More stories

  • in

    Insufficient sampling constrains our characterization of plant microbiomes

    Different sampling strategies yield different microbial communities
    The sampling strategies compared in this study (homogenizing tissue before subsampling and homogenizing tissue after subsampling) are common methods found in the literature for characterizing plant-associated microbial communities14,23,26,29. Procrustes analyses and community overlap between sampling strategies demonstrated that different strategies can capture disparate microbial communities within plants, with the extent of these differences depending on the community targeted and plant tissue type sampled. In FFE as well as bacterial and non-AM fungal communities in roots, subsamples from the same plant resulted in completely different sets of species recovered, illustrating the severe undersampling that is inherent to each of these strategies. With these sampling strategies, we are undoubtedly sacrificing power and accuracy to characterize the subtler aspects of plant microbiome interactions, despite often seeing community differences across landscapes, treatments or seasons.
    Richness was higher when homogenizing before subsampling for bacteria only, despite differences observed in composition for all groups. It is perhaps surprising that homogenizing plant tissues before subsampling did not recover more species than homogenizing after subsampling for fungi as well, because with the former approach, more plant tissue is initially represented. Indeed, a previous study showed that sample pooling or homogenizing before subsampling resulted in a higher richness of soil fungi compared to equally sized individual samples50. In Song et al. (2015)50 they also found that multiple individual subsamples, rather than the single homogenized subsample, resulted in higher richness. This may suggest that the scale at which we are physically able to break down the particle size of plant tissues, as opposed to soil, is not always fine enough to sufficiently homogenize the fungi within. Because of this, plant-associated microbial communities may require a greater sampling effort than soil microbes. Additionally, the removal of low-abundant SVs did not result in differences in richness between the two sampling strategies for any microbial group, suggesting that neither strategy is better at capturing rare species. Although this study was performed only on milkweed plants, we believe that these results are applicable to other plant species as well. The richness reported here is similar to other studies of plant-associated microbes (e.g.51,52), indicating that differences in subsamples were not due to extreme richness of milkweed-associated microbes.
    Microbial diversity should inform sampling effort
    The higher congruency that we saw between sampling strategies for AMF compared to other microbial communities may be due to the differences in their local and global estimated richness. While the global number of AMF species has been estimated in the hundreds to low thousands42,53, global estimates of fungal species in general range in the millions54,55. A recent global estimate of bacterial richness suggests similar scales56. In this study specifically, AMF had the lowest total SV richness and the greatest similarity between sampling strategies, while foliar fungal endophytes had the highest SV richness, and the lowest overlap of SVs between strategies. Since the amount of tissue sampled was equal for all microbial communities, the sampling effort was likely much higher for AMF (relative to the whole AMF community), than it was for bacteria and non-AM fungi. Consequently, with each sample we are likely sampling a much larger proportion of true AMF species richness.
    Even though the estimated total community richness was highest for foliar fungi, the average estimated richness per individual plant was highest for AMF. This suggests that similar AMF SVs re-occurred across all plants with low species turnover. On the other hand, fungi in leaves had lower average richness per plant (Fig. 4, Supplementary Fig. S3), but the highest total richness, meaning that there was higher turnover of FFE species among plants sampled. These results may be a direct reflection of the overall community richness of the different microbial groups as well as their ability to spread and co-occur within plants. Based on these patterns, more individual plants and a greater sampling effort within individuals are likely needed to characterize FFE communities compared to AMF communities.
    Rare SVs contribute to variation among subsamples
    Our results show that low abundant, rare SVs largely contributed to the differences seen between sampling strategies. Even AMF communities, which were already similar, increased in overlap by 50% between strategies after low abundant SVs (represented by  More

  • in

    Insect reproductive behaviors are important mediators of carrion nutrient release into soil

    1.
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 
    2.
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Article  Google Scholar 

    3.
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Losey, E. J. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311 (2006).
    Article  Google Scholar 

    5.
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115, 6506–6511 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Yang, L. H. & Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2, 26–32 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Hunter, M. D. Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric. For. Entomol. 3, 77–84 (2001).
    Article  Google Scholar 

    8.
    Nichols, E. et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141, 1461–1474 (2008).
    Article  Google Scholar 

    9.
    Lobry de Bruyn, L. A. & Conacher, A. J. The role of termites and ants in soil modification: a review. Aust. J. Soil Res. 28, 55–93 (1990).
    Google Scholar 

    10.
    Shukla, R. K., Singh, H., Rastogi, N. & Agarwal, V. M. Impact of abundant Pheidole ant species on soil nutrients in relation to the food biology of the species. Appl. Soil Ecol. 71, 15–23 (2013).
    Article  Google Scholar 

    11.
    López-Hernández, D. Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco Llanos (Venezuela). Soil Biol. Biochem. 33, 747–753 (2001).
    Article  Google Scholar 

    12.
    Nkem, J. N., Lobry de Bruyn, L. A., Grant, C. D. & Hulugalle, N. R. The impact of ant bioturbation and foraging activities on surrounding soil properties. Pedobiologia 44, 609–621 (2000).
    Article  Google Scholar 

    13.
    Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47, 215–222 (2011).
    Article  Google Scholar 

    14.
    Frost, C. J. & Hunter, M. D. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85, 3335–3347 (2004).
    Article  Google Scholar 

    15.
    Calderon-Cortes, N. et al. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela. J. Insect Physiol. 84, 128–136 (2016).
    CAS  PubMed  Article  Google Scholar 

    16.
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).
    ADS  PubMed  Article  Google Scholar 

    17.
    Danell, K., Aux, D. B. & Bráthen, K. A. Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Artic 55, 389–392 (2002).
    Google Scholar 

    18.
    Melis, C. et al. Soil and vegetation nutrient response to bison carcasses in Bialowieza primeval forest Poland. Ecol. Res. 22, 807–813 (2007).
    ADS  CAS  Article  Google Scholar 

    19.
    Bump, J. K., Peterson, R. O. & Vucetich, J. A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90, 3159–3167 (2009).
    PubMed  Article  Google Scholar 

    20.
    Benninger, L. A., Carter, D. O. & Forbes, S. L. The biochemical alteration of soil beneath a decomposing carcass. Forensic Sci. Int. 180, 70–75 (2008).
    CAS  PubMed  Article  Google Scholar 

    21.
    Anderson, G. S. & VanLaerhoven, S. L. Initial studies on insect succession on carrion in Southwestern British Columbia. J. Forensic Sci. 41, 617–625 (1996).
    Article  Google Scholar 

    22.
    Matuszewski, S., Bajerlein, D., Konwerski, S. & Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: succession of carrion fauna. Forensic Sci. Int. 207, 150–163 (2011).
    PubMed  Article  Google Scholar 

    23.
    Barton, P. S., Evans, M. J., Pechal, J. L. & Benbow, M. E. Necrophilous insect dynamics at small vertebrate carrion in a temperate eucalypt woodland. J. Med. Entomol. 54, 964–973 (2017).
    PubMed  Article  Google Scholar 

    24.
    Benbow, M. E., Lewis, A. J., Tomberlin, J. K. & Pechal, J. L. Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J. Med. Entomol. 50, 440–450 (2013).
    CAS  PubMed  Article  Google Scholar 

    25.
    Payne, J. A. A summer carrion study of the baby pig Sus Scrofa Linnaeus. Ecology 46, 592–602 (1965).
    Article  Google Scholar 

    26.
    Kočárek, P. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur. J. Soil Biol. 39, 31–45 (2003).
    Article  Google Scholar 

    27.
    Bornemissza, G. F. An analysis of arthropod succession in carrion and the effects of its decomposition on the soil fauna. J. Zool. 5, 1–12 (1957).
    Google Scholar 

    28.
    Parmenter, R. R. & MacMahon, J. A. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 79, 637–661 (2009).
    Article  Google Scholar 

    29.
    Pechal, J. L., Benbow, M. E., Crippen, T. L., Tarone, A. M. & Tomberlin, J. K. Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere 5, 1–21 (2014).
    Article  Google Scholar 

    30.
    Pukowski, E. Ökologische untersuchungen an necrophorus. Z. Morphol. Oekol. 27, 518–586 (1933).
    Article  Google Scholar 

    31.
    Scott, M. P. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43, 595–618 (1998).
    CAS  PubMed  Article  Google Scholar 

    32.
    Milne, L. J. & Milne, M. The social behavior of burying beetles. Sci. Am. 235, 84–89 (1976).
    Article  Google Scholar 

    33.
    Müller, J. K. & Eggert, A. K. Paternity assurance by ‘helpful’ males: adaptations to sperm competition in burying beetles. Behav. Ecol. Sociobiol. 24, 245–249 (1989).
    Article  Google Scholar 

    34.
    House, C. M. et al. The evolution of repeated mating in the burying beetle Nicorphorus vespilloides. Evolution 62, 2004–2014 (2008).
    PubMed  Article  Google Scholar 

    35.
    Pettinger, A. M., Steiger, S., Müller, J. K., Sakaluk, S. K. & Eggert, A. K. Dominance status and carcass availability affect the outcome of sperm competition in burying beetles. Behav. Ecol. 22, 1079–1087 (2011).
    Article  Google Scholar 

    36.
    Rozen, D. E., Engelmoer, D. J. P. & Smiseth, P. T. Antimicrobial strategies in burying beetles breeding on carrion. Proc. Natl. Acad. Sci. USA 105, 17890–17895 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Arce, A. N., Johnston, P. R., Smiseth, P. T. & Rozen, D. E. Mechanisms and fitness effects of antibacterial defences in a carrion beetle. J. Evol. Biol. 25, 930–937 (2012).
    CAS  PubMed  Article  Google Scholar 

    38.
    Hall, C. L. et al. Inhibition of microorganisms on a carrion breeding resource: the antimicrobial peptide activity of burying beetle (Coleoptera: Silphidae) oral and anal secretions. Environ. Entomol. 40, 669–678 (2011).
    PubMed  Article  Google Scholar 

    39.
    Duarte, A., Welch, M., Swannack, C., Wagner, J. & Kilner, R. M. Strategies for managing rival bacterial communities: lessons from burying beetles. J. Anim. Ecol. 87, 414–427 (2018).
    PubMed  Article  Google Scholar 

    40.
    Trumbo, S. T. Reproductive benefits and the duration of paternal care in a biparental burying beetle Necrophorus orbicollis. Behaviour 117, 82–105 (1991).
    Article  Google Scholar 

    41.
    Trumbo, S. T. Fate of mouse carcasses in a Northern Woodland. Ecol. Entomol. 41, 737–740 (2016).
    Article  Google Scholar 

    42.
    Hoback, W. W., Freeman, L., Payton, M. & Peterson, B. C. Burying beetle (Coleoptera: Silphidae: Nicrophorus fabricius) brooding improves soil fertility. Coleopt. Bull. 74, 427–433 (2020).
    Article  Google Scholar 

    43.
    Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, 1–26 (2018).
    Google Scholar 

    44.
    Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94, 12–24 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Carter, D. O., Yellowlees, D. & Tibbett, M. Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl. Soil Ecol. 40, 129–137 (2008).
    Article  Google Scholar 

    46.
    Meyer, J., Anderson, B. & Carter, D. O. Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (Dfa) climate. J. Forensic Sci. 58, 1175–1182 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Chen, Y. A., Forschler, B. T. & Nielsen, U. Elemental concentrations in the frass of saproxylic insects suggest a role in micronutrient cycling. Ecosphere 7, 1–13 (2016).
    Google Scholar 

    49.
    Couture, J. J. & Lindroth, R. L. Atmospheric change alters frass quality of forest canopy herbivores. Arthropod. Plant. Interact. 8, 33–47 (2014).
    Article  Google Scholar 

    50.
    Metcalf, J. L. et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. Elife 2013, 1–19 (2013).
    Google Scholar 

    51.
    Xu, S., Liu, L. L. & Sayer, E. J. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences 10, 7423–7433 (2013).
    ADS  Article  CAS  Google Scholar 

    52.
    Wilson, W. A. et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol. Rev. 34, 952–985 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Achbergerová, L. & Nahálka, J. Polyphosphate—an ancient energy source and active metabolic regulator. Microb. Cell Fact. 10, 1–14 (2011).
    Article  CAS  Google Scholar 

    54.
    Kornberg, A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J. Bacteriol. 177, 491–496 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Wilkinson, J. F. Carbon and energy storage in bacteria. J. Gen. Microbiol. 32, 171–176 (1963).
    CAS  PubMed  Article  Google Scholar 

