
    CAS  Article  Google Scholar 

    10.
    Rodhouse, P. G. K. et al. Environmental effects on cephalopod population dynamics. In Advances in Marine Biology vol. 67, 99–233 (Elsevier, Amsterdam, 2014).

    11.
    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).
    ADS  CAS  Article  Google Scholar 

    12.
    Otto, F. E. L., Frame, D. J., Otto, A. & Allen, M. R. Embracing uncertainty in climate change policy. Nat. Clim. Change 5, 917–920 (2015).
    ADS  Article  Google Scholar 

    13.
    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
    ADS  CAS  Article  Google Scholar 

    14.
    van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31 (2011).
    ADS  Article  Google Scholar 

    15.
    Gissi, E. et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 755, 142564 (2021).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).
    ADS  Article  Google Scholar 

    17.
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).
    PubMed  Article  Google Scholar 

    18.
    Vidal, E. A. G., DiMarco, F. P., Wormuth, J. H. & Lee, P. G. Influence of temperature and food availability on survival, growth and yolk utilization in hatchling squid. Bull. Mar. Sci. 71, 915–931 (2002).
    Google Scholar 

    19.
    Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, R406–R407 (2016).
    CAS  PubMed  Article  Google Scholar 

    20.
    van der Kooij, J., Engelhard, G. H. & Righton, D. A. Climate change and squid range expansion in the North Sea. J. Biogeogr. 43, 2285–2298 (2016).
    Article  Google Scholar 

    21.
    Jin, Y., Jin, X., Gorfine, H., Wu, Q. & Shan, X. Modeling the oceanographic impacts on the spatial distribution of common cephalopods during autumn in the yellow sea. Front. Mar. Sci. 7, (2020).

    22.
    Pang, Y. et al. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fish. Res. 208, 22–33 (2018).
    Article  Google Scholar 

    23.
    Le Marchand, M. et al. Climate change in the Bay of Biscay: Changes in spatial biodiversity patterns could be driven by the arrivals of southern species. Mar. Ecol. Prog. Ser. 647, 17–31 (2020).
    ADS  Article  Google Scholar 

    24.
    Lima, F. D., Ángeles-González, L. E., Leite, T. S. & Lima, S. M. Q. Global climate changes over time shape the environmental niche distribution of Octopus insularis in the Atlantic Ocean. Mar. Ecol. Prog. Ser. 652, 111–121 (2020).
    ADS  Article  Google Scholar 

    25.
    Xavier, J. C., Peck, L. S., Fretwell, P. & Turner, J. Climate change and polar range expansions: Could cuttlefish cross the Arctic?. Mar. Biol. 163, 78 (2016).
    Article  Google Scholar 

    26.
    Selig, E. R. et al. Mapping global human dependence on marine ecosystems. Conserv. Lett. 12, e12617 (2019).
    Article  Google Scholar 

    27.
    Blasiak, R. et al. Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLoS ONE 12, e0179632 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    FAO. The State of Mediterranean and Black Sea Fisheries. (General Fisheries Commission for the Mediterranean, 2016).

    29.
    Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Badjeck, M.-C., Perry, A., Renn, S., Brown, D. & Poulain, F. The vulnerability of fishing-dependent economies to disasters. FAO Fish. Aquac. Circ. 1081, 1–19 (2013).
    Google Scholar 

    31.
    Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).
    Article  Google Scholar 

    32.
    Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45, 2775–2802 (2015).
    Article  Google Scholar 

    33.
    Alexander, M. A. et al. Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elementa Sci. Anthropocene 6, 9 (2018).
    Article  Google Scholar 

    34.
    Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Pierce, G. J. et al. Status and trends of European cephalopod stocks. In ASC 2019 ICES Conference, Gothenburg, Sweden 1 (2019).

