Success of coastal wetlands restoration is driven by sediment availability
1.
Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
Article Google Scholar
2.
Costanza, R. et al. Changes in the global value of ecosystem services.Glob. Environ. Chang. 26, 152–158 (2014).
Article Google Scholar
3.
Airoldi, L. & Beck, M. W. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. Annu. Rev. 45, 345–405 (2007).
Google Scholar
4.
Kainuma, Mami et al. Current status of mangroves worldwide. Middle East 624, 0–4 (2013).
Google Scholar
5.
Fagherazzi, S. et al. Sea level rise and the dynamics of the marsh-upland boundary. Front. Environ. Sci. 7, 25 (2019).
Article Google Scholar
6.
Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).
Article Google Scholar
7.
Craft, C. et al. Forecasting the effects of accelerated sea‐level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 7, 73–78 (2009).
Article Google Scholar
8.
Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).
CAS Article Google Scholar
9.
Schuerch, M. et al. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. J. Geophys. Res. Earth Surf. 118, 84–96 (2013).
Article Google Scholar
10.
Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).
CAS Article Google Scholar
11.
Syvitski, J. P. et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).
CAS Article Google Scholar
12.
Ezcurra, E. et al. A natural experiment reveals the impact of hydroelectric dams on the estuaries of tropical rivers.Sci. Adv. 5, eaau9875 (2019).
CAS Article Google Scholar
13.
Kirwan, M. L. et al. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).
Article Google Scholar
14.
Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).
CAS Article Google Scholar
15.
Ma, Z. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).
CAS Article Google Scholar
16.
Gittman, R. K., Scyphers, S. B., Smith, C. S., Neylan, I. P. & Grabowski, J. H. Ecological consequences of shoreline hardening: a meta-analysis. BioScience 66, 763–773 (2016).
Article Google Scholar
17.
Smith, C. S. et al. Hurricane damage along natural and hardened estuarine shorelines: Using homeowner experiences to promote nature-based coastal protection. Mar. Policy 81, 350–358 (2017).
Article Google Scholar
18.
Shepard, C. C., Crain, C. M. & Beck, M. W. The protective role of coastal marshes: a systematic review and meta-analysis. PLoS ONE 6, e27374 (2011).
CAS Article Google Scholar
19.
Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B. & Silliman, B. R. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change 106, 7–29 (2011).
Article Google Scholar
20.
Leonardi, N., Ganju, N. K. & Fagherazzi, S. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proc. Nat. Acad. Sci. USA 113, 64–68 (2016).
CAS Article Google Scholar
21.
Barbier, E. B. et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319, 321–323 (2008).
CAS Article Google Scholar
22.
Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. Nature-based Solutions to Address Global Societal Challenges (IUCN, 2016).
23.
Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).
Article Google Scholar
24.
Seddon, N. et al. Global recognition of the importance of Nature-based Solutions to the impacts of climate change. Glob. Sustain. 3, 1–12 (2020).
Article Google Scholar
25.
Bilkovic, D. M. et al. Living Shorelines: The Science and Management of Nature-Based Coastal Protection (CRC Press, 2017).
26.
Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).
Article Google Scholar
27.
Liu, Z., Cui, B. & He, Q. Shifting paradigms in coastal restoration: Six decades’ lessons from China. Sci. Total Environ. 566, 205–214 (2016).
Article CAS Google Scholar
28.
Turner, R. K., Burgess, D., Hadley, D., Coombes, E. & Jackson, N. A cost–benefit appraisal of coastal managed realignment policy.Glob. Environ. Chang. 17, 397–407 (2007).
Article Google Scholar
29.
Donatelli, C., Ganju, N. K., Zhang, X., Fagherazzi, S. & Leonardi, N. Salt marsh loss affects tides and the sediment budget in shallow bays. J. Geophys. Res. Earth Surf. 123, 2647–2662 (2018).
Article Google Scholar
30.
Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124 (2009).
CAS Article Google Scholar
31.
Friess, D. A. et al. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol. Rev. 87, 346–366 (2012).
Article Google Scholar
32.
Webb, E. L. et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Clim. Change 3, 458–465 (2013).
Article Google Scholar
33.
Hu, Z. et al. Revegetation of a native species in a newly formed tidal marsh under varying hydrological conditions and planting densities in the Yangtze Estuary. Ecol. Eng. 83, 354–363 (2015).
Article Google Scholar
34.
Phillips, D. H. et al. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka. Wetlands 37, 471–483 (2017).
Article Google Scholar
35.
Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010).
Article Google Scholar
36.
Turner, R. E., Baustian, J. J., Swenson, E. M. & Spicer, J. S. Wetland sedimentation from hurricanes Katrina and Rita. Science 314, 449–452 (2006).
CAS Article Google Scholar
37.
French, C. E., French, J. R., Clifford, N. J. & Watson, C. J. Sedimentation-erosion dynamics of abandoned reclamations: the role of waves and tides. Cont. Shelf Res. 20, 1711–1733 (2000).
Article Google Scholar
38.
Cahoon, D. R. et al. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. Res. 72, 734–739 (2002).
CAS Article Google Scholar
39.
Cahoon, D. R. A review of major storm impacts on coastal wetland elevations. Estuar. Coast. 29, 889–898 (2006).
Article Google Scholar
40.
Howe, A. J., Rodriguez, J. F. & Saco, P. M. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuar. Coast. Shelf Sci. 84, 75–83 (2009).
CAS Article Google Scholar
41.
Krauss, K. W. et al. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Sci. Rep. 7, 1–11 (2017).
Article CAS Google Scholar
42.
Carey, J. C., Moran, S. B., Kelly, R. P., Kolker, A. S. & Fulweiler, R. W. The declining role of organic matter in New England salt marshes. Estuar. Coast 40, 626–639 (2017).
