1.
Minchella, D. J. & Scott, M. E. Parasitism: a cryptic determinant of animal community structure. Trends Ecol. Evol. 6(8), 250–254. https://doi.org/10.1016/0169-5347(91)90071-5 (1991).
CAS Article PubMed Google Scholar
2.
Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: how many parasites? How many host?. Proc. Natl. Acad. Sci. USA 105, 11482–11489. https://doi.org/10.1073/pnas.0803232105 (2008).
ADS Article PubMed Google Scholar
3.
Hatcher, M. J. & Dunn, A. M. Parasites in ecological communities: from interactions to ecosystems. https://doi.org/10.1017/CBO9780511987359 (Cambridge University Press, Cambridge, 2011).
Google Scholar
4.
Sures, B., Nachev, M., Pahl, M., Grabner, D. & Selbach, C. Parasites as drivers of key processes in aquatic ecosystems: facts and future directions. Exp. Parasitol. 180, 141–147. https://doi.org/10.1016/j.exppara.2017.03.011 (2017).
CAS Article PubMed Google Scholar
5.
Marcogliese, D. J. & Cone, D. K. Food webs: a plea for parasites. Trends Ecol. Evol. 12, 320–325. https://doi.org/10.1016/S0169-5347(97)01080-X (1997).
CAS Article PubMed Google Scholar
6.
Thompson, R. M., Mouritsen, K. N. & Poulin, R. Importance of parasites and their life cycle characteristics in determining the structure of a large marine food web. J. Anim. Ecol. 74, 77–85. https://doi.org/10.1111/j.1365-2656.2004.00899.x (2005).
Article Google Scholar
7.
Hernandez, A. D. & Sukhdeo, M. V. K. Parasites alter the topology stream food web across seasons. Oecologia 156, 613–624. https://doi.org/10.1007/s00442-008-0999-9 (2008).
ADS Article PubMed Google Scholar
8.
Dick, J. T. A. et al. Parasitism may enhance rather than reduce the predatory impact of an invader. Biol. Lett. 6, 636–638. https://doi.org/10.1098/rsbl.2010.0171 (2010).
Article PubMed PubMed Central Google Scholar
9.
Buck, J. C. Indirect effects explain the role of parasites in ecosystems. Trends Parasitol. 35, 835–847. https://doi.org/10.1016/j.pt.2019.07.007 (2019).
Article PubMed Google Scholar
10.
Sabadel, A. J. M., Stumbo, A. D. & MacLeod, C. D. Stable-isotope analysis: a neglected tool for placing parasites in food webs. J. Helminthol. 93, 1–7. https://doi.org/10.1017/S0022149X17001201 (2019).
CAS Article PubMed Google Scholar
11.
Barber, I., Hoare, D. & Krause, J. Effects of parasites on fish behaviour: an evolutionary perspective and review. Rev. Fish Biol. Fish. 10, 131–165. https://doi.org/10.1023/A:1016658224470 (2000).
Article Google Scholar
12.
Barber, I. & Wright, H.A. Effects of parasites on fish behaviour: interactions with host physiology in Fish physiology (eds. Katherine, R.W.W., Sloman, A. & Sigal, B.) 109–149. https://doi.org/10.1016/S1546-5098(05)24004-9 (Academic Press, 2005)
13.
Hughes, D. P., Brodeur, J. & Thomas, F. Host Manipulation by Parasites (Oxford University Press, Oxford, 2012).
Google Scholar
14.
Moore, J. Parasites and Behaviour of Animals (Oxford University Press, Oxford, 2002).
Google Scholar
15.
Shariff, M., Richards, R. H. & Sommerville, C. The histopathology of acute and chronic infections of rainbow trout Salmo gairdneri Richardson with eye flukes, Diplostomum spp. J. Fish. Dis. 3, 455–465. https://doi.org/10.1111/j.1365-2761.1980.tb00432.x (1980).
Article Google Scholar
16.
Stumbo, A. D. & Poulin, R. Possible mechanism of host manipulation resulting from a diel behaviour pattern of eye-dwelling parasites?. Parasitology 143, 1261–1267. https://doi.org/10.1017/S0031182016000810 (2016).
Article PubMed Google Scholar
17.
Poulin, R. & Cribb, T. H. Trematode life cycles: short is sweet?. Trends Parasitol. 18, 176–183. https://doi.org/10.1016/S1471-4922(02)02262-6 (2002).