    36.
    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
    Article  Google Scholar 

    37.
    Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, New Haven, 1978).
    Google Scholar 

    38.
    Peterson, A. & Soberón, J. Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza e Conservação 10, 1–6 (2012).
    Article  Google Scholar 

    39.
    Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: The once and future niche. Proc. Natl. Acad. Sci. 106, 19651–19658 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).
    ADS  Article  Google Scholar 

    41.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    PubMed  Article  Google Scholar 

    42.
    Hao, T., Elith, J., Guillera-Arroita, G. & Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. https://doi.org/10.1111/ddi.12892 (2019).
    Article  Google Scholar 

    43.
    Goberville, E., Beaugrand, G., Hautekèete, N.-C., Piquot, Y. & Luczak, C. Uncertainties in the projection of species distributions related to general circulation models. Ecol. Evol. 5, 1100–1116 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Leroy, B. et al. Forecasted climate and land use changes, and protected areas: The contrasting case of spiders. Divers. Distrib. 20, 686–697 (2014).
    Article  Google Scholar 

    45.
    Schickele, A. et al. Modelling European small pelagic fish distribution: Methodological insights. Ecol. Model. 416, 108902 (2020).
    Article  Google Scholar 

    46.
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Barbet-Massin, M., Thuiller, W. & Jiguet, F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models?. Ecography 33, 878–886 (2010).
    Article  Google Scholar 

    48.
    Beaugrand, G., Luczak, C., Goberville, E. & Kirby, R. Marine biodiversity and the chessboard of life. PLoS ONE 13, e0194006 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Støa, B., Halvorsen, R., Mazzoni, S. & Gusarov, V. I. Sampling bias in presence-only data used for species distribution modelling: Theory and methods for detecting sample bias and its effects on models. Sommerfeltia 38, 1–53 (2018).
    Article  Google Scholar 

    50.
    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).
    Article  Google Scholar 

    51.
    Voldoire, A. et al. The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn. 40, 2091–2121 (2013).
    Article  Google Scholar 

    52.
    Hourdin, F. et al. Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim. Dyn. 40, 2167–2192 (2013).
    Article  Google Scholar 

    53.
    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2013).
    ADS  Article  Google Scholar 

    54.
    Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: Assessing the assumptions and uncertainties. PNAS 106, 19729–19736 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    55.
    Martinez-Meyer, E. Climate change and biodiversity: Some considerations in forecasting shifts in species’ potential distributions. Biodivers. Inform. 2, 42–55 (2005).
    Article  Google Scholar 

    56.
    Levitus, S. Climatological atlas of the world ocean. Eos Trans. Am. Geophys. Union 64, 962–963 (2011).
    ADS  Article  Google Scholar 

    57.
    Cabanes, C. et al. The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci. 9, 1–18 (2013).
    ADS  Article  Google Scholar 

    58.
    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5: Climate Changes in MPI-ESM. J. Adv. Model. Earth Syst. 5, 572–597 (2013).
    ADS  Article  Google Scholar 

    59.
    Stevens, B. et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146–172 (2013).
    ADS  Article  Google Scholar 

    60.
    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. Discuss. 4, 689–763 (2011).
    ADS  Google Scholar 

    61.
    Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive: GISS MODEL-E2 CMIP5 SIMULATIONS. J. Adv. Model. Earth Syst. 6, 141–184 (2014).
    ADS  Article  Google Scholar 

    62.
    Beaugrand, G., Lenoir, S., Ibañez, F. & Manté, C. A new model to assess the probability of occurrence of a species, based on presence-only data. Mar. Ecol. Prog. Ser. 424, 175–190 (2011).
    ADS  Article  Google Scholar 

    63.
    Raybaud, V., Bacha, M., Amara, R. & Beaugrand, G. Forecasting climate-driven changes in the geographical range of the European anchovy (Engraulis encrasicolus). ICES J. Mar. Sci. 74, 1288–1299 (2017).
    Article  Google Scholar 

    64.
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Article  Google Scholar 

    65.
    Thuiller, W., Georges, D., Engler, R. & Breiner, F. Ensemble Platform for Species Distribution Modelling. (2016).

    66.
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Article  Google Scholar 

    67.
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1198-2 (2020).
    Article  PubMed  Google Scholar 

    68.
    Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997).
    CAS  Article  Google Scholar 

    69.
    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Distance to the nearest coast. https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/ (01/03/2018) (2009).