    56.
    Paul, E. A. Soil Microbiology, Ecology and Biochemistry (Academic Press, Cambridge, 2014).
    Google Scholar 

    57.
    DeVault, T. L., Brisbin, I. L. Jr. & Rhodes, O. E. Jr. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Article  Google Scholar 

    58.
    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Article  Google Scholar 

    59.
    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. 47, 185–192 (2002).
    Article  Google Scholar 

    60.
    Smith, J. B., Laatsch, L. J. & Beasley, J. C. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition. Sci. Rep. 7, 1–8 (2017).
    Article  CAS  Google Scholar 

    61.
    Wilson, D. S. & Fudge, J. Burying beetles: intraspecific interactions and reproductive success in the field. Ecol. Entomol. 9, 195–203 (1984).
    Article  Google Scholar 

    62.
    Keller, M. L., Howard, D. R. & Hall, C. L. Spatiotemporal niche partitioning in a specious silphid community (Coleoptera: Silphidae Nicrophorus). Sci. Nat. 106, 1–12 (2019).
    ADS  Article  CAS  Google Scholar 

    63.
    Owings, C. G. & Picard, C. J. Temporal survey of a carrion beetle (Coleoptera:Silphidae) community in Indiana. Proc. Indiana Acad. Sci. 124, 124–128 (2015).
    Google Scholar 

    64.
    Snyder, D. P. Survival rates, longevity, and population fluctuations in the white-footed mouse, Peromyscus leucopus Southeastern Michigan. Museum Zool. Universty Michigan 95, 1–33 (1956).
    Google Scholar 

    65.
    Stephens, R. B., Hocking, D. J., Yamasaki, M. & Rowe, R. J. Synchrony in small mammal community dynamics across a forested landscape. Ecography 40, 1198–1209 (2017).
    Article  Google Scholar 

    66.
    Leasure, D. R., Rupe, D. M., Phillips, E. A., Opine, D. R. & Huxel, G. R. Efficient new above-ground bucket traps produce comparable data to that of standard transects for the endangered American Burying Beetle, Nicrophorus americanus Olivier (Coleoptera: Silphidae). Coleopt. Bull. 66, 209–218 (2012).
    Article  Google Scholar 

    67.
    Bedick, J. C., Ratcliffe, B. C. & Higley, L. G. A new sampling protocol for the endangered American Burying Beetle, Nicrophorus americanus Olivier (Coleoptera: Silphidae). Coleopt. Bull. 58, 57–70 (2004).
    Article  Google Scholar 

    68.
    Trumbo, S. T. Reproductive success, phenology and biogeography of burying beetles (Silphidae, Nicrophorus). Am. Midl. Nat. 124, 1–11 (1990).
    Article  Google Scholar 

    69.
    Trumbo, S. T. Nesting failure in burying beetles and the origin of communal associations. Evol. Ecol. 9, 125–130 (1995).
    Article  Google Scholar 

    70.
    Braman, R. S. & Hendrix, S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715–2718 (1989).
    CAS  PubMed  Article  Google Scholar 

    71.
    Sims, G. K., Ellsworth, T. R. & Mulvaney, R. L. Microscale determination of inorganic nitrogen in water and soil extracts. Commun. Soil Sci. Plant Anal. 26, 303–316 (1995).
    CAS  Article  Google Scholar 

    72.
    Contosta, A. R., Frey, S. D. & Cooper, A. B. Seasonal dynamics of soil respiration and N mineralization in chronically warmed and fertilized soils. Ecosphere 2, 1–21 (2011).
    Article  Google Scholar 

    73.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).
    CAS  Article  Google Scholar 

    74.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
    CAS  Article  Google Scholar 

    75.
    Brookes, P. D. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
    CAS  Article  Google Scholar 

    76.
    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
    CAS  PubMed  Article  Google Scholar 

    77.
    White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62 (1979).
    ADS  CAS  PubMed  Article  Google Scholar 

    78.
    Guckert, J. B., Antworth, C. P., Nichols, P. D. & White, D. C. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol. Lett. 31, 147–158 (1985).
    CAS  Article  Google Scholar 

    79.
    Bardgett, R. D., Hobbs, P. J. & Frostegårde, A. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22, 261–264 (1996).
    Article  Google Scholar 

    80.
    Bååth, E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb. Ecol. 45, 373–383 (2003).
    PubMed  Article  CAS  Google Scholar 

    81.
    Ekelund, F., Olsson, S. & Johansen, A. Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Biol. Biochem. 35, 1507–1516 (2003).
    CAS  Article  Google Scholar 

    82.
    Leckie, S. E., Prescott, C. E., Grayston, S. J., Neufeld, J. D. & Mohn, W. W. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability. Microb. Ecol. 48, 29–40 (2004).
    CAS  PubMed  Article  Google Scholar 

    83.
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
    CAS  PubMed  Article  Google Scholar 

    84.
    Oksanen, J. et al. Vegan: community ecology package (2019). http://cran.r-project.org/.

    85.
    Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics version 0.9-75 from CRAN. R package version 0.9-75 (2020).

    86.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications Inc, Thousand Oaks, 2018).
    Google Scholar  More

  • in

    Shallow seamounts represent speciation islands for circumglobal yellowtail Seriola lalandi

    1.
    Holland, K. N. & Grubbs, R. D. Fish visitors to seamounts: Tunas and billfish at seamounts. In Seamounts: Ecology, Fisheries and Conservation (eds Pitcher, T. J. et al.) 89–201 (Blackwell Publishing, Oxford, 2007).
    Google Scholar 
    2.
    Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (John Wiley & Sons, New York, 2008). .
    Google Scholar 

    3.
    Pazmiño, D. A. et al. Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers. Heredity 120, 407–421 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Berrisford, C. D. Biology and zoogeography of Vema Seamount: A report on the first biological collection made on the summit. Trans. R. Soc. S. Afr. 38, 387–398 (1969).
    Article  Google Scholar 

    5.
    Collette, B. B. & Parin, N. V. Shallow-water fishes of Walters Shoals Madagascar Ridge. Bull. Mar. Sci. 48, 1–22 (1991).
    Google Scholar 

    6.
    Baxter, J. L. A. study of the yellowtail Seriola dorsalis (Gill). State of California department of fish and game. Mol. Biol. Ecol. 110, 96 (1960).
    Google Scholar 

    7.
    Gillanders, B. M., Ferrell, D. J. & Andrew, N. L. Size at maturity and seasonal changes in gonad activity of yellowtail kingfish (Seriola lalandi; Carangidae) in New South Wales, Australia, New Zealand. Mol. Biol. Ecol. 33, 457–468 (1999).
    Google Scholar 

    8.
    Shiraishi, T., Ohshimo, S. & Yukami, R. Age, growth and reproductive characteristics of gold striped amberjack Seriola lalandi in the waters off western Kyushu Japan. Mol. Biol. Ecol. 44, 117–127 (2010).
    CAS  Google Scholar 

    9.
    Miranda, I. T. & Peet, C. Farmed Yellowtail Seriola spp. Japan and Australia. Final Report, October 22, 2008 (2008)

    10.
    Griffiths, M. H. Long-trends in catch and effort of commercial linefish off South Africa’s Cape Province: Snapshots of the 20th century. S. Afr. J. Marine Sci. 22, 81–110 (2000).
    Article  Google Scholar 

    11.
    Kerwath and Wilke. Yellowtail (Seriola lalandi). In: Southern African Marine Linefish Species Profiles (ed. Mann BQ, Special Publication, Oceanographic Research Institute, Durban 9, 23–24, 2013).

    12.
    Penney, A. The southern Cape yellowtail fishery—a research perspective and preliminary results. Internal Report, Sea Fisheries Research Institute South Africa 08: 19 pp (1982)

    13.
    Wilke, C. G. & Griffiths, M. H. Movement patterns of offshore linefish based on tagging results. SANCOR Occ. Rep. 5, 98–107 (1999).
    Google Scholar 

    14.
    Gillanders, B. M., Ferrell, D. J. & Andrew, N. L. Estimates of movement and life-history parameters of yellowtail kingfish (Seriola lalandi): How useful are data from a cooperative tagging programme?. Mol. Biol. Ecol. 52, 179–192 (2001).
    Google Scholar 

    15.
    Holdsworth, J. C., McKenzie, J. R., Walsh, C., van der Straten, K.M. & Ó Maolagáin, C. Catch-at-age of yellowtail kingfish (Seriola lalandi) caught by recreational fishers in KIN 1, New Zealand. New Zealand Fisheries Assessment Report 2013/3. 31 p. (2013).

    16.
    Dunn, K. The diet, reproductive biology age and growth of yellowtail, Seriola lalandi, in South Africa. Unpublished MSc thesis, University of Cape Town (2014).

    17.
    Gilchrist, J. D. F. The development of the South African fishes Part-1. Mar. Investig. South Africa 2, 181–201 (1903).
    Google Scholar 

    18.
    Martinez-Takeshita, N. et al. A tale of three tails: Cryptic speciation in a globally distributed marine fish of the genus Seriola. Copeia 103, 357–368 (2015).
    Article  Google Scholar 

    19.
    Swart, B. L., Bester-van der Merwe, A. E., Kerwath, S. E. & Roodt-Wilding, R. Phylogeography of the pelagic fish Seriola lalandi at different scales: confirmation of interocean population structure and evaluation of southern African genetic diversity. Afr. J. Mar. Sci. 38, 513–524 (2016).
    Article  Google Scholar 

    20.
    Rogers, A. D. The biology of seamounts. Adv. Mar. Biol. 30, 304–360 (1994).
    Google Scholar 

    21.
    Samadi, S. et al. Seamount endemism questioned by the geographical distribution and population genetic structure of marine invertebrates. Mar. Biol. 149, 1463–1475 (2006).
    Article  Google Scholar 

    22.
    Clark, M. R. et al. The ecology of seamounts: Structure, function, and human impacts. Annu. Rev. Mar. Sci. 2, 253–278 (2010).
    ADS  Article  Google Scholar 

    23.
    Cho, W. & Shank, T. M. Incongruent patterns of genetic connectivity among four ophiuroid species with differing coral host specificity on North Atlantic seamounts. Mar. Ecol. 31, 121–143 (2010).
    ADS  Article  Google Scholar 

    24.
    Shank, T. M. Deep-ocean laboratories of faunal connectivity, evolution, and endemism. Oceanography 23, 108–122 (2010).
    Article  Google Scholar 

    25.
    Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 275, 1803–1809 (2008).
    Google Scholar 

    26.
    Diggles, B. K. Import risk assessment: juvenile yellowtail kingfish (Seriola lalandi) from Spencer Gulf aquaculture, South Australia. Client Report No. WLG 2002/03. National Institute of Water and Atmospheric Research (NIWA) Ltd, Kilbirnie, Wellington, New Zealand (2002).

