1.
Jost C, Lawrence CA, Campolongo F, Van De Bund W, Hill S, DeAngelis DL. The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model. Theor Popul Biol. 2004;66:37–51.
PubMed Article Google Scholar
2.
Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, et al. Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs. Proc Natl Acad Sci. 2011;100:12776–81.
Article CAS Google Scholar
3.
Ward BA, Follows MJ. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci. 2016;113:2958–63.
CAS PubMed Article Google Scholar
4.
Hansen PJ, Tillmann U. Mixotrophy among dinoflagellates—prey selection, physiology and ecological imporance. In: Subba Rao DV, editor. Dinoflagellates: classification, evolution, physiology and ecological significance. Hauppauge, NY, USA: Nova; 2020;201–60.
5.
Unrein F, Gasol JM, Not F, Forn I, Massana R. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J. 2014;8:164–76.
CAS PubMed Article Google Scholar
6.
Anderson R, Charvet S, Hansen P. Mixotrophy in chlorophytes and haptophytes – effect of irradiance, macronutrient, micronutrient and vitamin limitation. Front Microbiol. 2018;9:1704.
PubMed PubMed Central Article Google Scholar
7.
Lewitus AJ, Caron DA, Miller KR. Effect of light and glycerol on the organization of the photosynthetic apparatus in the facultative heterotroph Pyrenomonas salina (cryptophyceae). J Phycol. 1991;27:578–87.
Article Google Scholar
8.
Du YooY, Seong KA, Jeong HJ, Yih W, Rho J-R, Nam SW, et al. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae. 2017;68:105–17.
Article Google Scholar
9.
Caron DA, Porter KG, Sanders RW. Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnol Oceanogr. 1990;35:433–43.
CAS Article Google Scholar
10.
Holen DA, Boraas ME. Mixotrophy in chrysophytes. Chrysophyte algae. Cambridge, UK: Cambridge University Press; 1995;119–40.
11.
Fenchel T. Ecology of heterotrophic microflagellates. II. Bioenerg growth Mar Ecol Prog Ser. 1982;8:225–31.
Article Google Scholar
12.
Rottberger J, Gruber A, Boenigk J, Kroth P. Influence of nutrients and light on autotrophic, mixotrophic and heterotrophic freshwater chrysophytes. Aquat Micro Ecol. 2013;71:179–91.
Article Google Scholar
13.
Bell EM, Laybourn-Parry J. Mixotrophy in the antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J Phycol. 2003;39:644–9.
Article Google Scholar
14.
McKie-Krisberg ZM, Sanders RW. Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans. ISME J. 2014;8:1953–61.
CAS PubMed PubMed Central Article Google Scholar
15.
McKie-Krisberg ZM, Gast RJ, Sanders RW. Physiological responses of three species of Antarctic mxotrophic phytoflagellates to changes in light and dissolved nutrients. Micro Ecol. 2015;70:21–29.
CAS Article Google Scholar
16.
Paasch A. Physiological and genomic characterization of phagocytosis in green algae. New York, NY, USA: American Museum of Natural History; 2017.
17.
Not F, Latasa M, Scharek R, Viprey M, Karleskind P, Balagué V, et al. Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Res Part I Oceanogr Res Pap. 2008;55:1456–73.
Article Google Scholar
18.
Shi XL, Marie D, Jardillier L, Scanlan DJ, Vaulot D. Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLoS ONE. 2009;4:e7657.
PubMed PubMed Central Article CAS Google Scholar
19.
Rii YM, Duhamel S, Bidigare RR, Karl DM, Repeta DJ, Church MJ. Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the South East Pacific Ocean. Limnol Oceanogr. 2016;61:806–24.
Article Google Scholar
20.
Maruyama S, Kim E. A modern descendant of early green algal phagotrophs. Curr Biol. 2013;23:1081–4.
CAS PubMed Article Google Scholar
21.
O’Kelly C. Flagellar apparatus architecture and the phylogeny of ‘green’ algae: Chlorophytes, Euglenoids, Glaucophytes. In: Menzel D, editor. The cytoskeleton of the algae. Boca Raton: CRC Press; 1992. p. 315–41.
Google Scholar
22.
Burns JA, Pittis AA, Kim E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol. 2018;2:697–704.
PubMed Article Google Scholar
23.
Wilken S, Yung CCM, Hamilton M, Hoadley K, Nzongo J, Eckmann C, et al. The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Philos Trans R Soc B Biol Sci. 2019;374:20190090.