Article PubMed Google Scholar
18.
Cribb, T. H., Bray, R. A., Olson, P. D. & Littlewood, D. T. J. Life cycle evolution in the Digenea: a new perspective from phylogeny. Adv. Parasitol. 54, 197–254. https://doi.org/10.1016/S0065-308X(03)54004-0 (2003).
Article PubMed Google Scholar
19.
Streilein, J. W. Oculae immune privilege: the eye takes a dim but practical view of immunity and inflammation. J. Leukoc. Biol. 74, 179–185. https://doi.org/10.1189/jlb.1102574 (2003).
CAS Article PubMed Google Scholar
20.
Crowden, A. E. & Broom, D. M. Effects of the eyefluke, Diplostomum spathaceum, on the behaviour of dace (Leuciscus leuciscus). Anim. Behav. 28, 287–294. https://doi.org/10.1016/S0003-3472(80)80031-5 (1980).
Article Google Scholar
21.
Seppälä, O., Karvonen, A. & Valtonen, E. T. Manipulation of fish host by eye flukes in relation to cataract formation and parasite infectivity. Anim. Behav. 70, 889–894. https://doi.org/10.1016/j.anbehav.2005.01.020 (2005).
Article Google Scholar
22.
Seppälä, O., Karvonen, A. & Valtonen, E. T. Shoaling behaviour of fish under parasitism and predation risk. Anim. Behav. 75, 145–150. https://doi.org/10.1016/j.anbehav.2007.04.022 (2008).
Article Google Scholar
23.
Vivas Muñoz, J. C., Bierbach, D. & Knopf, K. Eye fluke (Tylodelphys clavata) infection impairs visual ability and hampers foraging success in European perch. Parasitol. Res. 118, 2531–2541. https://doi.org/10.1007/s00436-019-06389-5 (2019).
Article PubMed Google Scholar
24.
Vivas Muñoz, J. C., Staaks, G. & Knopf, K. The eye fluke Tylodelphys clavata affects prey detection and intraspecific competition of European perch (Perca fluviatilis). Parasitol. Res. 116, 2561–2567. https://doi.org/10.1007/s00436-017-5564-1 (2017).
Article PubMed Google Scholar
25.
Bergman, E. Foraging abilities and niche breadths of two percids, Perca fluviatilis and Gymnocephalus cernua, under different environmental conditions. J. Anim. Ecol. 57, 443–453. https://doi.org/10.2307/4916 (1988).
Article Google Scholar
26.
Diehl, S. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53, 207–214. https://doi.org/10.2307/3566064 (1988).
Article Google Scholar
27.
Craig, J. F. Percid Fishes: Systematics, Ecology and Exploitation (Blackwell Science, Hoboken, 2000). https://doi.org/10.1002/9780470696033.
Google Scholar
28.
Kennedy, C. R. & Burrough, R. Parasites of trout and perch in Malham Tarn. Fld. Stud. 4, 617–629 (1978).
Google Scholar
29.
Kennedy, C. R. Long term studies on the population biology of two species of eye fluke, Diplostomurn gasterostei and Tylodelphys clavata (Digenea: Diplostomatidae), concurrently infecting the eyes of perch, Perca fluviatilis. J. Fish Biol. 19, 221–236. https://doi.org/10.1111/j.1095-8649.1981.tb05826.x (1981).
Article Google Scholar
30.
Kennedy, C. R. Interspecific interactions between larval digeneans in the eyes of perch, Perca fluviatilis. Parasitology 122, S13–S22. https://doi.org/10.1017/S0031182000016851 (2001).
Article PubMed Google Scholar
31.
Valtonen, E. T., Holmes, J. C., Aronen, J. & Rautalahti, I. Parasite communities as indicators of recovery from pollution: parasites of roach (Rutilus rutilus) and perch (Perca fluviatilis) in Central Finland. Parasitology 126, S43–S52. https://doi.org/10.1017/S0031182003003494 (2003).
CAS Article PubMed Google Scholar
32.
Behrmann-Godel, J. Parasite identification, succession and infection pathways in perch fry (Perca fluviatilis): new insights through a combined morphological and genetic approach. Parasitology 140, 509–520. https://doi.org/10.1017/S0031182012001989 (2013).