    27.
    Bang, N. D. Dynamic interpretations of a detailed Surface temperature chart of the Agulhas Current retroflexion and fragmentation area. S. Afr. Geogr. J. 52, 67–76 (1970).
    Article  Google Scholar 

    28.
    Lutjeharms, J. R. E. & Gordon, A. L. Shedding of an Agulhas Ring observed at sea. Nat. Lond. 325, 138–140 (1987).
    ADS  Article  Google Scholar 

    29.
    Duncombe Rae, C. M. Agulhas retroflection rings in the South Atlantic Ocean: An overview. S. Afr. J. Marine Sci. 11, 327–344 (1991).
    Article  Google Scholar 

    30.
    Lutjeharms, J. R. E. The exchange of water between the South Indian and the South Atlantic. In The South Atlantic: Present and Past Circulation (eds Wefer, G. et al.) 125–162 (Springer, Berlin, 1996).
    Google Scholar 

    31.
    Martin, A. P., Humphreys, R. & Palumbi, S. R. Population genetic-structure of the armorhead, Pseudopentaceros wheeleri, in the North Pacific Ocean: Application of the polymerase chain reaction to fisheries problems. Can. J. Fish. Aquat. Sci. 49, 2386–2391 (1992).
    CAS  Article  Google Scholar 

    32.
    Hoarau, G. & Borsa, P. Extensive gene flow within sibling species in the deep-sea fish Beryx splendens. CR Acad. Sci. III Vie 323, 315–325 (2000).
    CAS  Article  Google Scholar 

    33.
    Smith, P. J. et al. Genetic and meristic variation in black and smooth oreos in the New Zealand EEZ. Mol. Biol. Ecol. 36, 737–750 (2002).
    CAS  Google Scholar 

    34.
    Levy-Hartmann, L., Roussel, V., Letourneur, Y. & Sellos, D. Y. Global and New Caledonian patterns of population genetic variation in the deep-sea splendid alfonsino, Beryx splendens, inferred from mtDNA. Genetica 139, 1349–1365 (2011).
    PubMed  Article  Google Scholar 

    35.
    Catarino, D., Stefanni, S. & Menezes, G. M. Size distribution and genetic diversity of the offshore rockfish (Pontinus kuhlii) from three Atlantic archipelagos and seamounts. Deep-Sea Res. Pt. II(98), 160–169 (2013).
    Article  Google Scholar 

    36.
    Varela, A. I., Ritchie, P. A. & Smith, P. J. Global genetic population structure in the commercially exploited deep-sea teleost orange roughy (Hoplostethus atlanticus) based on microsatellite DNA analyses. Fish. Res. 140, 83–90 (2013).
    Article  Google Scholar 

    37.
    Aboim, M. A., Menezes, G. M., Schlitt, T. & Rogers, A. D. Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred from mtDNA sequence analysis. Mol. Ecol. 14, 1343–1354 (2005).
    CAS  PubMed  Article  Google Scholar 

    38.
    Stockley, B. M., Menezes, G., Pinho, M. R. & Rogers, A. D. Genetic population structure of the black-spot sea bream (Pagellus bogaraveo) from the NE Atlantic. Mar. Biol. 146, 793–804 (2005).
    CAS  Article  Google Scholar 

    39.
    Rogers, A. D., Morley, S., Fitzcharles, E., Jarvis, K. & Belchier, M. Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean sectors of the Southern Ocean. Mar. Biol. 149, 915–924 (2006).
    Article  Google Scholar 

    40.
    Hutchings, L. et al. The Benguela Current: An ecosystem of four components. Progr. Oceanogr. 83(1–4), 15–32. https://doi.org/10.1016/j.pocean.2009.07.046 (2009).
    ADS  Article  Google Scholar 

    41.
    Nepgen, C. S. Diet of predatory and reef fish in False Bay and possible effects of pelagic purse-seining on their food supply. Mol. Biol. Ecol. 16, 75–93 (1982).
    Google Scholar 

    42.
    Massias, A. & Becker, P. H. Nutritive value of food and growth in Common Tern Sterna hirundo chicks. Ornis Scand. 1, 187–194 (1990).
    Article  Google Scholar 

    43.
    Stearns, S. C. The Evolution of Life Histories 249 (Oxford University Press, New York, 1992).
    Google Scholar 

    44.
    Stearns, S. C. & Koella, J. C. The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution 40, 893–913 (1986).
    PubMed  Article  Google Scholar 

    45.
    Shuter, B. J. et al. Optimal life histories and food web position: Linkages among somatic growth, reproductive investment, and mortality. Can. J. Fish. Aquat. Sci. 62, 738–746 (2005).
    Article  Google Scholar 

    46.
    Jensen, A. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 53, 820–822 (1996).
    Article  Google Scholar 

    47.
    Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).
    Article  Google Scholar 

    48.
    Law, R. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57, 659–668 (2000).
    Article  Google Scholar 

    49.
    Heydorn, A. E. F. Research on the Vema Seamount. Afr. Ship. News Fish. Ind. Rev 12, 79–83 (1967).
    Google Scholar 

    50.
    Bergstad, Odd Aksel, Åge Sigurd Høines, Roberto Sarralde, G. Campanis, M. Gil, Fran Ramil, E. Maletzky, E. Mostarda, Larvika Singh, and M. A. António. “Bathymetry, substrate and fishing areas of Southeast Atlantic high-seas seamounts.” African J. of Marine Science 41, no. 1 (2019): 11–28.

    51.
    Hutchings, L. et al. Spawning on the edge: Spawning grounds and nursery areas around the southern African coastline. Mol. Biol. Ecol. 53, 307–318 (2002).
    Google Scholar 

    52.
    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).
    Google Scholar 

    53.
    Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990).
    Google Scholar 

    54.
    Palero, F., González-Candelas, F. & Pascual, M. MICROSATELIGHT—Pipeline to expedite microsatellite analysis. J. Hered. 102, 247–249 (2011).
    CAS  PubMed  Article  Google Scholar 

    55.
    Van Oosterhout, C., Hutchison, W. F., Shipley, P. & Wills, D. P. M. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    56.
    Belkhir, K., Borsa, P., Goudet, J., Chikhi, L. & Bonhomme, F. GENETIX, logiciel sous Window TM pour la génétique des populations. Laboratoire Génome et Populations, Montpellier, France. (2000) http://kimura.univ-montp2.fr/genetix/

    57.
    Goudet, J. FSTAT, a Program to estimate and test gene diversities and fixation indices version 2.9.3. (2001). http://www.unil.ch/izea/softwares/fstat.html

    58.
    Ryman, N. & Palm, S. POWSIM: A computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. 6, 600–602 (2006).
    Article  Google Scholar 

    59.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    CAS  Google Scholar 

    60.
    Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–659 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
    PubMed  Article  Google Scholar 

    63.
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resourc. 11, 5–18 (2011).
    Article  Google Scholar 

    64.
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).
    PubMed  Article  Google Scholar 

    65.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Peakall, R. & Smouse, P. E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6, 288–295 (2006).
    Article  Google Scholar 

    67.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. (2013)

    70.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Bester-van der Merwe, A. E. et al. Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus): Intercontinental divergence and constrained gene flow at different geographical scales. PLoS ONE 12(9), e0184481 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361 (2012).
    Article  Google Scholar 

    73.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    74.
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Rosenberg, N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
    Article  Google Scholar 

    76.
    Froese, B. R. Cube law, condition factor and weight—length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 22, 241–253 (2006).
    Article  Google Scholar  More

  • in

    Mangrove tree (Avicennia marina): insight into chloroplast genome evolutionary divergence and its comparison with related species from family Acanthaceae

    1.
    Faridah-Hanum, I. et al. Development of a comprehensive mangrove quality index (MQI) in Matang Mangrove: assessing mangrove ecosystem health. Ecol. Ind. 102, 103–117 (2019).
    Article  Google Scholar 
    2.
    Spalding, M. World Atlas of Mangroves (Routledge, New York, 2010).
    Google Scholar 

    3.
    Himes-Cornell, A., Grose, S. O. & Pendleton, L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand?. Front. Mar. Sci. 5, 376 (2018).
    Article  Google Scholar 

    4.
    Wu, Y., Ricklefs, R. E., Huang, Z., Zan, Q. & Yu, S. Winter temperature structures mangrove species distributions and assemblage composition in China. Glob. Ecol. Biogeogr. 27, 1492–1506 (2018).
    Article  Google Scholar 

    5.
    Das, S. S., Das, S. & Ghosh, P. Phylogenetic relationships among the mangrove species of Acanthaceae found in Indian Sundarban, as revealed by RAPD analysis. Adv. Appl. Sci. Res 6, 179–184 (2015).
    CAS  Google Scholar 

    6.
    Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 84–254 (2001).
    Google Scholar 

    7.
    Sannigrahi, S. et al. Responses of ecosystem services to natural and anthropogenic forcings: a spatial regression based assessment in the world’s largest mangrove ecosystem. Sci. Total Environ. 715, 137004 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    dos Santos, N. M. & Lana, P. Present and past uses of mangrove wood in the subtropical Bay of Paranaguá (Paraná, Brazil). Ocean Coast. Manag. 148, 97–103 (2017).
    Article  Google Scholar 

    9.
    Jusoff, K. Malaysian mangrove forests and their significance to the coastal marine environment. Pol. J. Environ. Stud. 22, 979–1005 (2013).
    Google Scholar 

    10.
    Duke, N. C., Lo, E. & Sun, M. Global distribution and genetic discontinuities of mangroves–emerging patterns in the evolution of Rhizophora. Trees 16, 65–79 (2002).
    Article  Google Scholar 

    11.
    Nagelkerken, I. et al. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat. Bot. 89, 155–185 (2008).
    Article  Google Scholar 

    12.
    Tomlinson, P. B. The Botany of Mangroves (Cambridge University Press, Cambridge, 2016).
    Google Scholar 

    13.
    Dahdouh-Guebas, F. et al. How effective were mangroves as a defence against the recent tsunami?. Curr. Biol. 15, R443–R447 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Saenger, P. Mangrove Ecology, Silviculture and Conservation (Springer, Berlin, 2002).
    Google Scholar 

    15.
    Lakshmi, M., Parani, M. & Parida, A. Molecular phylogeny of mangroves IX: molecular marker assisted intra-specific variation and species relationships in the Indian mangrove tribe Rhizophoreae. Aquat. Bot. 74, 201–217 (2002).
    CAS  Article  Google Scholar 

    16.
    Grover, A. & Sharma, P. Development and use of molecular markers: past and present. Crit. Rev. Biotechnol. 36, 290–302 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Adsul, G. G., Chaurasia, A. K., Dhake, A. V. & Kothari, R. M. RAPD analysis of phylogenetic relationships and genetic variations in genus Allium. Biochem. Indian J. 3, 1–5 (2015).
    Google Scholar 

    18.
    Xu, K. et al. Identification of tuna species (Thunnini tribe) by PCR-RFLP analysis of mitochondrial DNA fragments. Food Agric. Immunol. 27, 301–313 (2016).
    CAS  Article  Google Scholar 

    19.
    Wambugu, P. W., Brozynska, M., Furtado, A., Waters, D. L. & Henry, R. J. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci. Rep. 5, 1–9 (2015).
    Article  Google Scholar 

    20.
    Middleton, C. P. et al. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 9, e85761 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Raman, G. & Park, S. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis, and phylogenetic relationships to other angiosperms. Front. Plant Sci. 7, 341 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Yang, J. B., Li, D. Z. & Li, H. T. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol. Ecol. Resour. 14, 1024–1031 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Su, H.-J., Hogenhout, S. A., Al-Sadi, A. M. & Kuo, C.-H. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the rosids. PLoS ONE 9, e113049 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Hu, S. Phylogeny and Chloroplast Evolution in BRASSICACEAE, University of Trento, (2016).

    25.
    Santos, C. G. Development of new tools for the identification of plants using chloroplast DNA sequences. (2018).

    26.
    Singh, B. P., Kumar, A., Kaur, H., Singh, H. & Nagpal, A. K. CpGDB: A comprehensive database of chloroplast genomes. Bioinformation 16, 171 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wu, Z. The new completed genome of purple willow (Salix purpurea) and conserved chloroplast genome structure of Salicaceae. J. Nat. Sci 1, e49 (2015).
    Google Scholar 

    28.
    Wu, Z. The whole chloroplast genome of shrub willows (Salix suchowensis). Mitochondrial DNA Part A 27, 2153–2154 (2016).
    CAS  Google Scholar 

    29.
    Egamberdiev, S. S. et al. Comparative assessment of genetic diversity in cytoplasmic and nuclear genome of upland cotton. Genetica 144, 289–306 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Williams, A. V., Miller, J. T., Small, I., Nevill, P. G. & Boykin, L. M. Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia. Mol. Phylogenet. Evol. 96, 1–8 (2016).
    CAS  PubMed  Article  Google Scholar 

    31.
    Fučíková, K. et al. New phylogenetic hypotheses for the core Chlorophyta based on chloroplast sequence data. Front. Ecol. Evol. 2, 63 (2014).
    Google Scholar 

    32.
    Friis, G. et al. A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina. bioRxiv (2020).

    33.
    Asaf, S. et al. Complete chloroplast genome of Nicotiana otophora and its comparison with related species. Front. Plant Sci. 7, 843 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Asaf, S., Khan, A. L., Khan, A. & Al-Harrasi, A. Unraveling the chloroplast genomes of two prosopis species to identify its genomic information, comparative analyses and phylogenetic relationship. Int. J. Mol. Sci. 21, 3280 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    35.
    Souladeth, P., Tagane, S., Zhang, M., Okabe, N. & Yahara, T. Flora of Nam Kading National Protected Area I: a new species of yellow-flowered Strobilanthes (Acanthaceae), S. namkadingensis. PhytoKeys 81, 11 (2017).
    Article  Google Scholar 

    36.
    Yang, L. et al. The complete chloroplast genome of Swertia tetraptera and phylogenetic analysis. Mitochondrial DNA Part B 5, 164–165 (2020).
    Article  Google Scholar 