CAS Article Google Scholar
24.
Inouye I, Hori T, Chihara M. Absolute configuration analysis of the flagellar apparatus of Pterosperma Cristatum (Prasinophyceae) and consideration of Its phylogenetic position. J Phycol. 1990;26:329–44.
Article Google Scholar
25.
Bhuiyan MAH, Faria DG, Horiguchi T, Sym SD, Suda S. Taxonomy and phylogeny of Pyramimonas vacuolata sp. nov. (Pyramimonadales, Chlorophyta). Phycologia. 2015;54:323–32.
CAS Article Google Scholar
26.
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019;66:4–119.
PubMed PubMed Central Article Google Scholar
27.
Burns JA, Paasch A, Narechania A, Kim E. Comparative genomics of a bacterivorous green alga reveals evolutionary causalities and consequences of phago-mixotrophic mode of nutrition. Genome Biol Evol. 2015;7:3047–61.
CAS PubMed PubMed Central Article Google Scholar
28.
Guillard R. Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley WH, editors. Culture of marine invertebrate animals. 1975. New York: Plenum Press; 1975. p. 22–60.
29.
Cho J-C, Giovannoni SJ. Pelagibaca bermudensis gen. nov., sp. nov., a novel marine bacterium within the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol. 2006;56:855–9.
CAS PubMed Article Google Scholar
30.
Thrash JC, Cho J-C, Ferriera S, Johnson J, Vergin KL, Giovannoni SJ. Genome sequences of Pelagibaca bermudensis HTCC2601T and Maritimibacter alkaliphilus HTCC2654T, the type strains of two marine Roseobacter genera. J Bacteriol. 2010;192:5552–3.
CAS PubMed PubMed Central Article Google Scholar
31.
First MR, Park NY, Berrang ME, Meinersmann RJ, Bernhard JM, Gast RJ, et al. Ciliate ingestion and digestion: Flow cytometric measurements and regrowth of a digestion-resistant Campylobacter jejuni. J Eukaryot Microbiol. 2012;59:12–19.
PubMed Article Google Scholar
32.
Sherr BF, Sherr EB, Fallon RD. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol. 1987;53:958–65.
CAS PubMed PubMed Central Article Google Scholar
33.
Vazquez-Dominguez E, Peters F, Gasol JM, Vaqué D. Measuring the grazing losses of picoplankton: methodological improvements in the use of fluorescently labeled tracers combined with flow cytometry. Aquat Micro Ecol. 1999;20:119–28.
Article Google Scholar
34.
Leebens-Mack J, Barker M, Carpenter EJ. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–85.
Article CAS Google Scholar
35.
Wincker P. A thousand plants’ phylogeny. Nat Plants. 2019;5:1106–7.
PubMed Article PubMed Central Google Scholar
36.
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLOS Biol. 2014;12:e1001889.
PubMed PubMed Central Article CAS Google Scholar
37.
Johnson LK, Alexander H, Brown CT. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Gigascience. 2019;8:1–12.
Google Scholar
38.
Besemer J. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.
CAS PubMed PubMed Central Article Google Scholar
39.
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
PubMed PubMed Central Google Scholar
40.
Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. Non-photosynthetic predators are sister to red algae. Nature. 2019;572:240–3.
CAS PubMed Article Google Scholar
41.
Newcombe RG. Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med. 1998;17:873–90.
CAS PubMed Article Google Scholar
42.
Kursa M, Rudnicki W. Feature selection with the Boruta package. J Stat Softw. 2010;36:1–13.
Article Google Scholar
43.
Chasset PO. Probabilistic neural network for the R statistical language. https://github.com/chasset/pnn. Github. 2013.
44.
Maia R, Eliason CM, Bitton P-P, Doucet SM, Shawkey MD. pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol Evol. 2013;4:906–13.
Google Scholar
45.
Jimenez V, Burns J, Le Gall F, Not F, Vaulot D. No evidence of phago-mixotropy in Micromonas polaris, the dominant picophytoplankton species in the Arctic. J Phycol. 2021. https://doi.org/10.1111/jpy.13125.
46.
R Core Team. R development core team. R A Lang Environ Stat Comput. Vienna: R Foundation for Statistical Computing; 2016.
47.
Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. When the lights go out: the evolutionary fate of free-living colorless green algae. N. Phytol. 2015;206:972–82.
Article Google Scholar
48.
Nakada T, Misawa K, Nozaki H. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol Phylogenet Evol. 2008;48:281–91.
