Climate teleconnections modulate global burned area
Our results revealed statistically significant relationships between CTs and BA worldwide (P More
75 Shares149 Views
in Ecology
Our results revealed statistically significant relationships between CTs and BA worldwide (P More
175 Shares199 Views
in Ecology
Koonin, E. V. & Dolja, V. V. Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol. Mol. Biol. Rev. 78, 278–303 (2014).Article
CAS
Google Scholar
Pritham, E. J., Putliwala, T. & Feschotte, C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390, 3–17 (2007).Article
CAS
Google Scholar
Kapitonov, V. V. & Jurka, J. Self-synthesizing DNA transposons in eukaryotes. Proc. Natl Acad. Sci. USA 103, 4540–4545 (2006).Article
CAS
Google Scholar
Krupovic, M. & Koonin, E. V. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol. 13, 105–115 (2015).Article
CAS
Google Scholar
Koonin, E. V., Krupovic, M. & Yutin, N. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Ann. N. Y. Acad. Sci. 1341, 10–24 (2015).Article
CAS
Google Scholar
Yutin, N., Raoult, D. & Koonin, E. V. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol. J. 10, 158 (2013).Article
CAS
Google Scholar
Krupovic, M., Bamford, D. H. & Koonin, E. V. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biol. Direct 9, 6 (2014).Article
Google Scholar
Yutin, N., Shevchenko, S., Kapitonov, V., Krupovic, M. & Koonin, E. V. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol. 13, 95 (2015).Article
Google Scholar
Bellas, C. M. & Sommaruga, R. Polinton-like viruses are abundant in aquatic ecosystems. Microbiome 9, 13 (2021).Article
CAS
Google Scholar
Pagarete, A., Grébert, T., Stepanova, O., Sandaa, R.-A. & Bratbak, G. Tsv-N1: a novel DNA algal virus that infects Tetraselmis striata. Viruses 7, 3937–3953 (2015).Article
CAS
Google Scholar
Bekliz, M., Colson, P. & La Scola, B. The expanding family of virophages. Viruses 8, 317 (2016).Article
Google Scholar
Fischer, M. G. The virophage family Lavidaviridae. Curr. Issues Mol. Biol. https://doi.org/10.21775/cimb.040.001 (2021).Desnues, C. et al. Provirophages and transpovirons as the diverse mobilome of giant viruses. Proc. Natl Acad. Sci. USA 109, 18078–18083 (2012).Article
CAS
Google Scholar
Campos, R. K. et al. Samba virus: a novel mimivirus from a giant rain forest, the Brazilian Amazon. Virol. J. 11, 95 (2014).Article
Google Scholar
Gaia, M. et al. Broad spectrum of mimiviridae virophage allows its isolation using a mimivirus reporter. PLoS ONE 8, e61912 (2013).Article
CAS
Google Scholar
Hackl, T., Duponchel, S., Barenhoff, K., Weinmann, A. & Fischer, M. G. Virophages and retrotransposons colonize the genomes of a heterotrophic flagellate. eLife 10, e72674 (2021).Article
CAS
Google Scholar
Yau, S. et al. Virophage control of Antarctic algal host-virus dynamics. Proc. Natl Acad. Sci. USA 108, 6163–6168 (2011).Article
CAS
Google Scholar
Gong, C. et al. Novel virophages discovered in a freshwater lake in China. Front. Microbiol. 7, 5 (2016).Article
Google Scholar
Zhou, J. et al. Three novel virophage genomes discovered from Yellowstone Lake metagenomes. J. Virol. 89, 1278–1285 (2014).Article
Google Scholar
Yutin, N., Kapitonov, V. V. & Koonin, E. V. A new family of hybrid virophages from an animal gut metagenome. Biol. Direct 10, 19 (2015).Article
Google Scholar
Stough, J. M. A. et al. Genome and environmental activity of a Chrysochromulina parva virus and its virophages. Front. Microbiol. 10, 703 (2019).Article
Google Scholar
La Scola, B. et al. The virophage as a unique parasite of the giant mimivirus. Nature 455, 100–104 (2008).Article
Google Scholar
Fischer, M. G. & Suttle, C. A. A virophage at the origin of large DNA transposons. Science 332, 231–234 (2011).Article
CAS
Google Scholar
Gaia, M. et al. Zamilon, a novel virophage with Mimiviridae host specificity. PLoS ONE 9, e94923 (2014).Article
Google Scholar
Mougari, S. et al. Guarani virophage, a new Sputnik-like isolate from a Brazilian lake. Front. Microbiol. 10, 1003 (2019).Article
Google Scholar
Sheng, Y., Wu, Z., Xu, S. & Wang, Y. Isolation and identification of a large green alga virus (Chlorella Virus XW01) of Mimiviridae and its virophage (Chlorella Virus Virophage SW01) by using unicellular green algal cultures. J. Virol. 96, e02114–e02121 (2022).Article
Google Scholar
Baudoux, A. C. & Brussaard, C. P. D. Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341, 80–90 (2005).Article
CAS
Google Scholar
Santini, S. et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc. Natl Acad. Sci. USA 110, 10800–10805 (2013).Article
CAS
Google Scholar
Tarutani, K., Nagasaki, K. & Yamaguchi, M. Virus adsorption process determines virus susceptibility in Heterosigma akashiwo (Raphidophyceae). Aquat. Microb. Ecol. 42, 209–213 (2006).Article
Google Scholar
Gann, E. R., Gainer, P. J., Reynolds, T. B. & Wilhelm, S. W. Influence of light on the infection of Aureococcus anophagefferens CCMP 1984 by a ‘giant virus’. PLoS ONE 15, e0226758 (2020).Article
CAS
Google Scholar
Van Etten, J. L., Burbank, D. E., Xia, Y. & Meints, R. H. Growth cycle of a virus, PBCV-1, that infects Chlorella-like algae. Virology 126, 117–125 (1983).Article
Google Scholar
Boyer, M. et al. Mimivirus shows dramatic genome reduction after intraamoebal culture. Proc. Natl Acad. Sci. USA 108, 10296–10301 (2011).Article
CAS
Google Scholar
Desnues, C. & Raoult, D. Inside the lifestyle of the virophage. Intervirology 53, 293–303 (2010).Article
CAS
Google Scholar
Sobhy, H., Scola, B. L., Pagnier, I., Raoult, D. & Colson, P. Identification of giant Mimivirus protein functions using RNA interference. Front. Microbiol. 6, 345 (2015).Article
Google Scholar
Fischer, M. G. & Hackl, T. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540, 288–291 (2016).Article
CAS
Google Scholar
Wodarz, D. Evolutionary dynamics of giant viruses and their virophages. Ecol. Evol. 3, 2103–2115 (2013).Article
Google Scholar
Farr, G. A., Zhang, L. & Tattersall, P. Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc. Natl Acad. Sci. USA 102, 17148–17153 (2005).Article
CAS
Google Scholar
Suhre, K., Audic, S. & Claverie, J.-M. Mimivirus gene promoters exhibit an unprecedented conservation among all eukaryotes. Proc. Natl Acad. Sci. USA 102, 14689–14693 (2005).Article
CAS
Google Scholar
Legendre, M. et al. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res. 20, 664–674 (2010).Article
CAS
Google Scholar
Smith, D. R., Arrigo, K. R., Alderkamp, A.-C. & Allen, A. E. Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae. Mol. Phylogenet. Evol. 71, 36–40 (2014).Article