    70.
    Hattab, T. et al. Towards a better understanding of potential impacts of climate change on marine species distribution: A multiscale modelling approach. Glob. Ecol. Biogeogr. 23, 1417–1429 (2014).
    Article  Google Scholar 

    71.
    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
    Google Scholar 

    72.
    Ben Rais Lasram, F. et al. An open-source framework to model present and future marine species distributions at local scale. Ecol. Inform. 59, 101130 (2020).
    Article  Google Scholar 

    73.
    Montgomery, D. C. Design and Analysis of Experiments (Wiley, Hoboken, 2005).
    Google Scholar 

    74.
    Getz, W. M. & Wilmers, C. C. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography 27, 489–505 (2006).
    Article  Google Scholar 

    75.
    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87, 1465–1471 (2004).
    Article  Google Scholar 

    76.
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Article  Google Scholar 

    77.
    Leroy, B. et al. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 45, 1994–2002 (2018).
    Article  Google Scholar 

    78.
    Faillettaz, R., Beaugrand, G., Goberville, E. & Kirby, R. R. Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 5, eaar6993 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Elith, J., Ferrier, S., Huettmann, F. & Leathwick, J. The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecol. Model. 186, 280–289 (2005).
    Article  Google Scholar 

    80.
    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).
    ADS  Article  Google Scholar 

    81.
    Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 (2001).
    ADS  Article  Google Scholar 

    82.
    Cristofari, R. et al. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Change 8, 245–251 (2018).
    ADS  Article  Google Scholar 

    83.
    Péron, C., Weimerskirch, H. & Bost, C.-A. Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc. Biol. Sci. 279, 2515–2523 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Bloor, I. S. M., Attrill, M. J. & Jackson, E. L. Chapter One—A Review of the Factors Influencing Spawning, Early Life Stage Survival and Recruitment Variability in the Common Cuttlefish (Sepia officinalis). In Advances in Marine Biology (ed. Lesser, M.) vol. 65, 1–65 (Academic Press, Cambridge, 2013).

    85.
    Vidal, E. A. G., Roberts, M. J. & Martins, R. S. Yolk utilization, metabolism and growth in reared Loligo vulgaris reynaudii paralarvae. Aquat. Living Resour. 18, 385–393 (2005).
    Article  Google Scholar 

    86.
    Bouchaud, O. Energy consumption of the cuttlefish Sepia officinalis L. (Mollusca: Cephalopoda) during embryonic development, preliminary results. Bull. Mar. Sci. 49, 333–340 (1991).
    Google Scholar 

    87.
    Laptikhovsky, V. Latitudinal and bathymetric trends in egg size variation: A new look at Thorson’s and Rass’s rules. Mar. Ecol. 27, 7–14 (2006).
    ADS  Article  Google Scholar 

    88.
    Hengl, T., Sierdsema, H., Radović, A. & Dilo, A. Spatial prediction of species’ distributions from occurrence-only records: Combining point pattern analysis, ENFA and regression-kriging. Ecol. Model. 220, 3499–3511 (2009).
    Article  Google Scholar 

    89.
    Clarke, M. R. The role of cephalopods in the world’s oceans: general conclusions and the future. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 351, 1105–1112 (1996).
    ADS  Article  Google Scholar 

    90.
    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).
    Article  Google Scholar 

    91.
    Kissling, W. D. et al. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents: Modelling multispecies interactions. J. Biogeogr. 39, 2163–2178 (2012).
    Article  Google Scholar 

    92.
    Clark, J. S., Gelfand, A. E., Woodall, C. & Zhu, K. More than the sum of the parts: Forest climate response from joint species distribution models. Ecol. Appl. 24, 990–999 (2014).
    PubMed  Article  Google Scholar 

    93.
    Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).
    Article  Google Scholar 

    94.
    Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).
    Article  Google Scholar 

    95.
    Lee, Q., Thorson, J. T., Gertseva, V. V. & Punt, A. E. The benefits and risks of incorporating climate-driven growth variation into stock assessment models, with application to Splitnose Rockfish (Sebastes diploproa). ICES J. Mar. Sci. 75, 245–256 (2018).
    Article  Google Scholar 

    96.
    Colléter, M., Gascuel, D., Ecoutin, J.-M. & Tito de Morais, L. Modelling trophic flows in ecosystems to assess the efficiency of marine protected area (MPA), a case study on the coast of Sénégal. Ecol. Model. 232, 1–13 (2012).
    Article  Google Scholar 