    37.
    Biju, V. C. et al. The complete chloroplast genome of Trichopus zeylanicus, and phylogenetic analysis with dioscoreales. Plant Genome 12, 190032 (2019).
    CAS  Article  Google Scholar 

    38.
    Silva, S. R. et al. The chloroplast genome of Utricularia reniformis sheds light on the evolution of the ndh gene complex of terrestrial carnivorous plants from the Lentibulariaceae family. PLoS ONE 11, e0165176 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Zuo, L.-H. et al. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis. PLoS ONE 12, e0171264 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Niu, Z., Huang, S., Deng, Y. & Chen, X. The complete chloroplast genome of Justicia leptostachya (Acanthaceae). Mitochondrial DNA Part B 4, 1114–1115 (2019).
    Article  Google Scholar 

    41.
    Chen, H. et al. Sequencing and analysis of Strobilanthes cusia (Nees) Kuntze chloroplast Genome revealed the rare simultaneous contraction and expansion of the inverted repeat region in Angiosperm. Front. Plant Sci. 9, 324 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Ding, P. et al. The complete chloroplast genome sequence of the medicinal plant Andrographis paniculata. Mitochondrial DNA Part A 27, 2347–2348 (2016).
    CAS  Article  Google Scholar 

    43.
    Yaradua, S. S., Alzahrani, D. A., Albokhary, E. J., Abba, A. & Bello, A. Complete chloroplast genome sequence of Justicia flava: genome comparative analysis and phylogenetic relationships among Acanthaceae. BioMed Res. Int. 2019, 4370258 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Huang, S., Deng, Y. & Ge, X. The complete chloroplast genome of Aphelandra knappiae (Acanthaceae). Mitochondrial DNA Part B 4, 273–274 (2019).
    Article  Google Scholar 

    45.
    Li, M.-N. et al. Complete plastome sequence of Clinacanthus nutans (Acanthaceae): a medicinal species in Southern China. Mitochondrial DNA Part B 4, 118–119 (2019).
    Article  Google Scholar 

    46.
    Jiang, M., Wang, J. & Zhang, H. Characterization and phylogenetic analysis of the complete chloroplast genome sequence of Disanthus cercidifolius subsp. longipes (Hamamelidaceae), a rare and endangered wild plant species in China. Mitochondrial DNA Part B 5, 1206–1207 (2020).
    CAS  PubMed  Article  Google Scholar 

    47.
    Steane, D. A. Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae). DNA Res. 12, 215–220 (2005).
    CAS  PubMed  Article  Google Scholar 

    48.
    Park, J., Kim, Y., Xi, H. & Heo, K.-I. The complete chloroplast genome of ornamental coffee tree, Coffea arabica L. (Rubiaceae). Mitochondrial DNA Part B 4, 1059–1060 (2019).
    Article  Google Scholar 

    49.
    Park, J. et al. The complete chloroplast genome of common camellia tree, Camellia japonica L. (Theaceae), adapted to cold environment in Korea. Mitochondrial DNA Part B 4, 1038–1040 (2019).
    Article  Google Scholar 

    50.
    Arif Khan, S. A. et al. First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: Myrrh producing trees. PLoS ONE 14, e0225469 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Xu, J. et al. The first intron of rice EPSP synthase enhances expression of foreign gene. Sci. China Ser. C Life Sci. 46, 561 (2003).
    CAS  Article  Google Scholar 

    52.
    Kelchner, S. A. The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann. Missouri Bot. Gard. 87, 482–498 (2000).
    Article  Google Scholar 

    53.
    Khan, A. et al. Complete chloroplast genomes of medicinally important Teucrium species and comparative analyses with related species from Lamiaceae. PeerJ 7, e7260 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Asaf, S., Khan, A., Khan, A. L., Al-Harrasi, A. & Al-Rawahi, A. Complete chloroplast genomes of Vachellia nilotica and Senegalia senegal: comparative genomics and phylogenomic placement in a new generic system. PLoS ONE 14, e0225469 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Su, Y., He, Z., Wang, Z., Hong, Y. & Wang, T. Characterization of the complete chloroplast genome of Leptochilus decurrens (Polypodiaceae), a least concern folk medicinal fern. Mitochondrial DNA Part B 4, 3346–3347 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Kumar, S. & Shanker, A. In silico comparative analysis of simple sequence repeats in chloroplast genomes of genus nymphaea. J. Sci. Res. 64, 186–192 (2020).
    Google Scholar 

    57.
    Asaf, S. et al. The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species. Front. Plant Sci. 8, 304 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Asaf, S. et al. Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. PLoS ONE 13, e0192966 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Khan, A. L. et al. The first chloroplast genome sequence of Boswellia sacra, a resin-producing plant in Oman. PLoS ONE 12, e0169794 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Asaf, S. et al. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species. PLoS ONE 12, e0182281 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Qian, J. et al. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE 8, e57607 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Wang, W. & Messing, J. High-throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA. PLoS ONE 6, e24670 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Shen, X. et al. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 22, 1330 (2017).
    ADS  PubMed Central  Article  CAS  Google Scholar 

    64.
    Liu, M. et al. The complete chloroplast genome sequence of Tartary Buckwheat Cultivar Miqiao 1 (Fagopyrum tataricum Gaertn.). Mitochondrial DNA Part B 1, 577–578 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Fu, P.-C., Zhang, Y.-Z., Geng, H.-M. & Chen, S.-L. The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae) and comparative analysis with its congeneric species. PeerJ 4, e2540 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Choi, K. S., Chung, M. G. & Park, S. The complete chloroplast genome sequences of three Veroniceae species (Plantaginaceae): comparative analysis and highly divergent regions. Front. Plant Sci. 7, 355 (2016).
    PubMed  PubMed Central  Google Scholar 

    67.
    Cheon, K.-S., Kim, K.-A., Kwak, M., Lee, B. & Yoo, K.-O. The complete chloroplast genome sequences of four Viola species (Violaceae) and comparative analyses with its congeneric species. PLoS ONE 14, e0214162 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Munyao, J. N. et al. Complete chloroplast genomes of chlorophytum comosum and chlorophytum gallabatense: genome structures, comparative and phylogenetic analysis. Plants 9, 296 (2020).
    CAS  PubMed Central  Article  Google Scholar 

    69.
    Yu, T., Huang, B.-H., Zhang, Y., Liao, P.-C. & Li, J.-Q. Chloroplast genome of an extremely endangered conifer Thuja sutchuenensis Franch.: gene organization, comparative and phylogenetic analysis. Physiol. Mol. Biol. Plants 1–10 (2020).

    70.
    Sabri, D. M., El-Hussieny, S. A. & Elnwishy, N. Genotypic Variations of Mangrove (Avicennia marina) in Nabq Protectorate, South Sinai Egypt. Int. J. Agric. Biol. 20, 637–646 (2018).
    Article  Google Scholar 

    71.
    71Basyuni, M., Baba, S. & Oku, H. in IOP Conference Series: Materials Science and Engineering. 012247 (IOP Publishing).

    72.
    Sahu, S. K., Singh, R. & Kathiresan, K. Multi-gene phylogenetic analysis reveals the multiple origin and evolution of mangrove physiological traits through exaptation. Estuar. Coast. Shelf Sci. 183, 41–51 (2016).
    ADS  Article  Google Scholar 

    73.
    Khan, A. et al. First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: Myrrh producing trees. PLoS ONE 14, e0208511 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Arif, M. F., Aristya, G. R., Subositi, D., Sari, A. N. & Kasiamdari, R. S. rbcL and matK chloroplast DNA composition of green chireta (Andrographis paniculata) from Indonesia. Biodivers. J. Biol. Divers. 20, 3575–3583 (2019).
    Google Scholar 

    75.
    Langdon, W. B. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 8, 1 (2015).
    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Gan, H. M., Schultz, M. B. & Austin, C. M. Integrated shotgun sequencing and bioinformatics pipeline allows ultra-fast mitogenome recovery and confirms substantial gene rearrangements in Australian freshwater crayfishes. BMC Evol. Biol. 14, 19 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Feng, G., Yang, J. & Peng, F.-R. Characterization of complete chloroplast genome of artificial hybrid passion fruit ‘Ziyan’, Passiflora edulis Sims× P. edulis f. edulis Sims (Passifloraceae). Mitochondrial DNA Part B 5, 1720–1721 (2020).
    Article  Google Scholar 

    79.
    Brown, J., Pirrung, M. & McCue, L. A. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 33, 3137–3139 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Wyman, S. K., Jansen, R. K. & Boore, J. L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252–3255 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Lohse, M., Drechsel, O. & Bock, R. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52, 267–274 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Kurtz, S. et al. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633–4642 (2001).
    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583–2585 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Wirawan, A., Kwoh, C. K., Hsu, L. Y. & Koh, T. H. in International Conference on Computational Systems-Biology and Bioinformatics. 151–164 (Springer).

    89.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Srivathsan, A. & Meier, R. On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28, 190–194 (2012).
    Article  Google Scholar 

    91.
    Kumar, S., Nei, M., Dudley, J. & Tamura, K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinf. 9, 299–306 (2008).
    CAS  Article  Google Scholar 

    92.
    Swofford, D. L. Paup*: Phylogenetic analysis using parsimony (and other methods) 4.0. B5. (2001).

    93.
    Wu, Z., Tembrock, L. R. & Ge, S. Are differences in genomic data sets due to true biological variants or errors in genome assembly: an example from two chloroplast genomes. PLoS ONE 10, e0118019 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    A forest loss report card for the world’s protected areas

    1.
    Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    De Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).
    Article  Google Scholar 

    3.
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Protected Planet Report 2016 (UNEP-WCMC and IUCN, 2016).

    5.
    Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).
    Article  Google Scholar 

    8.
    The State of the World’s Forests 2020 (FAO and UNEP, 2020).

    9.
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Coetzee, B. W., Gaston, K. J. & Chown, S. L. Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS ONE 9, e105824 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    CAS  Article  Google Scholar 

    14.
    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Spracklen, B., Kalamandeen, M., Galbraith, D., Gloor, E. & Spracklen, D. V. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10, e0143886 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Fuller, C., Ondei, S., Brook, B. W. & Buettel, J. C. First, do no harm: a systematic review of deforestation spillovers from protected areas. Glob. Ecol. Conserv. 18, e00591 (2019).
    Article  Google Scholar 

    20.
    Stolton, S. et al. in Protected Area Governance and Management (eds Worboys, G. L. et al.) 145–168 (ANU Press, 2015).

    21.
    Scharlemann, J. P. et al. Securing tropical forest carbon: the contribution of protected areas to REDD. Oryx 44, 352–357 (2010).
    Article  Google Scholar 

    22.
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).
    Article  Google Scholar 

    24.
    Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Leader-Williams, N. & Albon, S. Allocation of resources for conservation. Nature 336, 533–535 (1988).
    Article  Google Scholar 

    26.
    Jachmann, H. Monitoring law-enforcement performance in nine protected areas in Ghana. Biol. Conserv. 141, 89–99 (2008).
    Article  Google Scholar 

    27.
    Critchlow, R. et al. Improving law-enforcement effectiveness and efficiency in protected areas using ranger-collected monitoring data. Conserv. Lett. 10, 572–580 (2017).
    Article  Google Scholar 

    28.
    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).
    Article  Google Scholar 

    29.
    Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Watson, J. E., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Bruner, A. G., Gullison, R. E. & Balmford, A. Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. BioScience 54, 1119–1126 (2004).
    Article  Google Scholar 

    32.
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    33.
    Report of the Conference of the Parties on its Sixteenth Session, held in Cancun from 29 November to 10 December 2010. Addendum. Part Two: Action Taken by the Conference of the Parties at its Sixteenth Session Report FCCC/CP/2010/7/Add.1 (UNFCCC, 2011).

    34.
    Fletcher, R., Dressler, W., Büscher, B. & Anderson, Z. R. Questioning REDD+ and the future of market-based conservation. Conserv. Biol. 30, 673–675 (2016).
    PubMed  Article  Google Scholar 

    35.
    Ministerio de Ambiente y Desarrollo Sostenible, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Política Nacional para la Gestión Integral de la Biodiversidad y Sus Servicios Ecosistémicos (MADS, 2012).

    36.
    Sims, K. R. E. & Alix-Garcia, J. M. Parks versus PES: evaluating direct and incentive-based land conservation in Mexico. J. Environ. Econ. Manag. 86, 8–28 (2017).
    Article  Google Scholar 

    37.
    James, A. N., Green, M. J. B. & Paine, J. R. A Global Review of Protected Area Budgets and Staff WCMC Biodiversity Series No.10 (World Conservation Press, 1999).