CAS
Google Scholar
Krupovic, M., Kuhn, J. H. & Fischer, M. G. A classification system for virophages and satellite viruses. Arch. Virol. 161, 233–247 (2016).Article
CAS
Google Scholar
Suplatov, D. A., Besenmatter, W., Svedas, V. K. & Svendsen, A. Bioinformatic analysis of alpha/beta-hydrolase fold enzymes reveals subfamily-specific positions responsible for discrimination of amidase and lipase activities. Protein Eng. Des. Sel. 25, 689–697 (2012).Article
CAS
Google Scholar
Burt, A. & Koufopanou, V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr. Opin. Genet. Dev. 14, 609–615 (2004).Article
CAS
Google Scholar
Sullivan, M. B. DNA extraction of cesium chloride-purified viruses using wizard prep columns. Protocols https://doi.org/10.17504/protocols.io.c26yhd (2016).González-Domínguez, J. & Schmidt, B. ParDRe: faster parallel duplicated reads removal tool for sequencing studies. Bioinformatics 32, 1562–1564 (2016).Article
Google Scholar
Guillard, R. R. L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Smith, W. L., & Chanley, M. H.) 29– 60 (Springer, 1975).Cottrell, M. & Suttle, C. Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1–9 (1991).Article
Google Scholar
Krueger, F., James, F., Ewels, P., Afyounian, E. & Schuster-Boeckler, B. FelixKrueger/TrimGalore: v0.6.7 – DOI via Zenodo. https://doi.org/10.5281/zenodo.5127899 (2021).Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article
CAS
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article
CAS
Google Scholar
Patel, A. et al. Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat. Protoc. 2, 269–276 (2007).Article
CAS
Google Scholar
Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).Article
CAS
Google Scholar
Brussaard, C. P. D. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol. 70, 1506–1513 (2004).Article
CAS
Google Scholar
Kirzner, S., Barak, E. & Lindell, D. Variability in progeny production and virulence of cyanophages determined at the single-cell level. Environ. Microbiol. Rep. 8, 605–613 (2016).Article
Google Scholar
Ziv, I. et al. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol. Cell. Proteomics 10, M111.009753 (2011).HaileMariam, M. et al. S-Trap, an ultrafast sample-preparation approach for shotgun proteomics. J. Proteome Res. 17, 2917–2924 (2018).Article
CAS
Google Scholar
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).Article
CAS
Google Scholar
Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).Article
CAS
Google Scholar
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).Article
CAS
Google Scholar
Lechner, M. et al. Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics 12, 124 (2011).Article
Google Scholar
Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).Article
CAS
Google Scholar
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).Article
CAS
Google Scholar
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article
CAS
Google Scholar
O’Connell, J. et al. NxTrim: optimized trimming of Illumina mate pair reads. Bioinformatics 31, 2035–2037 (2015).Article
Google Scholar
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Article
CAS
Google Scholar
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 2047-217X-1–18 (2012).Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. In Proc. German Conference on Bioinformatics 45–56 (Fachgruppe Bioinformatik, 1999).Deng, Z. & Delwart, E. ContigExtender: a new approach to improving de novo sequence assembly for viral metagenomics data. BMC Bioinformatics 22, 119 (2021).Article
CAS
Google Scholar
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).Article
Google Scholar
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).Article
CAS
Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).Article
CAS
Google Scholar
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article
CAS
Google Scholar
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article
CAS
Google Scholar
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).Article
CAS
Google Scholar
Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).Article
Google Scholar
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article
Google Scholar
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).Article
CAS
Google Scholar
Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20, 473 (2019).Article
Google Scholar
Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).Article
CAS
Google Scholar
Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 5, e3243 (2017).Article
Google Scholar
Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).Article
CAS
Google Scholar
Heger, A. & Holm, L. Rapid automatic detection and alignment of repeats in protein sequences. Proteins 41, 224–237 (2000).Article
CAS
Google Scholar
Chase, E., Desnues, C. & Blanc, G. Integrated viral elements unveil the dual lifestyle of Tetraselmis spp. polinton-like viruses. Virus Evol. 8, veac068 (2022).Egge, E. S., Eikrem, W. & Edvardsen, B. Deep-branching novel lineages and high diversity of haptophytes in the Skagerrak (Norway) uncovered by 454 pyrosequencing. J. Eukaryot. Microbiol. 62, 121–140 (2015).Article
CAS
Google Scholar
Hovde, B. T. et al. Chrysochromulina: genomic assessment and taxonomic diagnosis of the type species for an oleaginous algal clade. Algal Res. 37, 307–319 (2019).Article
Google Scholar
Andersen, R. A., Bailey, J. C., Decelle, J. & Probert, I. Phaeocystis rex sp. nov. (Phaeocystales, Prymnesiophyceae): a new solitary species that produces a multilayered scale cell covering. Eur. J. Phycol. 50, 207–222 (2015).Article
Google Scholar
Stepanova, O. A. Black Sea algal viruses. Russ. J. Mar. Biol. 42, 123–127 (2016).Article
Google Scholar
Alarcón-Schumacher, T., Guajardo-Leiva, S., Antón, J. & Díez, B. Elucidating viral communities during a phytoplankton bloom on the West Antarctic Peninsula. Front. Microbiol. 10, 1014 (2019).Article
Google Scholar More
150 Shares179 Views
in Ecology
Avdelas, L. et al. The decline of mussel aquaculture in the European Union: Causes, economic impacts and opportunities. Rev. Aquac. 13, 91–118. https://doi.org/10.1111/raq.12465 (2021).Article
Google Scholar
Tamburini, E., Turolla, E., Fano, E. A. & Castaldelli, G. Sustainability of Mussel (Mytilus galloprovincialis) farming in the Po River delta, northern Italy, based on a life cycle assessment approach. Sustainability 12, 3814. https://doi.org/10.3390/su12093814 (2020).Article
CAS
Google Scholar
Shumway, S. E. et al. Shellfish aquaculture-In praise of sustainable economies and environments. J. World Aquacult. Soc. 34, 8–10 (2003).
