More stories

  • in

    An evolving view on biogeochemical cycling of iron

    1.
    Ehrenberg, C. Vorläufige Mitteilungen über das wirkliche Vorkommen fossiler Infusorien und ihre große Verbreitung. Poggendorff Ann. 38, 213–227 (1836).
    Google Scholar 
    2.
    Chan, C. S. et al. The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00796 (2016). Microscopic analysis indicates how the morphology of iron-oxidizing bacteria in microbial mats responds to environmental conditions.
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C. & Kappler, A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12, 797–808 (2014).
    CAS  PubMed  Article  Google Scholar 

    4.
    Ehrlich, H. L., Newman, D. K. & Kappler, A. Ehrlich’s Geomicrobiology. (CRC Press, 2015).

    5.
    Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015). First article to demonstrate magnetite could support complete microbial iron cycling; that is, Fe(ii) in magnetite can be used as an electron source by Fe(ii) oxidizers and Fe(iii) can be used by Fe(iii) reducers as an electron acceptor in a cycling fashion.
    CAS  PubMed  Article  Google Scholar 

    6.
    Berg, J. S. et al. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environ. Microbiol. 18, 5288–5302 (2016).
    CAS  PubMed  Article  Google Scholar 

    7.
    Kappler, A. & Bryce, C. Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ. Microbiol. 19, 842–846 (2017).
    PubMed  Article  Google Scholar 

    8.
    Wang, M., Hu, R., Zhao, J., Kuzyakov, Y. & Liu, S. Iron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils. Geoderma 271, 173–180 (2016).
    CAS  Article  Google Scholar 

    9.
    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009). First demonstration that methane oxidation can be coupled to reduction of iron(iii) oxides and manganese(iv) oxides.
    CAS  PubMed  Article  Google Scholar 

    10.
    Orihel, D. M. et al. The “nutrient pump:” iron-poor sediments fuel low nitrogen-to-phosphorus ratios and cyanobacterial blooms in polymictic lakes. Limnol. Oceanogr. 60, 856–871 (2015).
    Article  Google Scholar 

    11.
    Lalonde, K., Mucci, A., Ouellet, A. & Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).
    CAS  PubMed  Article  Google Scholar 

    12.
    Muehe, E. M. et al. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species. Environ. Sci. Technol. 47, 14099–14109 (2013).
    CAS  PubMed  Article  Google Scholar 

    13.
    Glodowska, M. et al. Role of in situ natural organic matter in mobilizing As during microbial reduction of FeIII-mineral-bearing aquifer sediments from Hanoi (Vietnam). Environ. Sci. Technol. 54, 4149–4159 (2020).
    CAS  PubMed  Article  Google Scholar 

    14.
    Cutting, R. S., Coker, V. S., Fellowes, J. W., Lloyd, J. R. & Vaughan, D. J. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochim. Cosmochim. Acta 73, 4004–4022 (2009).
    CAS  Article  Google Scholar 

    15.
    Wu, T. et al. Interactions between Fe(III)-oxides and Fe(III)-phyllosilicates during microbial reduction 2: natural subsurface sediments. Geomicrobiol. J. 34, 231–241 (2017).
    CAS  Article  Google Scholar 

    16.
    Jaisi, D. P., Dong, H. & Liu, C. Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochim. Cosmochim. Acta 71, 1145–1158 (2007).
    CAS  Article  Google Scholar 

    17.
    Bosch, J., Heister, K., Hofmann, T. & Meckenstock, R. U. Nanosized iron oxide colloids strongly enhance microbial iron reduction. Appl. Environ. Microbiol. 76, 184–189 (2010).
    CAS  PubMed  Article  Google Scholar 

    18.
    Aeppli, M. et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environ. Sci. Technol. 53, 8736–8746 (2019).
    CAS  PubMed  Article  Google Scholar 

    19.
    Levar, C. E., Hoffman, C. L., Dunshee, A. J., Toner, B. M. & Bond, D. R. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME J. 11, 741–752 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Wang, Z. et al. Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 74, 6746–6755 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Kügler, S. et al. Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich Fen. Sci. Total. Environ. 646, 972–988 (2019).
    PubMed  Article  CAS  Google Scholar 

    22.
    Daugherty, E. E., Gilbert, B., Nico, P. S. & Borch, T. Complexation and redox buffering of iron(II) by dissolved organic matter. Environ. Sci. Technol. 51, 11096–11104 (2017).
    CAS  PubMed  Article  Google Scholar 

    23.
    von der Heyden, B., Roychoudhury, A. & Myneni, S. Iron-rich nanoparticles in natural aquatic environments. Minerals 9, 287 (2019). Thorough review of the nature and impact of iron nanoparticles in the environment.
    Article  CAS  Google Scholar 

    24.
    Hassellöv, M. & von der Kammer, F. Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 4, 401–406 (2008).
    Article  CAS  Google Scholar 

    25.
    Liu, J. et al. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1. Geochim. Cosmochim. Acta 193, 160–175 (2016).
    CAS  Article  Google Scholar 

    26.
    Druschel, G. K., Emerson, D., Sutka, R., Suchecki, P. & Luther, G. W. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim. Cosmochim. Acta 72, 3358–3370 (2008). Landmark study using voltammetric electrodes to elucidate the optimum geochemical conditions of microaerophilic Fe(ii) oxidizers.
    CAS  Article  Google Scholar 

    27.
    Barnes, A., Sapsford, D. J., Dey, M. & Williams, K. P. Heterogeneous Fe(II) oxidation and zeta potential. J. Geochem. Explor. 100, 192–198 (2009).
    CAS  Article  Google Scholar 

    28.
    González-Davila, M., Santana-Casiano, J. M. & Millero, F. J. Oxidation of iron (II) nanomolar with H2O2 in seawater. Geochim. Cosmochim. Acta 69, 83–93 (2005).
    Article  CAS  Google Scholar 

    29.
    Kanzaki, Y. & Murakami, T. Rate law of Fe(II) oxidation under low O2 conditions. Geochim. Cosmochim. Acta 123, 338–350 (2013).
    CAS  Article  Google Scholar 

    30.
    King, D. W., Lounsbury, H. A. & Millero, F. J. Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ. Sci. Technol. 29, 818–824 (1995).
    CAS  PubMed  Article  Google Scholar 

    31.
    Emerson, D., Fleming, E. J. & McBeth, J. M. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu. Rev. Microbiol. 64, 561–583 (2010).
    CAS  PubMed  Article  Google Scholar 

    32.
    Chan, C. S., Emerson, D. & Luther, G. W. III The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations. Geobiology 14, 509–528 (2016).
    CAS  PubMed  Article  Google Scholar 

    33.
    Mori, J. F. et al. Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov. ISME J. 11, 2624–2636 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Emerson, D. & De Vet, W. The role of FeOB in engineered water ecosystems: a review. J. AWWA 107, E47–E57 (2015).
    Article  Google Scholar 

    35.
    MacDonald, D. J. et al. Using in situ voltammetry as a tool to identify and characterize habitats of iron-oxidizing bacteria: from fresh water wetlands to hydrothermal vent sites. Environ. Sci. Process. Impacts 16, 2117–2126 (2014).
    PubMed  Article  Google Scholar 

    36.
    Emerson, D., Weiss, J. V. & Megonigal, J. P. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl. Environ. Microbiol. 65, 2758–2761 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Laufer, K. et al. Microaerophilic Fe(II)-oxidizing Zetaproteobacteria isolated from low-Fe marine coastal sediments: physiology and composition of their twisted stalks. Appl. Environ. Microbiol. 83, e03118–03116 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Orcutt, B. N. et al. Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J. 5, 692–703 (2011).
    CAS  PubMed  Article  Google Scholar 

    39.
    Field, E. K. et al. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions. Geobiology 14, 499–508 (2016).
    CAS  PubMed  Article  Google Scholar 

    40.
    Maisch, M. et al. Contribution of microaerophilic iron(II)-oxidizers to iron(III) mineral formation. Environ. Sci. Technol. 53, 8197–8204 (2019).
    CAS  PubMed  Article  Google Scholar 

    41.
    Chiu, B. K., Kato, S., McAllister, S. M., Field, E. K. & Chan, C. S. Novel pelagic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone. Front. Microbiol. 8, 1280 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    McAllister, S. M. et al. The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz015 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    43.
    Barco, R. A. et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl. Environ. Microbiol. 81, 5927–5937 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    McAllister, S. M. et al. Validating the Cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents. mSystems 5, e00553–00519 (2020). Support for Cyc2 as the iron oxidase in microaerophilic Fe(ii) oxidizers.
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Jeans, C. et al. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J. 2, 542–550 (2008).
    CAS  PubMed  Article  Google Scholar 

