More stories

  • in

    Coral reef structural complexity loss exposes coastlines to waves

    Ecological sampling and structural complexity profilesThe ecological sampling consists of 10 surveys, taking place in 2005 and from 2008 to 2016, and documents changes in coral colony abundance and size distributions (i.e. width, length, and height) for the three most conspicuous taxa (i.e. Acropora, Pocillopora, and Porites) within a 10 m2 transect on the outer slope23. To quantify reef structural complexity, we built a 3D model of the coral assemblages distributed along a cross-section of the reef substrate separating the 20 m water depth from the reef crest, representing a 160 m stretch along the reef slope (Fig. 1). First, we take 200 overlapping high-resolution photos (300 dpi) of 10 individual corals from each species (i.e. n = 30 coral colonies) and built 3D models using the Agisoft Metashape software24, capturing intra- and inter-species morphological variability (Fig. 1). Then, we systematically and randomly select one of the ten 3D coral models for each taxon to add to the substrate until that the sum of the planar area for each 3D coral models match with the coral cover reported for each taxon and for each year23. We randomly place coral colonies along the 160 m reef cross-section going from 20 m depth to the reef crest (Fig. 1). The individual coral 3D models are resized in width, length, and height according to ecological surveys, and, randomly rotated between − π/2 and π/2 to ensure ecological variability. Finally, we estimated structural complexity of the 3D coral assemblage model using the function rumple_index of the LidR package25 in R 4.0.026. We repeat this approach 100 times for each year, resulting in a total of 1000 reef structural complexity profiles. Our estimates are consistent with previous reef structural complexity estimates at this location27.Figure 1(a) Representation of the three different coral species (Acropora hyacinthus in red, Pocillopora cf. verrucosa in yellow, and Porites lutea in blue). (b) A representaitive Ha’apiti reef cross-section simulation (one of 1000 total simulations) on the outer slope across a water depth range of 0–20 m.Full size imageHydrodynamic and topographic measurementsMo’orea (French Polynesia) is encircled by coral reefs, 500–700 m wide with a dominant swell direction coming from the southwest. In this study, we focus on Ha’apiti, a site with a southwest orientation that is considered as a high-energy site28. We extract 30-year offshore wave data (1980–2010) from a wave hindcast8,29 (Fig. 2a). We also collect high-frequency, in situ wave data using INW PT2X Aquistar and DHI SensorONE pressure transducers (PTs), which are logged at 4 Hz30. The sensors are installed at four locations along a cross-shelf gradient (Fig. 2b,c) covering a 250 m long stretch, including sections through the fore reef, reef crest, and reef flat. Pressure records are corrected for pressure attenuation with depth31 and are split into 15-min bursts30.Figure 2(a) Histogram of the offshore wave height (m) at Ha’apiti, Mo’orea (French Polynesia) in 2016. (b) Aerial view of Ha’apiti (WorldView-3 imagery) with an outline of the wave transect and sensor location. The ecological sampling took place near the S1 location c. Topographic cross-section of the wave transect and position of the sensors on the sea bottom.Full size imageThe beach profile and the reef morphology are measured using airborne bathymetric and topo-bathymetric lidar surveys conducted in June 2015 by the Service Hydrographique & Océanographique de la Marine (SHOM). The bathymetric data are defined by the combination of bathymetric laser (for the submerged part of the beach) and topo-bathymetric laser (for the subaerial beach). The data come at 1 m resolution and are available at https://diffusion.shom.fr.Hydraulic roughness vs structural complexitySpectral attenuation analysis of the water level measurements32,33 is used to estimate the Nikuradse (hydraulic; kn) roughness34 of the coral reef surface along the beach profile sections covered by the pressure transducers. The method is described in detail in the references provided above and uses the conservation of energy equations to obtain estimates of wave energy dissipation from friction. We obtain more than 300 kn estimates for each pair of sensors, each representing a different geomorphologic section. Since the field measurements took place in 2015, the kn outputs obtained from the fore reef section concur with the reef structural complexity estimates of that year (Fig. 3). Then, we define a coefficient factor according to the geomorphologic section as ⍺back reef = kn, back reef/kn, fore reef and ⍺reef crest = kn, reef crest/kn, fore reef. We carefully delineate the sandy section from the reef sections within the cross-shelf gradient (i.e. within the reef flat, lagoon section) and apply the following procedure. First, for the reef sections, we apply the relationship between the reef structural complexity and kn (Fig. 3) to convert our reef structural complexity estimates into continuous kn profiles through Monte Carlo simulations, using the coefficient factor of each geomorphologic section (e.g., forereef, reef crest, and back reef). Second, for the sandy section, we define kn on the grounds of the mean grain size (d50 = 63 μm). Applying this workflow (Fig. 3), we obtain 100 continuous kn profiles for each year (i.e. n = 1000 kn profiles in total).Figure 3Flow chart illustrating how the kn profiles have been obtained along the cross-section at Ha’apiti. The relationship between the Structural complexity (SC) and the Nikuradse roughness (kn) measurements can be described as kn = 0.01 × SC2.98.Full size imageHydrodynamic modelNearshore wave propagation is simulated using a nonlinear wave model based on the Boussinesq Equations35. The rationale of using a Boussinesq type model instead of other types of models (e.g. SWAN) is that the former is able to describe in detail (i.e. 1 m grid resolution) several hydrodynamic parameters (e.g. nearshore nonlinear wave propagation, shoaling, refraction, dissipation due to the bottom friction and breaking and run-up) in the swash zone. The model is defined as follows:$$frac{partial U}{partial t}+frac{1}{h}frac{partial {M}_{u}}{partial x}-frac{1}{h}Ufrac{partial left(Uhright)}{partial x}+gfrac{partialupzeta }{partial x}=frac{left({d}^{2}+2partialupzeta right)}{3}frac{{partial }^{3}U}{partial {x}^{2}partial t}+{d}_{x}hfrac{{partial }^{2}U}{partial xpartial t}+frac{{partial }^{2}}{3}left(Ufrac{{partial }^{3}U}{{partial x}^{3}}-frac{partial U}{partial x}frac{{partial }^{2}U}{partial {x}^{2}}right)+dfrac{partialupzeta }{partial mathrm{x}}frac{{partial }^{2}U}{partialupzeta partial mathrm{t}}+d{d}_{x}Ufrac{{partial }^{2}U}{partial {x}^{2}}+{d}_{x}frac{partialupzeta }{partial mathrm{x}}frac{partial mathrm{U}}{partial mathrm{t}}-dfrac{{partial }^{2}}{partial mathrm{x}partial mathrm{t}}left(delta frac{partial mathrm{U}}{partial mathrm{x}}right)+E-frac{{tau }_{b}}{rho h}+B{d}^{2}left(frac{{partial }^{3}U}{partial {x}^{2}}+gfrac{{partial }^{3}upzeta }{partial {x}^{3}}+frac{{partial }^{2}left(Ufrac{partial U}{partial x}right)}{partial {x}^{2}}right)+2Bd{d}_{x}left(frac{{partial }^{2}U}{partial xpartial t}+gfrac{{partial }^{2}upzeta }{partial {mathrm{x}}^{2}}right),$$
    (1)
    where, U is the mean over the depth horizontal velocity, ζ is the surface elevation, d is the water depth, uo is the near bottom velocity, h = d + ζ, ({M}_{u}=left(d+zeta right){u}_{0}^{2}+delta ({c}^{2}-{u}_{0}^{2})), δ is the roller thickness determined geometrically36, E is an eddy viscosity, τb is the bed friction term and B = 1/1535.In this work the wave breaking mechanism is based on the surface roller concept36. However, in the swash zone, surface roller is not present and the eddy viscosity concept is used to describe the breaking process. The term E in Eq. (1) is written:$${mathrm{E}}_{{mathrm{b}}_{mathrm{x}}}= {mathrm{B}}_{mathrm{b}}frac{1}{mathrm{h}+upeta }{left{{{mathrm{v}}_{e}left[left(mathrm{h}+upeta right)mathrm{U}right]}_{mathrm{x}}right}}_{mathrm{x}},$$
    (2)
    where ({v}_{e}) is the eddy viscosity coefficient:$${mathrm{v}}_{mathrm{e}}={{ell}}^{2}left|frac{partial {mathrm{U}}}{partial {mathrm{x}}}right|,$$
    (3)
    where ({ell}) is the mixing length ({ell}) = 3.5 h και Βb37.The width of the swash zone is assumed to extend from the run-down point (seaward boundary) up to the run-up point (landward boundary). We start from a first estimate of the run-up R using the Stockdon formula38 and the depths below R/4 are considered as the swash zone, using Eq. (2). The final wave run-up height R which comes as output is estimated by the model.The ‘dry bed’ boundary condition is used to simulate run-up35. The numerical solution is based on the fourth-order time predictor–corrector scheme39. Therefore, the bed friction term τb is calculated such as:$${tau }_{bx}=frac{1}{2}rho {f}_{w}Uleft|Uright|,$$
    (4)
    where fw is the bottom friction coefficient40, which is an explicit approximation to the implicit, semi-empirical formula given by Jonsson, 196741.$${f}_{mathrm{w}}=mathrm{exp}left[{5.213left(frac{{mathrm{k}}_{mathrm{n}}}{{mathrm{alpha }}_{0}}right)}^{0.194}-5.977right],$$
    (5)
    where αo is the amplitude of the near-bed wave orbital motion and kn is the Nikuradse roughness height.Simulations and post processingWe use our wave propagation model to assess how different coral reef states affect the impact waves have on the coast. We run an ensemble of 10,000 simulations that covers all the possible combinations of (i) 10 bottom roughness profiles expressing the different observed coral reef states (i.e. healthy vs. not unhealthy); and (ii) 1000 percentiles of wave conditions. The wave conditions are produced as follows: (i) from the weekly values, we estimate all significant wave height (Hs) percentiles from 0.1 to 100, with a step of 0.1; (ii) the resulting 1000 Hs values are linked to the corresponding peak wave period Tp using a copula expressing the dependence of the two variables42. The output of the simulations is the nearshore Hs and 2% exceedance run-up (R2%) height for each of the 1000 conditions and 10 coral reef states. To quantify how the coral reef states are altering wave propagation during extreme events, we apply extreme value analysis to estimate the R2% for different return periods43. We then compare how the return period curves changed from the two coral reef states and we define the change in frequency of extreme R2% under unhealthy coral reefs. It is important to highlight that the tidal range is  More

