Volatile 1-octanol of tea (Camellia sinensis L.) fuels cell division and indole-3-acetic acid production in phylloplane isolate Pseudomonas sp. NEEL19
1.
Alasalvar, C. et al. Flavor characteristics of seven grades of black tea produced in Turkey. J. Agric. Food Chem. 60, 6323–6332 (2012).
CAS PubMed Article Google Scholar
2.
Lau, H. et al. Characterising volatiles in tea (Camellia sinensis). Part I: comparison of headspace-solid phase microextraction and solvent assisted flavour evaporation. LWT-Food Sci. Technol. 94, 178–189 (2018).
CAS Article Google Scholar
3.
Yang, Y. Q. et al. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis. PLoS ONE 13, e0193393 (2018).
PubMed PubMed Central Article CAS Google Scholar
4.
Magagna, F. et al. Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography – Mass spectrometry combined with high concentration capacity sample preparation techniques: toward a fully automated sensomic assessment. Food Chem. 225, 276–287 (2017).
CAS PubMed Article Google Scholar
5.
Zhu, Y., Lv, H. P., Dai, W. D. & Li, G. Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Sep. Purif. Technol. 164, 146–154 (2016).
CAS Article Google Scholar
6.
Baba, R. & Kumazawa, K. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis. J. Agric. Food Chem. 62, 8308–8313 (2014).
CAS PubMed Article Google Scholar
7.
Schuh, C. & Schieberle, P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. J. Agric. Food Chem. 54, 916–924 (2006).
CAS PubMed Article Google Scholar
8.
Kumazawa, K. & Masuda, H. Identification of potent odorants in different green tea varieties using flavor dilution technique. J. Agric. Food Chem. 50, 5660–5663 (2002).
CAS PubMed Article Google Scholar
9.
Nose, M., Nakatani, Y. & Yamanishi, T. Studies on flavor of green tea. 9. Identification and composition of intermediate and high boiling constituents in green tea flavor. Agric. Biol. Chem. 35, 261–271 (1971).
CAS Google Scholar
10.
Farre-Armengol, G., Filella, I., Llusia, J. & Penuelas, J. Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci. 21, 854–860 (2016).
CAS PubMed Article PubMed Central Google Scholar
11.
Junker, R. R. & Tholl, D. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39, 810–825 (2013).
CAS PubMed Article PubMed Central Google Scholar
12.
Huang, M. et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-beta-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 193, 997–1008 (2012).
CAS PubMed Article Google Scholar
13.
Rossi, P. G. et al. (E)-methylisoeugenol and elemicin: antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J. Agric. Food Chem. 55, 7332–7336 (2007).
CAS PubMed Article Google Scholar
14.
Gao, Y., Jin, Y. J., Li, H. D. & Chen, H. J. Volatile organic compounds and their roles in bacteriostasis in five conifer species. J. Integr. Plant Biol. 47, 499–507 (2005).
CAS Article Google Scholar
15.
Karamanoli, K., Menkissoglu-Spiroudi, U., Bosabalidis, A. M., Vokou, D. & Constantinidou, H. I. A. Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology 15, 59–67 (2005).
Article Google Scholar
16.
Utama, I. M., Wills, R. B., Ben-Yehoshua, S. & Kuek, C. In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J. Agric. Food Chem. 50, 6371–6377 (2002).
CAS PubMed Article Google Scholar
17.
Unsicker, S. B., Kunert, G. & Gershenzon, J. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr. Opin. Plant Biol. 12, 479–485 (2009).
CAS PubMed Article Google Scholar
18.
Abanda-Nkpwatt, D., Musch, M., Tschiersch, J., Boettner, M. & Schwab, W. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 57, 4025–4032 (2006).
CAS PubMed Article Google Scholar
19.
Sy, A., Timmers, A. C. J., Knief, C. & Vorholt, J. A. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71, 7245–7252 (2005).
CAS PubMed PubMed Central Article Google Scholar
20.
Marmulla, R. & Harder, J. Microbial monoterpene transformations-a review. Front. Microbiol. 5, 1–14 (2014).
Article Google Scholar
21.
Scala, A., Allmann, S., Mirabella, R., Haring, M. A. & Schuurink, R. C. Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int. J. Mol. Sci. 14, 17781–17811 (2013).
CAS PubMed PubMed Central Article Google Scholar
22.
Han, B. Y. & Chen, Z. M. Composition of the volatiles from intact and tea aphid-damaged tea shoots and their allurement to several natural enemies of the tea aphid. J. Appl. Entomol. 126, 497–500 (2002).
CAS Article Google Scholar
23.
Han, B. Y., Zhang, Q. H. & Byers, J. A. Attraction of the tea aphid, Toxoptera aurantii, to combinations of volatiles and colors related to tea plants. Entomol. Exp. Appl. 144, 258–269 (2012).
Article Google Scholar
24.
Kubo, I., Muroi, H. & Himejima, M. Antimicrobial activity of green tea flavor components and their combination effects. J. Agric. Food Chem. 40, 245–248 (1992).
CAS Article Google Scholar
25.
Cuenca Mdel, S. et al. Understanding butanol tolerance and assimilation in Pseudomonas putida BIRD-1: an integrated omics approach. Microb. Biotechnol. 9, 100–115 (2016).
PubMed Article CAS PubMed Central Google Scholar
26.
Neumann, G. et al. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9, 163–168 (2005).
CAS PubMed Article PubMed Central Google Scholar
27.
Heipieper, H. J., de Waard, P., van der Meer, P. & Killian, J. A. Regiospecific effect of 1-octanol on cis-trans isomerization of unsaturated fatty acids in the solvent-tolerant strain Pseudomonas putida S12. Appl. Microbiol. Biotechnol. 57, 541–547 (2001).