    46.
    Edwards, B. A. & Ferris, F. G. Influence of water flow on in situ rates of bacterial Fe(II) oxidation. Geomicrobiol. J. 37, 67–75 (2020).
    CAS  Article  Google Scholar 

    47.
    Liu, J. et al. Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front. Microbiol. 3, 37 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Chan, C. S., McAllister, S. M., Garber, A., Hallahan, B. J. & Rozovsky, S. Fe oxidation by a fused cytochrome-porin common to diverse Fe-oxidizing bacteria. bioRxiv https://doi.org/10.1101/228056 (2018).
    Article  Google Scholar 

    49.
    Byrne, J. M., Schmidt, M., Gauger, T., Bryce, C. & Kappler, A. Imaging organic–mineral aggregates formed by Fe(II)-oxidizing bacteria using helium ion microscopy. Environ. Sci. Technol. Lett. 5, 209–213 (2018).
    CAS  Article  Google Scholar 

    50.
    Krepski, S. T., Emerson, D., Hredzak-Showalter, P. L., Luther, G. W. III & Chan, C. S. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils. Geobiology 11, 457–471 (2013).
    CAS  PubMed  Article  Google Scholar 

    51.
    Sowers, T. D., Holden, K. L., Coward, E. K. & Sparks, D. L. Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron (oxyhydr)oxides. Environ. Sci. Technol. 53, 4295–4304 (2019).
    CAS  PubMed  Article  Google Scholar 

    52.
    Lueder, U., Druschel, G., Emerson, D., Kappler, A. & Schmidt, C. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic iron(II)-oxidizing bacteria. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix177 (2017).
    Article  Google Scholar 

    53.
    van der Grift, B., Rozemeijer, J. C., Griffioen, J. & van der Velde, Y. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water. Hydrol. Earth Syst. Sci. 18, 4687–4702 (2014).
    Article  Google Scholar 

    54.
    Enright, A. M. L. & Ferris, F. G. Bacterial Fe(II) oxidation distinguished by long-range correlation in redox potential. J. Geophys. Res. Biogeosci. 121, 1249–1257 (2016).
    CAS  Article  Google Scholar 

    55.
    Lueder, U., Jørgensen, B. B., Kappler, A. & Schmidt, C. Photochemistry of iron in aquatic environments. Environ. Sci. Process. Impacts 22, 12–24 (2020).
    CAS  PubMed  Article  Google Scholar 

    56.
    Widdel, F. et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836 (1993).
    CAS  Article  Google Scholar 

    57.
    Hartman, H. The Evolution of Photosynthesis and Microbial Mats: A Speculation on the Banded Iron Formations. (Alan R. Liss, Inc., 1984).

    58.
    Ozaki, K., Tajika, E., Hong, P. K., Nakagawa, Y. & Reinhard, C. T. Effects of primitive photosynthesis on Earth’s early climate system. Nat. Geosci. 11, 55–59 (2018).
    CAS  Article  Google Scholar 

    59.
    Croal, L. R., Jiao, Y. & Newman, D. K. The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003. J. Bacteriol. 189, 1774–1782 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    Ehrenreich, A. & Widdel, F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 4517–4526 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Jiao, Y., Kappler, A., Croal, L. R. & Newman, D. K. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl. Environ. Microbiol. 71, 4487–4496 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Straub, K. L., Rainey, F. A. & Widdel, F. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int. J. Syst. Evol. Microbiol. 49, 729–735 (1999).
    CAS  Article  Google Scholar 

    63.
    Heising, S., Richter, L., Ludwig, W. & Schink, B. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a Geospirillum sp. strain. Arch. Microbiol. 172, 116–124 (1999).
    CAS  PubMed  Article  Google Scholar 

    64.
    Llirós, M. et al. Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Sci. Rep. 5, 13803 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Laufer, K. et al. Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix054 (2017).
    Article  PubMed  Google Scholar 

    66.
    Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).
    CAS  PubMed  Article  Google Scholar 

    67.
    Gupta, D. et al. Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake. mBio 10, e02668–02619 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Gledhill, M. & Buck, K. The organic complexation of iron in the marine environment: A review. Front. Microbiol. 3, 69 (2012).
    PubMed  PubMed Central  Google Scholar 

    69.
    Saraiva, I. H., Newman, D. K. & Louro, R. O. Functional characterization of the FoxE iron oxidoreductase from the photoferrotroph Rhodobacter ferrooxidans SW2. J. Biol. Chem. 287, 25541–25548 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Crowe, S. A. et al. Draft genome sequence of the pelagic photoferrotroph Chlorobium phaeoferrooxidans. Genome Announc. 5, e01584–01516 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Bryce, C., Blackwell, N., Straub, D., Kleindienst, S. & Kappler, A. Draft genome sequence of Chlorobium sp. strain N1, a marine Fe(II)-oxidizing green sulfur bacterium. Microbiol. Resour. Announc. 8, e00080–00019 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    72.
    Miot, J. et al. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim. Cosmochim. Acta 73, 696–711 (2009).
    CAS  Article  Google Scholar 

    73.
    Schaedler, S. et al. Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria. Geomicrobiol. J. 26, 93–103 (2009).
    CAS  Article  Google Scholar 

    74.
    Hegler, F., Schmidt, C., Schwarz, H. & Kappler, A. Does a low-pH microenvironment around phototrophic FeII-oxidizing bacteria prevent cell encrustation by FeIII minerals? FEMS Microbiol. Ecol. 74, 592–600 (2010).
    CAS  PubMed  Article  Google Scholar 

    75.
    Swanner, E. D. et al. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions. Geochim. Cosmochim. Acta 165, 44–61 (2015).
    CAS  Article  Google Scholar 

    76.
    Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010). A comprehensive review of the many dynamic processes which influence iron cycling in the oceans.
    CAS  Article  Google Scholar 

    77.
    Faust, B. C. & Zepp, R. G. Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 27, 2517–2522 (1993).
    CAS  Article  Google Scholar 

    78.
    Rose, A. L. & Waite, T. D. Reduction of organically complexed ferric iron by superoxide in a simulated natural water. Environ. Sci. Technol. 39, 2645–2650 (2005).
    CAS  PubMed  Article  Google Scholar 

    79.
    Voelker, B. M., Morel, F. M. M. & Sulzberger, B. Iron redox cycling in surface waters:  Effects of humic substances and light. Environ. Sci. Technol. 31, 1004–1011 (1997).
    CAS  Article  Google Scholar 

    80.
    Barbeau, K., Zhang, G., Live, D. H. & Butler, A. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J. Am. Chem. Soc. 124, 378–379 (2002).
    CAS  PubMed  Article  Google Scholar 

    81.
    Waite, T. D. & Morel, F. M. M. Photoreductive dissolution of colloidal iron oxides in natural waters. Environ. Sci. Technol. 18, 860–868 (1984).
    CAS  PubMed  Article  Google Scholar 

    82.
    Sulzberger, B. Light-induced redox cycling of iron: roles for CO2 uptake and release by aquatic ecosystems. Aquat. Geochem. 21, 65–80 (2015).
    CAS  Article  Google Scholar 

    83.
    Garg, S., Rose, A. L. & Waite, T. D. Photochemical production of superoxide and hydrogen peroxide from natural organic matter. Geochim. Cosmochim. Acta 75, 4310–4320 (2011).
    CAS  Article  Google Scholar 

    84.
    Xing, G., Garg, S. & Waite, T. D. Is superoxide-mediated Fe(III) reduction important in sunlit surface waters? Environ. Sci. Technol. 53, 13179–13190 (2019).
    CAS  PubMed  Article  Google Scholar 

    85.
    Sutherland, K. M., Wankel, S. D. & Hansel, C. M. Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proc. Natl. Acad. Sci. USA 117, 3433–3439 (2020).
    CAS  PubMed  Article  Google Scholar 

    86.
    Diaz, J. M. et al. Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340, 1223–1226 (2013).
    CAS  PubMed  Article  Google Scholar 

    87.
    Lis, H., Kranzler, C., Keren, N. & Shaked, Y. A comparative study of iron uptake rates and mechanisms amongst marine and fresh water cyanobacteria: prevalence of reductive iron uptake. Life 5, 841–860 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Swanner, E. D., Maisch, M., Wu, W. & Kappler, A. Oxic Fe(III) reduction could have generated Fe(II) in the photic zone of Precambrian seawater. Sci. Rep. 8, 4238 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    89.
    Emmenegger, L., Schönenberger, R., Sigg, L. & Sulzberger, B. Light-induced redox cycling of iron in circumneutral lakes. Limnol. Oceanogr. 46, 49–61 (2001).
    CAS  Article  Google Scholar 