    97.
    Allen, K. R. Relation between production and biomass. J. Fish. Res. Board Can. 28, 1573–1581 (1971).
    Article  Google Scholar 

    98.
    FAO. Review of the state of world marine fishery resources. FAO Fish. Aquac. Tech. Pap. 334 (2011).

    99.
    Cheung, W. W. L. et al. Transform high seas management to build climate resilience in marine seafood supply. Fish Fish. 18, 254–263 (2016).
    Article  Google Scholar 

    100.
    Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).
    ADS  Article  Google Scholar 

    101.
    Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).
    ADS  Article  Google Scholar 

    102.
    Ojea, E., Lester, S. E. & Salgueiro-Otero, D. Adaptation of fishing communities to climate-driven shifts in target species. One Earth 2, 544–556 (2020).
    Article  Google Scholar  More

  • in

    Environmental palaeogenomic reconstruction of an Ice Age algal population

    Site description, chronology, and sampling
    A detailed description of the site, coring methods, age-depth model reconstruction, and sampling strategy can be found in Alsos et al.41. Briefly, Lake Øvre Æråsvatnet is located on Andøya, Northern Norway (69.25579°N, 16.03517°E) (Fig. 1a, b). In 2013, two cores were collected from the deepest sediments, AND10 and AND11, which were stored at 4 °C prior to sampling. Macrofossil remains were dated, with those from AND10 all dating to within the LGM. For the longer core AND11, a Bayesian age-depth model was required to estimate the age of each layer41. In this study, we selected one sample of LGM sediments from each of the two cores. According to the Bayesian age-depth model, sample Andøya_LGM_B, from 1102 cm depth in AND11, was dated to a median age of 17,700 (range: 20,200–16,500) cal yr BP. The age of Andøya_LGM_A, from 938 cm depth in AND10, was estimated at 19,500 cal yr BP, based on the interpolated median date between two adjacent macrofossils (20 cm above: 19,940–18,980 cal yr BP, 30 cm below: 20,040–19,000 cal yr BP). As Andøya_LGM_A falls within the age range of Andøya_LGM_B, we consider the samples to be broadly contemporaneous.
    Sampling, DNA extraction, library preparation, and sequencing
    The two cores were subsampled at the selected layers under clean conditions, in a dedicated ancient DNA laboratory at The Arctic University Museum of Norway in Tromsø. We extracted DNA from 15 g of sediment following the Taberlet phosphate extraction protocol29 in the same laboratory. We shipped a 210 µL aliquot of each DNA extract to the ancient DNA dedicated laboratories at the Centre for GeoGenetics (University of Copenhagen, Denmark) for double-stranded DNA library construction. The extracts were concentrated to 80 µL using Amicon Ultra-15 30 kDa centrifugal filters (Merck Millipore, Darmstadt, Germany) and half of each extract (40 µL, totalling between 31.7 and 36.0 ng of DNA) was converted into Illumina-compatible libraries using established protocols10. Each library was dual-indexed via 12 cycles of PCR. The libraries were then purified using the AmpureBead protocol (Beckman Coulter, Indianapolis, IN, USA), adjusting the volume ratio to 1:1.8 library:AmpureBeads, and quantified using a BioAnalyzer (Agilent, Santa Clara, CA, USA). The indexed libraries were pooled equimolarly and sequenced on a lane of the Illumina HiSeq 2500 platform using 2 × 80 cycle paired-end chemistry.
    Raw read filtering
    For each sample, we merged and adapter-trimmed the paired-end reads with SeqPrep (https://github.com/jstjohn/SeqPrep/releases, v1.2) using default parameters. We only retained the resulting merged sequences, which were then filtered with the preprocess function of the SGA toolkit v0.10.15 (ref. 57) by the removal of those shorter than 35 bp or with a DUST complexity score > 1.
    Metagenomic analysis of the sequence data
    We first sought to obtain an overview of the taxonomic composition of the samples and therefore carried out a BLAST-based metagenomic analysis on the two filtered sequence datasets. To make the datasets more computationally manageable, we subsampled the first and last one-million sequences from the filtered dataset of each sample and analysed each separately. The data subsets were each identified against the NCBI nucleotide database (release 223) using the blastn function from the NCBI-BLAST+ suite v2.2.18+58 under default settings. For each sample, the results from the two subsets were checked for internal consistency, merged into one dataset, and loaded into MEGAN v6.12.3 (ref. 59). Analysis and visualization of the Last Common Ancestor (LCA) was carried out for the taxonomic profile using the following settings: min score = 35, max expected = 1.0E−5, min percent identity = 95%, top percent = 10%, min support percentage = 0.01, LCA = naive, min percent sequence to cover = 95%. We define sequences as the reads with BLAST hits assigned to taxa post-filtering, thus ignoring “unassigned” and “no hit” categories.