  • in

    Response diversity as a sustainability strategy

    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2021).Article 

    Google Scholar 
    Lempert, R. J. & Collins, M. T. Managing the risk of uncertain threshold responses: comparison of robust, optimum, and precautionary approaches. Risk Anal. 27, 1009–1026 (2007).Article 

    Google Scholar 
    Garnett, P., Doherty, B. & Heron, T. Vulnerability of the United Kingdom’s food supply chains exposed by COVID-19. Nat. Food 1, 315–318 (2020).Article 
    CAS 

    Google Scholar 
    Abson, D. J. et al. Leverage points for sustainability transformation. Ambio 46, 30–39 (2017).Article 

    Google Scholar 
    Westley, F. et al. Tipping toward sustainability: emerging pathways of transformation. Ambio 40, 762–780 (2011).Article 

    Google Scholar 
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).Article 

    Google Scholar 
    Adger, W. N., Eakin, H. & Winkels, A. Nested and teleconnected vulnerabilities to environmental change. Front. Ecol. Environ. 7, 150–157 (2009).Article 

    Google Scholar 
    Nyström, M. et al. Anatomy and resilience of the global production ecosystem. Nature 575, 98–108 (2019).Article 

    Google Scholar 
    Mason, W. & Watts, D. J. Collaborative learning in networks. Proc. Natl Acad. Sci. USA 109, 764–769 (2012).Article 
    CAS 

    Google Scholar 
    Helbing, D. Globally networked risks and how to respond. Nature 497, 51–59 (2013).Article 
    CAS 

    Google Scholar 
    Worm, B. & Paine, R. T. Humans as a hyperkeystone species. Trends Ecol. Evol. 31, 600–607 (2016).Article 

    Google Scholar 
    Crutzen, P. J. & Stoermer, E. F. in The Future of Nature (eds Robin, L. et al.) 479–490 (Yale Univ. Press, 2017); https://doi.org/10.12987/9780300188479-041Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Phil. Trans. R. Soc. A 369, 1010–1035 (2011).Article 

    Google Scholar 
    Senevirante, S. I. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1513–1766 (IPCC, Cambridge Univ. Press, 2021).Frank, A. B. et al. Dealing with femtorisks in international relations. Proc. Natl Acad. Sci. USA 111, 17356–17362 (2014).Article 
    CAS 

    Google Scholar 
    Folke, C. et al. Our future in the Anthropocene biosphere. Ambio 50, 834–869 (2021).Article 

    Google Scholar 
    Walker, B. & Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function (Island Press/Center for Resource Economics, 2012); https://doi.org/10.5822/978-1-61091-231-0Biggs, R., Schlüter, M. & Schoon, M. L. (eds) Principles for Building Resilience: Sustaining Ecosystem Services in Social–Ecological Systems (Cambridge Univ. Press, 2015); https://doi.org/10.1017/CBO9781316014240Cervantes Saavedra, M. de & Rutherford, J. Don Quixote: The Ingenious Hidalgo de la Mancha (Penguin, 2003).Coronese, M., Lamperti, F., Keller, K., Chiaromonte, F. & Roventini, A. Evidence for sharp increase in the economic damages of extreme natural disasters. Proc. Natl Acad. Sci. USA 116, 21450–21455 (2019).Article 
    CAS 

    Google Scholar 
    Cottrell, R. S. et al. Food production shocks across land and sea. Nat. Sustain. 2, 130–137 (2019).Article 

    Google Scholar 
    Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    Arrow, K. J. & Fisher, A. C. Environmental preservation, uncertainty, and irreversibility. Q. J. Econ. 88, 312–319 (1974).Article 

    Google Scholar 
    Dixit, A. K. & Pindyck, R. S. Investment under Uncertainty (Princeton Univ. Press, 1994).Markowitz, H. Portfolio selection. J. Finance 7, 77–91 (1952).
    Google Scholar 
    Sharpe, W. F. Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19, 425–442 (1964).
    Google Scholar 
    Cifdaloz, O., Regmi, A., Anderies, J. M. & Rodriguez, A. A. Robustness, vulnerability, and adaptive capacity in small-scale social–ecological systems: the Pumpa Irrigation System in Nepal. Ecol. Soc. 15, art39 (2010).Article 

    Google Scholar 
    Levin, S. A. et al. Governance in the face of extreme events: lessons from evolutionary processes for structuring interventions, and the need to go beyond. Ecosystems 25, 697–711 (2022).Article 

    Google Scholar 
    Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).Article 

    Google Scholar 
    Nyström, M. Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. Ambio 35, 30–35 (2006).Article 

    Google Scholar 
    Kummu, M. et al. Interplay of trade and food system resilience: gains on supply diversity over time at the cost of trade independency. Glob. Food Secur. 24, 100360 (2020).Article 

    Google Scholar 
    Hedblom, M., Andersson, E. & Borgström, S. Flexible land-use and undefined governance: from threats to potentials in peri-urban landscape planning. Land Use Policy 63, 523–527 (2017).Article 

    Google Scholar 
    Haldane, A. Rethinking the Financial Network—Speech by Andy Haldane (Bank of England, 2009); https://www.bankofengland.co.uk/speech/2009/rethinking-the-financial-networkHaldane, A. G. & May, R. M. Systemic risk in banking ecosystems. Nature 469, 351–355 (2011).Article 
    CAS 

    Google Scholar 
    Carpenter, S. R., Brock, W. A., Folke, C., van Nes, E. H. & Scheffer, M. Allowing variance may enlarge the safe operating space for exploited ecosystems. Proc. Natl Acad. Sci. USA 112, 14384–14389 (2015).Article 
    CAS 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).Article 

    Google Scholar 
    Leslie, P. & McCabe, J. T. Response diversity and resilience in social–ecological systems. Curr. Anthropol. 54, 114–143 (2013).Article 

    Google Scholar 
    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).Article 

    Google Scholar 
    Anderies, J. M. Managing variance: key policy challenges for the Anthropocene. Proc. Natl Acad. Sci. USA 112, 14402–14403 (2015).Article 
    CAS 

    Google Scholar 
    Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).Article 
    CAS 

    Google Scholar 
    Carlson, J. M. & Doyle, J. Highly optimized tolerance: robustness and design in complex systems. Phys. Rev. Lett. 84, 2529–2532 (2000).Article 
    CAS 

    Google Scholar 
    Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004).Article 
    CAS 

    Google Scholar 
    Csete, M. & Doyle, J. Bow ties, metabolism and disease. Trends Biotechnol. 22, 446–450 (2004).Article 
    CAS 

    Google Scholar 
    Anderies, J. M., Rodriguez, A. A., Janssen, M. A. & Cifdaloz, O. Panaceas, uncertainty, and the robust control framework in sustainability science. Proc. Natl Acad. Sci. USA 104, 15194–15199 (2007).Article 
    CAS 