    90.
    Lueder, U., Jørgensen, B. B., Kappler, A. & Schmidt, C. Fe(III) photoreduction producing Feaq2+ in oxic freshwater sediment. Environ. Sci. Technol. 54, 862–869 (2020).
    CAS  PubMed  Article  Google Scholar 

    91.
    Lueder, U. et al. Influence of physical perturbation on Fe(II) supply in coastal marine sediments. Environ. Sci. Technol. 54, 3209–3218 (2020).
    CAS  PubMed  Article  Google Scholar 

    92.
    Peng, C., Bryce, C., Sundman, A. & Kappler, A. Cryptic cycling of complexes containing Fe(III) and organic matter by phototrophic Fe(II)-oxidizing bacteria. Appl. Environ. Microbiol. 85, e02826–02818 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    93.
    Schmidt, C., Behrens, S. & Kappler, A. Ecosystem functioning from a geomicrobiological perspective a conceptual framework for biogeochemical iron cycling. Environ. Chem. 7, 399–405 (2010).
    CAS  Article  Google Scholar 

    94.
    Raven, J. A., Kübler, J. E. & Beardall, J. Put out the light, and then put out the light. J. Mar. Biol. Assoc. U.K. 80, 1–25 (2000).
    CAS  Article  Google Scholar 

    95.
    Camacho, A., Walter, X. A., Picazo, A. & Zopfi, J. Photoferrotrophy: Remains of an ancient photosynthesis in modern environments. Front. Microbiol. 8 (2017). A review on the physiology of anoxygenic phototrophic Fe(ii) oxidizers and their role in modern and ancient redox-stratified systems.

    96.
    Crowe, S. A. et al. Deep-water anoxygenic photosythesis in a ferruginous chemocline. Geobiology 12, 322–339 (2014).
    CAS  PubMed  Article  Google Scholar 

    97.
    Straub, K. L., Benz, M., Schink, B. & Widdel, F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62, 1458–1460 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Bryce, C. et al. Microbial anaerobic Fe(II) oxidation – Ecology, mechanisms and environmental implications. Environ. Microbiol. 20, 3462–3483 (2018).
    CAS  PubMed  Article  Google Scholar 

    99.
    Blöthe, M. & Roden, E. E. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl. Environ. Microbiol. 75, 6937–6940 (2009). Article describing the composition of the only confirmed autotrophic nitrate-dependent, Fe(ii)-oxidizing enrichment culture.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    100.
    Laufer, K., Røy, H., Jørgensen, B. B. & Kappler, A. Evidence for the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in marine coastal sediment. Appl. Environ. Microbiol. 82, 6120–6131 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Liu, T., Chen, D., Luo, X., Li, X. & Li, F. Microbially mediated nitrate-reducing Fe(II) oxidation: quantification of chemodenitrification and biological reactions. Geochim. Cosmochim. Acta 256, 97–115 (2019).
    CAS  Article  Google Scholar 

    102.
    Otte, J. M. et al. N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. Sci. Rep. 9, 10691 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    103.
    Wang, M., Hu, R., Ruser, R., Schmidt, C. & Kappler, A. Role of chemodenitrification for N2O emissions from nitrate reduction in rice paddy soils. ACS Earth Space Chem. 4, 122–132 (2020).
    CAS  Article  Google Scholar 

    104.
    He, S., Tominski, C., Kappler, A., Behrens, S. & Roden, E. E. Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture KS. Appl. Environ. Microbiol. 82, 2656–2668 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    Buchwald, C., Grabb, K., Hansel, C. M. & Wankel, S. D. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2− reduction by Fe(II) and its production of N2O. Geochim. Cosmochim. Acta 186, 1–12 (2016).
    CAS  Article  Google Scholar 

    106.
    Haaijer, S. C. M., Lamers, L. P. M., Smolders, A. J. P., Jetten, M. S. M. & Op den Camp, H. J. M. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiol. J. 24, 391–401 (2007).
    CAS  Article  Google Scholar 

    107.
    Edwards, K. J., Rogers, D. R., Wirsen, C. O. & McCollom, T. M. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69, 2906–2913 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Yan, R. et al. Effect of reduced sulfur species on chemolithoautotrophic pyrite oxidation with nitrate. Geomicrobiol. J. 36, 19–29 (2019).
    CAS  Article  Google Scholar 

    109.
    Holmes, P. R. & Crundwell, F. K. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochim. Cosmochim. Acta 64, 263–274 (2000).
    CAS  Article  Google Scholar 

    110.
    Zhao, L., Dong, H., Edelmann, R. E., Zeng, Q. & Agrawal, A. Coupling of Fe(II) oxidation in illite with nitrate reduction and its role in clay mineral transformation. Geochim. Cosmochim. Acta 200, 353–366 (2017).
    CAS  Article  Google Scholar 

    111.
    Zhang, L., Dong, H., Kukkadapu, R. K., Jin, Q. & Kovarik, L. Electron transfer between sorbed Fe(II) and structural Fe(III) in smectites and its effect on nitrate-dependent iron oxidation by Pseudogulbenkiania sp. strain 2002. Geochim. Cosmochim. Acta 265, 132–147 (2019).
    CAS  Article  Google Scholar 

    112.
    Shelobolina, E. S., VanPraagh, C. G. & Lovley, D. R. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol. J. 20, 143–156 (2003).
    CAS  Article  Google Scholar 

    113.
    Larese-Casanova, P., Haderlein, S. B. & Kappler, A. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: effect of pH, bicarbonate, phosphate, and humic acids. Geochim. Cosmochim. Acta 74, 3721–3734 (2010).
    CAS  Article  Google Scholar 

    114.
    Pantke, C. et al. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environ. Sci. Technol. 46, 1439–1446 (2012).
    CAS  PubMed  Article  Google Scholar 

    115.
    Nordhoff, M. et al. Insights into nitrate-reducing Fe(II) oxidation mechanisms through analysis of cell-mineral associations, cell encrustation, and mineralogy in the chemolithoautotrophic enrichment culture KS. Appl. Environ. Microbiol. 83, e00752–00717 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    116.
    Smith, R. L., Kent, D. B., Repert, D. A. & Böhlke, J. K. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer. Geochim. Cosmochim. Acta 196, 102–120 (2017).
    CAS  Article  Google Scholar 

    117.
    Madison, A. S., Tebo, B. M., Mucci, A., Sundby, B. & Luther, G. W. Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341, 875–878 (2013).
    CAS  PubMed  Article  Google Scholar 

    118.
    Gillispie, E. C., Taylor, S. E., Qafoku, N. P. & Hochella, M. F. Jr. Impact of iron and manganese nano-metal-oxides on contaminant interaction and fortification potential in agricultural systems – a review. Environ. Chem. 16, 377–390 (2019).
    CAS  Article  Google Scholar 

    119.
    Siebecker, M., Madison, A. S. & Luther, G. W. Reduction kinetics of polymeric (soluble) manganese (IV) oxide (MnO2) by ferrous iron (Fe2+). Aquat. Geochem. 21, 143–158 (2015).
    CAS  Article  Google Scholar 

    120.
    Herndon, E. M., Havig, J. R., Singer, D. M., McCormick, M. L. & Kump, L. R. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake. Geochim. Cosmochim. Acta 231, 50–63 (2018).
    CAS  Article  Google Scholar 

    121.
    Maguffin, S. C. et al. Influence of manganese abundances on iron and arsenic solubility in rice paddy soils. Geochim. Cosmochim. Acta 276, 50–69 (2020).
    CAS  Article  Google Scholar 

    122.
    Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    123.
    Myers, C. R. & Nealson, K. H. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172, 6232–6238 (1990).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    124.
    Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996).
    CAS  Article  Google Scholar 

    125.
    Coates, J. D., Ellis, D. J., Gaw, C. V. & Lovley, D. R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Evol. Microbiol. 49, 1615–1622 (1999).
    CAS  Article  Google Scholar 

    126.
    Tor, J. M. & Lovley, D. R. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ. Microbiol. 3, 281–287 (2001).
    CAS  PubMed  Article  Google Scholar 

    127.
    Hansel, C. M., Benner, S. G. & Fendorf, S. Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ. Sci. Technol. 39, 7147–7153 (2005).
    CAS  PubMed  Article  Google Scholar 

    128.
    Shi, L. et al. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ. Microbiol. Rep. 1, 220–227 (2009).
    CAS  PubMed  Article  Google Scholar 