CAS Article PubMed Google Scholar
33.
Soylu, E. Metazoan parasites of perch Perca fluviatilis L. from Lake Sığırcı, Ipsala. Turkey. Pak. J. Zool. 45, 47–52 (2013).
Google Scholar
34.
Vivas Muñoz, J.C. Tylodelphys clavata in perch (Perca fluviatilis): spatial heterogeneity, impact on feeding behaviour and intraspecific competition. Master Thesis. Humboldt-Universität zu Berlin (2014)
35.
Hjelm, J., Svanbäck, R., Byström, P., Persson, L. & Wahlström, E. Diet dependent body morphology and ontogenetic reaction norms in Eurasian perch. Oikos 95, 311–323. https://doi.org/10.1034/j.1600-0706.2001.950213.x (2001).
Article Google Scholar
36.
Svanbäck, R. & Eklöv, P. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131, 61–70. https://doi.org/10.1007/s00442-001-0861-9 (2002).
ADS Article PubMed Google Scholar
37.
Svanbäck, R. & Eklöv, P. Morphology dependent foraging efficiency in perch: a trade-off for ecological specialization?. Oikos 102, 273–284. https://doi.org/10.1034/j.1600-0706.2003.12657.x (2003).
Article Google Scholar
38.
Svanbäck, R. & Eklöv, P. Morphology in perch affects habitat specific feeding efficiency. Funct. Ecol. 18, 503–510. https://doi.org/10.1111/j.0269-8463.2004.00858.x (2004).
Article Google Scholar
39.
Quevedo, M. & Olsson, J. The effect of small-scale resource origin on trophic position estimates in Perca fluviatilis. J. Fish Biol. 69, 141–150. https://doi.org/10.1111/j.1095-8649.2006.01072.x (2006).
Article Google Scholar
40.
Quevedo, M., Svanbäck, R. & Eklöv, P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 2263–2274. https://doi.org/10.1890/07-1580.1 (2009).
Article PubMed Google Scholar
41.
Frankiewicz, P. & Wojtal-Frankiewicz, A. Two different feeding tactics of young-of-the-year perch, Perca fluviatilis L., inhabiting the littoral zone of the lowland Sulejow Reservoir (Central Poland). Ecohydrol. Hydrobiol. 12, 35–41. https://doi.org/10.2478/v10104-012-0001-7 (2012).
Article Google Scholar
42.
Persson, L. Effects of reduced interspecific competition on resource utilization in perch (Perca fluviatilis). Ecology 67, 355–364. https://doi.org/10.2307/1938578 (1986).
Article Google Scholar
43.
Persson, L. & Greenberg, L. Interspecific and intraspecific size class competition affecting resource use and growth of perch, Perca fluviatilis. Oikos 59, 97–106. https://doi.org/10.2307/3545128 (1990).
Article Google Scholar
44.
Diehl, S. Effects of habitat structure on resource availability, diet and growth of benthivorous perch, Perca fluviatilis. Oikos 67, 403–414. https://doi.org/10.2307/3545353 (1993).
Article Google Scholar
45.
Svanbäck, R. & Persson, L. Individual diet specialization, niche width and population dynamics: implications for trophic polymorphisms. J. Anim. Ecol. 73, 973–982. https://doi.org/10.1111/j.0021-8790.2004.00868.x (2004).
Article Google Scholar
46.
Eklöv, P. & Svanbäck, R. Predation risk influences adaptive morphological variation in fish populations. Am. Nat. 167, 440–452. https://doi.org/10.1086/499544 (2006).
Article PubMed Google Scholar
47.
Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B Biol. Sci. 274, 839–844. https://doi.org/10.1098/rspb.2006.0198 (2007).
Article Google Scholar
48.
Sharma, C. M. & Borgstrøm, R. Shift in density, habitat use, and diet of perch and roach: An effect of changed predation pressure after manipulation of pike. Fish. Res. 91, 98–106. https://doi.org/10.1016/j.fishres.2007.11.011 (2008).
Article Google Scholar
49.
Svanbäck, R., Eklöv, P., Fransson, R. & Holmgren, K. Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos 117, 114–124. https://doi.org/10.1111/j.2007.0030-1299.16267.x (2008).
Article Google Scholar
50.
Okun, N. & Mehner, T. Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecol. Freshw. Fish 14, 139–149. https://doi.org/10.1111/j.1600-0633.2005.00087.x (2005).
