Philippa Kaur
More stories
150 Shares169 Views
in EcologyNatural dimethyl sulfide gradients would lead marine predators to higher prey biomass
100 Shares129 Views
in EcologyAn evolving view on biogeochemical cycling of iron
1.
Ehrenberg, C. Vorläufige Mitteilungen über das wirkliche Vorkommen fossiler Infusorien und ihre große Verbreitung. Poggendorff Ann. 38, 213–227 (1836).
Google Scholar
2.
Chan, C. S. et al. The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00796 (2016). Microscopic analysis indicates how the morphology of iron-oxidizing bacteria in microbial mats responds to environmental conditions.
Article PubMed PubMed Central Google Scholar3.
Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C. & Kappler, A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12, 797–808 (2014).
CAS PubMed Article Google Scholar4.
Ehrlich, H. L., Newman, D. K. & Kappler, A. Ehrlich’s Geomicrobiology. (CRC Press, 2015).5.
Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015). First article to demonstrate magnetite could support complete microbial iron cycling; that is, Fe(ii) in magnetite can be used as an electron source by Fe(ii) oxidizers and Fe(iii) can be used by Fe(iii) reducers as an electron acceptor in a cycling fashion.
CAS PubMed Article Google Scholar6.
Berg, J. S. et al. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environ. Microbiol. 18, 5288–5302 (2016).
CAS PubMed Article Google Scholar7.
Kappler, A. & Bryce, C. Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ. Microbiol. 19, 842–846 (2017).
PubMed Article Google Scholar8.
Wang, M., Hu, R., Zhao, J., Kuzyakov, Y. & Liu, S. Iron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils. Geoderma 271, 173–180 (2016).
CAS Article Google Scholar9.
Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009). First demonstration that methane oxidation can be coupled to reduction of iron(iii) oxides and manganese(iv) oxides.
CAS PubMed Article Google Scholar10.
Orihel, D. M. et al. The “nutrient pump:” iron-poor sediments fuel low nitrogen-to-phosphorus ratios and cyanobacterial blooms in polymictic lakes. Limnol. Oceanogr. 60, 856–871 (2015).
Article Google Scholar11.
Lalonde, K., Mucci, A., Ouellet, A. & Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).
CAS PubMed Article Google Scholar12.
Muehe, E. M. et al. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species. Environ. Sci. Technol. 47, 14099–14109 (2013).
CAS PubMed Article Google Scholar13.
Glodowska, M. et al. Role of in situ natural organic matter in mobilizing As during microbial reduction of FeIII-mineral-bearing aquifer sediments from Hanoi (Vietnam). Environ. Sci. Technol. 54, 4149–4159 (2020).
CAS PubMed Article Google Scholar14.
Cutting, R. S., Coker, V. S., Fellowes, J. W., Lloyd, J. R. & Vaughan, D. J. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochim. Cosmochim. Acta 73, 4004–4022 (2009).
CAS Article Google Scholar15.
Wu, T. et al. Interactions between Fe(III)-oxides and Fe(III)-phyllosilicates during microbial reduction 2: natural subsurface sediments. Geomicrobiol. J. 34, 231–241 (2017).
CAS Article Google Scholar16.
Jaisi, D. P., Dong, H. & Liu, C. Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochim. Cosmochim. Acta 71, 1145–1158 (2007).
CAS Article Google Scholar17.
Bosch, J., Heister, K., Hofmann, T. & Meckenstock, R. U. Nanosized iron oxide colloids strongly enhance microbial iron reduction. Appl. Environ. Microbiol. 76, 184–189 (2010).
CAS PubMed Article Google Scholar18.
Aeppli, M. et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environ. Sci. Technol. 53, 8736–8746 (2019).
CAS PubMed Article Google Scholar19.
Levar, C. E., Hoffman, C. L., Dunshee, A. J., Toner, B. M. & Bond, D. R. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME J. 11, 741–752 (2017).
CAS PubMed PubMed Central Article Google Scholar20.
Wang, Z. et al. Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 74, 6746–6755 (2008).
CAS PubMed PubMed Central Article Google Scholar21.
Kügler, S. et al. Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich Fen. Sci. Total. Environ. 646, 972–988 (2019).
PubMed Article CAS Google Scholar22.
Daugherty, E. E., Gilbert, B., Nico, P. S. & Borch, T. Complexation and redox buffering of iron(II) by dissolved organic matter. Environ. Sci. Technol. 51, 11096–11104 (2017).
CAS PubMed Article Google Scholar23.
von der Heyden, B., Roychoudhury, A. & Myneni, S. Iron-rich nanoparticles in natural aquatic environments. Minerals 9, 287 (2019). Thorough review of the nature and impact of iron nanoparticles in the environment.
Article CAS Google Scholar24.
Hassellöv, M. & von der Kammer, F. Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 4, 401–406 (2008).
Article CAS Google Scholar25.
Liu, J. et al. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1. Geochim. Cosmochim. Acta 193, 160–175 (2016).
CAS Article Google Scholar26.
Druschel, G. K., Emerson, D., Sutka, R., Suchecki, P. & Luther, G. W. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim. Cosmochim. Acta 72, 3358–3370 (2008). Landmark study using voltammetric electrodes to elucidate the optimum geochemical conditions of microaerophilic Fe(ii) oxidizers.
CAS Article Google Scholar27.
Barnes, A., Sapsford, D. J., Dey, M. & Williams, K. P. Heterogeneous Fe(II) oxidation and zeta potential. J. Geochem. Explor. 100, 192–198 (2009).
CAS Article Google Scholar28.
González-Davila, M., Santana-Casiano, J. M. & Millero, F. J. Oxidation of iron (II) nanomolar with H2O2 in seawater. Geochim. Cosmochim. Acta 69, 83–93 (2005).
Article CAS Google Scholar29.
Kanzaki, Y. & Murakami, T. Rate law of Fe(II) oxidation under low O2 conditions. Geochim. Cosmochim. Acta 123, 338–350 (2013).
CAS Article Google Scholar30.
King, D. W., Lounsbury, H. A. & Millero, F. J. Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ. Sci. Technol. 29, 818–824 (1995).
CAS PubMed Article Google Scholar31.
Emerson, D., Fleming, E. J. & McBeth, J. M. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu. Rev. Microbiol. 64, 561–583 (2010).
CAS PubMed Article Google Scholar32.
Chan, C. S., Emerson, D. & Luther, G. W. III The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations. Geobiology 14, 509–528 (2016).
CAS PubMed Article Google Scholar33.
Mori, J. F. et al. Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov. ISME J. 11, 2624–2636 (2017).
PubMed PubMed Central Article Google Scholar34.
Emerson, D. & De Vet, W. The role of FeOB in engineered water ecosystems: a review. J. AWWA 107, E47–E57 (2015).
Article Google Scholar35.
MacDonald, D. J. et al. Using in situ voltammetry as a tool to identify and characterize habitats of iron-oxidizing bacteria: from fresh water wetlands to hydrothermal vent sites. Environ. Sci. Process. Impacts 16, 2117–2126 (2014).
PubMed Article Google Scholar36.
Emerson, D., Weiss, J. V. & Megonigal, J. P. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl. Environ. Microbiol. 65, 2758–2761 (1999).
CAS PubMed PubMed Central Article Google Scholar37.
Laufer, K. et al. Microaerophilic Fe(II)-oxidizing Zetaproteobacteria isolated from low-Fe marine coastal sediments: physiology and composition of their twisted stalks. Appl. Environ. Microbiol. 83, e03118–03116 (2017).
CAS PubMed PubMed Central Article Google Scholar38.
Orcutt, B. N. et al. Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J. 5, 692–703 (2011).
CAS PubMed Article Google Scholar39.
Field, E. K. et al. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions. Geobiology 14, 499–508 (2016).
CAS PubMed Article Google Scholar40.
Maisch, M. et al. Contribution of microaerophilic iron(II)-oxidizers to iron(III) mineral formation. Environ. Sci. Technol. 53, 8197–8204 (2019).
CAS PubMed Article Google Scholar41.
Chiu, B. K., Kato, S., McAllister, S. M., Field, E. K. & Chan, C. S. Novel pelagic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone. Front. Microbiol. 8, 1280 (2017).
PubMed PubMed Central Article Google Scholar42.
McAllister, S. M. et al. The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz015 (2019).
Article PubMed PubMed Central Google Scholar43.
Barco, R. A. et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl. Environ. Microbiol. 81, 5927–5937 (2015).
CAS PubMed PubMed Central Article Google Scholar44.
McAllister, S. M. et al. Validating the Cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents. mSystems 5, e00553–00519 (2020). Support for Cyc2 as the iron oxidase in microaerophilic Fe(ii) oxidizers.
PubMed PubMed Central Article Google Scholar45.
Jeans, C. et al. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J. 2, 542–550 (2008).
CAS PubMed Article Google Scholar46.
Edwards, B. A. & Ferris, F. G. Influence of water flow on in situ rates of bacterial Fe(II) oxidation. Geomicrobiol. J. 37, 67–75 (2020).
CAS Article Google Scholar47.
Liu, J. et al. Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front. Microbiol. 3, 37 (2012).