    129.
    Shi, L., Squier, T. C., Zachara, J. M. & Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65, 12–20 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    130.
    Butler, J. E., Young, N. D. & Lovley, D. R. Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11, 40 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    131.
    Reguera, G. et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72, 7345–7348 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    132.
    Lovley, D. R. & Holmes, D. E. Protein nanowires: the electrification of the microbial world and maybe our own. J. Bacteriol. 202, e00331–00320 (2020). A comprehensive and recent review on extracellular electron transfer by bacteria.
    CAS  PubMed  Article  Google Scholar 

    133.
    Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).
    CAS  PubMed  Article  Google Scholar 

    134.
    Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D. & Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl. Acad. Sci. USA 108, 15248–15252 (2011).
    CAS  PubMed  Article  Google Scholar 

    135.
    Ueki, T. et al. Decorating the outer surface of microbially produced protein nanowires with peptides. ACS Synth. Biol. 8, 1809–1817 (2019).
    CAS  PubMed  Article  Google Scholar 

    136.
    Smith, J. A., Lovley, D. R. & Tremblay, P.-L. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl. Environ. Microbiol. 79, 901–907 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    137.
    Pirbadian, S. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 111, 12883–12888 (2014).
    CAS  PubMed  Article  Google Scholar 

    138.
    El-Naggar, M. Y. et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 107, 18127–18131 (2010).
    CAS  PubMed  Article  Google Scholar 

    139.
    Roden, E. E. et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3, 417–421 (2010).
    CAS  Article  Google Scholar 

    140.
    Lohmayer, R., Kappler, A., Lösekann-Behrens, T. & Planer-Friedrich, B. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl. Environ. Microbiol. 80, 3141–3149 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    141.
    Kappler, A., Benz, M., Schink, B. & Brune, A. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 47, 85–92 (2004).
    CAS  PubMed  Article  Google Scholar 

    142.
    Cervantes, F. J. et al. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ. Microbiol. 4, 51–57 (2002).
    CAS  PubMed  Article  Google Scholar 

    143.
    Coates, J. D. et al. Recovery of humic-reducing bacteria from a diversity of environments. Appl. Environ. Microbiol. 64, 1504–1509 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    144.
    Piepenbrock, A., Behrens, S. & Kappler, A. Comparison of humic substance- and Fe(III)-reducing microbial communities in anoxic aquifers. Geomicrobiol. J. 31, 917–928 (2014).
    CAS  Article  Google Scholar 

    145.
    Canfield, D. E. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619–632 (1989).
    CAS  PubMed  Article  Google Scholar 

    146.
    Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 105, 3968–3973 (2008).
    CAS  PubMed  Article  Google Scholar 

    147.
    von Canstein, H., Ogawa, J., Shimizu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008).
    Article  CAS  Google Scholar 

    148.
    Nevin, K. P. & Lovley, D. R. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19, 141–159 (2002).
    CAS  Article  Google Scholar 

    149.
    Markelova, E. et al. Deconstructing the redox cascade: what role do microbial exudates (flavins) play? Environ. Chem. 14, 515–524 (2017).
    CAS  Article  Google Scholar 

    150.
    Bai, Y. et al. AQDS and redox-active NOM enables microbial Fe(III)-mineral reduction at cm-scales. Environ. Sci. Technol. 54, 4131–4139 (2020). The first article to demonstrate that microorganisms can transfer electrons to Fe(iii) over centimetre distances by electron shuttling.
    CAS  PubMed  Article  Google Scholar 

    151.
    Bai, Y., Sun, T., Angenent, L. T., Haderlein, S. B. & Kappler, A. Electron hopping enables rapid electron transfer between quinone-/hydroquinone-containing organic molecules in microbial iron(III) mineral reduction. Environ. Sci. Technol. 54, 10646–10653 (2020).
    CAS  PubMed  Article  Google Scholar 

    152.
    Liu, F. et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ. Microbiol. 17, 648–655 (2015).
    CAS  PubMed  Article  Google Scholar 

    153.
    Taillefert, M. et al. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. J. Inorg. Biochem. 101, 1760–1767 (2007).
    CAS  PubMed  Article  Google Scholar 

    154.
    in ‘t Zandt, M. H., de Jong, A. E., Slomp, C. P. & Jetten, M. S. The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy064 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    155.
    Sivan, O. et al. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 56, 1536–1544 (2011).
    CAS  Article  Google Scholar 

    156.
    Miura, Y., Watanabe, A., Murase, J. & Kimura, M. Methane production and its fate in paddy fields. Soil Sci. Plant Nutr. 38, 673–679 (1992).
    CAS  Article  Google Scholar 

    157.
    Crowe, S. A. et al. The methane cycle in ferruginous Lake Matano. Geobiology 9, 61–78 (2011).
    CAS  PubMed  Article  Google Scholar 

    158.
    Amos, R. T. et al. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer. Geobiology 10, 506–517 (2012).
    CAS  PubMed  Article  Google Scholar 

    159.
    Glodowska, M. et al. Arsenic mobilization by anaerobic iron-dependent methane oxidation. Commun. Earth Environ. 1, 42 (2020). First study providing evidence that anaerobic oxidation of methane coupled to reduction of arsenic-bearing Fe(iii) minerals can lead to arsenic mobilization in groundwater.
    Article  Google Scholar 

    160.
    Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E. & Orphan, V. J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707 (2016).
    CAS  PubMed  Article  Google Scholar 

    161.
    Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).
    CAS  PubMed  Article  Google Scholar 

    162.
    Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl. Acad. Sci. USA 113, 12792–12796 (2016).
    CAS  PubMed  Article  Google Scholar 

    163.
    Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 12, 1929–1939 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    164.
    Clément, J.-C., Shrestha, J., Ehrenfeld, J. G. & Jaffé, P. R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil. Biol. Biochem. 37, 2323–2328 (2005).
    Article  CAS  Google Scholar 

    165.
    Huang, S. & Jaffé, P. R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences 12, 769–779 (2015).
    Article  Google Scholar 

    166.
    Li, X. et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environ. Sci. Technol. 49, 11560–11568 (2015).
    CAS  PubMed  Article  Google Scholar 

    167.
    Zhou, G.-W. et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction. Environ. Sci. Technol. 50, 9298–9307 (2016).
    CAS  PubMed  Article  Google Scholar 

    168.
    Yang, W. H., Weber, K. A. & Silver, W. L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat. Geosci. 5, 538–541 (2012).
    CAS  Article  Google Scholar 

    169.
    Li, X. et al. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge. J. Environ. Sci. 64, 42–50 (2018).
    Article  Google Scholar 

    170.
    Huang, S. & Jaffé, P. R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6. PLoS ONE 13, e0194007 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    171.
    Sawayama, S. Possibility of anoxic ferric ammonium oxidation. J. Biosci. Bioeng. 101, 70–72 (2006).
    CAS  PubMed  Article  Google Scholar 

    172.
    Zhu, X., Burger, M., Doane, T. A. & Horwath, W. R. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl. Acad. Sci. USA 110, 6328–6333 (2013).
    CAS  PubMed  Article  Google Scholar 

    173.
    Ginn, B., Meile, C., Wilmoth, J., Tang, Y. & Thompson, A. Rapid iron reduction rates are stimulated by high-amplitude redox fluctuations in a tropical forest soil. Environ. Sci. Technol. 51, 3250–3259 (2017). A good example of the dynamic nature of iron cycling in the environment and its impact on the reducibility of minerals.
    CAS  PubMed  Article  Google Scholar 

    174.
    Mejia, J., Roden, E. E. & Ginder-Vogel, M. Influence of oxygen and nitrate on Fe (hydr)oxide mineral transformation and soil microbial communities during redox cycling. Environ. Sci. Technol. 50, 3580–3588 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    175.
    Laufer, K. et al. Coexistence of microaerophilic, nitrate-reducing, and phototrophic Fe(II) oxidizers and Fe(III) reducers in coastal marine sediment. Appl. Environ. Microbiol. 82, 1433–1447 (2016).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    176.
    Hansel, C. M., Ferdelman, T. G. & Tebo, B. M. Cryptic cross-linkages among biogeochemical cycles: novel insights from reactive intermediates. Elements 11, 409–414 (2015). A review on cryptic element cycling in the environment, including cryptic iron cycling.
    CAS  Article  Google Scholar 

    177.
    Klueglein, N. & Kappler, A. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 – questioning the existence of enzymatic Fe(II) oxidation. Geobiology 11, 180–190 (2013).
    CAS  PubMed  Article  Google Scholar 

    178.
    Matus, F. et al. Ferrous wheel hypothesis: Abiotic nitrate incorporation into dissolved organic matter. Geochim. Cosmochim. Acta 245, 514–524 (2019). Demonstration of the ‘ferrous wheel hypothesis’ with insights for the role of coupled iron and nitrogen cycling in the environment.
    CAS  Article  Google Scholar 

