There is little evidence that spicy food in hot countries is an adaptation to reducing infection risk
1.
Sherman, P. W. & Billing, J. Darwinian gastronomy: why we use spices: spices taste good because they are good for us. BioScience 49, 453–463 (1999).
Article Google Scholar
2.
Billing, J. & Sherman, P. W. Antimicrobial functions of spices: why some like it hot. Q. Rev. Biol. 73, 3–49 (1998).
CAS PubMed Article Google Scholar
3.
Galton, F. Comment on ‘On a method of investigating the development of institutions; applied to laws of marriage and descent’ by E. B. Tylor. J. Anthropol. Inst. Gt Br. Irel. 18, 245–272 (1889).
Google Scholar
4.
Bromham, L., Hua, X., Cardillo, M., Schneemann, H. & Greenhill, S. J. Parasites and politics: why cross-cultural studies must control for relatedness, proximity and covariation. R. Soc. Open Sci. 5, 181100 (2018).
PubMed PubMed Central Article Google Scholar
5.
Mace, R. & Holden, C. J. A phylogenetic approach to cultural evolution. Trends Ecol. Evol. 20, 116–121 (2005).
PubMed Article Google Scholar
6.
Freckleton, R. P. & Jetz, W. Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proc. R. Soc. B 276, 21–30 (2008).
Article Google Scholar
7.
Hua, X., Greenhill, S. J., Cardillo, M., Schneemann, H. & Bromham, L. The ecological drivers of variation in global language diversity. Nat. Commun. 10, 2047 (2019).
PubMed PubMed Central Article CAS Google Scholar
8.
Ohtsubo, Y. Adaptive ingredients against food spoilage in Japanese cuisine. Int. J. Food Sci. Nutr. 60, 677–687 (2009).
PubMed Article Google Scholar
9.
Murray, D. R. & Schaller, M. Historical prevalence of infectious diseases within 230 geopolitical regions: a tool for investigating origins of culture. J. Cross Cult. Psychol. 41, 99–108 (2010).
Article Google Scholar
10.
Sherman, P. W. & Hash, G. A. Why vegetable recipes are not very spicy. Evol. Hum. Behav. 22, 147–163 (2001).
PubMed Article Google Scholar
11.
Havelaar, A. H. et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12, e1001923 (2015).
PubMed PubMed Central Article Google Scholar
12.
Lewnard, J. A., Lo, N. C., Arinaminpathy, N., Frost, I. & Laxminarayan, R. Childhood vaccines and antibiotic use in low- and middle-income countries. Nature 581, 94–99 (2020).
CAS PubMed PubMed Central Article Google Scholar
13.
McMichael, A. J. & Beaglehole, R. The changing global context of public health. Lancet 356, 495–499 (2000).
CAS PubMed Article Google Scholar
14.
Salomon, J. A. et al. Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 (2012).
PubMed Article Google Scholar
15.
Kummu, M. & Varis, O. The world by latitudes: a global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 31, 495–507 (2011).
Article Google Scholar
16.
Johnell, O., Borgstrom, F., Jonsson, B. & Kanis, J. Latitude, socioeconomic prosperity, mobile phones and hip fracture risk. Osteoporos. Int. 18, 333–337 (2007).
CAS PubMed Article Google Scholar
17.
Kanis, J. A. et al. Variations in latitude may or may not explain the worldwide variation in hip fracture incidence. Osteoporos. Int. 23, 2401–2402 (2012).
Article Google Scholar
18.
Fisman, D. et al. Geographical variability in the likelihood of bloodstream infections due to Gram-negative bacteria: correlation with proximity to the equator and health care expenditure. PLoS ONE 9, e114548 (2014).
PubMed PubMed Central Article CAS Google Scholar
19.
Coccia, M. The effect of country wealth on incidence of breast cancer. Breast Cancer Res. Treat. 141, 225–229 (2013).
PubMed Article Google Scholar
20.
Buchter, B., Dunkel, M. & Li, J. Multiple sclerosis: a disease of affluence? Neuroepidemiology 39, 51–56 (2012).
PubMed Article Google Scholar
21.
Roberts, S. & Winters, J. Linguistic diversity and traffic accidents: Lessons from statistical studies of cultural traits. PLoS ONE 8, e70902 (2013).
CAS PubMed PubMed Central Article Google Scholar
22.
Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).
PubMed PubMed Central Article CAS Google Scholar
23.
Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
CAS PubMed PubMed Central Article Google Scholar
24.
Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
Article Google Scholar
25.
Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).
CAS PubMed Article Google Scholar
26.
Dunn, R. R., Davies, T. J., Harris, N. C. & Gavin, M. C. Global drivers of human pathogen richness and prevalence. Proc. R. Soc. B 277, 2587–2595 (2010).
PubMed Article Google Scholar
27.
Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645 (2007).
PubMed Article Google Scholar
28.
Collen, B. et al. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23, 40–51 (2014).
PubMed Article Google Scholar
29.
Just, M. G. et al. Global biogeographic regions in a human‐dominated world: the case of human diseases. Ecosphere 5, 1–21 (2014).
Article Google Scholar
30.
Morand, S., Owers, K. & Bordes, F. in Confronting Emerging Zoonoses (eds Yamada, A. et al.) 27–41 (Springer, 2014).
31.
Turner, J. Spice: the History of a Temptation (Alfred A. Knopf, 2004).
32.
Kraft, K. H. et al. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl Acad. Sci. USA 111, 6165–6170 (2014).
CAS PubMed Article Google Scholar
33.
Portnoy, S. in The SAGE Encyclopedia of Food Issues Vol. 1 (ed. Albala, K.) 84–86 (SAGE Publications, 2015).
34.
Jain, A., Rakhi, N. & Bagler, G. Analysis of food pairing in regional cuisines of India. PLoS ONE 10, e0139539 (2015).