    Google Scholar 
    Rodriguez, A. A., Cifdaloz, O., Anderies, J. M., Janssen, M. A. & Dickeson, J. Confronting management challenges in highly uncertain natural resource systems: a robustness–vulnerability trade-off approach. Environ. Model. Assess. 16, 15–36 (2011).Article 

    Google Scholar 
    Charpentier, A. Insurability of climate risks. Geneva Pap. Risk Insur. Issues Pract. 33, 91–109 (2008).Article 

    Google Scholar 
    Alfieri, L., Feyen, L. & Di Baldassarre, G. Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies. Climatic Change 136, 507–521 (2016).Article 

    Google Scholar 
    Isakson, S. R. Derivatives for development? Small-farmer vulnerability and the financialization of climate risk management: small-farmer vulnerability and financialization. J. Agrar. Change 15, 569–580 (2015).Article 

    Google Scholar 
    Müller, B. & Kreuer, D. Ecologists should care about insurance, too. Trends Ecol. Evol. 31, 1–2 (2016).Article 

    Google Scholar 
    Walker, B. et al. Looming global-scale failures and missing institutions. Science 325, 1345–1346 (2009).Article 
    CAS 

    Google Scholar 
    Berkes, F. et al. Globalization, roving bandits, and marine resources. Science 311, 1557–1558 (2006).Article 
    CAS 

    Google Scholar 
    Walker, B. H., Langridge, J. L. & McFarlane, F. Resilience of an Australian savanna grassland to selective and non-selective perturbations. Austral Ecol. 22, 125–135 (1997).Article 

    Google Scholar 
    Polasky, S. et al. Corridors of clarity: four principles to overcome uncertainty paralysis in the Anthropocene. BioScience 70, 1139–1144 (2020).Article 

    Google Scholar 
    Engström, G. et al. Carbon pricing and planetary boundaries. Nat. Commun. 11, 4688 (2020).Article 

    Google Scholar 
    Sun, J. C., Ugolini, S. & Vivier, E. Immunological memory within the innate immune system. EMBO J. https://doi.org/10.1002/embj.201387651 (2014).Vély, F. et al. Evidence of innate lymphoid cell redundancy in humans. Nat. Immunol. 17, 1291–1299 (2016).Article 

    Google Scholar 
    Grimm, N., Cook, E., Hale, R. & Iwaniec, D. in The Routledge Handbook of Urbanization and Global Environmental Change (eds Seto, K. et al.) Ch. 14 (Routledge, 2015).Jiang, B., Mak, C. N. S., Zhong, H., Larsen, L. & Webster, C. J. From broken windows to perceived routine activities: examining impacts of environmental interventions on perceived safety of urban alleys. Front. Psychol. 9, 2450 (2018).Article 

    Google Scholar 
    Andersson, E. et al. Urban climate resilience through hybrid infrastructure. Curr. Opin. Environ. Sustain. 55, 101158 (2022).Article 

    Google Scholar 
    Douglas, M. & Wildavsky, A. Risk and Culture: An Essay on the Selection of Technological and Environmental Dangers (Univ. of California Press, 1983).Weber, E. U., Ames, D. R. & Blais, A.-R. ‘How do I choose thee? Let me count the ways’: a textual analysis of similarities and differences in modes of decision-making in China and the United States. Manage. Organ. Rev. 1, 87–118 (2005).Article 

    Google Scholar 
    Kunreuther, H. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2014); https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter2.pdfMeadows, D. H. Thinking in Systems: A Primer (Earthscan, 2009).Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).Article 
    CAS 

    Google Scholar 
    Hall, P. A. & Lamont, M. (eds) Social Resilience in the Neoliberal Era (Cambridge Univ. Press, 2013).Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).Article 

    Google Scholar 
    United Nations Conference on Trade and Development Review of Maritime Transport 2017 (United Nations, 2017).United Nations Conference on Trade and Development Review of Maritime Transport 2018 (United Nations, 2019).Bailey, R. & Wellesley, L. Chatham House Report 2017: Chokepoints and Vulnerabilities in Global Food Trade (Energy, Environment and Resources Department, Chatham House, The Royal Institute of International Affairs, 2017); https://www.chathamhouse.org/sites/default/files/publications/research/2017-06-27-chokepoints-vulnerabilities-global-food-trade-bailey-wellesley-final.pdfKhoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).Article 
    CAS 

    Google Scholar 
    Hendrickson, M. K. Resilience in a concentrated and consolidated food system. J. Environ. Stud. Sci. 5, 418–431 (2015).Article 

    Google Scholar 
    Öborn, I. et al. Restoring rangelands for nutrition and health for humans and livestock. in The XXIV International Grassland Congress / XI International Rangeland Congress (Sustainable Use of Grassland and Rangeland Resources for Improved Livelihoods) (ed. National Organizing Committee of 2021 IGC/IRC Congress) (Kenya Agricultural and Livestock Research Organization, 2022).Vulnerable Supply Chains—Interim Report (Productivity Commission, Australian Government, 2021); https://www.pc.gov.au/inquiries/completed/supply-chains/interim More

  • in

    Timely sown maize hybrids improve the post-anthesis dry matter accumulation, nutrient acquisition and crop productivity

    Srivastava, R. K., Mequanint, F., Chakraborty, A., Panda, R. K. & Halder, D. Augmentation of maize yield by strategic adaptation to cope with climate change for a future period in Eastern India. J. Clean. Prod. 339, 130599 (2022).
    Google Scholar 
    Pooniya, V. et al. Six years of conservation agriculture and nutrient management in maize–mustard rotation: Impact on soil properties, system productivity and profitability. Field Crops Res. 260, 108002 (2021).
    Google Scholar 
    Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize grain yields and yield components. Field Crops Res. 150, 135–144 (2013).
    Google Scholar 
    Maresma, A., Ballesta, A., Santiveri, F. & Lloveras, J. Sowing date affects maize development and yield in irrigated mediterranean environments. Agriculture 9(3), 67 (2019).
    Google Scholar 
    Srivastava, R. K., Panda, R. K., Chakraborty, A. & Halder, D. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Res. 221, 339–349 (2018).
    Google Scholar 
    Van Roekel, R. J. & Coulter, J. A. Agronomic responses of corn hybrids to row width and plant density. Agronomy J. 104(3), 612–620 (2012).
    Google Scholar 
    Santiveri, F., Royo, C. & Romagosa, I. Growth and yield responses of spring and winter triticale cultivated under Mediterranean conditions. Eur. J. Agron. 20(3), 281–292 (2004).
    Google Scholar 
    Masoni, A., Ercoli, L., Mariotti, M. & Arduini, I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur. J. Agron. 26(3), 179–186 (2007).CAS 

    Google Scholar 
    Yang, W., Peng, S., Dionisio-Sese, M. L., Laza, R. C. & Visperas, R. M. Grain filling duration, a crucial determinant of genotypic variation of grain yield in field-grown tropical irrigated rice. Field Crops Res. 105, 221–227 (2008).
    Google Scholar 
    Wei, H. et al. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res. 204, 101–109 (2017).
    Google Scholar 
    Wu, H. et al. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Sci. Rep. 8(1), 1–11 (2018).ADS 

    Google Scholar 
    Laza, M. R., Peng, S., Akita, S. & Saka, H. Contribution of biomass partitioning and translocation to grain yield under sub-optimum growing conditions in irrigated rice. Plant Prod. Sci. 6(1), 28–35 (2003).
    Google Scholar 
    Gao, H. et al. Intercropping modulates the accumulation and translocation of dry matter and nitrogen in maize and peanut. Field Crops Res. 284, 108561 (2022).
    Google Scholar 
    Yang, Y. et al. Solar radiation effects on dry matter accumulations and transfer in maize. Front. Plant Sci. 12, 1927 (2021).
    Google Scholar 
    Jamshidi, A. & Javanmard, H. R. Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Eng. J. 9(4), 2093–2099 (2018).
    Google Scholar 
    Tyagi, B. S. et al. Identification of wheat cultivars for low nitrogen tolerance using multivariable screening approaches. Agronomy 10(3), 417 (2020).CAS 

    Google Scholar 
    Fischer, R. A. & Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 29(5), 897–912 (1978).
    Google Scholar 
    Fernandez, G. C. Effective selection criteria for assessing plant stress tolerance. In Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13–16, Shanhua, Taiwan. 257–270 (1992).Bouslama, M. & Schapaugh, W. T. Jr. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop sci. 24(5), 933–937 (1984).
    Google Scholar 
    Ciampitti, I. A. & Vyn, T. J. Grain nitrogen source changes over time in maize: A review. Crop Sci. 53(2), 366–377 (2013).CAS 