    179.
    Chen, C., Hall, S. J., Coward, E. & Thompson, A. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nat. Commun. 11, 2255 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    180.
    Patzner, M. S. et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nat. Commun. 11, 6329 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    181.
    Beckwith, C. R. et al. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth. Front. Microbiol. 6, 332 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    182.
    Bird, L. J., Bonnefoy, V. & Newman, D. K. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19, 330–340 (2011).
    CAS  PubMed  Article  Google Scholar 

    183.
    Field, S. J. et al. Purification and magneto-optical spectroscopic characterization of cytoplasmic membrane and outer membrane multiheme c-type cytochromes from Shewanella frigidimarina NCIMB400. J. Biol. Chem. 275, 8515–8522 (2000).
    CAS  PubMed  Article  Google Scholar 

    184.
    Giffaut, E. et al. Andra thermodynamic database for performance assessment: ThermoChimie. Appl. Geochem. 49, 225–236 (2014).
    CAS  Article  Google Scholar 

    185.
    Salmon, T. P., Rose, A. L., Neilan, B. A. & Waite, T. D. The FeL model of iron acquisition: nondissociative reduction of ferric complexes in the marine environment. Limnol. Oceanogr. 51, 1744–1754 (2006).
    CAS  Article  Google Scholar 

    186.
    Navrotsky, A., Mazeina, L. & Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science 319, 1635–1638 (2008).
    CAS  PubMed  Article  Google Scholar 

    187.
    Gorski, C. A., Edwards, R., Sander, M., Hofstetter, T. B. & Stewart, S. M. Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples. Environ. Sci. Technol. 50, 8538–8547 (2016). One of the first examples of using electrochemical methods to better understand the range of redox potentials present in different iron phases.
    CAS  PubMed  Article  Google Scholar 

    188.
    Robie, R. A. & Heminway, B. S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. (United States Printing Office, 1995).

    189.
    Navrotsky, A., Ma, C., Lilova, K. & Birkner, N. Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 330, 199–201 (2010).
    CAS  PubMed  Article  Google Scholar 

    190.
    Robie, R. A. & Bethke, P. Molar Volumes and Densities of Minerals. Report TEI-822 (United States Department of the Interior Geological Survey, 1962).

    191.
    Gorski, C. A., Nurmi, J. T., Tratnyek, P. G., Hofstetter, T. B. & Scherer, M. M. Redox behavior of magnetite: implications for contaminant reduction. Environ. Sci. Technol. 44, 55–60 (2010).
    CAS  PubMed  Article  Google Scholar 

    192.
    Gorski, C. A., Klüpfel, L. E., Voegelin, A., Sander, M. & Hofstetter, T. B. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. Environ. Sci. Technol. 47, 13477–13485 (2013).
    CAS  PubMed  Article  Google Scholar 

    193.
    Oswald, K. et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol. Oceanogr. 61, S101–S118 (2016).
    Article  Google Scholar 

    194.
    Braunschweig, J., Bosch, J. & Meckenstock, R. U. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation. N. Biotechnol. 30, 793–802 (2013).
    CAS  PubMed  Article  Google Scholar 

    195.
    Villa, R. D., Trovó, A. G. & Nogueira, R. F. P. Environmental implications of soil remediation using the Fenton process. Chemosphere 71, 43–50 (2008).
    CAS  PubMed  Article  Google Scholar 

    196.
    Wagai, R. & Mayer, L. M. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim. Cosmochim. Acta 71, 25–35 (2007).
    CAS  Article  Google Scholar 

    197.
    Nitzsche, K. S. et al. Arsenic removal from drinking water by a household sand filter in Vietnam — effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Sci. Total. Environ. 502, 526–536 (2015).
    CAS  PubMed  Article  Google Scholar 

    198.
    Sipos, P., Németh, T., Kis, V. K. & Mohai, I. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 73, 461–469 (2008).
    CAS  PubMed  Article  Google Scholar 

    199.
    Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).
    CAS  Article  Google Scholar 

    200.
    Schaedler, F., Kappler, A. & Schmidt, C. A revised iron extraction protocol for environmental samples rich in nitrite and carbonate. Geomicrobiol. J. 35, 23–30 (2018).
    CAS  Article  Google Scholar 

    201.
    Porsch, K. & Kappler, A. FeII oxidation by molecular O2 during HCl extraction. Environ. Chem. 8, 190–197 (2011).
    CAS  Article  Google Scholar 

    202.
    Roden, E. E. & Zachara, J. M. Microbial reduction of crystalline iron(III) oxides:  Influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30, 1618–1628 (1996).
    CAS  Article  Google Scholar 

    203.
    Tessier, A., Campbell, P. G. C. & Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851 (1979).
    CAS  Article  Google Scholar 

    204.
    Stookey, L. L. Ferrozine – a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).
    CAS  Article  Google Scholar 

    205.
    Clark, L. J. Iron(II) determination in the presence of iron(III) using 4,7-diphenyl-1,10-phenanthroline. Anal. Chem. 34, 348–352 (1962).
    CAS  Article  Google Scholar 

    206.
    Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. & Van Cappellen, P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15, 785–790 (2000).
    CAS  Article  Google Scholar  More

  • in

    Human disturbance causes widespread disruption of animal movement

    1.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    CAS  PubMed  Google Scholar 
    2.
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
    CAS  PubMed  Google Scholar 

    3.
    Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).
    CAS  PubMed  Google Scholar 

    4.
    Tucker, M. A. et al. Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
    CAS  PubMed  Google Scholar 

    5.
    Wang, X. et al. Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl. Nat. Commun. 10, 2187 (2019).
    PubMed  PubMed Central  Google Scholar 

    6.
    Fahrig, L. Non-optimal animal movement in human-altered landscapes. Funct. Ecol. 21, 1003–1015 (2007).
    Google Scholar 

    7.
    Cosgrove, A. J., McWhorter, T. J. & Maron, M. Consequences of impediments to animal movements at different scales: a conceptual framework and review. Divers. Distrib. 24, 448–459 (2018).
    Google Scholar 

    8.
    Mergey, M., Helder, R. & Roeder, J.-J. Effect of forest fragmentation on space-use patterns in the European pine marten (Martes martes). J. Mammal. 92, 328–335 (2011).
    Google Scholar 

    9.
    Main, M. T., Davis, R. A., Blake, D., Mills, H. & Doherty, T. S. Human impact overrides bioclimatic drivers of red fox home range size globally. Divers. Distrib. https://doi.org/10.1111/ddi.13115 (2020).

    10.
    Laver, P. N. & Alexander, K. A. Association with humans and seasonality interact to reverse predictions for animal space use. Mov. Ecol. 6, 5 (2018).
    PubMed  PubMed Central  Google Scholar 

    11.
    Riotte-Lambert, L. & Matthiopoulos, J. Environmental predictability as a cause and consequence of animal movement. Trends Ecol. Evol. 35, 163–174 (2020).
    PubMed  Google Scholar 

    12.
    Laurian, C., Ouellet, J.-P., Courtois, R., Breton, L. & St-Onge, S. Effects of intensive harvesting on moose reproduction. J. Appl. Ecol. 37, 515–531 (2000).
    Google Scholar 

    13.
    Tamburello, N., Côté, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Nat. 186, 196–211 (2015).
    PubMed  Google Scholar 

    14.
    Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).
    CAS  PubMed  Google Scholar 

    15.
    Perona, A. M., Urios, V. & López-López, P. Holidays? Not for all. Eagles have larger home ranges on holidays as a consequence of human disturbance. Biol. Conserv. 231, 59–66 (2019).
    Google Scholar 

    16.
    Staggenborg, J., Schaefer, H. M., Stange, C., Naef-Daenzer, B. & Grüebler, M. U. Time and travelling costs during chick-rearing in relation to habitat quality in little owls Athene noctua. Ibis (Lond. 1859) 159, 519–531 (2017).
    Google Scholar 

    17.
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).
    PubMed  Google Scholar 

    18.
    Blomquist, S. & Hunter, M. L. Jr A multi-scale assessment of habitat selection and movement patterns by northern leopard frog (Lithobates [Rana] pipiens) in a managed forest. Herpetol. Conserv. Biol. 4, 142–160 (2009).
    Google Scholar 

    19.
    Peaden, J. M., Nowakowski, A. J., Tuberville, T. D., Buhlmann, K. A. & Todd, B. D. Effects of roads and roadside fencing on movements, space use, and carapace temperatures of a threatened tortoise. Biol. Conserv. 214, 13–22 (2017).
    Google Scholar 