CAS PubMed PubMed Central Google Scholar48.
Chan, C. S., McAllister, S. M., Garber, A., Hallahan, B. J. & Rozovsky, S. Fe oxidation by a fused cytochrome-porin common to diverse Fe-oxidizing bacteria. bioRxiv https://doi.org/10.1101/228056 (2018).
Article Google Scholar49.
Byrne, J. M., Schmidt, M., Gauger, T., Bryce, C. & Kappler, A. Imaging organic–mineral aggregates formed by Fe(II)-oxidizing bacteria using helium ion microscopy. Environ. Sci. Technol. Lett. 5, 209–213 (2018).
CAS Article Google Scholar50.
Krepski, S. T., Emerson, D., Hredzak-Showalter, P. L., Luther, G. W. III & Chan, C. S. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils. Geobiology 11, 457–471 (2013).
CAS PubMed Article Google Scholar51.
Sowers, T. D., Holden, K. L., Coward, E. K. & Sparks, D. L. Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron (oxyhydr)oxides. Environ. Sci. Technol. 53, 4295–4304 (2019).
CAS PubMed Article Google Scholar52.
Lueder, U., Druschel, G., Emerson, D., Kappler, A. & Schmidt, C. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic iron(II)-oxidizing bacteria. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix177 (2017).
Article Google Scholar53.
van der Grift, B., Rozemeijer, J. C., Griffioen, J. & van der Velde, Y. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water. Hydrol. Earth Syst. Sci. 18, 4687–4702 (2014).
Article Google Scholar54.
Enright, A. M. L. & Ferris, F. G. Bacterial Fe(II) oxidation distinguished by long-range correlation in redox potential. J. Geophys. Res. Biogeosci. 121, 1249–1257 (2016).
CAS Article Google Scholar55.
Lueder, U., Jørgensen, B. B., Kappler, A. & Schmidt, C. Photochemistry of iron in aquatic environments. Environ. Sci. Process. Impacts 22, 12–24 (2020).
CAS PubMed Article Google Scholar56.
Widdel, F. et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836 (1993).
CAS Article Google Scholar57.
Hartman, H. The Evolution of Photosynthesis and Microbial Mats: A Speculation on the Banded Iron Formations. (Alan R. Liss, Inc., 1984).58.
Ozaki, K., Tajika, E., Hong, P. K., Nakagawa, Y. & Reinhard, C. T. Effects of primitive photosynthesis on Earth’s early climate system. Nat. Geosci. 11, 55–59 (2018).
CAS Article Google Scholar59.
Croal, L. R., Jiao, Y. & Newman, D. K. The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003. J. Bacteriol. 189, 1774–1782 (2007).
CAS PubMed Article Google Scholar60.
Ehrenreich, A. & Widdel, F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 4517–4526 (1994).
CAS PubMed PubMed Central Article Google Scholar61.
Jiao, Y., Kappler, A., Croal, L. R. & Newman, D. K. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl. Environ. Microbiol. 71, 4487–4496 (2005).
CAS PubMed PubMed Central Article Google Scholar62.
Straub, K. L., Rainey, F. A. & Widdel, F. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int. J. Syst. Evol. Microbiol. 49, 729–735 (1999).
CAS Article Google Scholar63.
Heising, S., Richter, L., Ludwig, W. & Schink, B. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a Geospirillum sp. strain. Arch. Microbiol. 172, 116–124 (1999).
CAS PubMed Article Google Scholar64.
Llirós, M. et al. Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Sci. Rep. 5, 13803 (2015).
PubMed PubMed Central Article Google Scholar65.
Laufer, K. et al. Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix054 (2017).
Article PubMed Google Scholar66.
Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).
CAS PubMed Article Google Scholar67.
Gupta, D. et al. Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake. mBio 10, e02668–02619 (2019).
CAS PubMed PubMed Central Article Google Scholar68.
Gledhill, M. & Buck, K. The organic complexation of iron in the marine environment: A review. Front. Microbiol. 3, 69 (2012).
PubMed PubMed Central Google Scholar69.
Saraiva, I. H., Newman, D. K. & Louro, R. O. Functional characterization of the FoxE iron oxidoreductase from the photoferrotroph Rhodobacter ferrooxidans SW2. J. Biol. Chem. 287, 25541–25548 (2012).
CAS PubMed PubMed Central Article Google Scholar70.
Crowe, S. A. et al. Draft genome sequence of the pelagic photoferrotroph Chlorobium phaeoferrooxidans. Genome Announc. 5, e01584–01516 (2017).
PubMed PubMed Central Article Google Scholar71.
Bryce, C., Blackwell, N., Straub, D., Kleindienst, S. & Kappler, A. Draft genome sequence of Chlorobium sp. strain N1, a marine Fe(II)-oxidizing green sulfur bacterium. Microbiol. Resour. Announc. 8, e00080–00019 (2019).
PubMed PubMed Central Article Google Scholar72.
Miot, J. et al. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim. Cosmochim. Acta 73, 696–711 (2009).
CAS Article Google Scholar73.
Schaedler, S. et al. Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria. Geomicrobiol. J. 26, 93–103 (2009).
CAS Article Google Scholar74.
Hegler, F., Schmidt, C., Schwarz, H. & Kappler, A. Does a low-pH microenvironment around phototrophic FeII-oxidizing bacteria prevent cell encrustation by FeIII minerals? FEMS Microbiol. Ecol. 74, 592–600 (2010).
CAS PubMed Article Google Scholar75.
Swanner, E. D. et al. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions. Geochim. Cosmochim. Acta 165, 44–61 (2015).
CAS Article Google Scholar76.
Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010). A comprehensive review of the many dynamic processes which influence iron cycling in the oceans.
CAS Article Google Scholar77.
Faust, B. C. & Zepp, R. G. Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 27, 2517–2522 (1993).
CAS Article Google Scholar78.
Rose, A. L. & Waite, T. D. Reduction of organically complexed ferric iron by superoxide in a simulated natural water. Environ. Sci. Technol. 39, 2645–2650 (2005).
CAS PubMed Article Google Scholar79.
Voelker, B. M., Morel, F. M. M. & Sulzberger, B. Iron redox cycling in surface waters: Effects of humic substances and light. Environ. Sci. Technol. 31, 1004–1011 (1997).
CAS Article Google Scholar80.
Barbeau, K., Zhang, G., Live, D. H. & Butler, A. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J. Am. Chem. Soc. 124, 378–379 (2002).
CAS PubMed Article Google Scholar81.
Waite, T. D. & Morel, F. M. M. Photoreductive dissolution of colloidal iron oxides in natural waters. Environ. Sci. Technol. 18, 860–868 (1984).
CAS PubMed Article Google Scholar82.
Sulzberger, B. Light-induced redox cycling of iron: roles for CO2 uptake and release by aquatic ecosystems. Aquat. Geochem. 21, 65–80 (2015).
CAS Article Google Scholar83.
Garg, S., Rose, A. L. & Waite, T. D. Photochemical production of superoxide and hydrogen peroxide from natural organic matter. Geochim. Cosmochim. Acta 75, 4310–4320 (2011).
CAS Article Google Scholar84.
Xing, G., Garg, S. & Waite, T. D. Is superoxide-mediated Fe(III) reduction important in sunlit surface waters? Environ. Sci. Technol. 53, 13179–13190 (2019).
CAS PubMed Article Google Scholar85.
Sutherland, K. M., Wankel, S. D. & Hansel, C. M. Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proc. Natl. Acad. Sci. USA 117, 3433–3439 (2020).
CAS PubMed Article Google Scholar86.
Diaz, J. M. et al. Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340, 1223–1226 (2013).
CAS PubMed Article Google Scholar87.
Lis, H., Kranzler, C., Keren, N. & Shaked, Y. A comparative study of iron uptake rates and mechanisms amongst marine and fresh water cyanobacteria: prevalence of reductive iron uptake. Life 5, 841–860 (2015).
CAS PubMed PubMed Central Article Google Scholar88.
Swanner, E. D., Maisch, M., Wu, W. & Kappler, A. Oxic Fe(III) reduction could have generated Fe(II) in the photic zone of Precambrian seawater. Sci. Rep. 8, 4238 (2018).
PubMed PubMed Central Article CAS Google Scholar89.
Emmenegger, L., Schönenberger, R., Sigg, L. & Sulzberger, B. Light-induced redox cycling of iron in circumneutral lakes. Limnol. Oceanogr. 46, 49–61 (2001).
CAS Article Google Scholar90.
Lueder, U., Jørgensen, B. B., Kappler, A. & Schmidt, C. Fe(III) photoreduction producing Feaq2+ in oxic freshwater sediment. Environ. Sci. Technol. 54, 862–869 (2020).
CAS PubMed Article Google Scholar91.
Lueder, U. et al. Influence of physical perturbation on Fe(II) supply in coastal marine sediments. Environ. Sci. Technol. 54, 3209–3218 (2020).
CAS PubMed Article Google Scholar92.