    Google Scholar 
    Chen, Y. et al. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crops Res. 159, 1–9 (2014).
    Google Scholar 
    Mi, G. et al. Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. J. plant nutr. 26(1), 237–247 (2003).CAS 

    Google Scholar 
    Tollenaar, M. & Lee, E. A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 51(2), 399 (2006).
    Google Scholar 
    Samonte, S. O. P. et al. Nitrogen utilization efficiency: Relationships with grain yield, grain protein, and yield-related traits in rice. Agronomy J. 98(1), 168–176 (2006).CAS 

    Google Scholar 
    Qiao, J., Yang, L., Yan, T., Xue, F. & Zhao, D. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric. Ecosyst. Environ. 146(1), 103–112 (2012).CAS 

    Google Scholar 
    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants 3rd edn. (Academic Press, 2012).
    Google Scholar 
    Ning, P., Li, S., Yu, P., Zhang, Y. & Li, C. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Res. 144, 19–27 (2013).
    Google Scholar 
    Hawkesford, M. et al. Functions of macronutrients. In Marschners Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 178–189 (Academic Press, 2012).
    Google Scholar 
    Palta, J. A. et al. Large root systems: Are they useful in adapting wheat to dry environments?. Funct. Plant Biol. 38(5), 347–354 (2011).
    Google Scholar 
    Pooniya, V., Palta, J. A., Chen, Y., Delhaize, E. & Siddique, K. H. Impact of the TaMATE1B gene on above and below-ground growth of durum wheat grown on an acid and Al3+-toxic soil. Plant Soil 447(1), 73–84 (2020).CAS 

    Google Scholar 
    Bonelli, L. E., Monzon, J. P., Cerrudo, A., Rizzalli, R. H. & Andrade, F. H. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Res. 198, 215–225 (2016).
    Google Scholar 
    Sorensen, I., Stone, P. & Rogers, B. Effect of sowing time on yield of a short and a long season maize hybrid. Proc. Agron. Soc. NZ 30, 63–66 (2000).
    Google Scholar 
    Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize: Phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res. 150, 145–155 (2013).
    Google Scholar 
    Zhou, B. et al. Maize kernel weight responses to sowing date-associated variation in weather conditions. Crop J. 5(1), 43–51 (2017).
    Google Scholar 
    Cirilo, A. G. & Andrade, F. H. Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Sci. 34(4), 1039–1043 (1994).
    Google Scholar 
    Shi, Y. et al. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain. Soil Till. Res. 160, 73–81 (2016).
    Google Scholar 
    He, P., Zhou, W. & Jin, J. Carbon and nitrogen metabolism related to grain formation in two different senescent types of maize. J. Plant Nutrit. 27(2), 295–311 (2004).CAS 

    Google Scholar 
    Pommel, B. et al. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur. J. Agron. 24(3), 203–211 (2006).CAS 

    Google Scholar 
    Clarke, J. M., Campbell, C. A., Cutforth, H. W., DePauw, R. M. & Winkleman, G. E. Nitrogen and phosphorus uptake, translocation, and utilization efficiency of wheat in relation to environment and cultivar yield and protein levels. Can. J. Plant Sci. 70(4), 965–977 (1990).CAS 

    Google Scholar 
    Mardeh, A. S. S., Ahmadi, A., Poustini, K. & Mohammadi, V. Evaluation of drought resistance indices under various environmental conditions. Field Crops Res. 98(2–3), 222–229 (2006).
    Google Scholar 
    Naderi, A., Majidi-Harvan, E., Hashemi-Dezfoli, A., Rezaei, A. & Normohamadi, G. Analysis of efficiency of drought tolerance indices in crop plants and introduction of a new criteria. Seed Plant 15(4), 390–402 (1999).
    Google Scholar 
    Zeng, W. et al. Comparative proteomics analysis of the seedling root response of drought-sensitive and drought-tolerant maize varieties to drought stress. Int. J. Mol. Sci. 20(11), 2793 (2019).CAS 

    Google Scholar 
    Hajibabaei, M. & Azizi, F. Evaluation of drought tolerance indices in some new hybrids of corn. Electron. J. Crop Prod. 3, 139–155 (2011).
    Google Scholar 
    Zhao, J. et al. Yield and water use of drought-tolerant maize hybrids in a semiarid environment. Field Crops Res. 216, 1–9 (2018).
    Google Scholar 
    Fageria, N. K. Nitrogen harvest index and its association with crop yields. J. Plant Nutri. 37(6), 795–810 (2014).CAS 

    Google Scholar 
    Raghuram, N., Sachdev, M. S. & Abrol, Y. P. Towards an integrative understanding of reactive nitrogen. In Agricultural Nitrogen Use & Its Environmental Implications (eds Abrol, Y. P. et al.) 1–6 (I.K. International Publishing House Pvt. Ltd., 2007).
    Google Scholar 
    Baligar, V. C., Fageria, N. K. & He, Z. L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 32(7–8), 921–950 (2001).CAS 

    Google Scholar 
    Foulkes, M. J. et al. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res. 114(3), 329–342 (2009).
    Google Scholar 
    Gaju, O. et al. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res. 123(2), 139–152 (2011).
    Google Scholar 
    Ehdaie, B. A. H. M. A. N., Mohammadi, S. A. & Nouraein, M. QTLs for root traits at mid-tillering and for root and shoot traits at maturity in a RIL population of spring bread wheat grown under well-watered conditions. Euphytica 211(1), 17–38 (2016).
    Google Scholar 
    Piper, C. S. Soil and Plant Analysis (Adelaide University, 1950).
    Google Scholar 
    Subbiah, B. V. & Asija, G. L. A rapid method for the estimation of nitrogen in soil. Curr. Sci. 26, 259–260 (1956).
    Google Scholar 
    Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soil by Extraction with Sodium Carbonate (USDA, 1954).
    Google Scholar 
    Hanway, J. J. & Heidel, H. Soil Analysis Methods as used in Iowa State College Soil Testing Laboratory, Bulletin 57 (Iowa State College of Agriculture, 1952).
    Google Scholar 
    Walkley, A. L. & Black, I. A. An examination of the Degtjareff method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).ADS 
    CAS 

    Google Scholar 
    Ntanos, D. A. & Koutroubas, S. D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 74, 93–101 (2002).
    Google Scholar 
    Prasad, R., Shivay, Y. S., Kumar, D., & Sharma, S. N. Learning by doing exercises in soil fertility (A practical manual for soil fertility). Division of Agronomy, Indian Agricultural Research Institute, India, (2006).Jiang, L. et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res. 88, 239–250 (2004).
    Google Scholar 
    Dai, X. et al. Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Res. 154, 100–109 (2013).
    Google Scholar 
    Liu, W. et al. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in North China Plain. Front. Plant Sci. 9, 1798 (2018).
    Google Scholar 
    Gomez, K. A. & Gomez, A. A. Statistical Procedures for Agricultural Research 2nd edn, 180–209 (Wiley, 1984).
    Google Scholar  More

  • in

    Mapping the Amazon’s fish under threat

    When I first came to the Amazon from central Brazil in 1978, I was planning to stay just a year, but I was mesmerized by the size of the rainforest’s rivers and its biodiversity. I ended up staying longer and earned my master’s degree in aquatic biology in 1984 from the National Institute for Amazonian Research (INPA), in Manaus, Brazil. I then went to get my PhD in ecology and evolutionary biology at the University of Arizona in Tucson, and returned to Manaus in 1998 to work as an ichthyologist at INPA.I was part of the team that started INPA’s fish collection in 1978. At the time, most scientific information on Amazonian fish, including specimens, had been collected by researchers and stored at other institutions around the world. Brazilians couldn’t easily access any of it. Now, INPA has preserved and catalogued more than 600,000 fish, all of which are available to our graduate students and scientific community.
    Women in science
    This picture, from last June, was taken at a Manicoré River creek in northwest Brazil during a Greenpeace expedition. I’m holding a bag of small fish, collected using sieves.Since 2006, the riverside communities on the Manicoré have been advocating for a reserve to protect their land from non-sustainable practices. They asked Greenpeace to help map the area’s biodiversity to bolster their application. Greenpeace in turn invited INPA researchers for its mapping expedition. We spent 20 days collecting and registering the wide range of creatures in the Manicoré’s basins.Besides fires, the Amazon has been hit hard by deforestation and industrial activities. We registered a decline in populations of several fish species after the construction of the hydroelectric complex of Belo Monte — the second- largest in the world — in the Xingu River. These species can thrive only in the oxygenated environment of running rivers and waterfalls, which have been largely destroyed. More