Article Google Scholar
51.
Hyslop, E. J. Stomach content analysis: a review of methods and their application. J. Fish Biol. 17, 411–429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x (1980).
Article Google Scholar
52.
Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320. https://doi.org/10.1146/annurev.ecolsys.18.1.293 (1987).
Article Google Scholar
53.
Beaudoin, C. P., Tonn, W. M., Prepas, E. E. & Wassenaar, L. I. Individual specialization and trophic adaptability of northern pike (Esox lucius): an isotope and dietary analysis. Oecologia 120, 386–396. https://doi.org/10.1007/s004420050871 (1999).
ADS Article PubMed Google Scholar
54.
Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28. https://doi.org/10.2307/3078879 (2003).
MathSciNet Article PubMed Google Scholar
55.
Bearhop, S. et al. Stable isotopes indicate sex-specific and long-term individual foraging specialization in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164. https://doi.org/10.3354/meps311157 (2006).
ADS Article Google Scholar
56.
Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269. https://doi.org/10.1007/s00442-003-1218-3 (2003).
ADS Article PubMed Google Scholar
57.
Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).
ADS CAS Article PubMed PubMed Central Google Scholar
58.
Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399. https://doi.org/10.1002/env.2221 (2013).
MathSciNet Article Google Scholar
59.
Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology? Trends Ecol. Evol. 26, 183–192. https://doi.org/10.1016/j.tree.2011.01.009 (2011).
Article Google Scholar
60.
Voutilainen, A., Figueiredo, K. & Huuskonen, H. Effects of the eye fluke Diplostomum spathaceum on the energetics and feeding of Arctic charr Salvelinus alpinus. J. Fish Biol. 73, 2228–2237. https://doi.org/10.1111/j.1095-8649.2008.02050.x (2008).
Article Google Scholar
61.
Padrós, F., Knuden, R. & Blasco-Costa, I. Histopathological characterisation of retinal lesions associated to Diplostomum species (Platyhelminthes: Trematoda) infection in polymorphic Arctic charr Salvelinus alpinus. Int. J. Parasito. 7, 68–74. https://doi.org/10.1016/j.ijppaw.2018.01.007 (2018).
Article Google Scholar
62.
Ubels, J. L. et al. Impairment of retinal function in yellow perch (Perca flavescens) by Diplostomum baeri metacercariae. Int. J. Parasitol. Parasites Wildl. 7, 171–179. https://doi.org/10.1016/j.ijppaw.2018.05.001 (2018).
Article PubMed PubMed Central Google Scholar
63.
Lemly, A. D. & Esch, G. W. Effects of the trematode Uvulifer ambloplitis on juvenile bluegill sunfish, Lepomis macrochirus: ecological implications. J. Parasit. 70, 475–492. https://doi.org/10.2307/3281395 (1984).
Article Google Scholar
64.
Santoro, M. et al. Parasitic infection by larval helminths in Antarctic fishes: pathological changes and impact on the host body condition index. Dis. Aquat. Org. 105, 139–148. https://doi.org/10.3354/dao02626 (2013).
CAS Article Google Scholar
65.
Owen, S. F., Barber, I. & Hart, P. J. B. Low level infection by eye fluke, Diplostomum spp., affects the vision of three-spined sticklebacks, Gasterosteus aculeatus. J. Fish Biol. 42, 803–806. https://doi.org/10.1111/j.1095-8649.1993.tb00387.x (1993).
Article Google Scholar
66.
Pennycuick, L. Quantitative effects of three species of parasites on a population of three-spined sticklebacks, Gasterosteus aculeatus L. J. Zool. 165, 143–162. https://doi.org/10.1111/j.1469-7998.1971.tb02179.x (1971).
Article Google Scholar
67.
Marcogliese, D. J. et al. Spatial and temporal variations in abundance of Diplostomum spp. in walleye (Stizostedion vitreum) and white sucker (Catostomus commersoni) from the St. Lawrence River: importance the importance of gulls and fish stocks. Can. J. Zool. 79, 355–369. https://doi.org/10.1139/z00-209 (2001).
Article Google Scholar
68.
Dörücü, M., Dildiz, N. & Grabbe, M. C. J. Occurrence and effects of Diplostomum sp. infection in eyes of Acanthobrama marmid in Keban Dam Lake, Elazığ, Turkey. Turk. J. Vet. Anim. Sci. 26, 239–243 (2002).