CAS PubMed Article PubMed Central Google Scholar
28.
Inoue, A. & Horikoshi, K. A Pseudomonas thrives in high-concentrations of toluene. Nature 338, 264–266 (1989).
ADS CAS Article Google Scholar
29.
Fletcher, M. The effects of methanol, ethanol, propanol and butanol on bacterial attachment to surfaces. J. Gen. Microbiol. 129, 633–641 (1983).
CAS Google Scholar
30.
Junker, R. R. et al. Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol. 13, 918–924 (2011).
CAS PubMed Article Google Scholar
31.
Patten, C. L. & Glick, B. R. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42, 207–220 (1996).
CAS PubMed Article Google Scholar
32.
Duca, D., Lorv, J., Patten, C. L., Rose, D. & Glick, B. R. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106, 85–125 (2014).
CAS PubMed Article Google Scholar
33.
Wei, K., Ruan, L., Wang, L. & Cheng, H. Auxin-induced adventitious root formation in nodal cuttings of Camellia sinensis. Int. J. Mol. Sci. 20, 4817 (2019).
CAS PubMed Central Article PubMed Google Scholar
34.
Spaepen, S., Vanderleyden, J. & Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448 (2007).
CAS PubMed Article Google Scholar
35.
Tohya, M. et al. Pseudomonas juntendi sp. nov., isolated from patients in Japan and Myanmar. Int. J. Syst. Evol. Microbiol. 69, 3377–3384 (2019).
CAS PubMed Article PubMed Central Google Scholar
36.
Keshavarz-Tohid, V. et al. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp nov, and Pseudomonas shirazica sp. nov. Syst. Appl. Microbiol. 42, 468–480 (2019).
CAS PubMed Article PubMed Central Google Scholar
37.
Dabboussi, F. et al. Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Syst. Evol. Microbiol. 52, 363–376 (2002).
CAS Article Google Scholar
38.
Kieboom, J., Dennis, J. J., Zylstra, G. J. & de Bont, J. A. Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J. Bacteriol. 180, 6769–6772 (1998).
CAS PubMed PubMed Central Article Google Scholar
39.
Blank, L. M., Ionidis, G., Ebert, B. E., Buhler, B. & Schmid, A. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J. 275, 5173–5190 (2008).
CAS PubMed Article Google Scholar
40.
Halan, B., Vassilev, I., Lang, K., Schmid, A. & Buehler, K. Growth of Pseudomonas taiwanensis VLB120ΔC biofilms in the presence of n-butanol. Microb. Biotechnol. 10, 745–755 (2017).
CAS PubMed Article Google Scholar
41.
Hameed, A. et al. Draft genome sequence reveals co-occurrence of multiple antimicrobial resistance and plant probiotic traits in rice root endophytic strain Burkholderia sp. LS-044 affiliated to Burkholderia cepacia complex. J. Glob. Antimicrob. Resist. 20, 28–30 (2020).
PubMed Article Google Scholar
42.
Senthilkumar, S. R., Sivakumar, T., Arulmozhi, K. T. & Mythili, N. FT-IR analysis and correlation studies on the antioxidant activity, total phenolics and total flavonoids of Indian commercial teas (Camellia sinensis L.)—a novel approach. Int. Res. J. Biol. Sci. 6, 1–7 (2017).
Google Scholar
43.
Baker, C. N. & Tenover, F. C. Evaluation of Alamar colorimetric broth microdilution susceptibility testing method for staphylococci and enterococci. J. Clin. Microbiol. 34, 2654–2659 (1996).
CAS PubMed PubMed Central Article Google Scholar
44.
Reguera, G. Microbial nanowires and electroactive biofilms. FEMS Microbiol. Ecol. 94, 1–13 (2018).
Article CAS Google Scholar
45.
Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).
ADS CAS PubMed Article Google Scholar
46.
Prusty, R., Grisafi, P. & Fink, G. R. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101, 4153–4157 (2004).
ADS CAS PubMed Article Google Scholar
47.
Bianco, C. et al. Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch. Microbiol. 185, 373–382 (2006).
CAS PubMed Article Google Scholar
48.
Council of Europe. European Pharmacopoeia 3rd edn. (Council of Europe, Strasbourg, 1997).
Google Scholar
49.
Shahina, M. et al. Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. Int. J. Syst. Evol. Microbiol. 63, 3415–3422 (2013).
CAS PubMed Article Google Scholar
50.
Yoon, S. H. et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617 (2017).
CAS PubMed PubMed Central Article Google Scholar
51.
Hardy, R., Burns, R. C. & Holsten, R. D. Application of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5, 47–81 (1973).
CAS Article Google Scholar
52.
Koch, B. & Evans, H. J. Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 41, 1748–1750 (1966).
CAS PubMed PubMed Central Article Google Scholar
53.
Gordon, S. A. & Weber, R. P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26, 192–195 (1951).
CAS PubMed PubMed Central Article Google Scholar
54.
Schwyn, B. & Neilands, J. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56 (1987).
CAS PubMed Article PubMed Central Google Scholar
55.
Smibert, R. M. & Krieg, N. R. Phenotypic Characterization. In Methods for General and Molecular Bacteriology (eds Gerhardt, P. et al.) 607–654 (American Society for Microbiology, Washington, D.C, 1994).
Google Scholar
56.
Rashid, M. H. & Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 97, 4885–4890 (2000).
ADS CAS PubMed Article Google Scholar
57.
Ha, D. G., Kuchma, S. L. & O’Toole, G. A. Plate-Based Assay for Swimming Motility in Pseudomonas aeruginosa. Methods Mol. Biol. 1149, 59–65 (2014).
PubMed Article Google Scholar More