  • in

    Hybridization provides climate resilience

    Hoffmann, A. A. & Sgrò, C. M. Nature 470, 479–485 (2011).Article 
    CAS 

    Google Scholar 
    Taylor, S. A. & Larson, E. L. Nat. Ecol. Evol. 3, 170–177 (2019).Article 

    Google Scholar 
    Brauer, C. J. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01585-1 (2023).Article 

    Google Scholar 
    Grinnell, J. Auk 34, 427–433 (1917).Article 

    Google Scholar 
    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton Univ. Press, 2011).Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).Article 
    CAS 

    Google Scholar 
    Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. Nat. Ecol. Evol. 5, 1350–1360 (2021).Article 

    Google Scholar 
    Fitzpatrick, M. C. & Keller, S. R. Ecol. Lett. 18, 1–16 (2015).Article 

    Google Scholar 
    Bay, R. A. et al. Science 359, 83–86 (2018).Article 
    CAS 

    Google Scholar 
    Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article 

    Google Scholar 
    Rellstab, C., Dauphin, B. & Exposito‐Alonso, M. Evol. Appl. 14, 1202–1212 (2021).Article 

    Google Scholar 
    Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. Trends Ecol. Evol. 16, 613–622 (2001).Article 

    Google Scholar 
    Rhymer, J. M. & Simberloff, D. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).Article 

    Google Scholar 
    Todesco, M. et al. Evol. Appl. 9, 892–908 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    Global vegetation resilience linked to water availability and variability

    Vegetation and land-cover dataTo monitor vegetation at the global scale, we use three datasets: (1) vegetation optical depth (VOD, 0.25°, Ku-Band, daily 1987–201723) (Fig. 1A), (2) AVHRR GIMMSv3g normalized difference vegetation index (NDVI, 1/12°, bi-weekly 1981–201524) (Fig. 1B), and (3) MODIS MOD13 NDVI at 0.05° (16-day, 2000–202125). We correct for spurious values in the NDVI data (e.g., cloud contamination) using the method of Chen et al.43. We resample the VOD data using bi-weekly medians to agree with the NDVI data time sampling.For all three vegetation datasets, we remove seasonality and long-term trends using seasonal trend decomposition by Loess4,44 based on the proposed optimal parameters listed in Cleveland et al.44 (code available on Zenodo45). That is, we use a period of 24 (bi-monthly, 1 year), 47 for the trend smoother (just under 2 years) and 25 for low-pass (just over 1 year). We only use the STL residual—the de-seasoned and de-trended NDVI and VOD time series—in our analysis.To contextualize our understanding of vegetation resilience, we use MODIS MCD12Q1 land cover46 (Fig. 1C) as well as a global average aridity index based on WorldCLIM data31 (Fig. 1D). We exclude from our analysis anthropogenic and non-vegetated landscapes (e.g., permanent snow and ice, desert, urban), as well as any land covers which have changed (e.g., forest to grassland) during the period 2001–2020.Precipitation data and variability metricsTo measure precipitation at the global scale, we rely upon ERA5 data (~30 km, monthly, 1981–2021)33. We process global-scale precipitation metrics using the Google Earth Engine47 platform. We further use the sum of soil moisture from the surface down to 28 cm of depth (first two layers of the ECMWF Integrated Forecasting System soil moisture estimates) to quantify soil moisture means and inter-annual variability33.It is well-documented that vegetation resilience is responsive to the MAP of certain regions1. However, the role of precipitation variability in controlling vegetation resilience has not been well-studied. Here we examine precipitation variability in terms of both intra- and inter-annual patterns. Intra-annual precipitation variability is determined in terms of the Walsh-Lawler Seasonality index32 (Fig. 1D), calculated using monthly data from ERA533.Partly due to the fact that precipitation is non-negative, simple inter-annual variability metrics such as the standard deviation of annual precipitation sums are biased by the absolute precipitation sums; higher precipitation regions have a higher possible range of variability. To limit the influence of MAP, we hence investigate the standard deviation of annual precipitation sums normalized by the MAP, over the period 1981–2021, based on ERA5 data33 (Fig. 1F). We motivate our normalization by MAP with the strong linear relationship between MAP and MAP standard deviation (Supplementary Fig. S2). We further confirm our discovered relationships (Fig. 5) using only those regions where MAP was between the 40 and 60th percentile of MAP for a given land cover (Supplementary Figs. S11,S12). This serves as an additional check that our normalization of MAP standard deviation by MAP does not bias the inferred relationship between vegetation resilience and precipitation variability. Similarly, we generate a normalized inter-annual soil moisture variability by normalizing year-on-year soil moisture standard deviation (Supplementary Fig. S8) by long-term mean soil moisture (Supplementary Fig. S5).Empirical resilience estimationResilience is defined as the ability of a system to recover from perturbations, and can be quantified empirically by the speed of recovery to the previous state16,17. To measure resilience on the global scale, we employ a recently introduced methodology4 which we will briefly summarize in the following.We first identify sharp transitions in the vegetation time series using an 18-point (9 month) moving window to define local slopes throughout the time series48. We then identify slopes above the 99th percentile, and define connected regions as individual perturbations. The highest peak (largest instantaneous slope) within each connected region is then labeled as an individual disturbance.The employed approach does not delineate every rapid transition in a time series due to our reliance on percentiles; our dataset will be inherently biased towards the largest transitions. Furthermore, the same transitions are not guaranteed to be captured for both NDVI and VOD data in each location, as the percentiles will naturally vary between the datasets. Finally, our method will in some cases produce false positives, especially in cases where a given time series does not have any significant rapid transitions. To limit the influence of false positives on our results, we discard any perturbations where the time series does not drop significantly, and where the period before and after a given transition does not pass a two-sample Kolmogorov–Smirnov test4.Finally, using our global set of time-series transitions, we can identify each local vegetation (NDVI or VOD) minima, and use the five following years of data to fit an exponential function to the residual time series, assuming that the recovery after a perturbation to a vegetation state x0 follows approximately the equation$$x(t),approx ,{x}_{0}{e}^{rt}$$
    (1)
    where x(t) denotes the vegetation state at time t after the perturbation. Negative r indicates that the vegetation system will return to the original stable state at rate ∣r∣. For positive r, the initial perturbation would be amplified, suggesting a non-resilient vegetation state. Our empirical recovery rates are defined as the fitted exponent r, obtained for each detected transition in the NDVI and VOD residual time series. We finally use the coefficient of determination R2 to remove instances where the fitted exponential poorly matches the underlying data4.For the empirical estimate of the restoring rate obtained from fitting an exponential to the recovery after an abrupt negative deviation of VOD or NDVI, abrupt changes in the mean state induced by changing sensors rather than an actual vegetation shift may impact the results. However, all datasets used here are tightly cross-calibrated to eliminate mean-shifts when new instruments are introduced23,24. It is therefore unlikely that changes in the instrumentation of the various datasets unduly influence our empirical estimates of λ.Dynamical system metrics of resilienceThe lag-one autocorrelation (AC1) has previously been proposed to measure the stability of real-world dynamical systems in general, and the resilience of vegetation systems in particular1,19,20,21,49. Based on the concept of critical slowing down, the AC1 has, together with the variance, also been suggested as an early-warning indicator for forthcoming critical transitions50,51. Mathematically, the suitability of the variance and AC1 as resilience measures and early-warning indicators can be motivated as follows4,52,53. First, linearize the system around a given stable state x*:$$dbar{x}=lambda bar{x}dt+sigma dW$$
    (2)
    for (bar{x}: !!=x-{x}^{*}), assuming a Wiener Process W with standard deviation σ. The dynamics are stable for λ  More

  • in

    Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica

    Siegert M, Ross N, Le Brocq A. Recent advances in understanding Antarctic subglacial lakes and hydrology. Philos Trans R Soc A-Math Phys Eng Sci. 2016;374:20140306.
    Google Scholar 
    Fricker H, Scambos T, Bindschadler R, Padman L. An active subglacial water system in West Antarctica mapped from space. Science. 2007;315:1544–8.CAS 