    Alignment to reference genome panels
    We mapped our filtered data against three different reference panels to help improve taxonomic identifications and provide insight into the sequence abundance of the identified taxa (Supplementary Data 2 and 3). The first reference panel consisted of 42 nuclear genomes that included genera expected from Northern Norway, exotic/implausible taxa for LGM Andøya, human, six Nannochloropsis species, and four strains of Mycobacterium. The inclusion of exotic taxa was to give an indication of the background spurious mapping rate, which can result from mappings to conserved parts of the genome and/or short and damaged ancient DNA molecules22,23. We included Nannochloropsis, Mycobacterium, and human genomes, due to their overrepresentation in the BLAST-based metagenomic analysis. The other two reference panels were based on either all 8486 mitochondrial or 2495 chloroplast genomes on NCBI GenBank (as of January 2018). The chloroplast dataset was augmented with 247 partial or complete chloroplast genomes generated by the PhyloNorway project60 for 2742 chloroplast genomes in total. The filtered data were mapped against each reference genome or organellar genome set individually using bowtie2 v2.3.4.1 (ref. 61) under default settings. The resulting bam files were processed with SAMtools v0.1.19 (ref. 62). We removed unmapped sequences with SAMtools view and collapsed PCR duplicate sequences with SAMtools rmdup.
    For the nuclear reference panel, we reduced potential spurious or nonspecific sequence mappings by comparing the mapped sequences to both the aligned reference genome and the NCBI nucleotide database using NCBI-BLAST+, following the method used by Graham et al.9, as modified by Wang et al.11. The sequences were aligned using the following NCBI-BLAST+ settings: num_alignments = 100 and perc_identity = 90. Sequences were retained if they had better alignments, based on bit score, to reference genomes as compared to the NCBI nucleotide database. If a sequence had a better or equal match against the NCBI nucleotide database, it was removed, unless the LCA of the highest NCBI nucleotide bit score was from the same genus as the reference genome (based on the NCBI taxonID). To standardize the relative mapping frequencies to genomes of different size, we calculated the number of retained mapped sequences per Mb of genome sequence.
    The sequences mapped against the chloroplast and mitochondrial reference panels were filtered and reported in a different manner than the nuclear genomes. First, to exclude any non-eukaryotic sequences, we used NCBI-BLAST+ to search sequence taxonomies and retained sequences if the LCA was, or was within, Eukaryota. Second, for the sequences that were retained, the LCA was calculated and reported in order to summarize the mapping results across the organelle datasets. LCAs were chosen as the reference sets are composed of multiple genera.
    Within the Nannochloropsis nuclear reference alignments, the relative mapping frequency was highest for N. limnetica. In addition, the relative mapping frequency for other Nannochloropsis taxa was higher than those observed for the exotic taxa. This could represent the mapping of sequences that are conserved between Nannochloropsis genomes or suggest the presence of multiple Nannochloropsis taxa in a community sample. We therefore cross-compared mapped sequences to determine the number of uniquely mapped sequences per reference genome. First, we individually remapped the filtered data to six available Nannochloropsis nuclear genomes, the accession codes of which are provided in Supplementary Data 2. For each sample, we then calculated the number of sequences that uniquely mapped to, or overlapped, between each Nannochloropsis genome. We repeated the above analysis with six available chloroplast sequences (Supplementary Data 2) to get a comparable overlap estimation for the chloroplast genome.
    Reconstruction of the Andøya Nannochloropsis community organellar palaeogenomes
    To place the Andøya Nannochloropsis community taxon into a phylogenetic context, and provide suitable reference sequences for variant calling, we reconstructed environmental palaeogenomes for the Nannochloropsis mitochondria and chloroplast. First, the raw read data from both samples were combined into a single dataset and re-filtered with the SGA toolkit to remove sequences shorter than 35 bp, but retain low complexity sequences to assist in the reconstruction of low complexity regions in the organellar genomes. This re-filtered sequence dataset was used throughout the various steps for environmental palaeogenome reconstruction.