    38.
    Walker, S., Price, R., Rutledge, D., Stephens, R. T. & Lee, W. G. Recent loss of indigenous cover in New Zealand. New Zeal. J. Ecol. 30, 169–177 (2006).
    Google Scholar 

    39.
    Ewers, R. M. et al. Past and future trajectories of forest loss in New Zealand. Biol. Conserv. 133, 312–325 (2006).
    Article  Google Scholar 

    40.
    Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).
    Article  Google Scholar 

    41.
    Grossman, G. M. & Krueger, A. B. Environmental Impacts of a North American Free Trade Agreement (National Bureau of Economic Research, 1991).

    42.
    Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. 6, 1080–1082 (2019).
    Article  Google Scholar 

    43.
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Walker, N., Patel, S., Davies, F., Milledge, S. & Hulse, J. Demand-Side Interventions to Reduce Deforestation and Forest Degradation (International Institute for Environment and Development, 2013).

    45.
    Marie-Vivien, D., Garcia, C. A., Kushalappa, C. G. & Vaast, P. Trademarks, geographical indications and environmental labelling to promote biodiversity: the case of agroforestry coffee in India. Dev. Policy Rev. 32, 379–398 (2014).
    Google Scholar 

    46.
    Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Glob. Change Biol. 22, 656–665 (2016).
    Article  Google Scholar 

    47.
    Adams, W. M. et al. Biodiversity conservation and the eradication of poverty. Science 306, 1146–1149 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Belle, E. et al. Protected Planet Report 2018 (UNEP-WCMC, IUCN and NGS, 2018).

    49.
    Geldmann, J. et al. Essential indicators for measuring area-based conservation effectiveness in the post-2020 global biodiversity framework. Preprint at https://doi.org/10.20944/preprints202003.0370.v1 (2020).

    50.
    Protected Areas Management Effectiveness Methodologies (Protected Planet 2020); http://go.nature.com/3ptIPHA

    51.
    Ervin, J. Rapid assessment of protected area management effectiveness in four countries. BioScience 53, 833–841 (2003).
    Article  Google Scholar 

    52.
    Conservancy, N. Conservation Action Planning: Developing Strategies, Taking Action, and Measuring Success at any Scale: Overview of Basic Practices (Nature Conservancy, 2007).

    53.
    Hockings, M. et al. The World Heritage Management Effectiveness Workbook: 2007 Edition: How to Build Monitoring, Assessment and Reporting Systems to Improve the Management Effectiveness of Natural World Heritage Sites 3rd draft (Univ. Queensland, 2007).

    54.
    Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).
    Article  Google Scholar 

    55.
    Stolton, S., Hockings, M., Dudley, N., MacKinnon, K. & Whitten, T. Reporting Progress in Protected Areas: A Site-Level Management Effectiveness Tracking Tool (World Bank/WWF Alliance for Forest Conservation and Sustainable Use, 2003).

    56.
    Hockings, M. et al. The IUCN green list of protected and conserved areas: setting the standard for effective area-based conservation. Parks 25, 57–66 (2019).
    Google Scholar 

    57.
    Locke, H. Nature needs half: a necessary and hopeful new agenda for protected areas. Nat. N. South Wales 58, 7–17 (2014).
    Google Scholar 

    58.
    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).

    59.
    The World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, accessed 1 January 2020); https://www.protectedplanet.net/

    60.
    Iacus, S. M., King, G. & Porro, G. Causal inference without balance checking: coarsened exact matching. Polit. Anal. 20, 1–24 (2012).
    Article  Google Scholar 

    61.
    Stuart, E. A. Matching methods for causal inference: a review and a look forward. Stat. Sci. 25, 1–21 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 (Columbia Univ. Center for International Earth Science Information Network, 2018).

    65.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
    Article  Google Scholar 

    66.
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Bode, M., Tulloch, A. I., Mills, M., Venter, O. & Ando, W. A. A conservation planning approach to mitigate the impacts of leakage from protected area networks. Conserv. Biol. 29, 765–774 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Carranza, T., Balmford, A., Kapos, V. & Manica, A. Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: the Brazilian Cerrado. Conserv. Lett. 7, 216–223 (2014).
    Article  Google Scholar 

    69.
    Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. New Dir. Eval. 2009, 75–84 (2009).
    Article  Google Scholar 

    70.
    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B 278, 1633–1638 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Iacus, S. M., King, G. & Porro, G. CEM: software for coarsened exact matching. J. Stat. Softw. 30, 1–27 (2009).
    Article  Google Scholar 

    72.
    Rosenbaum, P. R. Sensitivity analysis for m-estimates, tests, and confidence intervals in matched observational studies. Biometrics 63, 456–464 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Keele, L. An Overview of rbounds: an R Package for Rosenbaum Bounds Sensitivity Analysis with Matched Data White Paper, Columbus 1–15 (2010); https://go.nature.com/2M5DKXM

    74.
    Keele, L. J. rbounds: Perform Rosenbaum Bounds Sensitivity Tests for Matched and Unmatched Data. R Package (2014); https://cran.r-project.org/package=rbounds

    75.
    World Development Indicators 2018 (World Bank, 2018).

    76.
    Conner, M. M., Saunders, W. C., Bouwes, N. & Jordan, C. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration. Environ. Monit. Assess. 188, 555 (2016).
    PubMed Central  Article  Google Scholar 

    77.
    Murakami, D. spmoran (ver. 0.2.0): an R package for Moran eigenvector-based scalable spatial additive mixed modeling. Preprint at https://arxiv.org/abs/1703.04467v9 (2017).

    78.
    Murakami, D. & Griffith, D. A. Spatially varying coefficient modeling for large datasets: eliminating N from spatial regressions. Spat. Stat. 30, 39–64 (2019).
    Article  Google Scholar 

    79.
    Murakami, D. & Griffith, D. A. Balancing spatial and non-spatial variation in varying coefficient modeling: a remedy for spurious correlation. Preprint at https://arxiv.org/abs/2005.09981 (2020).

    80.
    Walker, W. et al. Forest carbon in Amazonia: the unrecognized contribution of Indigenous territories and protected natural areas. Carbon Manag. 5, 479–485 (2014).
    CAS  Article  Google Scholar 

    81.
    Robinson, E. J., Albers, H. J. & Busby, G. M. The impact of buffer zone size and management on illegal extraction, park protection, and enforcement. Ecol. Econ. 92, 96–103 (2013).
    Article  Google Scholar 

    82.
    Koop, G. & Tole, L. Is there an environmental Kuznets curve for deforestation? J. Dev. Econ. 58, 231–244 (1999).
    Article  Google Scholar 

    83.
    Barnes, M. D., Craigie, I. D., Dudley, N. & Hockings, M. Understanding local-scale drivers of biodiversity outcomes in terrestrial protected areas. Ann. NY Acad. Sci. 1399, 42–60 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    84.
    Chamberlin, T. C. The method of multiple working hypotheses. Science 15, 92–96 (1890).
    Google Scholar  More