Peng, C., Bryce, C., Sundman, A. & Kappler, A. Cryptic cycling of complexes containing Fe(III) and organic matter by phototrophic Fe(II)-oxidizing bacteria. Appl. Environ. Microbiol. 85, e02826–02818 (2019).
CAS PubMed PubMed Central Google Scholar93.
Schmidt, C., Behrens, S. & Kappler, A. Ecosystem functioning from a geomicrobiological perspective a conceptual framework for biogeochemical iron cycling. Environ. Chem. 7, 399–405 (2010).
CAS Article Google Scholar94.
Raven, J. A., Kübler, J. E. & Beardall, J. Put out the light, and then put out the light. J. Mar. Biol. Assoc. U.K. 80, 1–25 (2000).
CAS Article Google Scholar95.
Camacho, A., Walter, X. A., Picazo, A. & Zopfi, J. Photoferrotrophy: Remains of an ancient photosynthesis in modern environments. Front. Microbiol. 8 (2017). A review on the physiology of anoxygenic phototrophic Fe(ii) oxidizers and their role in modern and ancient redox-stratified systems.96.
Crowe, S. A. et al. Deep-water anoxygenic photosythesis in a ferruginous chemocline. Geobiology 12, 322–339 (2014).
CAS PubMed Article Google Scholar97.
Straub, K. L., Benz, M., Schink, B. & Widdel, F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62, 1458–1460 (1996).
CAS PubMed PubMed Central Article Google Scholar98.
Bryce, C. et al. Microbial anaerobic Fe(II) oxidation – Ecology, mechanisms and environmental implications. Environ. Microbiol. 20, 3462–3483 (2018).
CAS PubMed Article Google Scholar99.
Blöthe, M. & Roden, E. E. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl. Environ. Microbiol. 75, 6937–6940 (2009). Article describing the composition of the only confirmed autotrophic nitrate-dependent, Fe(ii)-oxidizing enrichment culture.
PubMed PubMed Central Article CAS Google Scholar100.
Laufer, K., Røy, H., Jørgensen, B. B. & Kappler, A. Evidence for the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in marine coastal sediment. Appl. Environ. Microbiol. 82, 6120–6131 (2016).
CAS PubMed PubMed Central Article Google Scholar101.
Liu, T., Chen, D., Luo, X., Li, X. & Li, F. Microbially mediated nitrate-reducing Fe(II) oxidation: quantification of chemodenitrification and biological reactions. Geochim. Cosmochim. Acta 256, 97–115 (2019).
CAS Article Google Scholar102.
Otte, J. M. et al. N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. Sci. Rep. 9, 10691 (2019).
PubMed PubMed Central Article CAS Google Scholar103.
Wang, M., Hu, R., Ruser, R., Schmidt, C. & Kappler, A. Role of chemodenitrification for N2O emissions from nitrate reduction in rice paddy soils. ACS Earth Space Chem. 4, 122–132 (2020).
CAS Article Google Scholar104.
He, S., Tominski, C., Kappler, A., Behrens, S. & Roden, E. E. Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture KS. Appl. Environ. Microbiol. 82, 2656–2668 (2016).
CAS PubMed PubMed Central Article Google Scholar105.
Buchwald, C., Grabb, K., Hansel, C. M. & Wankel, S. D. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2− reduction by Fe(II) and its production of N2O. Geochim. Cosmochim. Acta 186, 1–12 (2016).
CAS Article Google Scholar106.
Haaijer, S. C. M., Lamers, L. P. M., Smolders, A. J. P., Jetten, M. S. M. & Op den Camp, H. J. M. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiol. J. 24, 391–401 (2007).
CAS Article Google Scholar107.
Edwards, K. J., Rogers, D. R., Wirsen, C. O. & McCollom, T. M. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69, 2906–2913 (2003).
CAS PubMed PubMed Central Article Google Scholar108.
Yan, R. et al. Effect of reduced sulfur species on chemolithoautotrophic pyrite oxidation with nitrate. Geomicrobiol. J. 36, 19–29 (2019).
CAS Article Google Scholar109.
Holmes, P. R. & Crundwell, F. K. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochim. Cosmochim. Acta 64, 263–274 (2000).
CAS Article Google Scholar110.
Zhao, L., Dong, H., Edelmann, R. E., Zeng, Q. & Agrawal, A. Coupling of Fe(II) oxidation in illite with nitrate reduction and its role in clay mineral transformation. Geochim. Cosmochim. Acta 200, 353–366 (2017).
CAS Article Google Scholar111.
Zhang, L., Dong, H., Kukkadapu, R. K., Jin, Q. & Kovarik, L. Electron transfer between sorbed Fe(II) and structural Fe(III) in smectites and its effect on nitrate-dependent iron oxidation by Pseudogulbenkiania sp. strain 2002. Geochim. Cosmochim. Acta 265, 132–147 (2019).
CAS Article Google Scholar112.
Shelobolina, E. S., VanPraagh, C. G. & Lovley, D. R. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol. J. 20, 143–156 (2003).
CAS Article Google Scholar113.
Larese-Casanova, P., Haderlein, S. B. & Kappler, A. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: effect of pH, bicarbonate, phosphate, and humic acids. Geochim. Cosmochim. Acta 74, 3721–3734 (2010).
CAS Article Google Scholar114.
Pantke, C. et al. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environ. Sci. Technol. 46, 1439–1446 (2012).
CAS PubMed Article Google Scholar115.
Nordhoff, M. et al. Insights into nitrate-reducing Fe(II) oxidation mechanisms through analysis of cell-mineral associations, cell encrustation, and mineralogy in the chemolithoautotrophic enrichment culture KS. Appl. Environ. Microbiol. 83, e00752–00717 (2017).
CAS PubMed PubMed Central Article Google Scholar116.
Smith, R. L., Kent, D. B., Repert, D. A. & Böhlke, J. K. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer. Geochim. Cosmochim. Acta 196, 102–120 (2017).
CAS Article Google Scholar117.
Madison, A. S., Tebo, B. M., Mucci, A., Sundby, B. & Luther, G. W. Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341, 875–878 (2013).
CAS PubMed Article Google Scholar118.
Gillispie, E. C., Taylor, S. E., Qafoku, N. P. & Hochella, M. F. Jr. Impact of iron and manganese nano-metal-oxides on contaminant interaction and fortification potential in agricultural systems – a review. Environ. Chem. 16, 377–390 (2019).
CAS Article Google Scholar119.
Siebecker, M., Madison, A. S. & Luther, G. W. Reduction kinetics of polymeric (soluble) manganese (IV) oxide (MnO2) by ferrous iron (Fe2+). Aquat. Geochem. 21, 143–158 (2015).
CAS Article Google Scholar120.
Herndon, E. M., Havig, J. R., Singer, D. M., McCormick, M. L. & Kump, L. R. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake. Geochim. Cosmochim. Acta 231, 50–63 (2018).
CAS Article Google Scholar121.
Maguffin, S. C. et al. Influence of manganese abundances on iron and arsenic solubility in rice paddy soils. Geochim. Cosmochim. Acta 276, 50–69 (2020).
CAS Article Google Scholar122.
Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).
CAS PubMed PubMed Central Article Google Scholar123.
Myers, C. R. & Nealson, K. H. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172, 6232–6238 (1990).
CAS PubMed PubMed Central Article Google Scholar124.
Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996).
CAS Article Google Scholar125.
Coates, J. D., Ellis, D. J., Gaw, C. V. & Lovley, D. R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Evol. Microbiol. 49, 1615–1622 (1999).
CAS Article Google Scholar126.
Tor, J. M. & Lovley, D. R. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ. Microbiol. 3, 281–287 (2001).
CAS PubMed Article Google Scholar127.
Hansel, C. M., Benner, S. G. & Fendorf, S. Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ. Sci. Technol. 39, 7147–7153 (2005).
CAS PubMed Article Google Scholar128.
Shi, L. et al. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ. Microbiol. Rep. 1, 220–227 (2009).
CAS PubMed Article Google Scholar129.
Shi, L., Squier, T. C., Zachara, J. M. & Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65, 12–20 (2007).
CAS PubMed PubMed Central Article Google Scholar130.
Butler, J. E., Young, N. D. & Lovley, D. R. Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11, 40 (2010).
PubMed PubMed Central Article CAS Google Scholar131.
Reguera, G. et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72, 7345–7348 (2006).
CAS PubMed PubMed Central Article Google Scholar132.
Lovley, D. R. & Holmes, D. E. Protein nanowires: the electrification of the microbial world and maybe our own. J. Bacteriol. 202, e00331–00320 (2020). A comprehensive and recent review on extracellular electron transfer by bacteria.
CAS PubMed Article Google Scholar133.
Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).
CAS PubMed Article Google Scholar134.
Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D. & Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl. Acad. Sci. USA 108, 15248–15252 (2011).
CAS PubMed Article Google Scholar135.
Ueki, T. et al. Decorating the outer surface of microbially produced protein nanowires with peptides. ACS Synth. Biol. 8, 1809–1817 (2019).
CAS PubMed Article Google Scholar136.
Smith, J. A., Lovley, D. R. & Tremblay, P.-L. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl. Environ. Microbiol. 79, 901–907 (2013).