    The re-filtered sequence data were mapped onto the N. limnetica reference chloroplast genome (NCBI GenBank accession: NC_022262.1) with bowtie2 using default settings. SAMtools was used to remove unmapped sequences and PCR duplicates, as above. We generated an initial consensus genome from the resulting bam file with BCFtools v1.9 (ref. 62), using the mpileup, call, filter, and consensus functions. For variable sites, we produced a majority-rule consensus using the –variants-only and –multiallelic-caller options, and for uncovered sites the reference genome base was called. The above steps were repeated until the consensus could no longer be improved. The re-filtered sequence data was then remapped onto the initial consensus genome sequence with bowtie2, using the above settings. The genomecov function from BEDtools v2.17.0 (ref. 63) was used to identify gaps and low coverage regions in the resulting alignment.
    We attempted to fill the identified gaps, which likely consisted of diverged or difficult-to-assemble regions. For this, we assembled the re-filtered sequence dataset into de novo contigs with the MEGAHIT pipeline v1.1.4 (ref. 64), using a minimum k-mer length of 21, a maximum k-mer length of 63, and k-mer length increments of six. The MEGAHIT contigs were then mapped onto the initial consensus genome sequence with the blastn tool from the NCBI-BLAST+ toolkit. Contigs that covered the gaps identified by BEDtools were incorporated into the initial consensus genome sequence, unless a blast comparison against the NCBI nucleotide database suggested a closer match to non-Nannochloropsis taxa. We repeated the bowtie2 gap-filling steps iteratively, using the previous consensus sequence as reference, until a gap-free consensus was obtained. The re-filtered sequence data were again mapped, the resulting final assembly was visually inspected, and the consensus was corrected where necessary. This was to ensure the fidelity of the consensus sequence, which incorporated de novo-assembled contigs that could potentially be problematic, due to the fragmented nature and deaminated sites of ancient DNA impeding accurate assembly65.
    Annotation of the chloroplast genome was carried out with GeSeq v1.77 (ref. 66), using the available annotated Nannochloropsis chloroplast genomes (accession codes provided in Supplementary Table 7). The resulting annotated chloroplast was visualized with OGDRAW v1.3.1 (ref. 67).
    The same assembly and annotation methods outlined above were used to reconstruct the mitochondrial palaeogenome sequence, where the initial mapping assembly was based on the N. limnetica mitochondrial sequence (NCBI GenBank accession: NC_022256.1). The final annotation was carried out by comparison against all available annotated Nannochloropsis mitochondrial genomes (accession codes provided in Supplementary Table 7).
    If the Nannochloropsis sequences derived from more than one taxon, then alignment to the N. limnetica chloroplast genome could introduce reference bias, which would underestimate the diversity of the Nannochloropsis sequences present. We therefore reconstructed Nannochloropsis chloroplast genomes, but using the six available Nannochloropsis chloroplast genome sequences, including N. limnetica, as seed genomes (accession codes for the reference genomes are provided in Supplementary Table 3). The assembly of the consensus sequences followed the same method outlined above, but with two modifications to account for the mapping rate being too low for complete genome reconstruction based on alignment to the non-N. limnetica reference sequences. First, consensus sequences were called with SAMtools, which does not incorporate reference bases into the consensus at uncovered sites. Second, neither additional gap filling nor manual curation was implemented.
    Analysis of ancient DNA damage patterns
    We checked for the presence of characteristic ancient DNA damage patterns for sequences aligned to three nuclear genomes: human, Nannochloropsis limnetica and Mycobacterium avium. We further analysed damage patterns for sequences aligned to both the reconstructed N. limnetica composite organellar genomes. Damage analysis was conducted with mapDamage v2.0.8 (ref. 68) using the following settings: –merge-reference-sequences and –length = 160.
    Assembly of high- and low-frequency variant consensus sequences