  • in

    Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps

    Del Mar methane seep carbonate community analyses
    The carbonate rock sample used for microbial community analyses was collected from Del Mar East Seep, Dive SO 177, (32°54.25456764 N, 117°46.9408327 W) at a depth of 1032.06 m. The site is in the northern portion of the San Diego Trough, about 50 km west of San Diego, California. Visible features of the seep include carbonate boulders and pavements colonized by orange and white bacterial mats, possible subsurface methane hydrate (large pits and craters), clam beds, and curtains of methane bubbles [20]. For a more in-depth discussion of the Del Mar Methane Seep, please see Grupe et al., (2015). A small chunk of the rock was sealed in a Mylar bag and shipped on dry ice to the University of Minnesota (Twin Cities). Upon arrival, the carbonate sample was temporarily stored at −80 °C until sampling for DNA extractions. All tools used for sampling biomass were autoclave-sterilized prior to use, and all work was performed in a LabConco A2 biological safety cabinet. Sterile aluminum foil was placed over ice packs to provide a cold and clean working environment. Three tubes were designated for the top of the rock, and three tubes were designated for the bottom of the rock. Biomass was scraped from the respective positions and placed in tubes. Top sample tubes had a biomass weight between 76.5–97.6 mg, and bottom sample tubes had a biomass weight between 30.7–59.3 mg. DNA was extracted from the seep samples using the ZymoBIOMICS DNA miniprep kit (Zymo, Irvine, CA). Nuclease-free water from the kit was processed alongside the samples as a negative control for iTag sequence analyses. The amplification of DNA and the generation iTag libraries of the V4 hypervariable region was performed by the University of Minnesota Genomics Center as previously described [21]. The samples and negative control were sequenced on ¼ of a lane of MiSeq for paired end 2×300 bp reads. Primers and adapters were removed with Cutadapt v. 2.10 [22]. The paired end reads were processed and assembled using DADA2 v1.16.0 [23]. The maximum expected error rate was 2 and reads detected as phiX were removed prior to error detection, merging of pairs and chimera detection. Taxonomic assignment was performed using the Silva database v. 138 [24]. Bioinformatic and statistical analyses was performed using tools in PhyloSeq 1.32.0 [25]. R package Decontam 1.8.0 [26] identified contaminating amplicon sequence variants (ASVs). Thus, ASVs of the genera Escherichia/Shigella, Haemophilus, Streptococcus, and the clade Chloroflexi S085 were bioinformatically removed from analyses. ASVs with statistically different abundances between the top and bottom surfaces were detected with DESeq2 v. 1.28.0.
    Scanning electron microscopy of seep carbonates
    The carbonate rock sample used for SEM imaging was collected from the Lasuen Knoll Seep (Dive SO 170, 33°23.57489996 N, 118°0.39814252 W) at a depth of 279.705 meters. A small chunk of carbonate rock with filtered bottom water and 25% vol/vol glutaraldehyde was stored at 4 °C, shipped on ice to the University of Minnesota (Twin Cities), and then stored at 4 °C. Several small pieces of the carbonate rock were broken off and placed in an 8-well plate. The carbonate pieces in the 8-well plate were rinsed, and subjected to an ethanol dehydration series as follows: 50% for 2 h, 70% over night, 80% for 15 min, 95% (x2) for 15 min, and 100% (x2) for 15 min. Carbonate samples were then subjected to critical point drying on a Tousimis Model 780 A Critical-Point-Dryer following standard procedures, followed by sputter coating 1–2 nm Iridium in a Leica ACE600 Sputter Coater. Lastly, carbonate samples were visualized at 1.0 kV on a Hitachi SU8230 Field Emission Gun Scanning Electron Microscope.
    Continuous flow bioreactor experiments
    To investigate the potential for sulfur-oxidizing bacteria to dissolve carbonate minerals, we used flow-through biofilm reactors (herein referred to as bioreactors: CDC; CBR 90–3 CDC Biofilm Reactor). Bioreactors contained eight polypropylene coupon holder rods that each accommodate three 12.7 mm diameter coupons. The lid and coupon holder rods were mounted in a 1 L glass vessel with side-arm discharge port at ~400 mL. A liquid medium (described below and Supplementary Table 1) was circulated through the bioreactor, while mixing was generated by a magnetic stir bar at 80 RPM. Sampling of the coupons was conducted aseptically by removing individual coupon holders and harvesting the coupons, while replacing the removed coupon holder with a sterile rubber plug. Experiments were 21 days in duration. On the final day of bioreactor experiments, one coupon was transferred to a treatment imaging flow cell (herein referred to as flow cell: BioSurface Technologies; Model FC 310 Treatment Imaging Flow Cell) in order to visualize and measure the in vivo pH of the biofilm. The flow cell is an autoclavable polycarbonate plastic cell with a recessed inner circle for installing coupons with biofilms grown in CDC Biofilm Reactors, and is equipped with barbed influent and effluent connectors, and topped with a coverslip for in vivo imaging.
    The bioreactor medium consisted of two solutions, salt solution 1 & 2, and six additional components: vitamin solution, trace element solution, yeast extract, sodium bicarbonate, sodium thiosulfate, and sodium metasilicate. One 10 L carboy was prepared by autoclaving 5 L of salt solution 1 and one 10 L carboy was prepared by autoclaving 4.1 L (with an additional 839 mL ddH2O) of salt solution 2 at 121 °C for 80 min. The salt solutions were then aseptically pumped together, followed by the addition of sterile stocks of 10 mL 1000X vitamin solution, 10 mL 1000X trace element solution, 10 mL (1000 g/L) yeast extract, 11 mL 1 M NaHCO3, 10 mL 1 M Na2S2O3, and 20 mL 100 mM NaSiO3 through a 0.2 μM filter.
    The final medium had a pH of ~7.85 and contained approximately 1.1 mM HCO3-, 1 mM S2O32-, and 9.14 mM Ca2+, with a saturation state with respect to aragonite (Ωaragonite) of ~0.5, similar to that measured near the sediment/water interface in certain seep environments where carbonate dissolution was observed to occur [7, 27]. The saturation state of aragonite was calculated using CO2SYS_v2.1 [28]. Ingredients for both salt solutions and the additional components added to the medium are presented in Supplementary Table 1. Measured saturation indices throughout bioreactor experiments are presented in Supplementary Table 2.
    Mineral preparation for bioreactor experiments
    Bulk mineral specimens of aragonite were obtained from D.J. Minerals (Butte, Montana). X-ray powder diffraction (XRD) of the aragonite sample, and peak matching indicates the mineral is nearly 100% aragonite. Samples used for the bioreactor were cored with a diamond coring bit on a drill press, cut to ~1–3 mm thickness and smoothed with a diamond saw. Coupons were then scored with a diamond tipped scribe pen to assign a reference code. After scoring, coupons were placed in a muffle furnace (NEY 2-525 Series II) at 500 °C for 4 h to remove residual organic matter, followed by weighing to 0.01 mg (CAHN 29 Automatic Electrobalance) and stored in a desiccator until being mounted in coupon holder rods.
    Assembling the bioreactor
    Weighed coupons were mounted in coupon holder rods, and fastened in place with plastic screws to avoid mineral chipping, as occurred with the stock metal screws. The bioreactor lid was equipped with a bubble trap on the media inflow port, a 0.45 μm airport, and a lure-lock covered in foil for inoculating via syringe. The entire bioreactor was autoclaved at 121 °C for 45 min.
    Microbial inoculant
    Celeribacter baekdonensis strain LH4 was used as the pure-culture inoculant for the bioreactor experiments. C. baekdonensis strain LH4 is a colorless, chemolithoheterotrophic, sulfur-oxidizing bacterium, belonging to the Rhodobacterales within the Alphaproteobacteria. It was isolated from marine sediments collected from a methane seep/brine pool at Green Canyon Block 233 [29] (Lat/Long: 27° 43.4392’ N, 91° 16.7638’ W, Depth: 648 m) in the Gulf of Mexico. Strain LH4 produces acid from thiosulfate oxidation, likely via the sox pathway (soxABCDXYZ) [30]. Strain LH4 also contains other genes related to sulfur oxidation, including four copies of sulfide quinone oxidoreductase ORFs and three copies that encode flavocytochrome c oxidases. Strain LH4 was grown up in the final medium, centrifuged at 10,000 G for 10 min, and washed 2X. OD590 for experiments was on average ~0.07 (~2.3•108 cells/mL based on cell counts and growth curves yielding the equation y = 3•109(x) + 2•107 where y equals cells/mL, and x equals OD590) with an inoculum volume of 20 mL.
    Bioreactor experiments
    Experiments were run to measure the dissolution of aragonite in a medium with a saturation state of 0.5 with respect to aragonite, similar to that measured near the sediment/water interface in seep environments [27]. Unlike in the sediments where AOM-generated alkalinity is high and carbonate actively precipitates, at the sediment/water interface previous studies have measured a notable drop in alkalinity [11, 31,32,33,34,35,36] and carbonate dissolution was observed to occur [7,8,9, 11, 27]. In total, six continuous -flow bioreactor experiments were run: three biotic experiments under identical conditions at 10 °C, pH ~7.85, 1.1 mM HCO3-, 1 mM S2O32-, and yeast extract; two uninoculated controls run under the same conditions as above to obtain an abiotic dissolution rate in undersaturated conditions; and one biotic experiment was run under identical conditions, minus the addition of S2O32- to elucidate the impact of heterotrophy on mineral stability.
    10 L carboys containing the final medium and sterile bioreactors were assembled aseptically in a class A2 biological safety bench. Approximately 325 mL of the media was pumped into the bioreactor, followed by inoculating with 20 mL of pure culture and ~600 μL 1 M HCO3-. The luer-lock was removed and a 0.2 μM filter was added in its place. Bioreactors were then placed in a 10 °C refrigerator on a stir plate at 80 RPM.
    Inoculated bioreactors were run in batch phase for 4 h to promote ample attachment of cells to aragonite coupon surfaces. Following the batch phase, the bioreactor was moved back to the clean hood where one coupon holder rod was removed and replaced with a sterile rubber stopper. Two coupons were placed in the incinerator at 500 °C for 4 h, followed by weighing for mass loss. The additional coupon was fixed in 4% PFA for 2 h, washed, and stained with DAPI [4,6-diamidino-2-phenylindole] for 30 min. Stained coupons were washed and mounted on coverslips (0.17 mm thickness) with DPX mountant for cell counting. After batch phase harvesting, the pump was turned on to the max flow rate (31 mL/min) and the first 100 mL out of the reactor was collected to measure pH, alkalinity, [Ca2+], and OD590. pH and alkalinity were measured using a Hanna Instruments total alkalinity mini titrator (HI-84431) and pH meter (HI 1131B) following the manufacturers protocol (Hanna Instruments, Woonsocket, RI, USA). [Ca2+] was measured using a Hach hardness test kit (product #2063900) following to the manufacturer’s protocol (Hach, Loveland, CO, USA). OD590 was measured on a Thermo Scientific Spectronic 20D + (Thermo Fisher Scientific, Waltham, MA, USA), where 1 mL of sterile medium was added to a cuvette to blank the spectrophotometer, and then 1 mL of the collected outflow was placed in a cuvette and measured. The pump was kept at the max flow rate for approximately 3–4 h after batch phase to remove planktonic cells and the additional HCO3- added during batch phase. Directly after flushing the bioreactor, water chemistry measurements were taken as they were above, and then the flow rate was dropped to 10 mL/min. Henceforth, the flow rate was only adjusted to keep the bulk fluid at approximately the pH and alkalinity of the starting conditions (max flow rate of 21 mL/min during week 3). To ensure consistency of the bulk fluid chemistry, pH and alkalinity measurements were taken twice daily (8–12 h intervals), just before changing carboys. Carboys were changed about every 8–12 h, depending on the current flow rate. To change carboys, the following steps were taken: (1) The pump was briefly turned off, and sterile aluminum foil was wrapped around the outflow tubing. (2) The bioreactor and currently connected carboy were moved to the biological safety bench on a roll cart. (3) Tubing that connected the carboy to the bioreactor was disconnected, and the male-port of the tubing still connected to the bioreactor was submerged in sterile 70% EtOH. (4) A new 10 L carboy containing the final medium was removed from the 10 °C refrigerator. (5) Aluminum foil covering the female-port of the tubing on the carboy was removed, and sprayed with sterile 70% EtOH. (6) Tubing from the bioreactor and carboy were then connected and placed on the roll cart, and moved back to the 10 °C refrigerator. (7) The pump was turned back on and flow resumed. One coupon holder rod was harvested every four days for 21 days, where two coupons were incinerated and weighed for mass loss and one coupon was fixed and stained for cell counting as described above. Surface area of aragonite coupons were estimated using the diameter of the coupon, the density of aragonite (2.93 g/cm3), and the mass of the coupon before and after bioreactor experiments. Density and mass were used to estimate the volume of the coupon, followed by deriving an estimated surface area. Using the mass of coupons before and after experiments, we calculated the total number of moles lost per unit area. Averaging these data out over time we were able to determine a dissolution rate in units of μmol CaCO3 • cm−2 • hr−1, which we then converted to μmol CaCO3 • cm−2 • yr−1 (8,760 h/year).
    Confocal microscopy
    We utilized the flow cell in conjunction with the ratiometric dye C-SNAFL-1 [5-[6]-carboxyseminaphthofluorescein] and Hoechst 33342 for measuring the in vivo pH of 21-day-old biofilms, and visualizing the biofilm, respectively. Coupons transferred to the flow cell were connected to a peristaltic pump at 3 mL/min until imaging occurred.
    Spectrofluorometric assays
    To calibrate C-SNAFL-1 photon excitations and to evaluate the dye’s potential use in measuring pH in biofilms, 1 mL aliquots of the final media with 10 mM HEPES buffer were adjusted to pH 5.0, 5.2, 5.6, 6.0, 6.4, 6.8, 7.2, 7.6, and 8.0. The final probe concentration was ~1.09 μM of C-SNAFL-1. Additional calibrations were performed with the addition of 4% (vol/vol) C. baekdonensis strain LH4.

    $${mathrm{Ratio}} = left( {{mathrm{Ex}}_{488} – {mathrm{Ex}}_{488{mathrm{,bkgd}}}} right)/left( {{mathrm{Ex}}_{561} – {mathrm{Ex}}_{561{mathrm{,bkgd}}}} right)$$
    (IV)

    Confocal scanning laser microscopy
    All biofilm images, pH and ratio calibrations in the flow cell were collected using a Nikon TiE inverted microscope equipped with an A1Rsi confocal scan head (Nikon). Hoechst 33342 fluorescence was excited with a 405 nm laser and collected between 425 and 475 nm using a regular PMT to visualize the biofilm. SNAFL emission was collected between 570 and 620 nm with a GaAsP PMT alternating excitation with the 488 and 561 nm lasers to obtain a ratiometric image. This image was used to calculate the pH across the field (below). 10X/0.45 PlanApo and 20X/0.75 PlanApo VC objectives were used to collect 512- by 512-bit resolution z-stacks. Depths in this paper are the distance from the substratum (base of biofilm) to the focal plane (distance furthest from the biofilm).
    To visualize the biofilms, flow was suspended and coupons were stained with Hoechst 33342 (2 drops/mL medium) for 15 min and then flushed. C-SNAFL-1 was added to the medium at a final concentration of 20 μM. Flow resumed with C-SNAFL-1 in the medium and then was suspended for no more than 15 min to minimize the accumulation of acidic metabolites, which could artificially modify the local pH. Image planes were set up to visualize the coupon-attached biofilm and the bulk media adjacent to the coupon in the same image. Biofilms were excited at 405 nm, and emission was detected between 425 and 475 nm. pH microenvironment images were captured using dual excitation at 488 nm and 561 nm, and single emission at 600 nm. To determine the z-stack image parameters, we first excited the sample at 405 nm to visualize the base of the biofilm, and then switched to the dual excitation channels to determine the end of the focal plane (e.g. the coverslip; point furthest away from the biofilm in the z-dimension where the signal diminishes). After determining the z-distance to image, we imaged the biofilm at 405 nm, and then the pH of the microenvironment at 488/561 nm. The pH of the microenvironment was determined by calculating the ratio of excitation intensities (i.e., pixel values) between the two channels (Ex488 nm/ Ex561 nm). All intensities were determined using NIS Elements software.
    Calibration standards for CSLM were performed in the flow cell with a sterile aragonite coupon and media with 20 μM C-SNAFL-1 and 10 mM HEPES buffer at pH 8.0, 7.8, 7.7, 7.55, 7.2, 7.0, and 6.8. Calibrations were performed with identical microscope settings as in the experiment above. Titration curves of pH versus ratios were calculated using NIS Elements software according to Eq. IV and were used to convert C-SNAFL-1 excitation ratios to pH values.
    Image analysis
    pH gradients within the biofilm and surrounding microenvironment were evaluated with NIS Elements software by using kymographs on the ratio images (Ex488 nm/ Ex561 nm). Each kymograph was ~500 μm in length (xy) and ~100 μm in depth (z). The resulting kymograph image had 4–5 regions of interest selected, including 2–3 spanning the biofilm into the bulk fluid directly above, and 2-3 in the bulk fluid adjacent to the biofilm. Regions of interest varied in z-depth depending on the thickness of the biofilm, though all were 13 μm in width (xy).
    Estimation of CaCO3 dissolved from various seep locations
    Seep locations
    PDC1 – Dive, SO 162; Site, Point Dume; Feature, Chimney complex 1; Latitude, 33 56.45753693; Longitude, 118 50.70879299; Depth (m), 729.522
    PDC2 – Dive, SO 164; Site, Point Dume; Feature, Chimney complex 2; Latitude, 33 56.50074983; Longitude, 118 50.64165898; Depth (m), 725.723
    PDC3 – Dive, SO 164; Site, Point Dume; Feature, Chimney complex 3; Latitude, 33 56.45417243; Longitude, 118 50.70728425; Depth (m), 728.966
    Determining total surface area
    Each image taken by submersible at Point Dume had two scale bars generated at the time of imaging, one in the background and one in the foreground, with each representing 10 cm. These two scale bars, in conjunction with a designed macro in Fiji/ImageJ were used to interpolate the total surface area within each image. The macro is based on the equation y-y1 = m(x-x1). The slope, m, was determined using the equation ((y2-y1)/(x2-x1)), where y2 = 10 cm/(length in pixels of the foreground scale bar), y1 = 10 cm/(length in pixels of the distant scale bar), x2 = (y-coordinate of the foreground scale bar), x1 = (y-coordinate of the distant scale bar). Each image was imported into Fiji/ImageJ, and scaled to 1333 × 750 pixels. All scales were removed to put all measurements in pixel values. Centroid and integrated density were added to set measurements. Each image was duplicated and the duplicated images were changed to 32-bit images. The macro was then run on each respective image. A polygon was then drawn around the visible area within each image, and added to the ROI manager. The ROIs were added to their respective duplicate and measured. These data gave us the total visible surface area present in each image.
    Determining surface area of exposed carbonates and carbonated-attached bacterial mats
    Polygons were drawn around all exposed carbonates within the visible region. These ROIs were then added to their respective duplicated image, and the total area of exposed carbonates was measured. Carbonate ROIs that contained small regions in which bacterial mats were not visible had “negative” ROIs drawn around them. When applicable, these negative ROIs were subtracted from the total exposed carbonate measurement, resulting in the total mat-on-rock surface area measurement. It is likely that bacteria are also colonizing the surfaces on which no obvious mat can be observed, but removal of these areas from consideration was done to provide a conservative lower estimate of bacterial coverage.
    Moles of carbonate rock dissolved was calculated as follows
    Experimentally-derived carbonate dissolution rate = 1773.97 μmol CaCO3 • cm−2 • yr−1.
    Apply dissolution rate to seep surface area covered by rock (e.g. Hydrate Ridge) to obtain the annual dissolution; 17.7397 mol CaCO3 • m−2 • yr−1 * 3.00E + 05 m2 = 5.32E + 06 mol CaCO3 • yr−1.
    Apply 92.77% average carbonate-attached bacterial mat percent coverage (Supplementary Table 3) to annual dissolution; (5.32E + 06 mol CaCO3 • yr−1) • (0.9277) = 4.94E + 06 mol CaCO3 • yr−1.
    We then applied these calculations to the remaining five seep sites in Table 1 to obtain the annual amount of carbonate dissolved per seep.
    Table 1 Estimation of moles of carbon potentially released to the ocean/atmosphere system from the weathering of carbonate rocks via lithotrophic sulfur-oxidation at seep sites where carbonate coverage has been estimated.
    Full size table More