    20.
    Siffczyk, C., Brotons, L., Kangas, K. & Orell, M. Home range size of willow tits: a response to winter habitat loss. Oecologia 136, 635–642 (2003).
    PubMed  Google Scholar 

    21.
    Breininger, D. R., Bolt, M. R., Legare, M. L., Drese, J. H. & Stolen, E. D. Factors influencing home-range sizes of eastern indigo snakes in central Florida. J. Herpetol. 45, 484–490 (2011).
    Google Scholar 

    22.
    Hirt, M. R., Jetz, W., Rall, B. C. & Brose, U. A general scaling law reveals why the largest animals are not the fastest. Nat. Ecol. Evol. 1, 1116–1122 (2017).
    PubMed  Google Scholar 

    23.
    Garland, T. & Albuquerque, R. L. Locomotion, energetics, performance, and behavior: a mammalian perspective on lizards, and vice versa. Integr. Comp. Biol. 57, 252–266 (2017).
    PubMed  Google Scholar 

    24.
    Wilson, K. S., Pond, B. A., Brown, G. S. & Schaefer, J. A. The biogeography of home range size of woodland caribou Rangifer tarandus caribou. Divers. Distrib. 25, 205–216 (2019).
    Google Scholar 

    25.
    Wang, Y., Smith, J. A. & Wilmers, C. C. Residential development alters behavior, movement, and energetics in a top carnivore. PLoS ONE 12, e0184687 (2017).
    PubMed  PubMed Central  Google Scholar 

    26.
    Vangestel, C., Braeckman, B. P., Matheve, H. & Lens, L. Constraints on home range behaviour affect nutritional condition in urban house sparrows (Passer domesticus). Biol. J. Linn. Soc. Lond. 101, 41–50 (2010).
    Google Scholar 

    27.
    Hinam, H. L. & St. Clair, C. C. High levels of habitat loss and fragmentation limit reproductive success by reducing home range size and provisioning rates of northern saw-whet owls. Biol. Conserv. 141, 524–535 (2008).
    Google Scholar 

    28.
    Herrera, J. M., de Sá Teixeira, I., Rodríguez-Pérez, J. & Mira, A. Landscape structure shapes carnivore-mediated seed dispersal kernels. Landsc. Ecol. 31, 731–743 (2016).
    Google Scholar 

    29.
    Carpenter, J. K., O’Donnell, C. F. J., Moltchanova, E. & Kelly, D. Long seed dispersal distances by an inquisitive flightless rail (Gallirallus australis) are reduced by interaction with humans. R. Soc. Open Sci. 6, 190397 (2019).
    PubMed  PubMed Central  Google Scholar 

    30.
    Januchowski-Hartley, F. A., Graham, N. A. J., Feary, D. A., Morove, T. & Cinner, J. E. Fear of fishers: human predation explains behavioral changes in coral reef fishes. PLoS ONE 6, e22761 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Whittington, J., Low, P. & Hunt, B. Temporal road closures improve habitat quality for wildlife. Sci. Rep. 9, 3772 (2019).
    PubMed  PubMed Central  Google Scholar 

    32.
    Soanes, K. et al. Movement re-established but not restored: inferring the effectiveness of road-crossing mitigation for a gliding mammal by monitoring use. Biol. Conserv. 159, 434–441 (2013).
    Google Scholar 

    33.
    Jacobsen, L. B., Chrenková, M., Sunde, P. & Salek, M. Effects of food provisioning and habitat management on spatial behaviour of little owls during the breeding season. Ornis Fenn. 93, 121–129 (2016).
    Google Scholar 

    34.
    Zeller, K. A., Lewsion, R., Fletcher, R. J., Tulbure, M. G. & Jennings, M. K. Understanding the importance of dynamic landscape connectivity. Land (Basel) 9, 303 (2020).
    Google Scholar 

    35.
    Doherty, T. S. & Driscoll, D. A. Coupling movement and landscape ecology for animal conservation in production landscapes. Proc. R. Soc. Lond. B 285, 20172272 (2018).
    Google Scholar 

    36.
    Rohatgi, A. WebPlotDigitizer, version 4.2 (2019); https://automeris.io/WebPlotDigitizer

    37.
    Börger, L. et al. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75, 1393–1405 (2006).
    PubMed  Google Scholar 

    38.
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
    Google Scholar 

    39.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 

    40.
    Neumann, W., Ericsson, G. & Dettki, H. Does off-trail backcountry skiing disturb moose? Eur. J. Wildl. Res. 56, 513–518 (2010).
    Google Scholar 

    41.
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
    Google Scholar 

    42.
    Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).
    Google Scholar 

    43.
    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).
    PubMed  PubMed Central  Google Scholar 

    44.
    Froese, R. & Pauly, D. (eds) Fishbase (2019); www.fishbase.org

    45.
    Myers, P. et al. The Animal Diversity Web (Univ. Michigan, 2020); https://animaldiversity.org

    46.
    AmphibiaWeb (Univ. California Berkeley, 2020); https://amphibiaweb.org

    47.
    Froese, R., Thorson, J. T. & Reyes, R. B. A Bayesian approach for estimating length–weight relationships in fishes. J. Appl. Ichthyol. 30, 78–85 (2014).
    Google Scholar 

    48.
    Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).
    Google Scholar 

    49.
    Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).
    Google Scholar 

    50.
    Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 

    51.
    Williams, D. R., Rast, P. & Bürkner, P.-C. Bayesian meta-analysis with weakly informative prior distributions. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/7tbrm (2018).

    52.
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).
    Google Scholar 

    53.
    Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Rosenberg, M. S. The file-drawer problem revisted: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468 (2005).
    PubMed  Google Scholar  More

  • in

    Using ecological coexistence theory to understand antibiotic resistance and microbial competition

    1.
    Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Raymond, B. Five rules for resistance management in the antibiotic apocalypse, a road map for integrated microbial management. Evol. Appl. 12, 1079–1091 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Perron, G. G., Inglis, R. F., Pennings, P. S. & Cobey, S. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evol. Appl. 8, 211–222 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Andersen, S. B., Shapiro, B. J., Vandenbroucke-Grauls, C. & de Vos, M. G. J. Microbial evolutionary medicine: from theory to clinical practice. Lancet Infect. Dis. 19, e273–e283 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Gilbert, J. A. & Lynch, S. V. Community ecology as a framework for human microbiome research. Nat. Med. 25, 884–889 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Huijben, S., Chan, B. H. K., Nelson, W. A. & Read, A. F. The impact of within-host ecology on the fitness of a drug-resistant parasite. Evol. Med. Public Health 2018, 127–137 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Klümper, U. et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 13, 2927–2937 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Hall, A. R., Angst, D. C., Schiessl, K. T. & Ackermann, M. Costs of antibiotic resistance – separating trait effects and selective effects. Evol. Appl. 8, 261–272 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Lehtinen, S. et al. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proc. Natl Acad. Sci. USA 114, 1075–1080 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Colijn, C. et al. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae? J. R. Soc. Interface 7, 905–919 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Blanquart, F., Lehtinen, S. & Fraser, C. An evolutionary model to predict the frequency of antibiotic resistance under seasonal antibiotic use, and an application to streptococcus pneumoniae. Proc. R. Soc. B 284, 20170679 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    13.
    Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Blanquart, F. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol. Appl. 12, 365–383 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Davies, N. G., Flasche, S., Jit, M. & Atkins, K. E. Within-host dynamics shape antibiotic resistance in commensal bacteria. Nat. Ecol. Evol. 3, 440–449 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Bjourkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000).
    Article  Google Scholar 

    18.
    Petersen, A., Aarestrup, F. M. & Olsen, J. E. The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions. FEMS Microbiol. Lett. 299, 53–59 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Paulander, W., Maisnier-Patin, S. & Andersson, D. I. The fitness cost of streptomycin resistance depends on rpsL mutation, carbon source and RpoS (σS). Genetics 183, 539–546 (2009).
    PubMed Central  Article  CAS  Google Scholar 

    20.
    Hall, A. R., Iles, J. C. & MacLean, R. C. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics 187, 817–822 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Trindade, S., Sousa, A. & Gordo, I. Antibiotic resistance and stress in the light of Fisher’s model. Evolution 66, 3815–3824 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).