Google Scholar
Musella, M. et al. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. Sci. Total Environ. 717, 137209. https://doi.org/10.1016/J.SCITOTENV.2020.137209 (2020).Article
ADS
CAS
Google Scholar
Peharda, M., Župan, I., Bavčević, L., Frankić, A. & Klanjšček, T. Growth and condition index of mussel Mytilus galloprovincialis in experimental integrated aquaculture. Aquac. Res. 38, 1714–1720. https://doi.org/10.1111/J.1365-2109.2007.01840.X (2007).Article
Google Scholar
Sarà, G., Zenone, A. & Tomasello, A. Growth of Mytilus galloprovincialis (Mollusca, bivalvia) close to fish farms: A case of integrated multi-trophic aquaculture within the Tyrrhenian sea. Hydrobiologia 636, 129–136. https://doi.org/10.1007/S10750-009-9942-2/TABLES/4 (2009).Article
Google Scholar
Danovaro, R., Gambi, C., Luna, G. M. & Mirto, S. Sustainable impact of mussel farming in the Adriatic Sea (Mediterranean Sea): Evidence from biochemical, microbial and meiofaunal indicators. Mar. Pollut. Bull. 49, 325–333. https://doi.org/10.1016/j.marpolbul.2004.02.038 (2004).Article
CAS
Google Scholar
Tancioni, L. et al. Anthropogenic threats to fish of interest in aquaculture: Gonad intersex in a wild population of thinlip grey mullet Liza ramada (Risso, 1827) from a polluted estuary in central Italy. Aquac. Res. 47(5), 1670–1674 (2016).Article
Google Scholar
Chary, K. et al. Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): Assessing bioremediation and life-cycle impacts. Aquaculture 516, 734621. https://doi.org/10.1016/j.aquaculture.2019.734621 (2020).Article
CAS
Google Scholar
Purcell, S. W., Williamson, D. H. & Ngaluafe, P. Chinese market prices of beche-de-mer: Implications for fisheries and aquaculture. Mar. Policy 91, 58–65. https://doi.org/10.1016/j.marpol.2018.02.005 (2018).Article
Google Scholar
Morroni, L. et al. Sea cucumber Holothuria polii (Delle Chiaje, 1823) as new model for embryo bioassays in ecotoxicological studies. Chemosphere 240, 124819. https://doi.org/10.1016/j.chemosphere.2019.124819 (2020).Article
ADS
CAS
Google Scholar
Uthicke, S. & Karez, R. Sediment patch selectivity in tropical sea cucumbers (Holothuroidea: Aspidochirotida) analysed with multiple choice experiments. J. Exp. Mar. Biol. Ecol. 236, 69–87. https://doi.org/10.1016/S0022-0981(98)00190-7 (1999).Article
Google Scholar
MacTavish, T., Stenton-Dozey, J., Vopel, K. & Savage, C. Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS ONE 7, 1–11. https://doi.org/10.1371/journal.pone.0050031 (2012).Article
CAS
Google Scholar
Rakaj, A. et al. Towards sea cucumbers as a new model in embryo-larval bioassays: Holothuria tubulosa as test species for the assessment of marine pollution. Sci. Total Environ. 787, 147593. https://doi.org/10.1016/j.scitotenv.2021.147593 (2021).Article
ADS
CAS
Google Scholar
Purcell, S., Conand, C., Uthicke, S. & Byrne, M. Ecological roles of exploited sea cucumbers. Oceanogr. Mar. Biol. 54, 367–386. https://doi.org/10.1201/9781315368597-8 (2016).Article
Google Scholar
Zamora, L. N., Yuan, X., Carton, A. G., Slater, M. J. & Marine, L. Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: Progress, problems, potential and future challenges. Rev. Aquac. 10, 57–74. https://doi.org/10.1111/raq.12147 (2016).Article
Google Scholar
Slater, M. J. & Carton, A. G. Survivorship and growth of the sea cucumber Australostichopus (Stichopus) mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture 272, 389–398. https://doi.org/10.1016/j.aquaculture.2007.07.230 (2007).Article
Google Scholar
Slater, M. J. & Carton, A. G. Effect of sea cucumber (Australostichopus mollis) grazing on coastal sediments impacted by mussel farm deposition. Mar. Pollut. Bull. 58, 1123–1129. https://doi.org/10.1016/j.marpolbul.2009.04.008 (2009).Article
CAS
Google Scholar
Slater, M. J. & Carton, A. G. Sea cucumber habitat differentiation and site retention as determined by intraspecific stable isotope variation. Aquac. Res. 41, 695–702. https://doi.org/10.1111/j.1365-2109.2010.02607.x (2010).Article
CAS
Google Scholar
Stenton-Dozey, J. Finding hidden treasure in aquaculture waste. Water Atmos. 15, 9–11 (2007).
Google Scholar
Slater, M. J., Jeffs, A. G. & Carton, A. G. The use of the waste from green-lipped mussels as a food source for juvenile sea cucumber, Australostichopus mollis. Aquaculture 292, 219–224. https://doi.org/10.1016/j.aquaculture.2009.04.027 (2009).Article
Google Scholar
Stenton-Dozey, J. & Heath, P. A first for New Zealand: Culturing our endemic sea cucumber for overseas markets. Water Atmos. 17, 20–21 (2009).
Google Scholar
Zamora, L. N. & Jeffs, A. G. Feeding, selection, digestion and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber, Australostichopus mollis. Aquaculture 317, 223–228. https://doi.org/10.1016/j.aquaculture.2011.04.011 (2011).Article
Google Scholar
Zamora, L. N. & Jeffs, A. G. The ability of the deposit-feeding sea cucumber Australostichopus mollis to use natural variation in the biodeposits beneath mussel farms. Aquaculture 326, 116–122. https://doi.org/10.1016/J.AQUACULTURE.2011.11.015 (2012).Article
Google Scholar
Zamora, L. N. & Jeffs, A. G. A Review of the research on the Australasian Sea Cucumber, Australostichopus mollis (Echinodermata: Holothuroidea) (Hutton 1872), with emphasis on aquaculture. J. Shellfish Res. 32, 613–627. https://doi.org/10.2983/035.032.0301 (2013).Article
Google Scholar
Zamora, L. N. & Jeffs, A. G. Macronutrient selection, absorption and energy budget of juveniles of the Australasian sea cucumber, Australostichopus mollis, feeding on mussel biodeposits at different temperatures. Aquac. Nutr. 21, 162–172. https://doi.org/10.1111/ANU.12144 (2015).Article
CAS
Google Scholar
Chatzivasileiou, D. et al. An IMTA in Greece: Co-culture of fish, bivalves, and holothurians. J. Mar. Sci. Eng. 10, 776. https://doi.org/10.3390/jmse10060776 (2022).Article
Google Scholar
Rakaj, A. et al. Spawning and rearing of Holothuria tubulosa: A new candidate for aquaculture in the Mediterranean region. Aquac. Res. 49, 557–568. https://doi.org/10.1111/are.13487 (2018).Article
CAS
Google Scholar
Rakaj, A., Fianchini, A., Boncagni, P., Scardi, M. & Cataudella, S. Artificial reproduction of Holothuria polii: A new candidate for aquaculture. Aquaculture 498, 444–453. https://doi.org/10.1016/j.aquaculture.2018.08.060 (2019).Article
Google Scholar
González-Wangüemert, M., Aydin, M. & Conand, C. Assessment of sea cucumber populations from the Aegean Sea (Turkey): First insights to sustainable management of new fisheries. Ocean Coast. Manag. 92, 87–94. https://doi.org/10.1016/J.OCECOAMAN.2014.02.014 (2014).Article
Google Scholar
González-Wangüemert, M., Valente, S. & Aydin, M. Effects of fishery protection on biometry and genetic structure of two target sea cucumber species from the Mediterranean Sea. Hydrobiologia 743, 65–74. https://doi.org/10.1007/s10750-014-2006-2 (2015).Article
Google Scholar
González-Wangüemert, M., Domínguez-Godino, J. A. & Cánovas, F. The fast development of sea cucumber fisheries in the Mediterranean and NE Atlantic waters: From a new marine resource to its over-exploitation. Ocean Coast. Manag. 151, 165–177. https://doi.org/10.1016/j.ocecoaman.2017.10.002 (2018).Article
Google Scholar
González-Wangüemert, M. & Godino, J. Sea cucumbers as new marine resource in Europe. Front. Mar. Sci. 3, 112 (2016).