Google Scholar
69.
Machado, P. M., Takemoto, R. M. & Pavanelli, G. C. Diplostomum (Austrodiplostomum) compactum (Lutz, 1928) (Platyhelminthes, Digenea) metacercariae in fish from the floodplain of the Upper Paraná River. Brazil. Parasitol. Res. 97, 436–444. https://doi.org/10.1007/s00436-005-1483-7 (2005).
CAS Article PubMed Google Scholar
70.
Weatherley, A. H. Growth and Ecology of Fish Populations (Academic Press, London, 1972).
Google Scholar
71.
Lagrue, C. & Poulin, R. Measuring fish body condition with or without parasites: does it matter?. J. Fish Biol. 87, 836–847. https://doi.org/10.1111/jfb.12749 (2015).
CAS Article PubMed Google Scholar
72.
Craig, J. F. A study of the food and feeding of perch, Perca fluviatilis L., inWindermere. Freshw Biol 8, 59–68. https://doi.org/10.1111/j.1365-2427.1978.tb01426.x (1978).
Article Google Scholar
73.
Guma’a, S.A. The food and feeding habits of young perch, Perca fluviatilis, in Windermere. Freshw Biol 8, 177–187. https://doi.org/10.1111/j.1365-2427.1978.tb01439.x (1978).
Article Google Scholar
74.
Wang, N. & Eckmann, R. Distribution of perch (Perca fluviatilis L.) during their first year of life in Lake Constance. Hydrobiologia 277, 135–143. https://doi.org/10.1007/BF00007295 (1994).
Article Google Scholar
75.
Imbock, F., Appenzeller, A. & Eckmann, R. Diel and seasonal distribution of perch in Lake Constance: a hydroacoustic study and in situ observations. J. Fish Biol. 49, 1–13. https://doi.org/10.1111/j.1095-8649.1996.tb00001.x (1996).
Article Google Scholar
76.
Hejlm, J., Persson, L. & Christensen, B. Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability. Oceologia 122, 190–199. https://doi.org/10.1007/PL00008846 (2000).
ADS Article Google Scholar
77.
Horppila, J. et al. Seasonal changes in the diets and relative abundances of perch and roach in the littoral and pelagic zones of a large lake. J. Fish Biol. 56, 51–72. https://doi.org/10.1111/j.1095-8649.2000.tb02086.x (1999).
Article Google Scholar
78.
Allen, K. R. The food and migration of the perch (Perca fluviatilis) in Windermere. J Anim Ecol 4, 264–273. https://doi.org/10.2307/1016 (1935).
Article Google Scholar
79.
Mustamäki, N., Cederberg, T. & Mattila, J. Diet, stable isotopes and morphology of Eurasian perch (Perca fluviatilis) in littoral and pelagic habitats in the northern Baltic Proper. Environ. Biol. Fish 97, 675–689. https://doi.org/10.1007/s10641-013-0169-8 (2014).
Article Google Scholar
80.
Bootsma, H. A., Hecky, R. E., Hesslein, R. H. & Turner, G. F. Food partitioning among Lake Malawi nearshore fishes as revealed by stable isotope analyses. Ecology 77, 1286–1290. https://doi.org/10.2307/2265598 (1996).
Article Google Scholar
81.
Jakobsen, P. J., Johnsen, G. H. & Larsson, P. Effects of predation risk and parasitism on the feeding ecology, habitat use, and abundance of lacustrine threespine stickleback (Gasterosteus aculeatus). Can. J. Fish. Aq. Sci. 45, 426–431. https://doi.org/10.1139/f88-051 (1988).
Article Google Scholar
82.
Milinski, M. Parasites determine a predator’s optimal feeding strategy. Behav. Ecol. Sociobiol. 15, 35–37. https://doi.org/10.1007/BF00310212 (1984).
Article Google Scholar
83.
Barber, I. & Huntingford, F. A. The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spined sticklebacks, Gasterosteus aculeatus. Behaviour 132, 1223–1240. https://doi.org/10.1163/156853995X00540 (1995).
Article Google Scholar
84.
Van den Brink, F. W. B., Van der Velde, G. & Bij de Vaate, A. Amphipod invasion on the Rhine. Nature 352, 576. https://doi.org/10.1038/352576a0 (1991).