    Google Scholar 
    Livingstone S, Li Y, Rutishauser A, Sanderson R, Winter K, Mikucki J, et al. Subglacial lakes and their changing role in a warming climate. Nat Rev Earth Environ. 2022;3:106–24.
    Google Scholar 
    Tulaczyk S, Mikucki J, Siegfried M, Priscu J, Barcheck C, Beem L, et al. WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann Glaciol. 2014;55:51–8.
    Google Scholar 
    Priscu J, Achberger A, Cahoon J, Christner B, Edwards R, Jones W, et al. A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarctitc Sci. 2013;25:637–47.
    Google Scholar 
    Christner BC, Priscu JC, Achberger AM, Barbante C, Carter SP, Christianson K, et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature. 2014;512:310–3.CAS 

    Google Scholar 
    Michaud A, Dore J, Achberger A, Christner B, Mitchell A, Skidmore M, et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat Geosci. 2017;10:582–6.CAS 

    Google Scholar 
    Achberger A, Christner B, Michaud A, Priscu J, Skidmore M, Vick-Majors T, et al. Microbial community structure of Subglacial Lake Whillans, West Antarctica. Front Microbiol. 2016;7:1457.
    Google Scholar 
    Vick-Majors TJ, Mitchell AC, Achberger AM, Christner BC, Dore JE, Michaud AB, et al. Physiological ecology of microorganisms in Subglacial Lake Whillans. Front Microbiol. 2016;7:1705.
    Google Scholar 
    Vick‐Majors TJ, Michaud AB, Skidmore ML, Turetta C, Barbante C, Christner BC, et al. Biogeochemical connectivity between freshwater ecosystems beneath the West Antarctic Ice Sheet and the Sub‐Ice Marine Environment. Global Biogeochem Cycles. 2020;34:1–17.
    Google Scholar 
    Montross S, Skidmore M, Tranter M, Kivimaki A, Parkes R. A microbial driver of chemical weathering in glaciated systems. Geology. 2013;41:215–8.CAS 

    Google Scholar 
    Gill-Olivas B, Telling J, Tranter M, Skidmore M, Christner B, O’Doherty S, et al. Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica. Commun Earth Environ. 2021;2:1–12.
    Google Scholar 
    Priscu JC, Kalin J, Winans J, Campbell T, Siegfried MR, Skidmore M, et al. Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. Ann Glaciol. 2021;62:340–52.
    Google Scholar 
    Fricker H, Scambos T. Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003-2008. J Glaciol. 2009;55:303–15.
    Google Scholar 
    Carter S, Fricker H, Siegfried M. Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica. J Glaciol. 2013;59:1147–62.
    Google Scholar 
    Venturelli RA, Boehman B, Davis C, Hawkings JR, Johnston SE, Gustafson CD, et al. Constraints on the timing and extent of deglacial grounding line retreat in West Antarctica from subglacial sediments. AGU Advances. 2022; (in review).Kingslake J, Scherer R, Albrecht T, Coenen J, Powell R, Reese R, et al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature. 2018;558:430–4.CAS 

    Google Scholar 
    Venturelli RA, Siegfried MR, Roush KA, Li W, Burnett J, Zook R, et al. Mid-Holocene Grounding Line Retreat and Readvance at Whillans Ice Stream, West Antarctica. Geophys Res Lett. 2020;47:e2020GL088476.
    Google Scholar 
    Scherer R, Aldahan A, Tulaczyk S, Possnert G, Engelhardt H, Kamb B. Pleistocene collapse of the West Antarctic ice sheet. Science. 1998;281:82–5.CAS 

    Google Scholar 
    Achberger A. Structure and functional potential of microbial communities in Subglacial Lake Whillans and at the Ross Ice Shelf Grounding Zone, West Antarctica: Louisiana State University; 2016.Blythe D, Duling D, Gibson D. Developing a hot-water drill system for the WISSARD project: 2. In situ water production. Ann Glaciol. 2014;55:298–310.
    Google Scholar 
    Burnett J, Rack FR, Blythe D, Swanson P, Duling D, Gibson D, et al. Developing a hot-water drill system for the WISSARD project: 3. Instrumentation and control systems. Ann Glaciol. 2014;55:303–10.
    Google Scholar 
    Rack F, Duling D, Blythe D, Burnett J, Gibson D, Roberts G, et al. Developing a hot-water drill system for the WISSARD project: 1. Basic drill system components and design. Ann Glaciol. 2014;55:285–97.
    Google Scholar 
    Michaud A, Vick-Majors T, Achberger A, Skidmore M, Christner B, Tranter M, et al. Environmentally clean access to Antarctic subglacial aquatic environments. Antarctic Sci. 2020;32:1–12.Kallmeyer J, Smith DC, Spivack AJ, D’Hondt S. New cell extraction procedure applied to deep subsurface sediments. Limnol Oceanogr Methods. 2008;6:236–45.
    Google Scholar 
    Pan D, Morono Y, Inagaki F, Takai K. An improved method for extracting viruses from sediment: detection of far more viruses in the subseafloor than previously reported. Front Microbiol. 2019;10:878.
    Google Scholar 
    Battin T, Wille A, Sattler B, Psenner R. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol. 2001;67:799–807.CAS 

    Google Scholar 
    Klock J-H, Wieland A, Seifert R, Michaelis W. Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Marine Biol. 2007;152:1077–85.CAS 

    Google Scholar 
    Miyatake T, Moerdijk-Poortvliet T, Stal L, Boschker H. Tracing carbon flow from microphytobenthos to major bacterial groups in an intertidal marine sediment by using an in situ C-13 pulse-chase method. Limnol Oceanogr. 2014;59:1275–87.CAS 

    Google Scholar 
    Albalasmeh A, Berhe A, Ghezzehei T. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers. 2013;97:253–61.CAS 

    Google Scholar 
    Lerotic M, Mak R, Wirick S, Meirer F, Jacobsen C. MANTiS: a program for the analysis of X-ray spectromicroscopy data. J Synchrotron Radiat. 2014;21:1206–12.CAS 

    Google Scholar 
    Bonneville S, Delpomdor F, Preat A, Chevalier C, Araki T, Kazemian M, et al. Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci Adv. 2020;6:eaax7599.CAS 

    Google Scholar 
    Le Guillou C, Bernard S, De la Pena F, Le Brech Y. XANES-based quantification of carbon functional group concentrations. Anal Chem. 2018;90:8379–86.
    Google Scholar 
    Solomon D, Lehmann J, Kinyangi J, Liang B, Heymann K, Dathe L, et al. Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference organic compounds. Soil Sci Soc Am J. 2009;73:1817–30.CAS 

    Google Scholar 
    Michaud A, Skidmore M, Mitchell A, Vick-Majors T, Barbante C, Turetta C, et al. Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology. 2016;44:347–50.CAS 

    Google Scholar 
    Raiswell R, Hawkings J, Eisenousy A, Death R, Tranter M, Wadham J. Iron in glacial systems: speciation, reactivity, freezing behavior, and alteration during transport. Front Earth Sci. 2018;6:222.
    Google Scholar 
    Hyacinthe C, Bonneville S, Van Cappellen P. Reactive iron(III) in sediments: Chemical versus microbial extractions. Geochimica Et Cosmochimica Acta. 2006;70:4166–80.CAS 

    Google Scholar 
    Raiswell R, Benning L, Tranter M, Tulaczyk S. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem Trans. 2008;9:7.
    Google Scholar 
    Raiswell R, Vu H, Brinza L, Benning L. The determination of labile Fe in ferrihydrite by ascorbic acid extraction: Methodology, dissolution kinetics and loss of solubility with age and de-watering. Chem Geol. 2010;278:70–9.CAS 

    Google Scholar 
    Fossing H, Jorgensen B. Measurement of bacterial sulfate reduction in sediments—evaluation of a single-step chromium reduction method. Biogeochemistry. 1989;8:205–22.CAS 

    Google Scholar 
    Cline J. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr. 1969;14:454.CAS 

    Google Scholar 
    Kallmeyer J, Ferdelman T, Weber A, Fossing H, Jorgensen B. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol Oceanogr Methods. 2004;2:171–80.
    Google Scholar 
    Roy H, Weber H, Tarpgaard I, Ferdelman T, Jorgensen B. Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive S-35 tracer. Limnol Oceanogr Methods. 2014;12:196–211.
    Google Scholar 
    Caporaso J, Lauber C, Walters W, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 

    Google Scholar 
    Button DK, Robertson BR. Determination of DNA content of aquatic bacteria by flow cytometry. Appl Environ Microbiol. 2001;67:1636–45.CAS 