Google Scholar
Domínguez-Godino, J. A., Slater, M. J., Hannon, C. & González-Wangüermert, M. A new species for sea cucumber ranching and aquaculture: Breeding and rearing of Holothuria arguinensis. Aquaculture 438, 122–128. https://doi.org/10.1016/J.AQUACULTURE.2015.01.004 (2015).Article
Google Scholar
Günay, D., Emiroğlu, D., Tolon, T., Özden, O. & Saygi, H. Growth and survival rate of Juvenile Sea Cucumbers (Holothuria tubulosa, Gmelin, 1788) at Various Temperatures. Turk. J. Fish. Aquat. Sci. 15, 533–541. https://doi.org/10.4194/1303-2712-v15_2_41 (2015).Article
Google Scholar
Tolon, T. Effect of salinity on growth and survival of the juvenile sea cucumbers Holothuria tubulosa (Gmelin, 1788) and Holothuria poli (Delle Chiaje, 1923). Fresenius Environ. Bull. 26, 3930–3935 (2017).CAS
Google Scholar
Tolon, T., Emiroğlu, D., Günay, D. & Hancı, B. Effect of stocking density on growth performance of juvenile sea cucumber Holothuria tubulosa (Gmelin, 1788). Aquac. Res. 48, 4124–4131. https://doi.org/10.1111/are.13232 (2017).Article
Google Scholar
Tolon, M. T., Emiroglu, D., Gunay, D. & Ozgul, A. Sea cucumber (Holothuria tubulosa Gmelin, 1790) culture under marine fish net cages for potential use in integrated multi-trophic aquaculture (IMTA). Indian J. Geol. Mar. Sci. 46, 749–756 (2017).
Google Scholar
Neofitou, N. et al. Contribution of sea cucumber Holothuria tubulosa on organic load reduction from fish farming operation. Aquaculture 501, 97–103. https://doi.org/10.1016/j.aquaculture.2018.10.071 (2019).Article
Google Scholar
Sadoul, B. et al. Aquaculture Is Holothuria tubulosa the golden goose of ecological aquaculture in the Mediterranean Sea? Aquaculture 554, 738149. https://doi.org/10.1016/j.aquaculture.2022.738149 (2022).Article
CAS
Google Scholar
Cutajar, K. et al. Culturing the sea cucumber Holothuria poli in open-water integrated multi-trophic aquaculture at a coastal Mediterranean fish farm. Aquaculture 550, 737881. https://doi.org/10.1016/j.aquaculture.2021.737881 (2022).Article
CAS
Google Scholar
Grosso, L. et al. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 534, 736268. https://doi.org/10.1016/J.AQUACULTURE.2020.736268 (2021).Article
CAS
Google Scholar
González-Wangüemert, M., Valente, S., Henriques, F., Domínguez-Godino, J. A. & Serrão, E. A. Setting preliminary biometric baselines for new target sea cucumbers species of the NE Atlantic and Mediterranean fisheries. Fish. Res. 179, 57–66. https://doi.org/10.1016/J.FISHRES.2016.02.008 (2016).Article
Google Scholar
Aydin, M. Biometry, density and the biomass of the commercial sea cucumber population of the Aegean Sea. Turk. J. Fish. Aquat. Sci 19, 463–474. https://doi.org/10.4194/1303-2712-v19_6_02 (2018).Article
Google Scholar
Whitlock, M. C. & Schluter, D. Analisi Statistica dei Dati Biologici, Zanichelli (2010)Hammer, O. & Harper, D. A. T. PAST PAleontological STatistics Version 3 Reference Manual (University of Oslo, 2013).Zhou, Y. et al. Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea) co-cultured in lantern nets. Aquaculture 256, 510–520. https://doi.org/10.1016/j.aquaculture.2006.02.005 (2006).Article
Google Scholar
Pensa, D. et al. Population status, distribution and trophic implications of Pinna nobilis along the South-eastern Italian coast. Npj Biodivers. https://doi.org/10.21203/rs.3.rs-1425249/v1 (2022).Article
Google Scholar
Francour, P. Predation on holothurians: A literature review. Invert. Bio. 116, 52–60. https://doi.org/10.2307/3226924 (1997).Article
Google Scholar
Mecheta, A. & Mezali, K. A biometric study to determine the economic and nutritional value of sea cucumbers (Holothuroidea: Echinodermata) collected from Algeria’s shallow water areas. Beche-de-mer Inf. Bull. 39, 65–70 (2019).
Google Scholar
Sun, J., Hamel, J. F., Gianasi, B. L., Graham, M. & Mercier, A. Growth, health and biochemical composition of the sea cucumber Cucumaria frondosa after multi-year holding in effluent waters of land-based salmon culture. Aquac. Environ. Interact. 12, 139–151. https://doi.org/10.3354/aei00356 (2020).Article
Google Scholar
Boncagni, P., Rakaj, A., Fianchini, A. & Vizzini, S. Preferential assimilation of seagrass detritus by two coexisting Mediterranean sea cucumbers: Holothuria polii and Holothuria tubulosa. Estuar. Coast. Shelf Sci. 231, 106464. https://doi.org/10.1016/j.ecss.2019.106464 (2019).Article
CAS
Google Scholar
Rakaj, A., and Fianchini, A. Mediterranean sea cucumbers—Biology, ecology, and exploitation, Chapter. In The World of Sea Cucumbers Challenges, Advances, and Innovations (Mercier, A., Hamel, J.-F, Suhrbier, A. & Pearce, C.) (2023)Massin, C. & Jangoux, M. Observations écologiques sur Holothuria tubulosa, Holothuria poli et Holothuria forskali (Echinodermata, Holothuroidea) et comportement alimentaire de H. tubulosa. Référ. Cah. Biol. Mar. 17, 45–59 (1976).
