Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession
1.
Battin, T. J. et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 1, 95–100 (2008).
CAS Article Google Scholar
2.
Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).
CAS Article Google Scholar
3.
Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).
CAS PubMed Article Google Scholar
4.
Downing, J. A. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29, 9–24 (2010).
Google Scholar
5.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50–50 (2011).
CAS PubMed Article Google Scholar
6.
Fairchild, G. W. & Velinsky, D. J. Effects of small ponds on stream water chemistry. Lake Reserv. Manag. 22, 321–330 (2006).
CAS Article Google Scholar
7.
Yin, C. & Shan, B. Multipond systems: a sustainable way to control diffuse phosphorus pollution. AMBIO 30, 369–375 (2001).
CAS PubMed Article Google Scholar
8.
Stanley, E. H. & Doyle, M. W. A geomorphic perspective on nutrient retention following dam removal: geomorphic models provide a means of predicting ecosystem responses to dam removal. BioScience 52, 693–701 (2002).
Article Google Scholar
9.
Downing, J. A., Cherrier, C. T. & Fulweiler, R. W. Low ratios of silica to dissolved nitrogen supplied to rivers arise from agriculture not reservoirs. Ecol. Lett. 19, 1414–1418 (2016).
PubMed Article Google Scholar
10.
Dickman, M. Some effects of lake renewal on phytoplankton productivity and species composition. Limnol. Oceanogr. 14, 660–666 (1969).
Article Google Scholar
11.
Madsen, H., Lawrence, D., Lang, M., Martinkova, M. & Kjeldsen, T. R. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 519, 3634–3650 (2014).
Article Google Scholar
12.
Clark, J. M. et al. The importance of the relationship between scale and process in understanding long-term DOC dynamics. Sci. Total Environ. 408, 2768–2775 (2010).
CAS PubMed Article PubMed Central Google Scholar
13.
Vystavna, Y., Hejzlar, J. & Kopáček, J. Long-term trends of phosphorus concentrations in an artificial lake: socio-economic and climate drivers. PLoS ONE 12, e0186917 (2017).
PubMed PubMed Central Article CAS Google Scholar
14.
Reynolds, C. S. Phytoplankton assemblages and their periodicity in stratifying lake systems. Ecography 3, 141–159 (1980).
Article Google Scholar
15.
Sommer, U., Gliwicz, Z. M., Lampert, W. & Duncan, A. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106, 433–471 (1986).
Google Scholar
16.
Kundzewicz, Z. W. et al. Differences in flood hazard projections in Europe—their causes and consequences for decision making. Hydrol. Sci. J. 62, 1–14 (2017).
Google Scholar
17.
Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Clim. Change 134, 387–401 (2016).
Article Google Scholar
18.
Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).
Article Google Scholar
19.
Lynch, L. M. et al. River channel connectivity shifts metabolite composition and dissolved organic matter chemistry. Nat. Commun. 10, 459 (2019).
CAS PubMed PubMed Central Article Google Scholar
20.
Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).
Article Google Scholar
21.
Shade, A. et al. Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME J. 6, 2153–2167 (2012).
CAS PubMed PubMed Central Article Google Scholar
22.
Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Evol. Syst. 4, 1–23 (1973).
Article Google Scholar
23.
Holling, C. S. & Gunderson, L. H. in Panarchy Synopsis: Understanding Transformations in Human and Natural Systems (eds Gunderson, L. H. & Holling, C. S.) 25–62 (Island Press, 2002).
24.
Gabaldón, C. et al. Repeated flood disturbance enhances rotifer dominance and diversity in a zooplankton community of a small dammed mountain pond. J. Limnol. 76, 13 (2016).
Google Scholar
25.
Porcal, P. & Kopáček, J. Photochemical degradation of dissolved organic matter reduces the availability of phosphorus for aquatic primary producers. Chemosphere 193, 1018–1026 (2018).
CAS PubMed Article PubMed Central Google Scholar
26.
Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).
Article Google Scholar
27.
Newton, R. J., Kent, A. D., Triplett, E. W. & McMahon, K. D. Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ. Microbiol. 8, 956–970 (2006).
PubMed Article PubMed Central Google Scholar
28.
Neuenschwander, S. M., Ghai, R., Pernthaler, J. & Salcher, M. M. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J. 12, 185–198 (2018).
CAS PubMed Article PubMed Central Google Scholar
29.
Cabello-Yeves, P. J. et al. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front. Microbiol. 8, 2131 (2017).
PubMed PubMed Central Article Google Scholar
30.
Reznick, D., Bryant, M. J. & Bashey, F. r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83, 1509–1520 (2002).
Article Google Scholar
31.
Mac Arthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).
32.
Šimek, K. et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol. Oceanogr. 59, 1477–1492 (2014).
Article CAS Google Scholar
33.
Logue, J. B., Mouquet, N., Peter, H. & Hillebrand, H. Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol. Evol. 26, 482–491 (2011).
PubMed Article Google Scholar
34.
Shabarova, T. et al. Bacterial community structure and dissolved organic matter in repeatedly flooded subsurface karst water pools. FEMS Microbiol. Ecol. 89, 111–126 (2014).
CAS PubMed Article Google Scholar
35.
Shabarova, T., Widmer, F. & Pernthaler, J. Mass effects meet species sorting: transformations of microbial assemblages in epiphreatic subsurface karst water pools. Environ. Microbiol. 15, 2476–2488 (2013).
CAS PubMed Article Google Scholar
36.
Jones, S. E. et al. Typhoons initiate predictable change in aquatic bacterial communities. Limnol. Oceanogr. 53, 1319–1326 (2008).
Article Google Scholar
37.
Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).
PubMed PubMed Central Article Google Scholar
38.
Hahn, M. W. Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl. Environ. Microb. 69, 5248–5254 (2003).