    23.
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Article  Google Scholar 

    24.
    Chase, J. & Leibold, M. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).

    25.
    Adler, P. B., Hillerislambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    HilleRisLambers, J., Adler, P. B., Harpole, W., Levine, J. M. & Mayfield, M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
    Article  Google Scholar 

    27.
    Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).
    Article  Google Scholar 

    28.
    Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).
    Article  Google Scholar 

    29.
    Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).
    Article  Google Scholar 

    30.
    Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).
    Article  Google Scholar 

    32.
    Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12793–12798 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Yuan, C. & Chesson, P. The relative importance of relative nonlinearity and the storage effect in the lottery model. Theor. Popul. Biol. 105, 39–52 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Wale, N., Sim, D. G. & Read, A. F. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc. R. Soc. B 284, 20171067 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    35.
    Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Hester, E. R., Jetten, M. S. M., Welte, C. U. & Lücker, S. Metabolic overlap in environmentally diverse microbial communities. Front. Genet. 10, 989 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Smith, V. H. & Holt, R. D. Resource competition and within-host disease dynamics. Trends Ecol. Evol. 11, 386–389 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hurtado, P. J., Hall, S. R. & Ellner, S. P. Infectious disease in consumer populations: dynamic consequences of resource-mediated transmission and infectiousness. Theor. Ecol. 7, 163–179 (2014).
    Article  Google Scholar 

    39.
    Cressler, C. E., Nelson, W. A., Day, T. & McCauley, E. Disentangling the interaction among host resources, the immune system and pathogens. Ecol. Lett. 17, 284–293 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Smith, V. H., Holt, R. D., Smith, M. S., Niu, Y. & Barfield, M. Resources, mortality, and disease ecology: importance of positive feedbacks between host growth rate and pathogen dynamics. Isr. J. Ecol. Evol. 61, 37–49 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Alonso, A. et al. Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J. Antimicrob. Chemother. 53, 432–434 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Perkins, A. E. & Nicholson, W. L. Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J. Bacteriol. 190, 807–814 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Martínez, J. L. & Rojo, F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 35, 768–789 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    44.
    Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Dunphy, L. J., Yen, P. & Papin, J. A. Integrated experimental and computational analyses reveal differential metabolic functionality in antibiotic-resistant Pseudomonas aeruginosa. Cell Syst. 8, 3-14.e3 (2019).
    PubMed  PubMed Central  Google Scholar 

    46.
    Webber, M. A. & Piddock, L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Fitzsimmons, J. M., Schoustra, S. E., Kerr, J. T. & Kassen, R. Population consequences of mutational events: effects of antibiotic resistance on the r/K trade-off. Evol. Ecol. 24, 227–236 (2010).
    Article  Google Scholar 

    48.
    Baltrus, D. A. Exploring the costs of horizontal gene transfer. Trends Ecol. Evol. 28, 489–495 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectrum 5, 65–79 (2017).
    Google Scholar 

    50.
    Dennis, J. J. The evolution of IncP catabolic plasmids. Curr. Opin. Biotechnol. 16, 291–298 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Shintani, M. et al. Response of the Pseudomonas host chromosomal transcriptome to carriage of the IncP-7 plasmid pCAR1. Environ. Microbiol. 12, 1413–1426 (2009).
    PubMed  PubMed Central  Google Scholar 

    52.
    San Millan, A. et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 12, 3014–3024 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Schlüter, A. et al. The 64508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology 149, 3139–3153 (2003).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    54.
    Chen, K. et al. Comparison of four Comamonas catabolic plasmids reveals the evolution of pBHB to catabolize haloaromatics. Appl. Environ. Microbiol. 82, 1401–1411 (2016).
    CAS  PubMed Central  Article  Google Scholar 

    55.
    Douglas, A. E. Fundamentals of Microbiome Science: How Microbes Shape Animal Biology (Princeton Univ. Press, 2018).

    56.
    Ibrahim, K. H., Gunderson, B. W., Hermsen, E. D., Hovde, L. B. & Rotschafer, J. C. Pharmacodynamics of pulse dosing versus standard dosing: in vitro metronidazole activity against Bacteroides fragilis and Bacteroides thetaiotaomicron. Antimicrob. Agents Chemother. 48, 4195–4199 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Peña-Miller, R., Lähnemann, D., Schulenburg, H., Ackermann, M. & Beardmore, R. Selecting against antibiotic-resistant pathogens: optimal treatments in the presence of commensal bacteria. Bull. Math. Biol. 74, 908–934 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    58.
    Lin, W.-H. & Kussell, E. Complex interplay of physiology and selection in the emergence of antibiotic resistance. Curr. Biol. 26, 1486–1493 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Bauer, M., Graf, I. R., Ngampruetikorn, V., Stephens, G. J. & Frey, E. Exploiting ecology in drug pulse sequences in favour of population reduction. PLoS Comput. Biol. 13, e1005747 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Baker, C. M., Ferrari, M. J. & Shea, K. Beyond dose: pulsed antibiotic treatment schedules can maintain individual benefit while reducing resistance. Sci. Rep. 8, 5866 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Nev, O. A., Jepson, A., Beardmore, R. E. & Gudelj, I. Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments. J. R. Soc. Interface 17, 20190776 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Kouyos, R. D. et al. The path of least resistance: aggressive or moderate treatment? Proc. R. Soc. B 281, 20140566 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Day, T. & Read, A. F. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Comput. Biol. 12, e1004689 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Alexander, H. K. & MacLean, R. C. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl Acad. Sci. USA 117, 19455–19464 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Thaiss, C. A., Zeevi, D., Levy, M., Segal, E. & Elinav, E. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 6, 137–142 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Kaczmarek, J. L., Thompson, S. V. & Holscher, H. D. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr. Rev. 75, 673–682 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
    CAS  Article  Google Scholar 

    71.
    Venable, E. B. et al. Effects of feeding management on the equine cecal microbiota. J. Equine Vet. Sci. 49, 113–121 (2017).
    Article  Google Scholar 

    72.
    Parris, D. J., Morgan, M. M. & Stewart, F. J. Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut. Appl. Environ. Microbiol. 85, e02479-18 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Chesson, P. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Chesson, P. Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. Theor. Popul. Biol. 64, 345–357 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    75.
    Watson, S. P., Clements, M. O. & Foster, S. J. Characterization of the starvation-survival response of Staphylococcus aureus. J. Bacteriol. 180, 1750–1758 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Grover, J. Resource Competition Vol. 19 (Springer Science & Business Media, 1997).

    77.
    Letten, A. D., Dhami, M. K., Ke, P.-J. & Fukami, T. Species coexistence through simultaneous fluctuation-dependent mechanisms. Proc. Natl Acad. Sci. USA 115, 6745–6750 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Levison, M. E. & Levison, J. H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. N. Am. 23, 791–815 (2009).
    Article  Google Scholar 

    79.
    Maharjan, R. & Ferenci, T. The fitness costs and benefits of antibiotic resistance in drug-free microenvironments encountered in the human body. Environ. Microbiol. Rep. 9, 635–641 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Song, T. et al. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β subunit of RNA polymerase. Mol. Microbiol. 91, 1106–1119 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Schreiber, S. J., Levine, J. M., Godoy, O., Kraft, N. J. & Hart, S. P. Does deterministic coexistence theory matter in a finite world? Insights from serpentine annual plants. Preprint at bioRxiv https://doi.org/10.1101/290882 (2020).

    84.
    Data from the ECDC Surveillance Atlas – Antimicrobial Resistance (European Centre for Disease Prevention and Control, 2020); http://go.nature.com/3oLrjOG

    85.
    Matteo, M. J., Granados, G., Olmos, M., Wonaga, A. & Catalano, M. Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates. J. Antimicrob. Chemother. 61, 474–477 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Mongkolrattanothai, K. et al. Simultaneous carriage of multiple genotypes of Staphylococcus aureus in children. J. Med. Microbiol. 60, 317–322 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Folkvardsen, D. B. et al. Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J. Clin. Microbiol. 51, 4220–4222 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    88.
    Kamng’ona, A. W. et al. High multiple carriage and emergence of Streptococcus pneumoniae vaccine serotype variants in Malawian children. BMC Infect. Dis. 15, 234 (2015).