  • in

    Variable inter and intraspecies alkaline phosphatase activity within single cells of revived dinoflagellates

    1.
    Gobler CJ, Doherty OM, Hattenrath-Lehmann TK, Griffith AW, Kang R, Litaker W. Ocean warming has expanded niche of toxic algae. Proc Natl Acad Sci USA. 2017;114:4975–80.
    CAS  PubMed  Article  Google Scholar 
    2.
    Olivieri ET. Colonization, adaptations and temporal changes in diversity and biomass of a phytoplankton community in upwelled water off the Cape Peninsula, South Africa, in December 1979. South Afr J Mar Sci. 1983;1:77–109.
    Article  Google Scholar 

    3.
    Irwin AJ, Zoe V, Finkel ZV, Müller-Karger FE, Troccoli, Ghinaglia L. Phytoplankton adapt to changing ocean environment. Proc Natl Acad Sci USA. 2015;112:5762–6.
    CAS  PubMed  Article  Google Scholar 

    4.
    Chivers W, Walne A, Hays G. Mismatch between marine plankton range movements and the velocity of climate change. Nat Commun. 2017;8:14434.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Gisselson L, Granéli E, Pallon J. Variation in cellular nutrient status within a population of Dinophysis norvegica (Dinophyceae) growing in situ: single – cell elemental analysis by use of a nuclear microprobe. Limnol Oceanogr. 2001;5. https://doi.org/10.4319/lo.2001.46.5.1237.

    6.
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508. https://doi.org/10.1038/nrmicro3491.
    CAS  Article  PubMed  Google Scholar 

    7.
    Núñez-Milland DR, Baines SB, Vogt S, Twining BS. Quantification of phosphorus in single cells using synchrotron X-ray fluorescence. J Synchrotron Radiat. 2010;17:560–6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Berthelot H, Duhamel S, L’Helguen S, Maguer JF, Wang S, Cetinić I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651–62. https://doi.org/10.1038/s41396-018-0285-8.
    CAS  Article  PubMed  Google Scholar 

    9.
    Štrojsová A, Vrba J. Short-term variation in extracellular phosphatase activity: possible limitations for diagnosis of nutrient status in particular algal populations. Aquat Ecol. 2009;43:19–25.
    Article  CAS  Google Scholar 

    10.
    O’Donnell DR, Hamman CR, Johnson EC, Kremer CT, Klausmeier CA, Litchman E. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob Change Biol. 2018;24:4554–65.
    Article  Google Scholar 

    11.
    Jin P, Agustí S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci Rep. 2018;8:17771. https://doi.org/10.1038/s41598-018-36091-y.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change. Nature. 2004;427:145–8.
    CAS  PubMed  Article  Google Scholar 

    13.
    Urban MC. Accelerating extinction risk from climate change. Science. 2015;348:571–3.
    CAS  PubMed  Article  Google Scholar 

    14.
    Kottuparambil S, Jin P, Agusti S. Adaptation of Red Sea Phytoplankton to experimental warming increases their tolerance to toxic metal exposure. Front Environ Sci. 2019;7. https://doi.org/10.3389/fenvs.2019.00125.

    15.
    Flores-Moya A, Costas E, Lopez-Rodas V. Roles of adaptation, chance and history in the evolution of the dinoflagellate Prorocentrum triestinum. Naturwissenschaften. 2008;95:697–703.
    CAS  PubMed  Article  Google Scholar 

    16.
    Flores-Moya A, Rouco M, García-Sánchez MJ, García-Balboa C, González R, Costas E, et al. Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification. Ecol Evol. 2012;2:1251–9. https://doi.org/10.1002/ece3.198.
    Article  PubMed  PubMed Central  Google Scholar 

    17.
    Martiny AC, Ustick LA, Garcia C, Lomas MW. Genomic adaptation of marine phytoplankton populations regulates phosphate uptake. Limnol Oceanogr. 2019. https://doi.org/10.1002/lno.11252.

    18.
    Ribeiro S, Berge T, Lundholm N, Andersen TJ, Abrantes F, Ellegaard M. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat Commun. 2011;2:311.
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Delebecq G, Schmidt S, Ehrhold A, Latimier M, Siano R. Revival of ancient marine dinoflagellates using molecular biostimulation. J Phycol. 2020;56:1077–89.
    CAS  PubMed  Article  Google Scholar 

    20.
    Ribeiro S, Berge T, Lundholm N, Ellegaard M. Hundred years of environmental change and phytoplankton ecophysiological variability archived in coastal sediments. PLoS ONE. 2013;8:e61184.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Klouch KZ, Schmidt S, Andrieux Loyer F, Le Gac M, Hervio-Heath D, Qui-Minet ZN, et al. Historical records from dated sediment cores reveal the multidecadal dynamic of the toxic dinoflagellate Alexandrium minutum in the Bay of Brest (France). FEMS Microbiol Ecol. 2016;92:1–16.
    Article  CAS  Google Scholar 

    22.
    Lundholm N, Ribeiro S, Godhe A, Rostgaard Nielsen L, Ellegaard M. Exploring the impact of multidecadal environmental changes on the population genetic structure of a marine primary producer. Ecol Evol. 2017;7:3132–42.
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, et al. Processes and patterns of oceanic nutrient limitation. Nat Geosci. 2013;6:701–10.
    CAS  Article  Google Scholar 

    24.
    Labry C, Herbland A, Delmas D. The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay. J Plankt Res. 2002;24:97–117.
    CAS  Article  Google Scholar 

    25.
    Girault M, Arakawa H, Hashihama F. Phosphorus stress of microphytoplankton community in the western subtropical North Pacific. J Plankt Res. 2013;35:146–57.
    CAS  Article  Google Scholar 

    26.
    Ramos JBE, Schulz KG, Voss M, Narciso Á, Müller MN, Reis FV, et al. Nutrient-specific responses of a phytoplankton community: a case study of the North Atlantic Gyre. Azores J Plankt Res. 2017;39:744–61.
    Article  CAS  Google Scholar 

    27.
    Lin S, Litaker RW, Sunda WG. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J Phycol. 2016;52:10–36.
    CAS  PubMed  Article  Google Scholar 

    28.
    Lomas MW, Swain A, Shelton R, Ammerman JW. Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton. Limnol Oceanogr. 2004;49:2303–10.
    Article  Google Scholar 

    29.
    Wang D, Huang B, Liu X, Liu G, Wang H. Seasonal variations of phytoplankton phosphorus stress in the Yellow Sea Cold Water Mass. Acta Oceano Sin. 2014;33:124–35.
    Article  CAS  Google Scholar 

    30.
    Cembella AD, Antia NJ, Harrison PJ. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. CRC Crit Rev Microbiol. 1984;10:317–91.
    CAS  Article  Google Scholar 

    31.
    Cooper A, Bowen ID, Lloyd D. The properties and subcellular localization of acid phosphatases in the colourless alga Polytomella caeca. J Cell Sci. 1974;15:605–18.
    CAS  PubMed  Google Scholar 

    32.
    Duhamel S, Björkman KM, Van Wambeke F, Moutin T, Karl DM. Characterization of alkaline phosphatase activity in the North and South Pacific Subtropical Gyres: Implications for phosphorus cycling. Limnol Oceanogr. 2011;56:1244–54.
    CAS  Article  Google Scholar 

    33.
    Kang W, Wang ZH, Liu L, Guo X. Alkaline phosphatase activity in the phosphorus-limited southern Chinese coastal waters. J Environ Sci. 2019;86:38–49.
    Article  Google Scholar 

    34.
    Girault M, Beneyton T, Pekin D, Buisson L, Bichon S, Charbonnier C, et al. High-content screening of plankton alkaline phosphatase activity in microfluidics. Anal Chem. 2018;90:4174–81. https://doi.org/10.1021/acs.analchem.8b00234.
    CAS  Article  PubMed  Google Scholar 

    35.
    Anderson RA, Berges RA, Harrison PJ, Watanabe MM. Appendix A – recipes for freshwater and seawater media; enriched natural seawater media. In Andersen RA, editor. Algal culturing techniques. San Diego, USA: Academic; 2005. p. 429–538.

    36.
    Guillard RL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol. 1962;8:229–39.
    CAS  PubMed  Article  Google Scholar 

    37.
    Duffy DC, McDonald JC, Schueller OJ, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem. 1998;70:4974–84.
    CAS  PubMed  Article  Google Scholar 

    38.
    Girault M, Hattori A, Kim H, Arakawa H, Matsuura K, Odaka M, et al. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution. Sci Rep. 2017;7:40072. https://doi.org/10.1038/srep40072.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Girault M, Odaka M, Kim H, Matsuura K, Terazono H, Yasuda K. Particle recognition in microfluidic applications using a template matching algorithm. JPN J Appl Phys. 2016;55. https://doi.org/10.7567/JJAP.55.06GN05.

    40.
    Urvoy M, Labry C, Delmas D, Creac’h L, L’Helguen S. Microbial enzymatic assays in environmental water samples: impact of Inner Filter Effect and substrate concentrations. Limnol Oceanogr Methods. 2020;18:728–38.
    Article  CAS  Google Scholar 

    41.
    Huang Z, Terpetschnig E, You W, Haugland RP. 2-(2′-phosphoryloxyphenyl)-4-(3H)-quinazolinone derivatives as fluorogenic precipitating substrates of phosphatases. Anal Biochem. 1992;207:32–39.
    CAS  PubMed  Article  Google Scholar 

    42.
    Girault M, Hattori A, Kim H, Matsuura K, Odaka M, Terazono H et al. Algorithm for the precise detection of single and cluster cells in microfluidic applications. Cytom Part A. 2016. https://doi.org/10.1002/cyto.a.22825.