CAS PubMed Article Google Scholar
49.
Johnson I. The molecular probes handbook: a guide to fluorescent probes and labeling technologies. 11th ed. Waltham, MA, USA: Life Technologies Corporation; 2010.
50.
Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, et al. Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci. 2012;31:1–46.
Article Google Scholar
51.
Leliaert F. Green algae: chlorophyta and streptophyta. Reference module in life sciences. Amsterdam, DK: Elsevier; 2019.
52.
Parke M, Adams I. The Pyramimonas-like motile stage of Halosphaera viridis Schmitz. Bull Res Counc Isr. 1961.
53.
Thorndsen J. Cymbomonas Schiller (Prasinophyceae) reinvestigated by light and electron microscopy. Arch fur Protistenkd. 1988;136:327–36.
Article Google Scholar
54.
González JM, Sherr BF, Sherr EB. Digestive enzyme activity as a quantitative measure of protistan grazing: the acid lysozyme assay for bacterivory. Mar Ecol Prog Ser. 1993;100:197–206.
Article Google Scholar
55.
Moestrup Ø, Inouye I, Hori T. Ultrastructural studies on Cymbomonas tetramitiformis (Prasinophyceae). I. General structure, scale microstructure, and ontogeny. Can J Bot. 2003;81:657–71.
Article Google Scholar
56.
Turmel M, Lopes dos Santos A, Otis C, Sergerie R, Lemieux C. Tracing the evolution of the plastome and mitogenome in the Chloropicophyceae uncovered convergent tRNA gene losses and a variant plastid genetic code. Genome Biol Evol. 2019;11:1275–92.
CAS PubMed PubMed Central Article Google Scholar
57.
Lopes dos Santos A, Gourvil P, Tragin M, Noël M, Decelle J, Romac S, et al. Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME J. 2017;11:512–28.
PubMed Article Google Scholar
58.
Lemieux C, Turmel M, Otis C, Pombert J-F. A streamlined and predominantly diploid genome in the tiny marine green alga Chloropicon primus. Nat Commun. 2019;10:4061.
PubMed PubMed Central Article Google Scholar
59.
Zingone A, Borra M, Brunet C, Forlani G. Kooistra WHCF, Procaccini G. Phylogenetic position of Crustomatix stigmatica sp. nov. and Dolichomastix tenuilepis in relation to the mamiellales (Prasinophyceae, Chlorophyta). J Phycol. 2002;38:1024–39.
CAS Article Google Scholar
60.
Liang Z, Geng Y, Ji C, Du H, Wong CE, Zhang Q, et al. Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Adv Sci. 2020;7:1901850.
CAS Article Google Scholar
61.
Buckley CM, Gopaldass N, Bosmani C, Johnston SA, Soldati T, Insall RH, et al. WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proc Natl Acad Sci. 2016;113:E5906–15.
CAS PubMed Article Google Scholar
62.
Shpak M, Kugelman JR, Varela-Ramirez A, Aguilera RJ. The phylogeny and evolution of deoxyribonuclease II: An enzyme essential for lysosomal DNA degradation. Mol Phylogenet Evol. 2008;47:841–54.
CAS PubMed Article Google Scholar
63.
Gast RJ, McKie-Krisberg ZM, Fay SA, Rose JM, Sanders RW. Antarctic mixotrophic protist abundances by microscopy and molecular methods. FEMS Microbiol Ecol. 2014;89:388–401.
CAS PubMed Article Google Scholar
64.
Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, et al. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: Incorporation of diverse mixotrophic strategies. Protist. 2016;167:106–20.
CAS Article Google Scholar
65.
Kirkham AR, Lepère C, Jardillier LE, Not F, Bouman H, Mead A, et al. A global perspective on marine photosynthetic picoeukaryote community structure. ISME J. 2013;7:922–36.
CAS PubMed PubMed Central Article Google Scholar
66.
Moon-van Der Staay SY, Wachter R De, Vaulot D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature. 2001;409:607–10.
CAS PubMed Article Google Scholar
67.
Worden A. Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat Micro Ecol. 2006;43:165–75.
Article Google Scholar
68.
Van Hannen EJ, Veninga M, Bloem J, Gons HJ, Laanbroek HJ. Genetic changes in the bacterial community structure associated with protistan grazers. Fundam Appl Limnol. 1999;145:25–38.
Article Google Scholar
69.
Jürgens K, Güde H. The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser. 1994;112:169–88.
Article Google Scholar
70.