CAS PubMed PubMed Central Article Google Scholar137.
Pirbadian, S. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 111, 12883–12888 (2014).
CAS PubMed Article Google Scholar138.
El-Naggar, M. Y. et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 107, 18127–18131 (2010).
CAS PubMed Article Google Scholar139.
Roden, E. E. et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3, 417–421 (2010).
CAS Article Google Scholar140.
Lohmayer, R., Kappler, A., Lösekann-Behrens, T. & Planer-Friedrich, B. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl. Environ. Microbiol. 80, 3141–3149 (2014).
PubMed PubMed Central Article CAS Google Scholar141.
Kappler, A., Benz, M., Schink, B. & Brune, A. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 47, 85–92 (2004).
CAS PubMed Article Google Scholar142.
Cervantes, F. J. et al. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ. Microbiol. 4, 51–57 (2002).
CAS PubMed Article Google Scholar143.
Coates, J. D. et al. Recovery of humic-reducing bacteria from a diversity of environments. Appl. Environ. Microbiol. 64, 1504–1509 (1998).
CAS PubMed PubMed Central Article Google Scholar144.
Piepenbrock, A., Behrens, S. & Kappler, A. Comparison of humic substance- and Fe(III)-reducing microbial communities in anoxic aquifers. Geomicrobiol. J. 31, 917–928 (2014).
CAS Article Google Scholar145.
Canfield, D. E. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619–632 (1989).
CAS PubMed Article Google Scholar146.
Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 105, 3968–3973 (2008).
CAS PubMed Article Google Scholar147.
von Canstein, H., Ogawa, J., Shimizu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008).
Article CAS Google Scholar148.
Nevin, K. P. & Lovley, D. R. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19, 141–159 (2002).
CAS Article Google Scholar149.
Markelova, E. et al. Deconstructing the redox cascade: what role do microbial exudates (flavins) play? Environ. Chem. 14, 515–524 (2017).
CAS Article Google Scholar150.
Bai, Y. et al. AQDS and redox-active NOM enables microbial Fe(III)-mineral reduction at cm-scales. Environ. Sci. Technol. 54, 4131–4139 (2020). The first article to demonstrate that microorganisms can transfer electrons to Fe(iii) over centimetre distances by electron shuttling.
CAS PubMed Article Google Scholar151.
Bai, Y., Sun, T., Angenent, L. T., Haderlein, S. B. & Kappler, A. Electron hopping enables rapid electron transfer between quinone-/hydroquinone-containing organic molecules in microbial iron(III) mineral reduction. Environ. Sci. Technol. 54, 10646–10653 (2020).
CAS PubMed Article Google Scholar152.
Liu, F. et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ. Microbiol. 17, 648–655 (2015).
CAS PubMed Article Google Scholar153.
Taillefert, M. et al. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. J. Inorg. Biochem. 101, 1760–1767 (2007).
CAS PubMed Article Google Scholar154.
in ‘t Zandt, M. H., de Jong, A. E., Slomp, C. P. & Jetten, M. S. The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy064 (2018).
Article PubMed PubMed Central Google Scholar155.
Sivan, O. et al. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 56, 1536–1544 (2011).
CAS Article Google Scholar156.
Miura, Y., Watanabe, A., Murase, J. & Kimura, M. Methane production and its fate in paddy fields. Soil Sci. Plant Nutr. 38, 673–679 (1992).
CAS Article Google Scholar157.
Crowe, S. A. et al. The methane cycle in ferruginous Lake Matano. Geobiology 9, 61–78 (2011).
CAS PubMed Article Google Scholar158.
Amos, R. T. et al. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer. Geobiology 10, 506–517 (2012).
CAS PubMed Article Google Scholar159.
Glodowska, M. et al. Arsenic mobilization by anaerobic iron-dependent methane oxidation. Commun. Earth Environ. 1, 42 (2020). First study providing evidence that anaerobic oxidation of methane coupled to reduction of arsenic-bearing Fe(iii) minerals can lead to arsenic mobilization in groundwater.
Article Google Scholar160.
Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E. & Orphan, V. J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707 (2016).
CAS PubMed Article Google Scholar161.
Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).
CAS PubMed Article Google Scholar162.
Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl. Acad. Sci. USA 113, 12792–12796 (2016).
CAS PubMed Article Google Scholar163.
Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 12, 1929–1939 (2018).
CAS PubMed PubMed Central Article Google Scholar164.
Clément, J.-C., Shrestha, J., Ehrenfeld, J. G. & Jaffé, P. R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil. Biol. Biochem. 37, 2323–2328 (2005).
Article CAS Google Scholar165.
Huang, S. & Jaffé, P. R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences 12, 769–779 (2015).
Article Google Scholar166.
Li, X. et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environ. Sci. Technol. 49, 11560–11568 (2015).
CAS PubMed Article Google Scholar167.
Zhou, G.-W. et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction. Environ. Sci. Technol. 50, 9298–9307 (2016).
CAS PubMed Article Google Scholar168.
Yang, W. H., Weber, K. A. & Silver, W. L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat. Geosci. 5, 538–541 (2012).
CAS Article Google Scholar169.
Li, X. et al. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge. J. Environ. Sci. 64, 42–50 (2018).
Article Google Scholar170.
Huang, S. & Jaffé, P. R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6. PLoS ONE 13, e0194007 (2018).
PubMed PubMed Central Article CAS Google Scholar171.
Sawayama, S. Possibility of anoxic ferric ammonium oxidation. J. Biosci. Bioeng. 101, 70–72 (2006).
CAS PubMed Article Google Scholar172.
Zhu, X., Burger, M., Doane, T. A. & Horwath, W. R. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl. Acad. Sci. USA 110, 6328–6333 (2013).
CAS PubMed Article Google Scholar173.
Ginn, B., Meile, C., Wilmoth, J., Tang, Y. & Thompson, A. Rapid iron reduction rates are stimulated by high-amplitude redox fluctuations in a tropical forest soil. Environ. Sci. Technol. 51, 3250–3259 (2017). A good example of the dynamic nature of iron cycling in the environment and its impact on the reducibility of minerals.
CAS PubMed Article Google Scholar174.
Mejia, J., Roden, E. E. & Ginder-Vogel, M. Influence of oxygen and nitrate on Fe (hydr)oxide mineral transformation and soil microbial communities during redox cycling. Environ. Sci. Technol. 50, 3580–3588 (2016).
CAS PubMed PubMed Central Article Google Scholar175.
Laufer, K. et al. Coexistence of microaerophilic, nitrate-reducing, and phototrophic Fe(II) oxidizers and Fe(III) reducers in coastal marine sediment. Appl. Environ. Microbiol. 82, 1433–1447 (2016).
CAS PubMed Central Article PubMed Google Scholar176.
Hansel, C. M., Ferdelman, T. G. & Tebo, B. M. Cryptic cross-linkages among biogeochemical cycles: novel insights from reactive intermediates. Elements 11, 409–414 (2015). A review on cryptic element cycling in the environment, including cryptic iron cycling.
CAS Article Google Scholar177.
Klueglein, N. & Kappler, A. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 – questioning the existence of enzymatic Fe(II) oxidation. Geobiology 11, 180–190 (2013).
CAS PubMed Article Google Scholar178.
Matus, F. et al. Ferrous wheel hypothesis: Abiotic nitrate incorporation into dissolved organic matter. Geochim. Cosmochim. Acta 245, 514–524 (2019). Demonstration of the ‘ferrous wheel hypothesis’ with insights for the role of coupled iron and nitrogen cycling in the environment.
CAS Article Google Scholar179.
Chen, C., Hall, S. J., Coward, E. & Thompson, A. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nat. Commun. 11, 2255 (2020).
CAS PubMed PubMed Central Article Google Scholar180.
Patzner, M. S. et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nat. Commun. 11, 6329 (2020).
CAS PubMed PubMed Central Article Google Scholar181.
Beckwith, C. R. et al. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth. Front. Microbiol. 6, 332 (2015).
PubMed PubMed Central Article Google Scholar182.
Bird, L. J., Bonnefoy, V. & Newman, D. K. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19, 330–340 (2011).
CAS PubMed Article Google Scholar183.
Field, S. J. et al. Purification and magneto-optical spectroscopic characterization of cytoplasmic membrane and outer membrane multiheme c-type cytochromes from Shewanella frigidimarina NCIMB400. J. Biol. Chem. 275, 8515–8522 (2000).
CAS PubMed Article Google Scholar184.
Giffaut, E. et al. Andra thermodynamic database for performance assessment: ThermoChimie. Appl. Geochem. 49, 225–236 (2014).
CAS Article Google Scholar185.
Salmon, T. P., Rose, A. L., Neilan, B. A. & Waite, T. D. The FeL model of iron acquisition: nondissociative reduction of ferric complexes in the marine environment. Limnol. Oceanogr. 51, 1744–1754 (2006).
CAS Article Google Scholar186.
Navrotsky, A., Mazeina, L. & Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science 319, 1635–1638 (2008).
CAS PubMed Article Google Scholar187.