Google Scholar
Coulon, P. & Jangoux, M. Feeding rate and sediment reworking by the holothuroid Holothuria tubulosa (Echinodermata) in a Mediterranean seagrass bed off Ischia Island, Italy. Mar. Ecol. Progr. Ser. 92, 201–204 (1993).Article
ADS
Google Scholar
Belbachir, N., Mezali, K. & Soualili, D. L. Selective feeding behaviour in some aspidochirotid holothurians (Echinodermata: Holothuroidea) at Stidia, Mostaganem Province, Algeria (2014).Grosso, L. et al. Trophic requirements of the sea urchin Paracentrotus lividus varies at different life stages: comprehension of species ecology and implications for effective feeding formulations. Front. Mar. Sci. 9, 865450. https://doi.org/10.3389/fmars.2022.865450 (2022).Article
Google Scholar
Sun, Z. L., Gao, Q. F., Dong, S. L., Shin, P. K. & Wang, F. Estimates of carbon turnover rates in the sea cucumber Apostichopus japonicus (Selenka) using stable isotope analysis: The role of metabolism and growth. Mar. Ecol. Prog. Ser. 457, 101–112. https://doi.org/10.3354/meps09760 (2012).Article
ADS
Google Scholar
Yuan, X. T. et al. Effects of aestivation on the energy budget of sea cucumber Apostichopus japonicus (Selenka) (Echinaodermata: Holothuroidea). Acta. Ecol. Sin. 27, 3155−3161. https://doi.org/10.1016/S1872-2032(07)60070-5 (2007).Article
Google Scholar
Liu, Y., Dong, S. L., Tian, X. L., Wang, F. & Gao, Q. F. Effects ofdietary sea mud and yellow soil on growth and energybudget of the sea cucumber Apostichopus japonicas (Selenka). Aquaculture 286, 266–270. https://doi.org/10.1016/j.aquaculture.2008.09.029 (2009).Article
Google Scholar
Brown, N. P. & Eddy, S. D. Echinoderm Aquaculture (Wiley, 2015).Book
Google Scholar
Qiu, T., Zhang, L., Zhang, T., Bai, Y. & Yang, H. Effect of culture methods on individual variation in the growth of sea cucumber Apostichopus japonicus within a cohort and family. Chin. J. Oceanol. Limnol. 32, 737–742. https://doi.org/10.1007/S00343-014-3131-5 (2014).Article
ADS
Google Scholar
Zappes, I. A. et al. New data on Weddell seal (Leptonychotes weddellii) colonies: A genetic analysis of a top predator from the Ross Sea, Antarctica. PLoS ONE 12, 0182922. https://doi.org/10.1371/journal.pone.0182922 (2017).Article
CAS
Google Scholar
Paltzat, D. L., Pearce, C. M., Barnes, P. A. & McKinley, R. S. Growth and production of California sea cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended Pacific oysters (Crassostrea gigas Thunberg). Aquaculture 275, 124–137. https://doi.org/10.1016/j.aquaculture.2007.12.014 (2008).Article
Google Scholar
Dong, S. et al. Intra-specific effects of sea cucumber (Apostichopus japonicus) with reference to stocking density and body size. Aquac. Res. 41, 1170–1178. https://doi.org/10.1111/J.1365-2109.2009.02404.X (2010).Article
Google Scholar
Pei, S., Dong, S., Wang, F., Gao, Q. & Tian, X. Effects of stocking density and body physical contact on growth of sea cucumber, Apostichopus japonicus. Aquac. Res. 45, 629–636. https://doi.org/10.1111/ARE.12004 (2014).Article
Google Scholar
Xia, B., Ren, Y., Wang, J., Sun, Y. & Zhang, Z. Effects of feeding frequency and density on growth, energy budget and physiological performance of sea cucumber Apostichopus japonicus (Selenka). Aquaculture 466, 26–32. https://doi.org/10.1016/J.AQUACULTURE.2016.09.039 (2017).Article
Google Scholar
Domínguez-Godino, J. A. & González-Wangüemert, M. Does space matter? Optimizing stocking density of Holothuria arguinensis and Holothuria mammata. Aquac. Res. 49, 3107–3115. https://doi.org/10.1111/are.13773 (2018).Article
Google Scholar
Rugnini, L., Rossi, C., Antonaroli, S., Rakaj, A. & Bruno, L. The influence of light and nutrient starvation on morphology, biomass and lipid content in seven strains of green microalgae as a source of biodiesel. Microorganisms 8, 1254. https://doi.org/10.3390/microorganisms8081254 (2020).Article
CAS
Google Scholar More
275 Shares179 Views
in Ecology
Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 109, 16083–16088. https://doi.org/10.1073/pnas.1211658109 (2012).Article
ADS
Google Scholar
Faeth, S. H., Bang, C. & Saari, S. Urban biodiversity: Patterns and mechanisms. Ann. N. Y. Acad. Sci. 1223, 69–81. https://doi.org/10.1111/j.1749-6632.2010.05925.x (2011).Article
ADS
Google Scholar
Elmqvist, T., Zipperer, W. & Güneralp, B. Urbanisation, habitat loss, biodiversity decline: Solution pathways to break the cycle. In Routledge Handbook of Urbanisation and Global Environmental Change (eds Seta, K. et al.) 139–151 (Routledge, 2016).