Jürgens K, Pernthaler J, Schalla S, Amann R. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol. 1999;65:1241–50.
PubMed PubMed Central Article Google Scholar
71.
Suzuki M. Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat Micro Ecol. 1999;20:261–72.
Article Google Scholar
72.
Sherr EB, Sherr BF. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek2. 2002;81:293–308.
CAS Article Google Scholar
73.
González J, Sherr EB, Sherr BF. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol. 1990;56:583–9.
PubMed PubMed Central Article Google Scholar
74.
Sherr BF, Sherr EB, McDaniel J. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl Environ Microbiol. 1992;58:2381–5.
CAS PubMed PubMed Central Article Google Scholar
75.
González J, Sherr EB, Sherr BF. Differential feeding by marine flagellates on growing vs starving bacteria, and on motile vs non-motile bacteria. Mar Ecol Prog Ser. 1993;102:257–67.
Article Google Scholar
76.
del Giorgio PA, Gasol JM, Vaqué D, Mura P, Agustí S, Duarte CM. Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. Limnol Oceanogr. 1996;41:1169–79.
Article Google Scholar
77.
Andersen OK, Goldman JC, Caron DA, Dennett MR. Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. Mar Ecol Prog Ser. 1986;31:47–55.
CAS Article Google Scholar
78.
Fenchel T. Protistan filter feeding. Prog Protistol. 1986;1:65–113.
Google Scholar
79.
Epstein S, Shiaris M. Size selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colourless flagellates and ciliates. Micro Ecol. 1992;23:211–25.
CAS Article Google Scholar
80.
Montagnes D, Barbosa A, Boenigk J, Davidson K, Jurgens K, Macek M, et al. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Micro Ecol. 2008;53:83–98.
Article Google Scholar
81.
Pfister G, Arndt H. Food selectivity and feeding behaviour in omnivorous filter-feeding ciliates: a case study for Stylonychia. Eur J Protistol. 1998;34:446–57.
Article Google Scholar
82.
Boenigk J, Arndt H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek. 2002;81:465–80.
PubMed Article Google Scholar
83.
Pickup ZL, Pickup R, Parry JD. Growth of Acanthamoeba castellanii and Hartmannella vermiformis on live, heat-killed and DTAF-stained bacterial prey. FEMS Microbiol Ecol. 2007;61:264–72.
CAS PubMed Article Google Scholar
84.
Legrand C, Johansson N, Johnsen G, Borsheim K, Graneli E. Phagotrophy and toxicity variation in mixotrophic Prymnesium patelliferum (Haptophyceae). Limnol Oceanogr. 2001;46:1208–14.
Article Google Scholar
85.
Caron DA, Sanders RW, Lim EL, Marrasé C, Amaral LA, Whitney S, et al. Light-depend phagotrophy freshwater mixotrophic chrysophyte Dinobryon cylindricum. Micro. Ecol. 1993;25:93–111.
CAS Article Google Scholar
86.
Fenchel T. The microbial loop – 25 years later. J Exp Mar Bio Ecol. 2008;366:99–103.
Article Google Scholar
87.
Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, et al. Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs. Proc Natl Acad Sci. 2003;100:12776–81.
CAS PubMed Article Google Scholar
88.
Moorthi S, Ptacnik R, Sanders R, Fischer R, Busch M, Hillebrand H. The functional role of planktonic mixotrophs in altering seston stoichiometry. Aquat Micro Ecol. 2017;79:235–45.
Article Google Scholar
89.
Katechakis A, Haseneder T, Kling R, Stibor H. Mixotrophic versus photoautotrophic specialist algae as food for zooplankton: The light: nutrient hypothesis might not hold for mixotrophs. Limnol Oceanogr. 2005;50:1290–9.
CAS Article Google Scholar
90.
Weisse T, Anderson R, Arndt H, Calbet A, Hansen PJ, Montagnes D. Functional ecology of aquatic phagotrophic protists – concepts, limitations, and perspectives. Eur J Protistol. 2016;55:50–74.
PubMed Article Google Scholar
91.
Graham LE, Graham JM, Wilcox WL, Cook ME. Algae. 3rd ed. Madison, WI, USA: LJLM Press; 2016.
92.
Guillou L, Eikrem W, Chrétiennot-Dinet M-J, Le Gall F, Massana R, Romari K, et al. Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist. 2004;155:193–214.
CAS PubMed Article Google Scholar
93.
Lemieux C, Otis C, Turmel M. Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genom. 2014;15:857.
Article CAS Google Scholar More