Gorski, C. A., Edwards, R., Sander, M., Hofstetter, T. B. & Stewart, S. M. Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples. Environ. Sci. Technol. 50, 8538–8547 (2016). One of the first examples of using electrochemical methods to better understand the range of redox potentials present in different iron phases.
CAS PubMed Article Google Scholar188.
Robie, R. A. & Heminway, B. S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. (United States Printing Office, 1995).189.
Navrotsky, A., Ma, C., Lilova, K. & Birkner, N. Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 330, 199–201 (2010).
CAS PubMed Article Google Scholar190.
Robie, R. A. & Bethke, P. Molar Volumes and Densities of Minerals. Report TEI-822 (United States Department of the Interior Geological Survey, 1962).191.
Gorski, C. A., Nurmi, J. T., Tratnyek, P. G., Hofstetter, T. B. & Scherer, M. M. Redox behavior of magnetite: implications for contaminant reduction. Environ. Sci. Technol. 44, 55–60 (2010).
CAS PubMed Article Google Scholar192.
Gorski, C. A., Klüpfel, L. E., Voegelin, A., Sander, M. & Hofstetter, T. B. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. Environ. Sci. Technol. 47, 13477–13485 (2013).
CAS PubMed Article Google Scholar193.
Oswald, K. et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol. Oceanogr. 61, S101–S118 (2016).
Article Google Scholar194.
Braunschweig, J., Bosch, J. & Meckenstock, R. U. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation. N. Biotechnol. 30, 793–802 (2013).
CAS PubMed Article Google Scholar195.
Villa, R. D., Trovó, A. G. & Nogueira, R. F. P. Environmental implications of soil remediation using the Fenton process. Chemosphere 71, 43–50 (2008).
CAS PubMed Article Google Scholar196.
Wagai, R. & Mayer, L. M. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim. Cosmochim. Acta 71, 25–35 (2007).
CAS Article Google Scholar197.
Nitzsche, K. S. et al. Arsenic removal from drinking water by a household sand filter in Vietnam — effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Sci. Total. Environ. 502, 526–536 (2015).
CAS PubMed Article Google Scholar198.
Sipos, P., Németh, T., Kis, V. K. & Mohai, I. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 73, 461–469 (2008).
CAS PubMed Article Google Scholar199.
Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).
CAS Article Google Scholar200.
Schaedler, F., Kappler, A. & Schmidt, C. A revised iron extraction protocol for environmental samples rich in nitrite and carbonate. Geomicrobiol. J. 35, 23–30 (2018).
CAS Article Google Scholar201.
Porsch, K. & Kappler, A. FeII oxidation by molecular O2 during HCl extraction. Environ. Chem. 8, 190–197 (2011).
CAS Article Google Scholar202.
Roden, E. E. & Zachara, J. M. Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30, 1618–1628 (1996).
CAS Article Google Scholar203.
Tessier, A., Campbell, P. G. C. & Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851 (1979).
CAS Article Google Scholar204.
Stookey, L. L. Ferrozine – a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).
CAS Article Google Scholar205.
Clark, L. J. Iron(II) determination in the presence of iron(III) using 4,7-diphenyl-1,10-phenanthroline. Anal. Chem. 34, 348–352 (1962).
CAS Article Google Scholar206.
Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. & Van Cappellen, P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15, 785–790 (2000).
CAS Article Google Scholar More100 Shares139 Views
in EcologyHuman disturbance causes widespread disruption of animal movement
1.
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
CAS PubMed Google Scholar
2.
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
CAS PubMed Google Scholar3.
Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).
CAS PubMed Google Scholar4.
Tucker, M. A. et al. Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
CAS PubMed Google Scholar5.
Wang, X. et al. Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl. Nat. Commun. 10, 2187 (2019).
PubMed PubMed Central Google Scholar6.
Fahrig, L. Non-optimal animal movement in human-altered landscapes. Funct. Ecol. 21, 1003–1015 (2007).
Google Scholar7.
Cosgrove, A. J., McWhorter, T. J. & Maron, M. Consequences of impediments to animal movements at different scales: a conceptual framework and review. Divers. Distrib. 24, 448–459 (2018).
Google Scholar8.
Mergey, M., Helder, R. & Roeder, J.-J. Effect of forest fragmentation on space-use patterns in the European pine marten (Martes martes). J. Mammal. 92, 328–335 (2011).
Google Scholar9.
Main, M. T., Davis, R. A., Blake, D., Mills, H. & Doherty, T. S. Human impact overrides bioclimatic drivers of red fox home range size globally. Divers. Distrib. https://doi.org/10.1111/ddi.13115 (2020).10.
Laver, P. N. & Alexander, K. A. Association with humans and seasonality interact to reverse predictions for animal space use. Mov. Ecol. 6, 5 (2018).
PubMed PubMed Central Google Scholar11.
Riotte-Lambert, L. & Matthiopoulos, J. Environmental predictability as a cause and consequence of animal movement. Trends Ecol. Evol. 35, 163–174 (2020).
PubMed Google Scholar12.
Laurian, C., Ouellet, J.-P., Courtois, R., Breton, L. & St-Onge, S. Effects of intensive harvesting on moose reproduction. J. Appl. Ecol. 37, 515–531 (2000).
Google Scholar13.
Tamburello, N., Côté, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Nat. 186, 196–211 (2015).
PubMed Google Scholar14.
Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).
CAS PubMed Google Scholar15.
Perona, A. M., Urios, V. & López-López, P. Holidays? Not for all. Eagles have larger home ranges on holidays as a consequence of human disturbance. Biol. Conserv. 231, 59–66 (2019).
Google Scholar16.
Staggenborg, J., Schaefer, H. M., Stange, C., Naef-Daenzer, B. & Grüebler, M. U. Time and travelling costs during chick-rearing in relation to habitat quality in little owls Athene noctua. Ibis (Lond. 1859) 159, 519–531 (2017).
Google Scholar17.
Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).
PubMed Google Scholar18.
Blomquist, S. & Hunter, M. L. Jr A multi-scale assessment of habitat selection and movement patterns by northern leopard frog (Lithobates [Rana] pipiens) in a managed forest. Herpetol. Conserv. Biol. 4, 142–160 (2009).
Google Scholar19.
Peaden, J. M., Nowakowski, A. J., Tuberville, T. D., Buhlmann, K. A. & Todd, B. D. Effects of roads and roadside fencing on movements, space use, and carapace temperatures of a threatened tortoise. Biol. Conserv. 214, 13–22 (2017).
Google Scholar20.
Siffczyk, C., Brotons, L., Kangas, K. & Orell, M. Home range size of willow tits: a response to winter habitat loss. Oecologia 136, 635–642 (2003).
PubMed Google Scholar21.
Breininger, D. R., Bolt, M. R., Legare, M. L., Drese, J. H. & Stolen, E. D. Factors influencing home-range sizes of eastern indigo snakes in central Florida. J. Herpetol. 45, 484–490 (2011).
Google Scholar22.
Hirt, M. R., Jetz, W., Rall, B. C. & Brose, U. A general scaling law reveals why the largest animals are not the fastest. Nat. Ecol. Evol. 1, 1116–1122 (2017).
PubMed Google Scholar23.
Garland, T. & Albuquerque, R. L. Locomotion, energetics, performance, and behavior: a mammalian perspective on lizards, and vice versa. Integr. Comp. Biol. 57, 252–266 (2017).
PubMed Google Scholar24.
Wilson, K. S., Pond, B. A., Brown, G. S. & Schaefer, J. A. The biogeography of home range size of woodland caribou Rangifer tarandus caribou. Divers. Distrib. 25, 205–216 (2019).
Google Scholar25.
Wang, Y., Smith, J. A. & Wilmers, C. C. Residential development alters behavior, movement, and energetics in a top carnivore. PLoS ONE 12, e0184687 (2017).
PubMed PubMed Central Google Scholar26.
Vangestel, C., Braeckman, B. P., Matheve, H. & Lens, L. Constraints on home range behaviour affect nutritional condition in urban house sparrows (Passer domesticus). Biol. J. Linn. Soc. Lond. 101, 41–50 (2010).
Google Scholar27.
Hinam, H. L. & St. Clair, C. C. High levels of habitat loss and fragmentation limit reproductive success by reducing home range size and provisioning rates of northern saw-whet owls. Biol. Conserv. 141, 524–535 (2008).
Google Scholar28.
Herrera, J. M., de Sá Teixeira, I., Rodríguez-Pérez, J. & Mira, A. Landscape structure shapes carnivore-mediated seed dispersal kernels. Landsc. Ecol. 31, 731–743 (2016).
Google Scholar29.
Carpenter, J. K., O’Donnell, C. F. J., Moltchanova, E. & Kelly, D. Long seed dispersal distances by an inquisitive flightless rail (Gallirallus australis) are reduced by interaction with humans. R. Soc. Open Sci. 6, 190397 (2019).
PubMed PubMed Central Google Scholar30.
Januchowski-Hartley, F. A., Graham, N. A. J., Feary, D. A., Morove, T. & Cinner, J. E. Fear of fishers: human predation explains behavioral changes in coral reef fishes. PLoS ONE 6, e22761 (2011).
CAS PubMed PubMed Central Google Scholar31.