Google Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).Article
ADS
CAS
Google Scholar
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).Article
CAS
Google Scholar
Wagner, D., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Biological sciences 118, e2023989118. https://doi.org/10.1073/pnas.2023989118 (2021).Article
CAS
Google Scholar
Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 6229. https://doi.org/10.1126/science.1255957 (2015).Article
CAS
Google Scholar
Ollerton, J. (2021) Pollinators & pollination: nature and society. Pelagic publishing.IPBES (2016). The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. potts, S.G., Imperatriz-Fonseca, V.L and Ngo, H.T. (eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. 552 pages.Mallinger, R. E. & Gratton, C. Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator dependent crop. J. Appl. Ecol. 52, 323–330 (2015).Article
Google Scholar
Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. U.S.A. 99, 16812–16816 (2002).Article
ADS
CAS
Google Scholar
Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).Article
Google Scholar
Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).Article
ADS
CAS
Google Scholar
Matteson, K. C., Ascher, J. S. & Langellotto, G. A. Bee richness and abundance in New York City urban gardens. Ann. Entomol. Soc. Am. 101(1), 140–150. https://doi.org/10.1603/0013-8746(2008)101[140:BRAAIN]2.0.CO;2 (2008).Article
Google Scholar
Carré, G. et al. Landscape context and habitat type as drivers of bee diversity in European annual crops. Agr. Ecosyst. Environ. 133(1–2), 40–47. https://doi.org/10.1016/j.agee.2009.05.001 (2009).Article
Google Scholar
Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Ann. Rev. Entomol. 53, 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454 (2008).Article
CAS
Google Scholar
Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS One 6(8), e23459. https://doi.org/10.1371/journal.pone.0023459 (2011).Article
ADS
CAS
Google Scholar
Deguines, N., Julliard, R., De Flores, M. & Fontaine, C. Functional homogenization of flower visitor communities with urbanisation. Ecol. Evol. 6(7), 1967–1976. https://doi.org/10.1002/ece3.2009 (2016).Article
Google Scholar
Larsson, M. Higher pollinator effectiveness by specialist than generalist flower-visitors of unspecialized Knautia arvensis (Dipsacaceae). Oecologia 146(3), 394–403. https://doi.org/10.1007/s00442-005-0217-y (2005).Article
ADS
Google Scholar
Pataki, D. E. et al. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 9, 27–36. https://doi.org/10.1890/090220 (2011).Article
Google Scholar
Mentens, J., Raes, D. & Hermy, M. Green roofs as a tool for solving rainwater runoff problems in the urbanized 21st century?. Landscape Urban Plann. 77, 217–226. https://doi.org/10.1016/j.landurbplan.2005.02.010 (2006).Article
Google Scholar
Oberndorfer, E. et al. Green roofs as urban ecosystems: Ecological structures, functions and services. Bioscience 57, 823–834. https://doi.org/10.1641/B571005 (2007).Article
Google Scholar
Braaker, S., Ghazoul, J., Obrist, M. K. & Moretti, M. Habitat connectivity shapes urban arthropod communities: The key role of green roofs. Ecology 95, 1010–1021. https://doi.org/10.1890/13-0705.1 (2014).Article
CAS
Google Scholar
Colla, S. R., Willis, E. & Packer, I. Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)?. Cities and the Environment 2(1), 1–12 (2009).Article
Google Scholar
Tonietto, R., Fant, J., Ascher, J., Ellis, K. & Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 103, 102–108 (2011).Article
Google Scholar
Ksiazek, K., Fant, J. & Skogen, K. An asssement of pollen limitation on Chicago green roofs. Landsc. Urban Plan. 107, 401–408 (2012).Article
Google Scholar
MacIvor, J. S. Building height matters: Nesting activity of bees and wasps on vegetated roofs. Israel J. Ecol. Evol. 62, 88–96. https://doi.org/10.1080/15659801.2015.1052635 (2015).Article
Google Scholar
Kratschmer, S., Kriechbaum, M. & Pachinger, B. Buzzing on top: Linking wild bee diversity, abundance and traits with green roof qualities. Urban Ecosyst. 21, 429–441 (2018).Article
Google Scholar
MacIvor, J. S., Ruttan, R. & Salehi, B. Exotics on exotics: Pollen analysis of urban bees visiting Sedum on a green roof. Urban Ecosyst. 18, 419–430 (2014).Article
Google Scholar
Matteson, K. C. & Langellotto, G. A. Determinates of inner city butterfly and bee species richness. Urban Ecosyst. 13, 333–347. https://doi.org/10.1007/s11252-010-0122-y (2010).Article
Google Scholar
Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along a gradient of urbanisation. PLoS One 8, e63421. https://doi.org/10.1371/journal.pone.0063421 (2013).Article
ADS
Google Scholar
Baldock, K.C.R, et al. (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B. https://doi.org/10.1098/rspb.2014.2849Theodorou, P. et al. Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity. Sci. Rep. 10, 21756. https://doi.org/10.1038/s41598-020-78736-x (2020).Article
ADS
CAS
Google Scholar
Lowenstein, D.M., Matteson, K.C., Xiao, I., Silva, A.M. and Minor, E.S (2014) Humans, bees, and pollination services in the city: The case of Chicago, IL (USA). Biodiversity Conservation 1–18. https://doi.org/10.1007/s10531-014-0752-0Winfree, R., Bartomeus, I. & Cariveau, D. Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst. 42, 1–22 (2011).Article
Google Scholar
Cariveau, D. P. & Winfree, R. Causes of variation in wild bee responses to anthropogenic drivers. Curr. Opin. Insect. Sci. 10, 104–109. https://doi.org/10.1016/j.cois.2015.05.004 (2015).Article
Google Scholar
Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373. https://doi.org/10.1038/s41559-018-0769-y (2019).Article
Google Scholar
Li, W. C. & Yeung, K. K. A. A comprehensive study of green roof performance from environmental perspective. Int. J. Sustain. Built Environ. 3, 127–134 (2021).Article
Google Scholar
Turner, M., Baker, W. L., Peterson, C. J. & Peet, R. K. Factors influencing succession: Lessons from large, infrequent natural disturbances. Ecosystems 1, 511–523. https://doi.org/10.1007/s100219900047 (1998).Article
Google Scholar
Molineux, C. J., Connop, S. P. & Gange, A. C. Manipulating soil microbial communities in extensive green roof substrates. Sci. Total Environ. 493, 632–638. https://doi.org/10.1016/j.scitotenv.2014.06.045 (2014).Article
ADS
CAS
Google Scholar
Macivor, S. & Ksiazek, K. Invertebrates on green roofs. Ecol. Stud. Anal. Synthes. 223, 333–355. https://doi.org/10.1007/978-3-319-14983-7_14 (2015).Article
Google Scholar
Madre, F., Vergnes, A., Machon, N. & Clergeau, P. A comparison of 3 types of green roof as habitats for arthropods. Ecol. Eng. 57, 109–117. https://doi.org/10.1016/j.ecoleng.2013.04.029 (2013).Article
Google Scholar
Lee, L. H. & Lin, J. C. Green roof performance towards good habitat for butterflies in the compact city. Int. J. Biol. 7, 103. https://doi.org/10.5539/ijb.v7n2p103 (2015).Article
CAS
Google Scholar
Preston, F. W. The canonical distribution of commonness and rarity: Part I. Ecology 43(2), 185–215. https://doi.org/10.2307/1931976 (1962).Article
Google Scholar
Orford, K. A., Murray, P. J., Vaughan, I. P. & Memmott, J. Modest enhancements to conventional grassland diversity improve the provision of pollination services. J. Appl. Ecol. 53, 906–915. https://doi.org/10.1111/1365-2664.12608 (2016).Article
Google Scholar
Brenneisen, S. The Natural Roof (NADA): Research Project Report on the Use of Extensive Green Roofs by Wild Bees (University of Wädenswil, 2005).
Google Scholar
Jacobs, J., Berg, M., Beenaerts, N. & Artois, T. Biodiversity of Collembola on green roofs: A case study of three cities in Belgium. Ecol. Eng. 177, 106572. https://doi.org/10.1016/j.ecoleng.2022.106572 (2022).Article
Google Scholar
McKinney, M.L., Sisco, N.D. (2018) Systematic variation in roof spontaneous vegetation: residential “low rise” versus commercial “high rise” buildings. Urban Nature SI, 73–88.Rotheray, G.E., & Gilbert, S.F. (2011) The natural history of hoverflies. Tresaith, UK: Forrest TextBenvenuti, S. Wildflower green roofs for urban landscaping, ecological sustainability and biodiversity. Landsc. Urban Plan. 124, 151–161. https://doi.org/10.1016/j.landurbplan.2014.01.004 (2014).Article
Google Scholar
Schneider, F. Beitrag zur Kenntnis der Generationsverhaltnisse und Diapause rauberischer Schwebfliegen (Syrphldae, Dipt.). Mittl. Schweiz Ent Ges 21, 249–285 (1948).