ADS Article Google Scholar
85.
den Hartog, C., Van den Brink, F. W. B. & Van der Velde, G. Why was the invasion of the river Rhine by Corophium curvispinum and Corbicula species so successful?. J. Nat. Hist. 26, 1121–1129. https://doi.org/10.1080/00222939200770651 (1992).
Article Google Scholar
86.
Dick, J. T. A. & Platvoet, D. Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proc. R. Soc. Lond. B Biol. Sci. 267, 977–983. https://doi.org/10.1098/rspb.2000.1099 (2000).
CAS Article Google Scholar
87.
Platvoet, D., Van Der Velde, G., Dick, J. T. A. & Li, S. Q. Flexible omnivory in Dikerogammarus villosus (Sowinsky, 1894) (Amphipoda) – Amphipod Pilot Species Project (AMPIS) Report 5. Crustaceana 82, 703–720. https://doi.org/10.1163/156854009X423201 (2009).
Article Google Scholar
88.
Richter, L. et al. The very hungry amphipod: the invasive Dikerogammarus villosus shows high consumption rates for two food sources and independent of predator cues. Biol. Invasions 20, 1321–1335. https://doi.org/10.1007/s10530-017-1629-4 (2018).
Article Google Scholar
89.
Worischka, S. et al. Food consumption of the invasive amphipod Dikerogammarus villosus in field mesocosms and its effects on leaf decomposition and periphyton. Aquat. Invasions 13, 261–275. https://doi.org/10.3391/ai.2018.13.2.07 (2018).
Article Google Scholar
90.
Berg, M.B. Laval food and feeding behaviour in The Chironomidae (eds. Armitage, P.D., Cranston, P.S. & Pinder, L.C.V.) 136–168. https://doi.org/10.1007/978-94-011-0715-0_7 (Springer, 1995)
91.
Henriques-Oliveira, A. L., Nessimian, J. L. & Dorvillé, L. F. M. Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de janeiro, Brazil. Braz. J. Biol. 63, 269–281. https://doi.org/10.1590/S1519-69842003000200012 (2003).
CAS Article PubMed Google Scholar
92.
Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.2307/3071875 (2002).
Article Google Scholar
93.
Syrovátka, V. The predatory behaviour of Monopelopia tenuicalcar (Kieffer, 1918) larvae in a laboratory experiment. J. Limnol. 77, 88–94. https://doi.org/10.4081/jlimnol.2018.1792 (2018).
Article Google Scholar
94.
Bernot, R. J. & Lamberti, G. A. Indirect effects of a parasite on a benthic community: an experiment with trematodes, snails and periphyton. Freshw. Biol. 53, 322–329. https://doi.org/10.1111/j.1365-2427.2007.01896.x (2008).
Article Google Scholar
95.
Seppälä, O., Karvonen, A. & Valtonen, E. T. Parasite-induced change in host behaviour and susceptibility to predation in an eye fluke-fish interaction. Anim. Behav. 68, 257–263. https://doi.org/10.1016/j.anbehav.2003.10.021 (2004).
Article Google Scholar
96.
Gopko, M., Mikheev, V. N. & Taskinen, J. Deterioration of basic components of the anti-predator behavior in fish harboring eye fluke larvae. Behav. Ecol. Sociobiol. 71, 68. https://doi.org/10.1007/s00265-017-2300-x (2017).
Article Google Scholar
97.
Flink, H., Behrens, J. W. & Svensson, P. A. Consequences of eye fluke infection on anti-predator behaviours in invasive round gobies in Kalmar Sound. Parasitol. Res. 116, 1653–1663. https://doi.org/10.1007/s00436-017-5439-5 (2017).
Article PubMed PubMed Central Google Scholar
98.
Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B. & Jeppesen, E. Alternative equilibria in shallow lakes. Trends Evol. Ecol. 8, 275–279. https://doi.org/10.1016/0169-5347(93)90254-M (1993).
CAS Article Google Scholar
99.
Driescher, E., Behrendt, H., Schellenberger, G. & Stellmacher, R. Lake Müggelsee and its environment – natural conditions and anthropogenic impacts. Int. Revue. ges. Hydrobiol. 78, 327–343. https://doi.org/10.1002/iroh.19930780303 (1993).