PubMed PubMed Central Article CAS Google Scholar
35.
Zhu, Y.-X. et al. Geography and similarity of regional cuisines in China. PLoS ONE 8, e79161 (2013).
PubMed PubMed Central Article CAS Google Scholar
36.
Kline, M. A., Shamsudheen, R. & Broesch, T. Variation is the universal: making cultural evolution work in developmental psychology. Philos. Trans. R. Soc. B 373, 20170059 (2018).
Article Google Scholar
37.
Bagler, G. CulinaryDB (Indraprastha Institute of Information Technology Delhi, 2017); https://cosylab.iiitd.edu.in/culinarydb/
38.
Iranshahy, M. & Iranshahi, M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—a review. J. Ethnopharmacol. 134, 1–10 (2011).
CAS PubMed Article Google Scholar
39.
Nakamura, Y. et al. Comparison of the glucosinolate–myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties. J. Agric. Food Chem. 56, 2702–2707 (2008).
CAS PubMed Article Google Scholar
40.
Gupta, S. & Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 12, 600–609 (2011).
CAS Article Google Scholar
41.
Devi, K. P., Suganthy, N., Kesika, P. & Pandian, S. K. Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement. Altern. Med. 8, 1 (2008).
Article CAS Google Scholar
42.
Cox, S., Abu-Ghannam, N. & Gupta, S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 17, 205–220 (2010).
CAS Google Scholar
43.
Lipkin, A. et al. An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 66, 2426–2431 (2005).
CAS PubMed Article Google Scholar
44.
Maiyo, Z., Ngure, R., Matasyoh, J. & Chepkorir, R. Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr. J. Biotechnol. 9, 3178–3182 (2010).
Google Scholar
45.
Dan, S. Antibacterial activity of paeonol in vitro. Her. Med. 9, 009 (2012).
Google Scholar
46.
Uddin, G., Sadat, A. & Siddiqui, B. S. Phytochemical screening, in vitro antioxidant and antimicrobial activities of the crude fractions of Paeonia emodi Wall. Ex Royle. Middle East J. Sci. Res. 17, 367–373 (2013).
Google Scholar
47.
Joung, Y.-M. et al. Antioxidative and antimicrobial activities of lilium species extracts prepared from different aerial parts. Korean J. Food Sci. Technol. 39, 452–457 (2007).
Google Scholar
48.
He, J., Chen, L., Heber, D., Shi, W. & Lu, Q.-Y. Antibacterial compounds from Glycyrrhiza uralensis. J. Nat. Prod. 69, 121–124 (2006).
CAS PubMed Article Google Scholar
49.
Dhingra, V., Pakki, S. R. & Narasu, M. L. Antimicrobial activity of artemisinin and its precursors. Curr. Sci. 78, 709–713 (2000).
CAS Google Scholar
50.
Gupta, V. K. et al. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol. 116, 377–380 (2008).
PubMed Article Google Scholar
51.
Chen, C. et al. Chemical composition and antimicrobial and DPPH scavenging activity of essential oil of Toona sinensis (A. Juss.) Roem from China. BioResources 9, 5262–5278 (2014).
Google Scholar
52.
Arzanlou, M. & Bohlooli, S. Introducing of green garlic plant as a new source of allicin. Food Chem. 120, 179–183 (2010).
CAS Article Google Scholar
53.
Shittu, L. et al. Antibacterial and antifungal activities of essential oils of crude extracts of Sesame radiatum against some common pathogenic micro-organisms. Iran. J. Pharmacol. Ther. 6, 165–170 (2008).
Google Scholar
54.
Medina, E., Romero, C., Brenes, M. & de Castro, A. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Prot. 70, 1194–1199 (2007).
CAS PubMed Article Google Scholar
55.
South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).
Article Google Scholar
56.
R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2016).
57.
GADM Maps and Data (GADM, 2012); https://www.gadm.org
58.
Bivand, R. et al. rgeos: interface to geometry engine—open source (GEOS) v.0.3-21 https://cran.r-project.org/package=rgeos (2016).
59.
Bromham, L. Curiously the same: swapping tools between linguistics and evolutionary biology. Biol. Philos. 32, 855–886 (2017).
Article Google Scholar
60.
Mace, R. & Pagel, M. The comparative method in anthropology. Curr. Anthropol. 35, 549–564 (1994).
Article Google Scholar
61.
Harvey, P. H. & Pagel, M. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, 1991).
62.
Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
Article Google Scholar
63.
Miller, M. A. & Paige, J. C. Other food borne infections. Vet. Clin. North Am. Food Anim. Pract. 14, 71–89 (1998).
CAS PubMed Article Google Scholar
64.
Fisman, D. N. & Laupland, K. Guess who’s coming to dinner? Emerging foodborne zoonoses. Can. J. Infect. Dis. Med. Microbiol. 21, 8–10 (2010).
PubMed PubMed Central Article Google Scholar
65.
Sookias, R. B., Passmore, S. & Atkinson, Q. D. Deep cultural ancestry and human development indicators across nation states. R. Soc. Open Sci. 5, 171411 (2018).
PubMed PubMed Central Article Google Scholar
66.
Johnson, P. C. D., Barry, S. J. E., Ferguson, H. M. & Muller, P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol. Evol. 6, 133–142 (2015).
PubMed Article Google Scholar
67.
O’Hagan, A. Kendall’s Advanced Theory Of Statistics Vol. 2B: Bayesian Inference (Halsted, 1994).
68.
Bonds, M. H., Keenan, D. C., Rohani, P. & Sachs, J. D. Poverty trap formed by the ecology of infectious diseases. Proc. R. Soc. B: 277, 1185–1192 (2010).
Article Google Scholar More