    The within-sample variants in each reconstructed organellar palaeogenome was explored by creating two consensus sequences, which included either high- or low-frequency variants at multiallelic sites. For each sample, the initial filtered sequence data were mapped onto the reconstructed Nannochloropsis chloroplast palaeogenome sequence with bowtie2 using default settings. Unmapped and duplicate sequences were removed with SAMtools, as above. We used the BCFtools mpileup, call, and normalize functions to identify the variant sites in the mapped dataset, using the –skip-indels, –variants-only, and –multiallelic-caller options. The resulting alleles were divided into two sets, based on either high- or low-frequency variants. High-frequency variants were defined as those present in the reconstructed reference genome sequence. Both sets were further filtered to only include sites with a quality score of 30 or higher and a coverage of at least half the average coverage of the mapping assembly (minimum coverage: Andøya_LGM_A = 22×, Andøya_LGM_B = 14×). We then generated the high- and low-frequency variant consensus sequences using the consensus function in BCFTools. The above method was repeated for the reconstructed Nannochloropsis mitochondrial genome sequence in order to generate comparable consensus sequences of high- and low-frequency variants (minimum coverage: Andøya_LGM_A = 16×, Andøya_LGM_B = 10×).
    Phylogenetic analysis of the reconstructed organellar palaeogenomes
    We determined the phylogenetic placement of our high- and low-frequency variant organellar palaeogenomes within Nannochloropsis, using either full mitochondrial and chloroplast genome sequences or three short loci (18S, ITS, rbcL). We reconstructed the 18S and ITS1-5.8S-ITS2 complex using DQ977726.1 (full length) and EU165325.1 (positions 147:1006, corresponding to the ITS complex) as seed sequences following the same approach that was used for the organellar palaeogenome reconstructions, except that the first and last 10 bp were trimmed to account for the lower coverage due to sequence tiling. We then called high and low variant consensus sequences as described above.
    We created six alignments using available sequence data from NCBI GenBank (Supplementary Data 4) with the addition of: (1 + 2) the high- and low-frequency variant chloroplast or mitochondrial genome consensus sequences, (3) an ~1100 bp subset of the chloroplast genome for the rbcL alignment, (4 + 5) ~1800 and ~860 bp subsets of the nuclear multicopy complex for the 18S and ITS alignments, respectively, and (6) the reconstructed chloroplast genome consensus sequences derived from the alternative Nannochloropsis genome starting points. Full details on the coordinates of the subsets are provided in Supplementary Data 4. We generated alignments using MAFFT v7.427 (ref. 69) with the maxiterate = 1000 setting, which was used for the construction of a maximum likelihood tree in RAxML v8.1.12 (ref. 70) using the GTRGAMMA model and without outgroup specified. We assessed branch support using 1000 replicates of rapid bootstrapping.
    Nannochloropsis variant proportions and haplogroup diversity estimation
    To estimate major haplogroup diversity, we calculated the proportions of high and low variants in the sequences aligned to our reconstructed Nannochloropsis mitochondrial and chloroplast genomes. For each sample, we first mapped the initial filtered sequence data onto the high- and low-frequency variant consensus sequences with bowtie2. To avoid potential reference biases, and for each organellar genome, the sequence data were mapped separately against both frequency consensus sequences. The resulting bam files were then merged with SAMtools merge. We removed exact sequence duplicates, which may have been mapped to different coordinates, from the merged bam file by randomly retaining one copy. This step was replicated five times to examine its impact on the estimated variant proportions. After filtering, remaining duplicate sequences—those with identical mapping coordinates—were removed with SAMtools rmdup. We then called variable sites from the duplicate-removed bam files using BCFTools under the same settings as used in the assembly of the high- and low-frequency variant consensus sequences. We restricted our analyses to transversion-only variable positions to remove the impact of ancient DNA deamination artifacts. For each variable site, the proportion of reference and alternative alleles was calculated, based on comparison to the composite N. limnetica reconstructed organellar palaeogenomes. We removed rare alleles occurring at a proportion of More