    Google Scholar 
    Michaud AB, Priscu JC, the Salsa Science Team. Sediment oxygen consumption in Antarctic subglacial environments. Limnology and Oceanography. 2022. (In Review).Siegfried MR, Venturelli RA, Patterson MO, Arnuk W, Campbell TD, Gustafson CD, et al. The life and death of a subglacial lake in West Antarctica. Geology. 2023; in press; https://doi.org/10.1130/G50995.1.Vyse S, Herzschuh U, Pfalz G, Pestryakova L, Diekmann B, Nowaczyk N, et al. Sediment and carbon accumulation in a glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and Holocene: combining hydroacoustic profiling and down-core analyses. Biogeosciences. 2021;18:4791–816.CAS 

    Google Scholar 
    Oliva-Urcia B, Moreno A, Leunda M, Valero-Garces B, Gonzalez-Samperiz P, Gil-Romera G, et al. Last deglaciation and Holocene environmental change at high altitude in the Pyrenees: the geochemical and paleomagnetic record from Marbor, Lake (N Spain). J Paleolimnol. 2018;59:349–71.
    Google Scholar 
    Davis C. Ecology of subglacial lake microbial communities in West Antarctica: University of Florida; 2022.Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, et al. Bacteria beneath the West Antarctic ice sheet. Environ Microbiol. 2009;11:609–15.CAS 

    Google Scholar 
    Boyd E, Hamilton T, Havig J, Skidmore M, Shock E. Chemolithotrophic Primary Production in a Subglacial Ecosystem. Appl Environ Microbiol. 2014;80:6146–53.
    Google Scholar 
    Sattley WM, Madigan MT. Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol. 2006;72:5562–8.CAS 

    Google Scholar 
    Dieser M, Broemsen E, Cameron KA, King GM, Achberger A, Choquette K, et al. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J. 2014;8:2305–16.CAS 

    Google Scholar 
    Vaclavkova S, Schultz-Jensen N, Jacobsen O, Elberling B, Aamand J. Nitrate-controlled anaerobic oxidation of pyrite by thiobacillus cultures. Geomicrobiol J. 2015;32:412–9.CAS 

    Google Scholar 
    Gustafson C, Key K, Siegfried M, Winberry J, Fricker H, Venturelli R, et al. A dynamic saline groundwater system mapped beneath an Antarctic ice stream. Science. 2022;376:640–4.CAS 

    Google Scholar 
    Priscu JC, Tulaczyk S, Studinger M, Kennicutt M, Christner BC, Foreman CM. Antarctic subglacial water: origin, evolution and ecology. Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems Oxford University Press, Oxford. 2008:119–35.Whitman W, Coleman D, Wiebe W. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 1998;95:6578–83.CAS 

    Google Scholar 
    Scherer R. Quaternary and tertiary microfossils from beneath Ice Stream-B—evidence for a dynamic West Antarctic ice-sheet history. Global Planet Change. 1991;90:395–412.
    Google Scholar 
    Haran T, Bohlander J, Scambos T, Painter T, Fahnestock M. MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map, Version 2. 2021; Boulder, Colorado USA NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/4ZL43A4619AF.Mouginot J, Rignot E, Scheuchl B. Continent‐Wide Interferometric SAR Phase Mapping of Antarctic Ice Velocity. Geophysical Research Letters. 2019;46:9710–8. https://doi.org/10.1029/2019GL083826.Depoorter MA, Bamber JL, Griggs JA, Lenaerts JTM, Ligtenberg SRM, van den Broeke MR, et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature. 2013;502:89–92. https://doi.org/10.1038/nature12567. More

  • in

    First detection of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus ticks (Acari: Ixodidae) from multiple locations in Hungary

    Chala, B. & Hamde, F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: A review. Front. Public Health https://doi.org/10.3389/fpubh.2021.715759 (2021).Article 

    Google Scholar 
    Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129, S3–S14 (2004).
    Google Scholar 
    Hornok, S., Kováts, D., Horváth, G., Kontschán, J. & Farkas, R. Checklist of the hard tick (Acari: Ixodidae) fauna of Hungary with emphasis on host-associations and the emergence of Rhipicephalus sanguineus. Exp. Appl. Acarol. 80, 311–328 (2020).
    Google Scholar 
    ECDC. Surveillance and disease data—Tick maps. https://www.ecdc.europa.eu/en/diseasevectors/surveillance-and-disease-data/tick-maps (2022). Accessed: 2022–09–02.Brites-Neto, J., Duarte, K. M. R. & Martins, T. F. Tick-borne infections in human and animal population worldwide. Vet. World 8, 301 (2015).
    Google Scholar 
    Hubálek, Z. Epidemiology of Lyme borreliosis. Lyme Borreliosis 37, 31–50 (2009).
    Google Scholar 
    Rizzoli, A. et al. Lyme borreliosis in Europe. Eurosurveillance 16, 19906 (2011).
    Google Scholar 
    Marques, A. R., Strle, F. & Wormser, G. P. Comparison of Lyme disease in the United States and Europe. Emerg. Infect. Dis. 27, 2017 (2021).
    Google Scholar 
    Jaenson, T. G., Jaenson, D. G., Eisen, L., Petersson, E. & Lindgren, E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit. Vectors 5, 1–15 (2012).
    Google Scholar 
    Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors 6, 1–11 (2013).
    Google Scholar 
    Semenza, J. C. & Suk, J. E. Vector-borne diseases and climate change: a European perspective. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnx244 (2018).Article 

    Google Scholar 
    Sutherst, R. W. Global change and human vulnerability to vector-borne diseases. Clin. Microbiol. Rev. 17, 136–173 (2004).
    Google Scholar 
    Tabachnick, W. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 213, 946–954 (2010).CAS 

    Google Scholar 
    Sonenshine, D. E., Kocan, K. M. & de la Fuente, J. Tick control: Further thoughts on a research agenda. Trends Parasitol. 22, 550–551 (2006).
    Google Scholar 
    Willadsen, P. Tick control: Thoughts on a research agenda. Vet. Parasitol. 138, 161–168 (2006).
    Google Scholar 
    Goolsby, J. A. et al. Rationale for classical biological control of cattle fever ticks and proposed methods for field collection of natural enemies. Subtrop. Agric. Environ. 66, 7–15 (2016).
    Google Scholar 
    Singh, N. et al. Effect of immersion time on efficacy of entomopathogenic nematodes against engorged females of cattle fever tick, Rhipicephalus (= Boophilus) microplus. Southwest. Entomol. 43, 19–28 (2018).
    Google Scholar 
    Černý, J. et al. Management options for Ixodes ricinus-associated pathogens: A review of prevention strategies. Int. J. Environ. Res. Public Health 17, 1830 (2020).
    Google Scholar 
    Kapranas, A. et al. Encyrtid parasitoids of soft scale insects: Biology, behavior, and their use in biological control. Annu. Rev. Entomol. 60, 195–211 (2015).CAS 

    Google Scholar 
    Chirinos, D. T. & Kondo, T. Description and biological studies of a new species of Metaphycus Mercet, 1917 (Hymenoptera: Encyrtidae), a parasitoid of Capulinia linarosae Kondo & Gullan. Int. J. Insect Sci. 11, 1179543319857962 (2019).
    Google Scholar 
    Polaszek, A., Noyes, J. S., Russell, S. & Ramadan, M. M. Metaphycus macadamiae (Hymenoptera: Encyrtidae)–a biological control agent of macadamia felted coccid Acanthococcus ironsidei (Hemiptera: Eriococcidae) in Hawaii. PLoS ONE 15, e0230944 (2020).CAS 

    Google Scholar 
    Howard, L. Another chalcidoid parasite of a tick. Can. Entomol. 40, 239–241 (1908).
    Google Scholar 
    Hu, R., Hyland, K. & Oliver, J. A review on the use of Ixodiphagus wasps (Hymenoptera: Encyrtidae) as natural enemies for the control of ticks (Acari: Ixodidae). Syst. Appl. Acarol. 3, 19–28 (1998).
    Google Scholar 
    Collatz, J. et al. A hidden beneficial: Biology of the tick-wasp Ixodiphagus hookeri in Germany. J. Appl. Entomol. 135, 351–358 (2011).
    Google Scholar 
    Takasu, K. & Nakamura, S. Life history of the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Kenya. Biol. Control. 46, 114–121 (2008).
    Google Scholar 
    Collatz, J. et al. Being a parasitoid of parasites: host finding in the tick wasp Ixodiphagus hookeri by odours from mammals. Entomol. Experimentalis et Applicata 134, 131–137 (2010).
    Google Scholar 
    Krawczyk, A. I. et al. Tripartite interactions among Ixodiphagus hookeri, Ixodes ricinus and deer: Differential interference with transmission cycles of tick-borne pathogens. Pathogens 9, 339 (2020).
    Google Scholar 
    Plaire, D., Puaud, S., Marsolier-Kergoat, M.-C. & Elalouf, J.-M. Comparative analysis of the sensitivity of metagenomic sequencing and PCR to detect a biowarfare simulant (Bacillus atrophaeus) in soil samples. PLoS ONE 12, e0177112 (2017).
    Google Scholar 
    Wang, C.-X. et al. Comparison of broad-range polymerase chain reaction and metagenomic next-generation sequencing for the diagnosis of prosthetic joint infection. Int. J. Infect. Dis. 95, 8–12 (2020).CAS 