    89.
    Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Chesson, P. & Kuang, J. J. The interaction between predation and competition. Nature 456, 235–238 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Gonze, D., Coyte, K. Z., Lahti, L. & Faust, K. Microbial communities as dynamical systems. Curr. Opin. Microbiol. 44, 41–49 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    92.
    Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    93.
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 112, 797–802 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).
    Article  Google Scholar 

    95.
    Hallinen, K. M., Karslake, J. & Wood, K. B. Delayed antibiotic exposure induces population collapse in enterococcal communities with drug-resistant subpopulations. eLife 9, e52813 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    96.
    Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Torres-Barceló, C. & Hochberg, M. E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 24, 249–256 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    98.
    Burmeister, A. R. et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl Acad. Sci. USA 117, 11207–11216 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    99.
    Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    100.
    Estrela, S. & Brown, S. P. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput. Biol. 14, e1006179 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests

    1.
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Guimberteau, M. et al. Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios. Hydrol. Earth Syst. Sci. 21, 1455–1475 (2017).
    ADS  Article  Google Scholar 

    3.
    Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2016).
    Article  Google Scholar 

    4.
    Jimenez, J. C. et al. Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170300 (2018).
    Article  Google Scholar 

    5.
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Kumar, J., Hoffman, F. M., Hargrove, W. W. & Collier, N. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements. Earth Syst. Sci. Data Discuss. 1–25 (2016). https://doi.org/10.5194/essd-2016-36

    7.
    Baldocchi, D. et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).
    ADS  Article  Google Scholar 

    8.
    Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).
    ADS  CAS  Article  Google Scholar 

    9.
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).
    Article  Google Scholar 

    10.
    Malhi, Y. & Wright, J. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. R. Soc. B Biol. Sci. 359, 311–329 (2004).
    Article  Google Scholar 

    11.
    Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405 (2006).
    ADS  Article  Google Scholar 

    12.
    Morton, D. C. et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506, 221–224 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Myneni, R. B. et al. Large seasonal swings in leaf area of Amazon rainforests. Proc. Natl Acad. Sci. USA 104, 4820–4823 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Morton, D. C. et al. Morton et al. reply. Nature 531, E6–E6 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Samanta, A. et al. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 37, LG05401 (2010).
    ADS  Article  Google Scholar 

    18.
    Samanta, A. et al. Comment on ‘Drought-induced reduction in global terrestrial net primary production from 2000 through 2009’. Science 333, 1093 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Xu, L. et al. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophys. Res. Lett. 38, L07402 (2011).
    ADS  Article  Google Scholar 

    20.
    Atkinson, P. M., Dash, J. & Jeganathan, C. Amazon vegetation greenness as measured by satellite sensors over the last decade. Geophys. Res. Lett. 38, L19105 (2011).
    ADS  Article  Google Scholar 

    21.
    Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Samanta, A., Ganguly, S., Vermote, E., Nemani, R. R. & Myneni, R. B. Why is remote sensing of Amazon forest greenness so challenging? Earth Interact. 16, 1–14 (2012).
    Article  Google Scholar 

    23.
    Lyapustin, A., Wang, Y., Laszlo, I. & Korkin, S. Improved cloud and snow screening in MAIAC aerosol retrievals using spectral and spatial analysis. Atmos. Meas. Tech. 5, 843–850 (2012).
    Article  Google Scholar 

    24.
    Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Schmit, T. J. et al. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 98, 681–698 (2017).
    ADS  Article  Google Scholar 

    26.
    Wu, J. et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351, 972–976 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).
    ADS  Article  Google Scholar 

    28.
    Samanta, A. et al. Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission. J. Geophys. Res. Biogeosci. 117, G01015 (2012).
    ADS  Article  Google Scholar 

    29.
    Brando, P. M. et al. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc. Natl Acad. Sci. USA 107, 14685–14690 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Myneni, R. B., Nemani, R. R. & Running, S. W. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 35, 1380–1393 (1997).
    ADS  Article  Google Scholar 

    31.
    Hilker, T. et al. On the measurability of change in Amazon vegetation from MODIS. Remote Sens. Environ. 166, 233–242 (2015).
    ADS  Article  Google Scholar 

    32.
    Araújo, A. C. et al. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site. J. Geophys. Res. 107, 8090 (2002).
    Article  Google Scholar 

    33.
    Holben, B. N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 7, 1417–1434 (1986).
    ADS  Article  Google Scholar 

    34.
    Galvão, L. S., Ponzoni, F. J., Epiphanio, J. C. N., Rudorff, B. F. T. & Formaggio, A. R. Sun and view angle effects on NDVI determination of land cover types in the Brazilian Amazon region with hyperspectral data. Int. J. Remote Sens. 25, 1861–1879 (2004).
    ADS  Article  Google Scholar 

    35.
    Fensholt, R., Huber, S., Proud, S. R. & Mbow, C. Detecting canopy water status using shortwave infrared reflectance data from polar orbiting and geostationary platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 3, 271–285 (2010).
    ADS  Article  Google Scholar 

    36.
    Gao, F., Jin, Y., Li, X., Schaaf, C. B. & Strahler, A. H. Bidirectional NDVI and atmospherically resistant BRDF inversion for vegetation canopy. IEEE Trans. Geosci. Remote Sens. 40, 1269–1278 (2002).
    ADS  Article  Google Scholar 

    37.
    Kruijt, B. et al. The robustness of eddy correlation fluxes for Amazon rain forest conditions. Ecol. Appl. 14, 101–113 (2004).
    Article  Google Scholar 

    38.
    Galvão, L. S. et al. On intra-annual EVI variability in the dry season of tropical forest: A case study with MODIS and hyperspectral data. Remote Sens. Environ. 115, 2350–2359 (2011).
    ADS  Article  Google Scholar 

    39.
    NOAA National Centers for Environmental Information. State of the Climate: Global Climate Report for Annual 2018. (2019). Available at: https://www.ncdc.noaa.gov/sotc/global/201813. (Accessed: 18th June 2019)

    40.
    Andreae, M. O. et al. The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos. Chem. Phys. 15, 10723–10776 (2015).
    ADS  CAS  Article  Google Scholar 

    41.
    Kobayashi, H. & Dye, D. G. Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sens. Environ. 97, 519–525 (2005).
    ADS  Article  Google Scholar 

    42.
    Xu, L. et al. Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia. Environ. Res. Lett. 10, 084005 (2015).
    ADS  Article  CAS  Google Scholar 

    43.
    Doughty, R. et al. TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proc. Natl Acad. Sci. USA 116, 22393–22398 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Bi, J. et al. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environ. Res. Lett. 10, 064014 (2015).
    ADS  Article  Google Scholar 

    45.
    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Wu, J. et al. Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. N. Phytol. 217, 1507–1520 (2018).
    Article  Google Scholar 

    47.
    Tang, H. & Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl Acad. Sci. USA 114, 2640–2644 (2017).
    CAS  PubMed  Article  Google Scholar 

    48.
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    ADS  Article  Google Scholar 

    49.
    Justice, C. O., Townshend, J. R. G., Holben, A. N. & Tucker, C. J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 6, 1271–1318 (1985).
    ADS  Article  Google Scholar 

    50.
    Badgley, G., Anderegg, L. D., Berry, J. A. & Field, C. B. Terrestrial gross primary production: Using NIRv to scale from site to globe. Glob. Chang. Biol. 25, 3731–3740 (2019).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 1–7 (2014).
    Article  CAS  Google Scholar 

    52.
    Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (2019).
    ADS  Article  Google Scholar 

    53.
    Sellers, P. J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens 6, 1335–1372 (1985).
    ADS  Article  Google Scholar 

    54.
    Smith, M. N. et al. Seasonal and drought‐related changes in leaf area profiles depend on height and light environment in an Amazon forest. N. Phytol. 222, 1284–1297 (2019).
    Article  Google Scholar 

    55.
    Goward, S. N. & Huemmrich, K. F. Vegetation canopy PAR absorptance and the normalized difference vegetation index: An assessment using the SAIL model. Remote Sens. Environ. 39, 119–140 (1992).
    ADS  Article  Google Scholar 

    56.
    Miura, T., Nagai, S., Takeuchi, M., Ichii, K. & Yoshioka, H. Improved characterisation of vegetation and land surface seasonal dynamics in central Japan with Himawari-8 hypertemporal data. Sci. Rep. 9, 1–12 (2019).
    Article  CAS  Google Scholar 

    57.
    Da Rocha, H. R. et al. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. Biogeosci. 114, G00B12 (2009).
    Article  Google Scholar 

    58.
    Wang, W. et al. An introduction to the Geostationary-NASA Earth Exchange (GeoNEX) Products: 1. Top-of-atmosphere reflectance and brightness temperature. Remote Sens. 12, 1267 (2020).
    ADS  Article  Google Scholar 

    59.
    Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I. & Korkin, S. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. 116, D03210 (2011).
    ADS  Google Scholar 

    60.
    de Moura, Y. M. et al. Spectral analysis of Amazon canopy phenology during the dry season using a tower hyperspectral camera and MODIS observations. ISPRS J. Photogramm. Remote Sens. 131, 52–64 (2017).
    ADS  Article  Google Scholar 

    61.
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
    ADS  Article  Google Scholar 

    62.
    Sorooshian, S. et al. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 81, 2035–2046 (2000).
    ADS  Article  Google Scholar 

    63.
    Sinyuk, A. et al. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 13, 3375–3411 (2020).
    CAS  Article  Google Scholar 

    64.
    Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More