CAS Article Google Scholar
43.
Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).
CAS Article Google Scholar
44.
Anisfeld, S. C., Hill, T. D. & Cahoon, D. R. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound. Estuar. Coast. Shelf Sci. 170, 145–154 (2016).
Article Google Scholar
45.
Baustian, J. J., Mendelssohn, I. A. & Hester, M. W. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob. Chang. Biol. 18, 3377–3382 (2012).
Article Google Scholar
46.
Cahoon, D. R., French, J. R., Spencer, T., Reed, D. & Möller, I. Vertical accretion versus elevational adjustment in UK saltmarshes: an evaluation of alternative methodologies. Geol. Soc. Lond. Spec. Publ. 175, 223–238 (2000).
Article Google Scholar
47.
Spencer, T. et al. Surface elevation change in natural and re-created intertidal habitats, eastern England, UK, with particular reference to Freiston Shore. Wetl. Ecol. Manag. 20, 9–33 (2012).
Article Google Scholar
48.
Craft, C. et al. The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecol. Appl. 13, 1417–1432 (2003).
Article Google Scholar
49.
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).
CAS Article Google Scholar
50.
Fagherazzi, S. et al. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).
Article Google Scholar
51.
Smith, C. S., Puckett, B., Gittman, R. K. & Peterson, C. H. Living shorelines enhanced the resilience of saltmarshes to Hurricane Matthew. Ecol. Appl. 28, 871–877 (2018).
Article Google Scholar
52.
Oosterlee, L. et al. Tidal marsh restoration design affects feedbacks between inundation and elevation change. Estuar. Coast. 41, 613–625 (2018).
Article Google Scholar
53.
Ganju, N. K. Marshes are the new beaches: integrating sediment transport into restoration planning. Estuar. Coast. 42, 917–926 (2019).
CAS Article Google Scholar
54.
Ford, M. A., Cahoon, D. R. & Lynch, J. C. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecol. Eng. 12, 189–205 (1999).
Article Google Scholar
55.
Temmerman, S., Govers, G., Wartel, S. & Meire, P. Spatial and temporal factors controlling short‐term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surf. Processes Landforms 28, 739–755 (2003).
Article Google Scholar
56.
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).
Article Google Scholar
57.
Mudd, S. M., D’Alpaos, A. & Morris, J. T. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res. Earth Surf. 115, F03029 (2010).
Google Scholar
58.
Fricke, A. T., Nittrouer, C. A., Ogston, A. S. & Vo-Luong, H. P. Asymmetric progradation of a coastal mangrove forest controlled by combined fluvial and marine influence, Cù Lao Dung, Vietnam. Cont. Shelf Res. 147, 78–90 (2017).
Article Google Scholar
59.
Möller, I., Spencer, T., French, J. R., Leggett, D. J. & Dixon, M. Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuar. Coast. Shelf Sci. 49, 411–426 (1999).
Article Google Scholar
60.
Jadhav, R. S., Chen, Q. & Smith, J. M. Spectral distribution of wave energy dissipation by salt marsh vegetation. Coast. Eng. 77, 99–107 (2013).
Article Google Scholar
61.
Kirwan, M. L. & Guntenspergen, G. R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. Earth Surf. 115, F02009 (2010).
Article Google Scholar
62.
Ganju, N. K., Nidzieko, N. J. & Kirwan, M. L. Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model. J. Geophys. Res. Earth Surf. 118, 2045–2058 (2013).
Article Google Scholar
63.
Zhang, X. et al. Determining the drivers of suspended sediment dynamics in tidal marsh-influenced estuaries using high-resolution ocean color remote sensing. Remote Sens. Environ. 240, 111682 (2020).
Article Google Scholar
64.
Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M. & Raymond, P. A. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeo. 123, 2444–2465 (2018).
CAS Article Google Scholar
65.
Castagno, K. A. et al. Intense storms increase the stability of tidal bays. Geophys. Res. Lett. 45, 5491–5500 (2018).
Article Google Scholar
66.
Walling, D. E. The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges (UNESCO, 2009).
67.
Yu, Y. et al. New discharge regime of the Huanghe (Yellow River): causes and implications. Cont. Shelf Res. 69, 62–72 (2013).
Article Google Scholar
68.
Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).
CAS Article Google Scholar
69.
Donatelli, C., Kalra, T. S., Fagherazzi, S., Zhang, X. & Leonardi, N. Dynamics of marsh‐derived sediments in lagoon‐type estuaries. J. Geophys. Res. Earth Surf. 125, e2020JF005751 (2020).
Article Google Scholar
70.
Peteet, D. M. et al. Sediment starvation destroys New York City marshes’ resistance to sea level rise. Proc. Nat. Acad. Sci. USA 115, 10281–10286 (2018).
CAS Article Google Scholar
71.
Reed, D. J. Understanding tidal marsh sedimentation in the Sacramento-San Joaquin Delta, California. J. Coastal Res. 36, 605–611 (2002).
Article Google Scholar
72.
Cahoon, D. R., Lynch, J. C., Roman, C. T., Schmit, J. P. & Skidds, D. E. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise, and tidal marsh sustainability. Estuar. Coast. 42, 1–15 (2019).
CAS Article Google Scholar
73.
Kondolf, G. M., Rubin, Z. K. & Minear, J. T. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).
Article Google Scholar
74.
Reed, D. J. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: the role of winter storms. Estuaries 12, 222–227 (1989).
Article Google Scholar
75.
Ganju, N. K. et al. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8, 14156 (2017).
CAS Article Google Scholar
76.
Vörösmarty, C. J. et al. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190 (2003).
Article Google Scholar
77.
Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, Ltd., 2009). More