    43.
    Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–36.
    CAS  Article  Google Scholar 

    44.
    Hoppe HG. Phosphatase activity in the sea. Hydrobiologia. 2003;493:187–200.
    CAS  Article  Google Scholar 

    45.
    Golda-VanEeckhoutte RL, Roof LT, Needoba JA, Peterson DT. Determination of intracellular pH in phytoplankton using the fluorescent probe, SNARF, with detection by fluorescence spectroscopy. J Microbiol Methods. 2018;152:109–18.
    CAS  PubMed  Article  Google Scholar 

    46.
    Kruskopf MM, Du Plessis S. Induction of both acid and alkaline phosphatase activity in two green-algae (chlorophyceae) in low N and P concentrations. Hydrobiologia. 2004;513:59–70.
    CAS  Article  Google Scholar 

    47.
    Štrojsová A, Vrba J, Nedoma J, Komárková J, Znachor P. Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. Eur J Phycol. 2003;38:295–306.
    Article  CAS  Google Scholar 

    48.
    Skelton HM, Parrow MW, Burkholder JM. Phosphatase activity in the heterotrophic dinoflagellate Pfiesteria shumwayae. Harmful Algae 2006;5:395–406.
    CAS  Article  Google Scholar 

    49.
    Nedoma J, Štrojsová A, Vrba J, Komárková J, Simek K. Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environ Microbiol. 2003;5:462–72.
    CAS  PubMed  Article  Google Scholar 

    50.
    Young EB, Tucker RC, Pansch LA. Alkaline phosphatase in freshwater Cladophora-epiphyte assemblages: regulation in response to phosphorus supply and localization. J Phycol. 2010;46:93–101.
    CAS  Article  Google Scholar 

    51.
    Díaz-de-Quijano D, Felip M. A comparative study of fluorescence-labelled enzyme activity methods for assaying phosphatase activity in phytoplankton. A possible bias in the enzymatic pathway estimations. J Micro Meth. 2011;86:104–7.
    Article  CAS  Google Scholar 

    52.
    Ou L, Huang B, Lin L, Hong H, Zhang F, Chen Z. Phosphorus stress of phytoplankton in the Taiwan Strait determined by bulk and single-cell alkaline phosphatase activity assays. Mar Ecol Prog Ser. 2006;327:95–106.
    CAS  Article  Google Scholar 

    53.
    Huang B, Ou L, Wang X, Huo W, Li R, Hong H, et al. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences. Aquat Micro Ecol. 2007;49:195–206.
    Article  Google Scholar 

    54.
    Ivančić I, Pfannkuchen M, Godrijan J, Djakovac T, Pfannkuchen DM, Korlević M, et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions. Prog Oceanogr. 2016;146:175–86.
    Article  Google Scholar 

    55.
    González-Gil S, Keafer B, Jovine JMR, Aguileral A, Lu S, Anderson DM. Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar Ecol Prog Ser. 1998;164:21–35.
    Article  Google Scholar 

    56.
    Dyhrman ST, Ruttenberg KC. Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol Oceanogr. 2006;51. https://doi.org/10.4319/lo.2006.51.3.1381.

    57.
    Flynn K, Jones KJ, Flynn KJ. Comparisons among species of Alexandrium (Dinophyceae) grown in nitrogen- or phosphorus-limiting batch culture. Mar Biol. 1996;126:9–18.
    CAS  Article  Google Scholar 

    58.
    Perry MJ. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Mar Biol. 1972;15:113–9.
    CAS  Article  Google Scholar 

    59.
    Dyhrman ST, Palenik B. Phosphate stress in cultures and field populations of the dinoflagellate prorocentrum minimum detected by a single-cell alkaline phosphatase assay. Appl Environ Microbiol. 1999;65:3205–12.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Mulholland MR, Floge S, Carpenter EJ, Capone DG. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp. Mar Ecol Prog Ser. 2002;239:45–55.
    CAS  Article  Google Scholar 

    61.
    Thomson B, Wenley J, Currie K, Hepburn C, Herndl GJ, Baltar F. Resolving the paradox: Continuous cell-free alkaline phosphatase activity despite high phosphate concentrations. Mar Chem. 2019;214:103671.
    CAS  Article  Google Scholar 

    62.
    Foster RA, Sztejrenszus S, Kuypers MMM. Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. J Phycol. 2013;49:502–16.
    CAS  PubMed  Article  Google Scholar 

    63.
    Dyhrman ST, Palenik B. Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. J Plankton Res. 2003;25:1215–25.
    CAS  Article  Google Scholar 

    64.
    Oh SJ, Yamammoto T, Kataoka Y, Matsuda O, Matsuyama Y, Katani Y. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish Sci. 2002;68:416–24.
    CAS  Article  Google Scholar 

    65.
    Jauzein C, Labry C, Youenou A, Quéré J, Delmas D, Collos Y. Growth and phosphorus uptake by the toxic dinoflagellate Alexandrium catenella (Dinophycea) in response to phosphate limitation. J Phycol. 2010;46:926–36.
    CAS  Article  Google Scholar 

    66.
    Elgavish A, Halmann M, Berman T. A comparative study of phosphorus utilization and storage in batch cultures of Peridinium cinctum, Pediastrum duplex and Cosmarium sp., from Lake Kinneret (Israel). Phycologia. 1982;21:47–54.
    CAS  Article  Google Scholar 

    67.
    Flynn K, Franco JM, Fernandez P, Reguera B, Zapata M, Wood G, et al. Changes in toxin content, biomass and pigments of the dinoflagellate Alexandrium minutum during nitrogen refeeding and growth into nitrogen or phosphorus stress. Mar Ecol Prog Ser. 1994;111:99–109.
    CAS  Article  Google Scholar 

    68.
    Ou L, Wang D, Huang B, Hong H, Qi Y, Lu S. Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters. J Plankton Res. 2008;30:1007–17.
    CAS  Article  Google Scholar 

    69.
    Droop MR. The nutrient status of algal cells in continuous culture. J Mar Biol Ass UK. 1974;54:825–55.
    CAS  Article  Google Scholar 

    70.
    Bechemin C, Grzebyk D, Hachame F, Hummert C, Maestrini S. Effect of different nitrogen/phosphorus nutrient ratios on the toxin content in Alexandrium minutum. Aquat Micro Ecol. 1990;20:157–65.
    Article  Google Scholar 

    71.
    Labry C, Erard–Le Denn E, Chapelle A, Fauchot J, Youenou A, Crassous MP, et al. Competition for phosphorus between two dinoflagellates: A toxic Alexandrium minutum and a non-toxic Heterocapsa triquetra. J Exp Mar Biol Ecol. 2008;358:124–35.
    CAS  Article  Google Scholar 

    72.
    Chapelle A, Labry C, Sourisseau M, Lebreton C, Youenou A, Crassous MP. Alexandrium minutum growth controlled by phosphorus An applied model. J Mar Syst. 2010;83:181–91.
    Article  Google Scholar 

    73.
    Sakshaug E, Granéli E, Elbrächter M, Kayser H. Chemical composition and alkaline phosphatase activity of nutrient-saturated and P-deficient cells of four marine dinoflagellates. J Exp Mar Biol Ecol. 1984;11:241–54.
    Article  Google Scholar 

    74.
    Lirdwitayaprasit T, Okaichi T, Montani S, Ochi T, Anderson DM. Changes in cell chemical con~position during the life cycle of Scrippsiella trochoidea (Dinophyceae). J Phycol. 1990;26:299–306.
    CAS  Article  Google Scholar 

    75.
    Qi H, Wang J, Wang Z. A comparative study of maximal quantum yield of photosystem II to determine nitrogen and phosphorus limitation on two marine algae. J Sea Res. 2013;80:1–11.
    Article  Google Scholar 

    76.
    Simon N, Cras AL, Foulon E, Lemée R. Diversity and evolution of marine phytoplankton. C R Biol. 2009;332:159–70.
    PubMed  Article  Google Scholar 

    77.
    Rengefors K, Kremp A, Reusch TBH, Wood AM. Genetic diversity and evolution in eukaryotic phytoplankton: revelations from population genetic studies. J Plankton Res. 2017;39:165–79.
    Google Scholar 

    78.
    Bendif EM, Nevado B, Wong ELY, Wong EL, Hagino K, Probert I, et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat Commun. 2019;10:4234.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    79.
    Thornton DCO. Individuals clones or groups? Phytoplankton behaviour and units of selection. Ethol Ecol Evol. 2002;14:165–73.
    Article  Google Scholar 

    80.
    Gerecht A, Romano G, Lanora A, d’Ippolito G, Cutignano A, Fontana A. Plasticity of Oxylipin metabolism among clones of the marine diatom Skeletonema marinoi (Bacillariophyceae). J Phycol. 2011;47:1050–6.
    CAS  PubMed  Article  Google Scholar 

    81.
    Lim PT, Leaw CP, Usup G, Kobiyama A, Koike K, Ogata T. Effects of light and temperature on growth, nitrate uptake, and toxin production of two tropical dinoflagellates: Alexandrium tamiyavanichii and Alexandrium minutum (Dinophyceae). J Phycol. 2006;42:786–99.
    CAS  Article  Google Scholar 

    82.
    Van Mooy BA, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature. 2009;458:69–72.
    PubMed  Article  CAS  Google Scholar 

    83.
    Galbraith AD, Martiny AC. Simple mechanism for marine nutrient stoichiometry. Proc Natl Acad Sci USA. 2015;112:8199–204.
    CAS  PubMed  Article  Google Scholar 

    84.
    Berge T, Daugbjerg N, Hansen PJ. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH. Harmful Algae. 2012;20:101–10.
    CAS  Article  Google Scholar  More

  • in

    Symbiotic bacteria mediate volatile chemical signal synthesis in a large solitary mammal species

    Composition of chemical constituents and bacterial communities in AGS and feces indicates separate, unique odor profiles
    The gas chromatography–mass spectrometry analyses revealed that AGS volatiles of wild and captive pandas were comprised of a multicomponent blend of 30–50 chemical compounds, including fatty acids, aldehydes, ketones, aliphatic ethers, amides, aromatics, alcohols, steroids and squalene (Fig. 2a and Supplementary Table S2). These compounds are typical components of chemosignals across species due to their volatility, detectability and other characteristics facilitating chemoreception [3, 26, 32]. By contrast, feces contained mostly fatty acid ethyl ester, and a small number and quantity of fatty acids, amides, steroids and indole (Fig. 2b and Supplementary Table S3). Our results show that the relative abundance of steroids, aldehydes and fatty acids were remarkably higher in AGS than in feces (Fig. 3a), and the number of chemical components of aldehydes, fatty acids, and ketones in AGS was also significantly higher than found in feces (Fig. 3b). These results indicate that the chemical constituents of AGS are much better suited for chemosignaling than those from feces.
    Fig. 2: Representative ion chromatograms of samples in giant pandas.

    a Anogenital gland secretions (AGS). b Feces.

    Full size image

    Fig. 3: Differences in chemical compounds of anogenital gland secretions (AGS) and feces in giant pandas, and the differences in microbial communities, KEGG and contribution bacteria for lipid metabolism.

    a A heat map of the mean relative abundance of the chemical compounds. b A heat map of the number chemical components. Differences in the microbial communities as a function of providence (captive/wild) and source (feces/AGS) at the c phylum and d genus level. e PCoA clustering results of samples from different groups. f Hierarchical clustering analysis of the samples, clearly indicating two branches for AGS and fecal samples. g Six differentially represented pathways in lipid metabolism and the Linear discriminant analysis (LDA) score. h Prevalence of enzymes involved in lipid metabolism as a function of phylum and family in AGS of giant pandas. i The contribution of different bacteria at genus level to lipid metabolism. WPF: wild panda feces, CPF: captive panda feces, WPAG: wild panda AG, CPAG: captive panda AG.

    Full size image

    The composition of bacterial communities in AGS and feces was markedly different at the phylum (Fig. 3c) and genus levels (Fig. 3d), based on taxonomic classifications of predicted gene sequences. Principal Co-ordinates Analysis (PCoA) (Fig. 3e) and hierarchical clustering analyses (Fig. 3f) revealed cluster patterns based on provenance (captive/wild) and sample type (AGS/fecal). Notably, the microbiota composition of AGS from different individuals or living environments was more similar than were AGS and fecal samples from the same individuals. Actinobacteria (X2 = 26.33, P  More