CAS Article Google Scholar
100.
Kozicka, J. & Niewiadomska, K. Studies on the biology and taxonomy of trematodesof the genus Tylodelphys Diesing, 1850 (Diplostomatidae). Acta Parasitol. Pol. 8, 379–400 (1960).
Google Scholar
101.
Dönges, J. Entwicklungs- und Lebensdauer von Metacercarien. Z. Parasitenk. 31, 340–366. https://doi.org/10.1007/BF00259732 (1969).
Article PubMed Google Scholar
102.
Kennedy, C. R. Long-term stability in the population levels of the eyefluke Tylodelphys podicipina(Digenea: Diplostomatidae) in perch. J. Fish Biol. 31, 571–581. https://doi.org/10.1111/j.1095-8649.1987.tb05259.x (1987).
Article Google Scholar
103.
Höglund, J. & Thulin, J. Identification of Diplostomumspp. in the retina of perch Perca fluviatilisand the lens of roach Rutilus rutilusfrom the Baltic Sea – an experimental study. Syst. Parasitol. 21, 1–19. https://doi.org/10.1007/BF00009910 (1992).
Article Google Scholar
104.
Niewiadomska, K. Rasoẑyty ryb Polski Prywry – Digenea (Polskie Towarzystwo Parazytologiczne, Warsaw, Poland, 2003).
Google Scholar
105.
Blasco-Costa, I. et al. Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: diplostomidae) in Iceland. Int. J. Parasitol. 44, 703–715. https://doi.org/10.1016/j.ijpara.2014.04.009 (2014).
Article PubMed Google Scholar
106.
Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al revisited. J. Parasitol. 83, 575–583. https://doi.org/10.2307/3284227 (1997).
CAS Article PubMed Google Scholar
107.
Nash, R. D. M., Valencia, A. H. & Geffen, A. J. The origin of Fulton’s condition factor: setting the record straight. Fisheries 31, 236–238 (2006).
Google Scholar
108.
Persson, L., Andersson, J., Wahlström, E. & Eklöv, P. Size–specific interactions in lake systems: predator gape limitation and prey growth rate and mortality. Ecology 77, 900–911. https://doi.org/10.2307/2265510 (1996).
Article Google Scholar
109.
Pinder, L. C. V. Biology of freshwater Chironomidae. Ann. Rev. Entomol. 31, 1–23. https://doi.org/10.1146/annurev.en.31.010186.000245 (1986).
Article Google Scholar
110.
Linzmaier, S. M., Twardochleb, L. A., Olden, J. D., Mehner, T. & Arlinghaus, R. Size-dependent foraging niches of European Perch Perca fluviatilis (Linnaeus, 1758) and North American Yellow Perch Perca flavescens (Mitchill, 1814). Environ. Biol. Fish 101, 23–37. https://doi.org/10.1007/s10641-017-0678-y (2018).
Article Google Scholar
111.
Nachev, M. et al. Understanding trophic interactions in host–parasite associations using stable isotopes of carbon and nitrogen. Parasit Vectors 10, 90. https://doi.org/10.1186/s13071-017-2030-y (2017).
CAS Article PubMed PubMed Central Google Scholar
112.
Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid. Commun. Mass Spectrom. 15, 501–519. https://doi.org/10.1002/rcm.258 (2001).
ADS CAS Article PubMed Google Scholar
113.
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506. https://doi.org/10.1016/0016-7037(78)90199-0 (1978).
ADS CAS Article Google Scholar
114.
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351. https://doi.org/10.1016/0016-7037(81)90244-1 (1981).
ADS CAS Article Google Scholar
115.
Fry, B. & Sherr, E. B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27, 13–47 (1984).
CAS Google Scholar
116.
Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7 (1984).
ADS CAS Article Google Scholar
117.
Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066. https://doi.org/10.4319/lo.2001.46.8.2061 (2001).
ADS CAS Article Google Scholar
118.
Elsdon, T. S., Ayvazian, S., McMahon, K. W. & Thorrold, S. R. Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Mar. Ecol. Prog. Ser. 408, 195–205. https://doi.org/10.3354/meps08518 (2010).
ADS CAS Article Google Scholar
119.
Parnell, A. & Jackson, A. SIAR: Stable isotope analysis in R. R package ver. 4.2. http://CRAN.R-project.org/package=siar (2013)
120.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018) More