CAS Article Google Scholar
39.
Salcher, M. M., Neuenschwander, S. M., Posch, T. & Pernthaler, J. The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J. 9, 2442–2453 (2015).
CAS PubMed PubMed Central Article Google Scholar
40.
Vuono, D. C. et al. Disturbance and temporal partitioning of the activated sludge metacommunity. ISME J. 9, 425–435 (2014).
PubMed PubMed Central Article CAS Google Scholar
41.
Shabarova, T. et al. Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridization approach. Environ. Microbiol. 19, 1296–1309 (2017).
CAS PubMed Article PubMed Central Google Scholar
42.
Hahn, M. W., Lang, E., Tarao, M. & Brandt, U. Polynucleobacter rarus sp. nov., a free-living planktonic bacterium isolated from an acidic lake. Int. J. Syst. Evol. Microbiol. 61, 781–787 (2011).
CAS PubMed Article PubMed Central Google Scholar
43.
Hahn, M. W. et al. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living Polynucleobacter population. PLoS ONE 7, e32772 (2012).
CAS PubMed PubMed Central Article Google Scholar
44.
Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3, 537–546 (2005).
CAS PubMed Article Google Scholar
45.
Sommer, U. et al. Beyond the plankton ecology group (Peg) model: mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43, 429–448 (2012).
Article Google Scholar
46.
Šimek, K. et al. Bacterial prey food characteristics modulate community growth response of freshwater bacterivorous flagellates. Limnol. Oceanogr. 63, 484–502 (2018).
Article Google Scholar
47.
Posch, T. et al. Network of interactions between ciliates and phytoplankton during spring. Front. Microbiol. 6, 1289 (2015).
PubMed PubMed Central Article Google Scholar
48.
Geraldes, A. M. & Boavida, M.-J. Zooplankton assemblages in two reservoirs: one subjected to accentuated water level fluctuations, the other with more stable water levels. Aquat. Ecol. 41, 273–284 (2007).
CAS Article Google Scholar
49.
Nilssen, J. P. & Wærvågen, S. B. Superficial ecosystem similarities vs autecological stripping: the ‘twin species’ Mesocyclops leuckarti (Claus) and Thermocyclops oithonoides (Sars)—seasonal habitat utilisation and life history traits. J. Limnol. 59, 79–102 (2000).
Article Google Scholar
50.
Cole, T. M. & Wells, S. A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.1 (Department of Civil and Environmental Engineering, 2018).
51.
Brussaard, C. P. D. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microb. 70, 1506–1513 (2004).
CAS Article Google Scholar
52.
Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948 (1980).
Article Google Scholar
53.
Sherr, E. B. & Sherr, B. F. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 207–212 (Lewis Publishers, 1993).
54.
Sherr, E. B. & Sherr, B. F. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 695–701 (Lewis Publishers, 1993).
55.
Kasalický, V., Jezbera, J., Hahn, M. W. & Šimek, K. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS ONE 8, e58209 (2013).
PubMed PubMed Central Article CAS Google Scholar
56.
Šimek, K. et al. Microbial food webs in hypertrophic fishponds: omnivorous ciliate taxa are major protistan bacterivores. Limnol. Oceanogr. 64, 2295–2309 (2019).
Article CAS Google Scholar
57.
Lund, J. W. G., Kipling, C. & Le Cren, E. D. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143–170 (1958).
Article Google Scholar
58.
Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).
Article Google Scholar
59.
Straškraba, M. & Hrbáček, J. Net-plankton cycle in slapy reservoir during 1958–1960. Hydrobiol. Stud. 1, 113–153 (1966).
Google Scholar
60.
Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microb. 71, 6885–6899 (2005).
CAS Article Google Scholar
61.
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
CAS PubMed PubMed Central Article Google Scholar
62.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
63.
Yilmaz, P. et al. The SILVA and ‘all-species living tree project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).
CAS PubMed PubMed Central Article Google Scholar
64.
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
PubMed PubMed Central Article CAS Google Scholar
65.
Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
CAS PubMed PubMed Central Google Scholar
66.
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
CAS PubMed PubMed Central Article Google Scholar
67.
Schöfl, G. reutils: talk to the NCBI EUtils. R version 0.2.3 https://CRAN.R-project.org/package=reutils (2016).
68.
Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).
CAS PubMed PubMed Central Article Google Scholar
69.
Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).
CAS PubMed PubMed Central Article Google Scholar
70.
Fuchs, B. M., Glöckner, F. O., Wulf, J. & Amann, R. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microb. 66, 3603–3607 (2000).
CAS Article Google Scholar
71.
Buckley, D. H. & Schmidt, T. M. Environmental factors influencing the distribution of rRNA from verrucomicrobia in soil. FEMS Microbiol. Ecol. 35, 105–112 (2001).
CAS PubMed Article Google Scholar
72.
Yilmaz, L. S., Parnerkar, S. & Noguera, D. R. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl. Environ. Microb. 77, 1118–1122 (2011).
CAS Article Google Scholar
73.
Sekar, R. et al. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microb. 69, 2928–2935 (2003).
CAS Article Google Scholar
74.
Lorenzen, C. J. Determination of chlorophyll and pheo-pigments: spectrophotometric equations 1. Limnol. Oceanogr. 12, 343–346 (1967).
CAS Article Google Scholar
75.
Golterman, H. L. Methods for Chemical Analysis of Fresh Waters (F. A. Davis Company, 1969).
76.
Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).
CAS Article Google Scholar
77.
Kopáček, J. & Hejzlar, J. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53, 173–183 (1993).
Article Google Scholar
78.
Oksanen, J. et al. vegan: community ecology package. R version 2.5–6 (2019); https://CRAN.R-project.org/package=vegan More