Whittington, J., Low, P. & Hunt, B. Temporal road closures improve habitat quality for wildlife. Sci. Rep. 9, 3772 (2019).
PubMed PubMed Central Google Scholar32.
Soanes, K. et al. Movement re-established but not restored: inferring the effectiveness of road-crossing mitigation for a gliding mammal by monitoring use. Biol. Conserv. 159, 434–441 (2013).
Google Scholar33.
Jacobsen, L. B., Chrenková, M., Sunde, P. & Salek, M. Effects of food provisioning and habitat management on spatial behaviour of little owls during the breeding season. Ornis Fenn. 93, 121–129 (2016).
Google Scholar34.
Zeller, K. A., Lewsion, R., Fletcher, R. J., Tulbure, M. G. & Jennings, M. K. Understanding the importance of dynamic landscape connectivity. Land (Basel) 9, 303 (2020).
Google Scholar35.
Doherty, T. S. & Driscoll, D. A. Coupling movement and landscape ecology for animal conservation in production landscapes. Proc. R. Soc. Lond. B 285, 20172272 (2018).
Google Scholar36.
Rohatgi, A. WebPlotDigitizer, version 4.2 (2019); https://automeris.io/WebPlotDigitizer37.
Börger, L. et al. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75, 1393–1405 (2006).
PubMed Google Scholar38.
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
Google Scholar39.
Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Google Scholar40.
Neumann, W., Ericsson, G. & Dettki, H. Does off-trail backcountry skiing disturb moose? Eur. J. Wildl. Res. 56, 513–518 (2010).
Google Scholar41.
Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
Google Scholar42.
Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).
Google Scholar43.
Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).
PubMed PubMed Central Google Scholar44.
Froese, R. & Pauly, D. (eds) Fishbase (2019); www.fishbase.org45.
Myers, P. et al. The Animal Diversity Web (Univ. Michigan, 2020); https://animaldiversity.org46.
AmphibiaWeb (Univ. California Berkeley, 2020); https://amphibiaweb.org47.
Froese, R., Thorson, J. T. & Reyes, R. B. A Bayesian approach for estimating length–weight relationships in fishes. J. Appl. Ichthyol. 30, 78–85 (2014).
Google Scholar48.
Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).
Google Scholar49.
Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).
Google Scholar50.
Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Google Scholar51.
Williams, D. R., Rast, P. & Bürkner, P.-C. Bayesian meta-analysis with weakly informative prior distributions. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/7tbrm (2018).52.
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).
Google Scholar53.
Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).
CAS PubMed PubMed Central Google Scholar54.
Rosenberg, M. S. The file-drawer problem revisted: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468 (2005).
PubMed Google Scholar More138 Shares129 Views
in EcologyUsing ecological coexistence theory to understand antibiotic resistance and microbial competition
1.
Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).
CAS PubMed Article PubMed Central Google Scholar
2.
Raymond, B. Five rules for resistance management in the antibiotic apocalypse, a road map for integrated microbial management. Evol. Appl. 12, 1079–1091 (2019).
PubMed PubMed Central Article Google Scholar3.
Perron, G. G., Inglis, R. F., Pennings, P. S. & Cobey, S. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evol. Appl. 8, 211–222 (2015).
PubMed PubMed Central Article Google Scholar4.
Andersen, S. B., Shapiro, B. J., Vandenbroucke-Grauls, C. & de Vos, M. G. J. Microbial evolutionary medicine: from theory to clinical practice. Lancet Infect. Dis. 19, e273–e283 (2019).
PubMed Article PubMed Central Google Scholar5.
Gilbert, J. A. & Lynch, S. V. Community ecology as a framework for human microbiome research. Nat. Med. 25, 884–889 (2019).
CAS PubMed PubMed Central Article Google Scholar6.
Huijben, S., Chan, B. H. K., Nelson, W. A. & Read, A. F. The impact of within-host ecology on the fitness of a drug-resistant parasite. Evol. Med. Public Health 2018, 127–137 (2018).
PubMed PubMed Central Article Google Scholar7.
Klümper, U. et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 13, 2927–2937 (2019).
PubMed PubMed Central Article CAS Google Scholar8.
Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).
CAS PubMed Article PubMed Central Google Scholar9.
Hall, A. R., Angst, D. C., Schiessl, K. T. & Ackermann, M. Costs of antibiotic resistance – separating trait effects and selective effects. Evol. Appl. 8, 261–272 (2015).
PubMed Article PubMed Central Google Scholar10.
Lehtinen, S. et al. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proc. Natl Acad. Sci. USA 114, 1075–1080 (2017).
CAS PubMed Article PubMed Central Google Scholar11.
Colijn, C. et al. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae? J. R. Soc. Interface 7, 905–919 (2010).
PubMed Article PubMed Central Google Scholar12.
Blanquart, F., Lehtinen, S. & Fraser, C. An evolutionary model to predict the frequency of antibiotic resistance under seasonal antibiotic use, and an application to streptococcus pneumoniae. Proc. R. Soc. B 284, 20170679 (2017).
PubMed Article CAS PubMed Central Google Scholar13.
Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).
CAS PubMed Article PubMed Central Google Scholar14.
Blanquart, F. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol. Appl. 12, 365–383 (2019).
PubMed PubMed Central Article Google Scholar15.
Davies, N. G., Flasche, S., Jit, M. & Atkins, K. E. Within-host dynamics shape antibiotic resistance in commensal bacteria. Nat. Ecol. Evol. 3, 440–449 (2019).
PubMed PubMed Central Article Google Scholar16.
Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).
PubMed Article PubMed Central Google Scholar17.
Bjourkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000).
Article Google Scholar18.
Petersen, A., Aarestrup, F. M. & Olsen, J. E. The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions. FEMS Microbiol. Lett. 299, 53–59 (2009).
CAS PubMed Article PubMed Central Google Scholar19.
Paulander, W., Maisnier-Patin, S. & Andersson, D. I. The fitness cost of streptomycin resistance depends on rpsL mutation, carbon source and RpoS (σS). Genetics 183, 539–546 (2009).
PubMed Central Article CAS Google Scholar20.
Hall, A. R., Iles, J. C. & MacLean, R. C. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics 187, 817–822 (2011).
CAS PubMed PubMed Central Article Google Scholar21.
Trindade, S., Sousa, A. & Gordo, I. Antibiotic resistance and stress in the light of Fisher’s model. Evolution 66, 3815–3824 (2012).
PubMed Article PubMed Central Google Scholar22.
Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).23.
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Article Google Scholar24.
Chase, J. & Leibold, M. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).25.
Adler, P. B., Hillerislambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
PubMed Article PubMed Central Google Scholar26.
HilleRisLambers, J., Adler, P. B., Harpole, W., Levine, J. M. & Mayfield, M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
Article Google Scholar27.
Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).
Article Google Scholar28.
Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).
Article Google Scholar29.
Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).
Article Google Scholar30.
Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).
PubMed Article PubMed Central Google Scholar31.
Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).
Article Google Scholar32.
Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12793–12798 (2006).
CAS PubMed Article PubMed Central Google Scholar33.
Yuan, C. & Chesson, P. The relative importance of relative nonlinearity and the storage effect in the lottery model. Theor. Popul. Biol. 105, 39–52 (2015).
PubMed Article PubMed Central Google Scholar34.
Wale, N., Sim, D. G. & Read, A. F. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc. R. Soc. B 284, 20171067 (2017).
PubMed Article CAS PubMed Central Google Scholar35.
Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).
PubMed PubMed Central Article Google Scholar36.
Hester, E. R., Jetten, M. S. M., Welte, C. U. & Lücker, S. Metabolic overlap in environmentally diverse microbial communities. Front. Genet. 10, 989 (2019).
CAS PubMed PubMed Central Article Google Scholar37.
Smith, V. H. & Holt, R. D. Resource competition and within-host disease dynamics. Trends Ecol. Evol. 11, 386–389 (1996).
CAS PubMed Article PubMed Central Google Scholar38.
Hurtado, P. J., Hall, S. R. & Ellner, S. P. Infectious disease in consumer populations: dynamic consequences of resource-mediated transmission and infectiousness. Theor. Ecol. 7, 163–179 (2014).
Article Google Scholar39.
Cressler, C. E., Nelson, W. A., Day, T. & McCauley, E. Disentangling the interaction among host resources, the immune system and pathogens. Ecol. Lett. 17, 284–293 (2014).
PubMed Article PubMed Central Google Scholar40.
Smith, V. H., Holt, R. D., Smith, M. S., Niu, Y. & Barfield, M. Resources, mortality, and disease ecology: importance of positive feedbacks between host growth rate and pathogen dynamics. Isr. J. Ecol. Evol. 61, 37–49 (2015).
PubMed PubMed Central Article Google Scholar41.
Alonso, A. et al. Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J. Antimicrob. Chemother. 53, 432–434 (2004).
CAS PubMed Article PubMed Central Google Scholar42.
Perkins, A. E. & Nicholson, W. L. Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J. Bacteriol. 190, 807–814 (2008).
CAS PubMed Article PubMed Central Google Scholar43.