    Google Scholar 
    Tóth, A. G. et al. Ixodes ricinus tick bacteriome alterations based on a climatically representative survey in Hungary. bioRxiv (2022).Estrada-Peña, A., Mihalca, A. D. & Petney, T. N. Ticks of Europe and North Africa: A Guide to Species Identification (Springer, 2018).
    Google Scholar 
    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 

    Google Scholar 
    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 1–13 (2019).
    Google Scholar 
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504 (2005).CAS 

    Google Scholar 
    NCBI Resource Coordinators. Database resources of the national center for biotechnology information. Nucleic Acids Res. 44, D7 (2016).
    Google Scholar 
    Katoh, K. & Standley, D. M. Mafft multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 

    Google Scholar 
    Tennekes, M. tmap: Thematic maps in R. J. Stat. Softw. 84, 1–39 (2018).
    Google Scholar 
    Bodenhofer, U., Bonatesta, E., Horejš-Kainrath, C. & Hochreiter, S. msa: An R package for multiple sequence alignment. Bioinformatics 31, 3997–3999 (2015).CAS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2022).Alfeev, N. & Klimas, Y. On the possibility of developing ichneumon flies, Hunterellus hookeri in climatic conditions of the USSR. Sovet. Vet. 15, 55 (1938).
    Google Scholar 
    Buczek, A., Buczek, W., Bartosik, K., Kulisz, J. & Stanko, M. Ixodiphagus hookeri wasps (Hymenoptera: Encyrtidae) in two sympatric tick species Ixodes ricinus and Haemaphysalis concinna (Ixodida: Ixodidae) in the Slovak Karst (Slovakia): Ecological and biological considerations. Sci. Rep. 11, 1–10 (2021).
    Google Scholar 
    Slovák, M. Finding of the endoparasitoid Ixodiphagus hookeri (Hymenoptera, Encyrtidae) in Haemaphysalis concinna ticks in Slovakia. Biol. Bratislava 58, 890–894 (2003).
    Google Scholar 
    Rehacek, J. & Kocianova, E. Attempt to infect Hunterellus hookeri Howard (Hymenoptera, Encyrtidae), an endoparasite of ticks, with Coxiella burnetti. Acta Virol. 36, 492–492 (1992).CAS 

    Google Scholar 
    Bohacsova, M., Mediannikov, O., Kazimirova, M., Raoult, D. & Sekeyova, Z. Arsenophonus nasoniae and Rickettsiae infection of Ixodes ricinus due to parasitic wasp Ixodiphagus hookeri. PLoS ONE 11, e0149950 (2016).
    Google Scholar 
    Boucek, Z. & Verny, V. A parasite of ticks, the chalcid Hunterellus hookeri in Czechoslovakia. Zool. Listy 3, 109–111 (1954).
    Google Scholar 
    Sormunen, J. J., Sippola, E., Kaunisto, K. M., Vesterinen, E. J. & Sääksjärvi, I. E. First evidence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) parasitization in Finnish castor bean ticks (Ixodes ricinus). Exp. Appl. Acarol. 79, 395–404 (2019).CAS 

    Google Scholar 
    Doby, J. & van Laere, G. Hunterellus hookeri howard, 1907, Hymenoptère Chalcididae parasite de la tique Ixodes ricinus dans l’ouest et le centre de la France. Bull. de la Société française de parasitologie 11, 265–270 (1993).
    Google Scholar 
    Plantard, O. et al. Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid Ixodiphagus hookeri. PLoS ONE 7, e30692 (2012).ADS 
    CAS 

    Google Scholar 
    Japoshvili, G. New records of Encyrtids (Hymenoptera: Chalcidoidea: Encyrtidae) from Georgia, with description of seven new species. J. Asia-Pacific Entomol. 20, 866–877 (2017).
    Google Scholar 
    Walter, G. Beitrag zur Biologie der Schlupfwespe Hunterellus hookeri Howard (Hymenoptera: Encyrtidae) in Norddeutschland. Beitr. Naturkunde Niedersachsens 33, 129–133 (1980).
    Google Scholar 
    Ramos, R. A. N. et al. Occurrence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus (Acari: Ixodidae) in Southern Italy. Ticks Tick-borne Dis. 6, 234–236 (2015).
    Google Scholar 
    Tijsse-Klasen, E., Braks, M., Scholte, E.-J. & Sprong, H. Parasites of vectors—Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands. Parasit. Vectors 4, 1–7 (2011).
    Google Scholar 
    Luu, L. et al. Bacterial pathogens and symbionts harboured by Ixodes ricinus ticks parasitising red squirrels in the United Kingdom. Pathogens 10, 458 (2021).CAS 

    Google Scholar 
    Pervomaisky, G. S. On the infestation of Ixodes persulcatus by Hunterellus hookeri How. (Hymenoptera). Zool. Zhurnal 22, 211–213 (1943).
    Google Scholar 
    Klyushkina, E. A parasite of the ixodid ticks, Hunterellus hookeri. How in the Crimea. Zool. Zh. 37, 1561–1563 (1958).
    Google Scholar 
    Gorman, M., Xu, R., Prakoso, D., Salvador, L. C. & Rajeev, S. Leptospira enrichment culture followed by ONT metagenomic sequencing allows better detection of Leptospira presence and diversity in water and soil samples. PLOS Neglected Trop. Dis. 16, e0010589 (2022).CAS 

    Google Scholar 
    Ranjan, R., Rani, A., Metwally, A., McGee, H. S. & Perkins, D. L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977 (2016).CAS 

    Google Scholar 
    Laudadio, I. et al. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS 22, 248–254 (2018).CAS 

    Google Scholar 
    Munaf, H. et al. The first record of Hunterellus hookeri parasitizing Rhipicephalus sanguineus in Indonesia. Southeast Asian J. Trop. Medicine Public Heal. 7, 492 (1976).CAS 

    Google Scholar 
    Stafford, K. C. III., Denicola, A. J. & Kilpatrick, H. J. Reduced abundance of Ixodes scapularis (Acari: Ixodidae) and the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae) with reduction of white-tailed deer. J. Med. Entomol. 40, 642–652 (2003).
    Google Scholar 
    Stafford, K. C. Jr., Denicola, A. J. & Magnarelli, L. A. Presence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in two Connecticut populations of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 33, 183–188 (1996).
    Google Scholar 
    Gillespie, J., Johnston, J., Cannone, J. & Gutell, R. Characteristics of the nuclear (18S, 5.8 S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): Structure, organization, and retrotransposable elements. Insect Mol. Biol. 15, 657–686 (2006).CAS 

    Google Scholar 
    Zhao, Y., Zhang, W.-Y., Wang, R.-L. & Niu, D.-L. Divergent domains of 28S ribosomal RNA gene: DNA barcodes for molecular classification and identification of mites. Parasit. Vectors 13, 1–12 (2020).
    Google Scholar 
    Larrousse, F., King, A. G. & Wolbach, S. The overwintering in Massachusetts of Ixodiphagus caucurtei. Science 67, 351–353 (1928).ADS 
    CAS 

    Google Scholar 
    Smith, C. N. et al. Studies of parasites of the American dog tick. J. Econ. Entomol. https://doi.org/10.1093/jee/36.4.569 (1943).Article 

    Google Scholar 
    Hu, R., Hyland, K. E. & Mather, T. N. Occurrence and distribution in Rhode Island of Hunterellus hookeri (Hymenoptera: Encyrtidae), a wasp parasitoid of Ixodes dammini. J. Med. Entomol. 30, 277–280 (1993).CAS 

    Google Scholar 
    Scatolini, D. & Penteado-Dias, A. A fauna de Braconidae (hymenoptera) como bioindicadora do grau de preservação de duas localidades do Estado do Paraná. Revista Brasileira de Ecol. 1, 84–87 (1997).
    Google Scholar 
    Anderson, A. et al. The potential of parasitoid Hymenoptera as bioindicators of arthropod diversity in agricultural grasslands. J. Appl. Ecol. 48, 382–390 (2011).
    Google Scholar  More