Google Scholar
Rader, R., Edwards, W., Westcott, D. A., Cunningham, S. A. & Howlett, B. G. Pollen transport differs among bees and flies in a human-modified landscape. Divers. Distrib. 17, 519–529. https://doi.org/10.1111/j.1472-4642.2011.00757.x (2011).Article
Google Scholar
Burgio, G. & Sommaggio, D. Syrphids as landscape bioindicators in Italian agroecosystems. Agr. Ecosyst. Environ. 120, 416–422 (2007).Article
Google Scholar
Doyle, T. et al. Pollination by hoverflies in the Anthropocene. Proc. R. Soc. B 287, 20200508. https://doi.org/10.1098/rspb.2020.0508 (2020).Article
Google Scholar
Persson, A. S., Ekroos, J., Olssona, P. & Smith, H. G. Wild bees and hoverflies respond differently to urbanisation, human population density and urban form. Landsc. Urban Plann. 204, 103901. https://doi.org/10.1016/j.landurbplan.2020.103901 (2020).Article
Google Scholar
Verboven, H., Uyttenbroeck, R., Brys, R. & Hermy, M. Different responses of bees and hoverflies to land use in an urban–rural gradient show the importance of the nature of the rural land use. Landsc. Urban Plan. 126, 31–41. https://doi.org/10.1016/j.landurbplan.2014.02.017 (2014).Article
Google Scholar
Schönrogge, K. et al. Host propagation permits extreme local adaptation in a social parasite of ants. Ecol. Lett. 9, 1032–1040 (2006).Article
Google Scholar
Schweiger, O. et al. Functional richness of local hoverfly communities (Diptera, Syrphidae) in response to land use across temperate Europe. Oikos 116, 461–472 (2007).Article
Google Scholar
KMI: Koninklijk Meteorologisch Instituut (2022) Analyse van het jaar 2020 en 2021. Available from https://www.meteobelgie.be/klimatologie/waarnemingen-en-analyses/jaar-2020/2274-jaa-2020 (2020) https://www.meteobelgie.be/klimatologie/waarnemingen-en-analyses/jaar-2021/2291-analyse-van-het-jaar-2021 (2021). Accessed on 12/05/2022.Shrestha, M. et al. Fluorescent pan traps affect the capture rate of insect orders in different ways. Insects 10(2), 40. https://doi.org/10.3390/insects10020040 (2019).Article
Google Scholar
Cooper, R., & Whitmore, R.C. (1990) Arthropod sampling methods in ornithology, Avian Foraging: theory, methodology, and applications. Studies in Avian Biology 13, Cooper Ornithological Society, California.Oberprieler, S. K., Andersen, A. & Braby, M. F. Invertebrate by-catch from vertebrate pitfall rraps can be useful for documenting patterns of invertebrate diversity. J. Insect. Conserv. 23(3), 547–554. https://doi.org/10.1007/s10841-019-00143-z (2019).Article
Google Scholar
Skvarla, M. J., Larson, J. L. & Dowling, A. P. G. Pitfalls and preservatives: A review. J. Entomol. Soc. Ontario 145, 15–43 (2014).
Google Scholar
Michez, D., Rasmont, P., Terzo, M. and Vereecken, N.J. (2019) Bees of Europe. Hymenoptera of Europe 1. N.A.P Editions.Williams, P.H., et al. (2012): Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syste. Biodiversity. https://doi.org/10.1080/14772000.2012.66457Falck, S., & Lewington, R (2020) Bijen veldgids voor Nederland en Vlaanderen. Tirion.Koster, A. (2022) De Nederlandse wilde bijen en hun planten. http://www.denederlandsebijen.nl/. Accessed on 21/4/2022.Speight, M.C.D. & Sarthou, J.P. (2013) StN keys for the identification of adult European Syrphidae (Diptera) 2013/Clés StN pour la détermination des adultes des Syrphidae Européens (Diptères) 2013. Syrph the Net, the database of European Syrphidae, Vol. 74, 133pp, Syrph the Net publications, Dublin.Roback, P., Legler, J. (2021) Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R. Taylor & Francis Group, LLC.R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Oksanen, J., et al. (2014) Vegan: community ecology package. R Package 280.Bengtsson, H. (2017). matrixStats: Functions that Apply to Rows and Columns of Matrices (and to Vectors). R Package Version 0.52.2.Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015) Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.Wickham, H., François, R., Henry, L. and Müller, K. (2022). dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr.Venables, W.N., & Ripley, B.D. (2002) Modern Applied Statistics with S, 4th ed. Springer, New York. ISBN 0–387–95457–0. https://www.stats.ox.ac.uk/pub/MASS4/.Ricotta, C. & Moretti, M. CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia 167(1), 181–188 (2011).Article
ADS
Google Scholar
Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585(7826), 551–556. https://doi.org/10.1038/s41586-020-2705-y (2020).Article
ADS
CAS
Google Scholar
Drossart, M., et al. (2019) Belgian red list of Bees. Belgian Science Policy (BRAIN-be – (Belgian Research Action through Interdisciplinary Networks). Mons: Presse universitaire de l’Université de Mons.Fahrig, L. Why do several small patches hold more species than few large patches?. Glob. Ecol. Biogeogr. 29, 615–628. https://doi.org/10.1111/geb.13059 (2020).Article
Google Scholar
Ayers, A. C. & Rehan, S. M. Supporting bees in cities: how bees are influenced by local and landscape features. Insects 12, 128. https://doi.org/10.3390/insects12020128 (2021).Article
Google Scholar
Domínguez, M. V. S., González, E., Fabián, D., Salvo, A. & Fenoglio, M. S. Arthropod diversity and ecological processes on green roofs in a semi-rural area of Argentina: Similarity to neighbor ground habitats and landscape effects. Landscape and Urban Planning 199, (2020).Castagneyrol, B. & Jactel, H. Unravelling plant- animal diversity relationships: A meta-regression analysis. Ecology 93(9), 2115–2124 (2012).Article
Google Scholar
Harrison, T., Gibbs, J. & Winfree, R. Phylogenetic homogenization of bee communities across ecoregions. Glob. Ecol. Biogeogr. 27, 1457–1466. https://doi.org/10.1111/geb.12822 (2018).Article
Google Scholar
Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanisation is driving pollinator diversity and pollination, a systematic review. Biol. Conserv. 241, 108321. https://doi.org/10.1016/j.biocon.2019.108321 (2020).Article
Google Scholar
Martins, K. T., Gonzalez, A. & Lechowicz, M. J. Patterns of pollinator turnover and increasing diversity associated with urban habitats. Urban Ecosyst. 20, 1359–1371 (2017).Article
Google Scholar
Bucholz, S. & Egerer, M. Functional ecology of wild bees in cities: Towards a better understanding of trait-urbanisation relationships. Biodiver. Conserv. 29, 2779–2801 (2020).Article
Google Scholar
Hernandez, J. L., Frankie, G. W. & Thorp, R. W. Ecology of urban bees : A review of current knowledge and directions for future study. Cities Environ. 2, 1–15 (2009).Article
Google Scholar
Cane, J. H. Bees, pollination, and the challenges of sprawl. In Nature in fragments: The legacy of sprawl (eds Johnson, E. A. & Klemens, M. W.) 109–124 (Columbia University Press, 2005).Chapter
Google Scholar
Koch, K. Wilde bijensoorten in een stedelijke omgeving: Stad Antwerpen. Antenna 4, 8–12 (2014).