Martínez, J. L. & Rojo, F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 35, 768–789 (2011).
PubMed Article CAS PubMed Central Google Scholar44.
Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).
PubMed PubMed Central Article CAS Google Scholar45.
Dunphy, L. J., Yen, P. & Papin, J. A. Integrated experimental and computational analyses reveal differential metabolic functionality in antibiotic-resistant Pseudomonas aeruginosa. Cell Syst. 8, 3-14.e3 (2019).
PubMed PubMed Central Google Scholar46.
Webber, M. A. & Piddock, L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).
CAS PubMed Article PubMed Central Google Scholar47.
Fitzsimmons, J. M., Schoustra, S. E., Kerr, J. T. & Kassen, R. Population consequences of mutational events: effects of antibiotic resistance on the r/K trade-off. Evol. Ecol. 24, 227–236 (2010).
Article Google Scholar48.
Baltrus, D. A. Exploring the costs of horizontal gene transfer. Trends Ecol. Evol. 28, 489–495 (2013).
PubMed Article PubMed Central Google Scholar49.
San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectrum 5, 65–79 (2017).
Google Scholar50.
Dennis, J. J. The evolution of IncP catabolic plasmids. Curr. Opin. Biotechnol. 16, 291–298 (2005).
CAS PubMed Article PubMed Central Google Scholar51.
Shintani, M. et al. Response of the Pseudomonas host chromosomal transcriptome to carriage of the IncP-7 plasmid pCAR1. Environ. Microbiol. 12, 1413–1426 (2009).
PubMed PubMed Central Google Scholar52.
San Millan, A. et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 12, 3014–3024 (2018).
CAS PubMed PubMed Central Article Google Scholar53.
Schlüter, A. et al. The 64508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology 149, 3139–3153 (2003).
PubMed Article CAS PubMed Central Google Scholar54.
Chen, K. et al. Comparison of four Comamonas catabolic plasmids reveals the evolution of pBHB to catabolize haloaromatics. Appl. Environ. Microbiol. 82, 1401–1411 (2016).
CAS PubMed Central Article Google Scholar55.
Douglas, A. E. Fundamentals of Microbiome Science: How Microbes Shape Animal Biology (Princeton Univ. Press, 2018).56.
Ibrahim, K. H., Gunderson, B. W., Hermsen, E. D., Hovde, L. B. & Rotschafer, J. C. Pharmacodynamics of pulse dosing versus standard dosing: in vitro metronidazole activity against Bacteroides fragilis and Bacteroides thetaiotaomicron. Antimicrob. Agents Chemother. 48, 4195–4199 (2004).
CAS PubMed PubMed Central Article Google Scholar57.
Peña-Miller, R., Lähnemann, D., Schulenburg, H., Ackermann, M. & Beardmore, R. Selecting against antibiotic-resistant pathogens: optimal treatments in the presence of commensal bacteria. Bull. Math. Biol. 74, 908–934 (2012).
PubMed Article CAS PubMed Central Google Scholar58.
Lin, W.-H. & Kussell, E. Complex interplay of physiology and selection in the emergence of antibiotic resistance. Curr. Biol. 26, 1486–1493 (2016).
CAS PubMed PubMed Central Article Google Scholar59.
Bauer, M., Graf, I. R., Ngampruetikorn, V., Stephens, G. J. & Frey, E. Exploiting ecology in drug pulse sequences in favour of population reduction. PLoS Comput. Biol. 13, e1005747 (2017).
PubMed PubMed Central Article CAS Google Scholar60.
Baker, C. M., Ferrari, M. J. & Shea, K. Beyond dose: pulsed antibiotic treatment schedules can maintain individual benefit while reducing resistance. Sci. Rep. 8, 5866 (2018).
PubMed PubMed Central Article CAS Google Scholar61.
Nev, O. A., Jepson, A., Beardmore, R. E. & Gudelj, I. Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments. J. R. Soc. Interface 17, 20190776 (2020).
PubMed Article PubMed Central Google Scholar62.
Kouyos, R. D. et al. The path of least resistance: aggressive or moderate treatment? Proc. R. Soc. B 281, 20140566 (2014).
PubMed Article PubMed Central Google Scholar63.
Day, T. & Read, A. F. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Comput. Biol. 12, e1004689 (2016).
PubMed PubMed Central Article CAS Google Scholar64.
Alexander, H. K. & MacLean, R. C. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl Acad. Sci. USA 117, 19455–19464 (2020).
CAS PubMed Article PubMed Central Google Scholar65.
Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).
CAS PubMed PubMed Central Article Google Scholar66.
Thaiss, C. A., Zeevi, D., Levy, M., Segal, E. & Elinav, E. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 6, 137–142 (2015).
CAS PubMed PubMed Central Article Google Scholar67.
Kaczmarek, J. L., Thompson, S. V. & Holscher, H. D. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr. Rev. 75, 673–682 (2017).
PubMed PubMed Central Article Google Scholar68.
Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).
PubMed PubMed Central Article CAS Google Scholar69.
Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
CAS PubMed PubMed Central Article Google Scholar70.
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
CAS Article Google Scholar71.
Venable, E. B. et al. Effects of feeding management on the equine cecal microbiota. J. Equine Vet. Sci. 49, 113–121 (2017).
Article Google Scholar72.
Parris, D. J., Morgan, M. M. & Stewart, F. J. Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut. Appl. Environ. Microbiol. 85, e02479-18 (2019).
CAS PubMed PubMed Central Google Scholar73.
Chesson, P. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).
CAS PubMed Article PubMed Central Google Scholar74.
Chesson, P. Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. Theor. Popul. Biol. 64, 345–357 (2003).
PubMed Article PubMed Central Google Scholar75.
Watson, S. P., Clements, M. O. & Foster, S. J. Characterization of the starvation-survival response of Staphylococcus aureus. J. Bacteriol. 180, 1750–1758 (1998).
CAS PubMed PubMed Central Article Google Scholar76.
Grover, J. Resource Competition Vol. 19 (Springer Science & Business Media, 1997).77.
Letten, A. D., Dhami, M. K., Ke, P.-J. & Fukami, T. Species coexistence through simultaneous fluctuation-dependent mechanisms. Proc. Natl Acad. Sci. USA 115, 6745–6750 (2018).
CAS PubMed Article PubMed Central Google Scholar78.
Levison, M. E. & Levison, J. H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. N. Am. 23, 791–815 (2009).
Article Google Scholar79.
Maharjan, R. & Ferenci, T. The fitness costs and benefits of antibiotic resistance in drug-free microenvironments encountered in the human body. Environ. Microbiol. Rep. 9, 635–641 (2017).
CAS PubMed Article PubMed Central Google Scholar80.
Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).
CAS PubMed PubMed Central Article Google Scholar81.
Song, T. et al. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β subunit of RNA polymerase. Mol. Microbiol. 91, 1106–1119 (2014).
CAS PubMed PubMed Central Article Google Scholar82.
Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838 (2016).
PubMed Article PubMed Central Google Scholar83.
Schreiber, S. J., Levine, J. M., Godoy, O., Kraft, N. J. & Hart, S. P. Does deterministic coexistence theory matter in a finite world? Insights from serpentine annual plants. Preprint at bioRxiv https://doi.org/10.1101/290882 (2020).84.
Data from the ECDC Surveillance Atlas – Antimicrobial Resistance (European Centre for Disease Prevention and Control, 2020); http://go.nature.com/3oLrjOG85.
Matteo, M. J., Granados, G., Olmos, M., Wonaga, A. & Catalano, M. Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates. J. Antimicrob. Chemother. 61, 474–477 (2008).
CAS PubMed Article PubMed Central Google Scholar86.
Mongkolrattanothai, K. et al. Simultaneous carriage of multiple genotypes of Staphylococcus aureus in children. J. Med. Microbiol. 60, 317–322 (2011).
CAS PubMed Article PubMed Central Google Scholar87.
Folkvardsen, D. B. et al. Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J. Clin. Microbiol. 51, 4220–4222 (2013).
PubMed PubMed Central Article Google Scholar88.
Kamng’ona, A. W. et al. High multiple carriage and emergence of Streptococcus pneumoniae vaccine serotype variants in Malawian children. BMC Infect. Dis. 15, 234 (2015).89.
Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).
CAS PubMed Article PubMed Central Google Scholar90.
Chesson, P. & Kuang, J. J. The interaction between predation and competition. Nature 456, 235–238 (2008).
CAS PubMed Article PubMed Central Google Scholar91.
Gonze, D., Coyte, K. Z., Lahti, L. & Faust, K. Microbial communities as dynamical systems. Curr. Opin. Microbiol. 44, 41–49 (2018).
PubMed Article PubMed Central Google Scholar92.
Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).
PubMed Article PubMed Central Google Scholar93.
Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 112, 797–802 (2015).
CAS PubMed Article PubMed Central Google Scholar94.
Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).
Article Google Scholar95.
Hallinen, K. M., Karslake, J. & Wood, K. B. Delayed antibiotic exposure induces population collapse in enterococcal communities with drug-resistant subpopulations. eLife 9, e52813 (2020).
CAS PubMed PubMed Central Article Google Scholar96.
Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).
CAS PubMed Article PubMed Central Google Scholar97.
Torres-Barceló, C. & Hochberg, M. E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 24, 249–256 (2016).
PubMed Article CAS PubMed Central Google Scholar98.
Burmeister, A. R. et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl Acad. Sci. USA 117, 11207–11216 (2020).
CAS PubMed Article PubMed Central Google Scholar99.
Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).
PubMed PubMed Central Article CAS Google Scholar100.
Estrela, S. & Brown, S. P. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput. Biol. 14, e1006179 (2018).
PubMed PubMed Central Article CAS Google Scholar More175 Shares99 Views
in EcologyNew generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests
1.
Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).
ADS CAS PubMed Article Google Scholar
2.
Guimberteau, M. et al. Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios. Hydrol. Earth Syst. Sci. 21, 1455–1475 (2017).
ADS Article Google Scholar3.
Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2016).
Article Google Scholar4.
Jimenez, J. C. et al. Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170300 (2018).
Article Google Scholar5.
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
ADS CAS PubMed Article Google Scholar6.
Kumar, J., Hoffman, F. M., Hargrove, W. W. & Collier, N. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements. Earth Syst. Sci. Data Discuss. 1–25 (2016). https://doi.org/10.5194/essd-2016-367.
Baldocchi, D. et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).
ADS Article Google Scholar8.
Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).
ADS CAS Article Google Scholar9.
Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).
Article Google Scholar10.
Malhi, Y. & Wright, J. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. R. Soc. B Biol. Sci. 359, 311–329 (2004).
Article Google Scholar11.
Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405 (2006).
ADS Article Google Scholar12.
Morton, D. C. et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506, 221–224 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar13.
Myneni, R. B. et al. Large seasonal swings in leaf area of Amazon rainforests. Proc. Natl Acad. Sci. USA 104, 4820–4823 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar14.
Morton, D. C. et al. Morton et al. reply. Nature 531, E6–E6 (2016).
CAS PubMed Article PubMed Central Google Scholar15.
Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).
CAS PubMed Article PubMed Central Google Scholar16.
Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar17.
Samanta, A. et al. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 37, LG05401 (2010).
ADS Article Google Scholar18.
Samanta, A. et al. Comment on ‘Drought-induced reduction in global terrestrial net primary production from 2000 through 2009’. Science 333, 1093 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar19.
Xu, L. et al. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophys. Res. Lett. 38, L07402 (2011).
ADS Article Google Scholar20.
Atkinson, P. M., Dash, J. & Jeganathan, C. Amazon vegetation greenness as measured by satellite sensors over the last decade. Geophys. Res. Lett. 38, L19105 (2011).
ADS Article Google Scholar21.
Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar22.
Samanta, A., Ganguly, S., Vermote, E., Nemani, R. R. & Myneni, R. B. Why is remote sensing of Amazon forest greenness so challenging? Earth Interact. 16, 1–14 (2012).
Article Google Scholar23.
Lyapustin, A., Wang, Y., Laszlo, I. & Korkin, S. Improved cloud and snow screening in MAIAC aerosol retrievals using spectral and spatial analysis. Atmos. Meas. Tech. 5, 843–850 (2012).
Article Google Scholar24.
Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar25.
Schmit, T. J. et al. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 98, 681–698 (2017).
ADS Article Google Scholar26.
Wu, J. et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351, 972–976 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar27.
Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).
ADS Article Google Scholar28.
Samanta, A. et al. Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission. J. Geophys. Res. Biogeosci. 117, G01015 (2012).
ADS Article Google Scholar29.
Brando, P. M. et al. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc. Natl Acad. Sci. USA 107, 14685–14690 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar30.
Myneni, R. B., Nemani, R. R. & Running, S. W. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 35, 1380–1393 (1997).
ADS Article Google Scholar31.
Hilker, T. et al. On the measurability of change in Amazon vegetation from MODIS. Remote Sens. Environ. 166, 233–242 (2015).
ADS Article Google Scholar32.
Araújo, A. C. et al. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site. J. Geophys. Res. 107, 8090 (2002).
Article Google Scholar33.
Holben, B. N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 7, 1417–1434 (1986).
ADS Article Google Scholar34.
Galvão, L. S., Ponzoni, F. J., Epiphanio, J. C. N., Rudorff, B. F. T. & Formaggio, A. R. Sun and view angle effects on NDVI determination of land cover types in the Brazilian Amazon region with hyperspectral data. Int. J. Remote Sens. 25, 1861–1879 (2004).
ADS Article Google Scholar35.
Fensholt, R., Huber, S., Proud, S. R. & Mbow, C. Detecting canopy water status using shortwave infrared reflectance data from polar orbiting and geostationary platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 3, 271–285 (2010).
ADS Article Google Scholar36.
Gao, F., Jin, Y., Li, X., Schaaf, C. B. & Strahler, A. H. Bidirectional NDVI and atmospherically resistant BRDF inversion for vegetation canopy. IEEE Trans. Geosci. Remote Sens. 40, 1269–1278 (2002).
ADS Article Google Scholar37.
Kruijt, B. et al. The robustness of eddy correlation fluxes for Amazon rain forest conditions. Ecol. Appl. 14, 101–113 (2004).
Article Google Scholar38.
Galvão, L. S. et al. On intra-annual EVI variability in the dry season of tropical forest: A case study with MODIS and hyperspectral data. Remote Sens. Environ. 115, 2350–2359 (2011).
ADS Article Google Scholar39.
NOAA National Centers for Environmental Information. State of the Climate: Global Climate Report for Annual 2018. (2019). Available at: https://www.ncdc.noaa.gov/sotc/global/201813. (Accessed: 18th June 2019)40.
Andreae, M. O. et al. The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos. Chem. Phys. 15, 10723–10776 (2015).
ADS CAS Article Google Scholar41.
Kobayashi, H. & Dye, D. G. Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sens. Environ. 97, 519–525 (2005).
ADS Article Google Scholar42.
Xu, L. et al. Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia. Environ. Res. Lett. 10, 084005 (2015).
ADS Article CAS Google Scholar43.
Doughty, R. et al. TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proc. Natl Acad. Sci. USA 116, 22393–22398 (2019).
CAS PubMed Article PubMed Central Google Scholar44.
Bi, J. et al. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environ. Res. Lett. 10, 064014 (2015).
ADS Article Google Scholar45.
Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).
ADS CAS PubMed Article PubMed Central Google Scholar46.
Wu, J. et al. Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. N. Phytol. 217, 1507–1520 (2018).
Article Google Scholar47.
Tang, H. & Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl Acad. Sci. USA 114, 2640–2644 (2017).
CAS PubMed Article Google Scholar48.
Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
ADS Article Google Scholar49.
Justice, C. O., Townshend, J. R. G., Holben, A. N. & Tucker, C. J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 6, 1271–1318 (1985).
ADS Article Google Scholar50.
Badgley, G., Anderegg, L. D., Berry, J. A. & Field, C. B. Terrestrial gross primary production: Using NIRv to scale from site to globe. Glob. Chang. Biol. 25, 3731–3740 (2019).
ADS PubMed Article PubMed Central Google Scholar51.
Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 1–7 (2014).
Article CAS Google Scholar52.
Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (2019).
ADS Article Google Scholar53.
Sellers, P. J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens 6, 1335–1372 (1985).
ADS Article Google Scholar54.
Smith, M. N. et al. Seasonal and drought‐related changes in leaf area profiles depend on height and light environment in an Amazon forest. N. Phytol. 222, 1284–1297 (2019).
Article Google Scholar55.
Goward, S. N. & Huemmrich, K. F. Vegetation canopy PAR absorptance and the normalized difference vegetation index: An assessment using the SAIL model. Remote Sens. Environ. 39, 119–140 (1992).
ADS Article Google Scholar56.
Miura, T., Nagai, S., Takeuchi, M., Ichii, K. & Yoshioka, H. Improved characterisation of vegetation and land surface seasonal dynamics in central Japan with Himawari-8 hypertemporal data. Sci. Rep. 9, 1–12 (2019).
Article CAS Google Scholar57.
Da Rocha, H. R. et al. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. Biogeosci. 114, G00B12 (2009).
Article Google Scholar58.
Wang, W. et al. An introduction to the Geostationary-NASA Earth Exchange (GeoNEX) Products: 1. Top-of-atmosphere reflectance and brightness temperature. Remote Sens. 12, 1267 (2020).
ADS Article Google Scholar59.
Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I. & Korkin, S. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. 116, D03210 (2011).
ADS Google Scholar60.
de Moura, Y. M. et al. Spectral analysis of Amazon canopy phenology during the dry season using a tower hyperspectral camera and MODIS observations. ISPRS J. Photogramm. Remote Sens. 131, 52–64 (2017).
ADS Article Google Scholar61.
Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
ADS Article Google Scholar62.
Sorooshian, S. et al. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 81, 2035–2046 (2000).
ADS Article Google Scholar63.
Sinyuk, A. et al. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 13, 3375–3411 (2020).
CAS Article Google Scholar64.
Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
CAS PubMed PubMed Central Article Google Scholar More