Google Scholar
Soper, J. & Beggs, J. Assessing the impact of an introduced bee, Anthidium manicatum, on pollinator communities in New Zealand. NZ J. Bot. 51(3), 213–228. https://doi.org/10.1080/0028825X.2013.793202 (2013).Article
Google Scholar
Bennet, D.G., Kelly, D., & Clemens, J. (2018). Food plants and foraging distances for the native bee Lasioglossum sordidum in Christchurch Botanic Gardens. New Zealand J. Ecol. 42(1), 40–47. https://doi.org/10.20417/nzjecol.42.1Vanormelingen, P., Remer, M., & D’Haeseleer, J. (2021) Wilde bijen en bebouwing: meer verliezers dan winnaars? Themanummer bijen in de stad en dorp, Hymenovaria, maart 2021.Rader, R. et al. Alternative pollinator taxa are equally efficient but not as effective as the honey-bee in a mass flowering crop. J. Appl. Ecol. 46(5), 1080–1087. https://doi.org/10.1111/j.1365-2664.2009.01700.x (2009).Article
Google Scholar
Garantonakis, N. et al. Comparing the pollination services of honey bees and wild bees in a watermelon field. Sci. Hortic. 204, 138–144. https://doi.org/10.1016/j.scienta.2016.04.006 (2016).Article
Google Scholar
Foldesi, R., Howlett, B. G., Grass, I. & Batary, P. Larger pollinators deposit more pollen on stigmas across multiple plant species – A meta-analysis. J. Appl. Ecol. 58(4), 699–707. https://doi.org/10.1111/1365-2664.13798 (2021).Article
Google Scholar
Howlett, et al. (2011). Can insect body pollen counts be used to estimate pollen deposition on pak choi stigmas? New Zealand Plant Protection 64, 25–31. https://doi.org/10.30843/nzpp.2011.64.5951Nelson, W., Barry Donovan, L. E. & Howlett, B. Lasioglossum bees – the forgotten pollinators. J. Apic. Res. https://doi.org/10.1080/00218839.2022.2028966 (2022).Article
Google Scholar
Passaseo, A., Pétremand, G., Rochefort, S. & Castella, E. Pollinators emerging from extensive green roofs: Wild bees (Hymenoptera: Antophila) and hoverflies (Diptera: Syrphidae) in Geneva (Switzerland). Urban Ecosyst. 23, 1079–1086. https://doi.org/10.1007/s11252-020-00973-9 (2020).Article
Google Scholar
Odanaka, K. A. & Rehan, S. M. Impact indicators: Effects of land use management on functional trait and phylogenetic diversity of wild bees. Agric. Ecosyst. Environ. 286, 106663 (2019).Article
Google Scholar
Wilson, C. J. & Jamieson, M. A. The effects of urbanisation on bee communities depends on floral resource availability and bee functional traits. PLoS ONE 14(12), e0225852. https://doi.org/10.1371/journal.pone.0225852 (2019).Article
CAS
Google Scholar
Osborne, J. L. et al. Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J. Appl. Ecol. 45, 784–792. https://doi.org/10.1111/j.1365-2664.2007.01359.x (2007).Article
Google Scholar
Glaum, P., Simao, M. C., Vaidya, C., Fitch, G. & Lulinao, B. Big city Bombus: Using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development. R Soc Open Sci. 4, 170156. https://doi.org/10.1098/rsos.170156 (2017) (PMID: 28573023).Article
ADS
Google Scholar
Rasmont, P. et al. Climatic risk and distribution atlas of European bumblebees. Biorisk 10, 1–246 (2015).Article
Google Scholar
Roger, N. et al. Impact of pollen resources drift on common bumblebees in NW Europe. Glob. Change Biol. 23, 68–76 (2017).Article
ADS
Google Scholar
Frankie, G. W. et al. Ecological patterns of bees and their host ornamental flowers in two northern California cities. J. Kansas Entomol. Soc. 78, 227–246 (2005).Article
Google Scholar
Lerman, S. B. & Milam, J. Bee fauna and floral abundance within lawn-dominated suburban yards in Springfield, MA. Ann. Entomol. Soc. Am. 109, 713–723 (2016).Article
CAS
Google Scholar
Braaker, S., Obrist, M. K., Ghazoul, J. & Moretti, M. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs. J. Anim. Ecol. 86, 521–531. https://doi.org/10.1111/1365-2656.12648 (2017).Article
Google Scholar
Passaseo, A., Rochefort, S., Pétremand, G., & Castella, E. (2021) Pollinators on green roofs: Diversity and trait analysis of wild bees (Hymenoptera: Anthophila) and Hoverflies (Diptera: Syrphidae) in an urban area (Geneva, Switzerland). Cities and the Environment (CATE) https://doi.org/10.15365/cate.2021.140201Hennig, E. & Ghazoul, J. Pollinating animals in the urban environment. Urban Ecosyst. 15, 149–166. https://doi.org/10.1007/s11252-011-0202-7 (2012).Article
Google Scholar
Mecke R. (1996) Die fauna begrünter dächer: Ökologische untersuchung verschiedener dachflächer im Hamburger stadtgebiet. University of Hamburg, Diploma dissertation.Bevk, D. The diversity of pollinators on green roofs. Acta Entomol. Slovenica 29(1), 5–14 (2021).
Google Scholar
Speight, M.C.D. (2011) Species accounts of European Syrphidae (Diptera), Glasgow 2011. Syrph the Net, the database of European Syrphidae, vol. 65, 285 pp., Syrph the Net publications, Dublin.Wotton, K. R. et al. Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Curr. Biol. 29, 2167–2173 (2019).Article
CAS
Google Scholar
Boyer, K. J., Fragoso, F. P., Mabin, M. E. D. & Brunet, J. Netting and pan traps fail to identify the pollinator guild of an agricultural crop. Nat. Res. Sci. Rep. 10, 13819. https://doi.org/10.1038/s41598-020-70518-9 (2020).Article
CAS
Google Scholar More
100 Shares149 Views
in Ecology
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript. More
125 Shares119 Views
in Ecology
Essl, F. et al. A conceptual framework for range-expanding species that track human-induced environmental change. BioScience 69, 908–919 (2019).Article
Google Scholar
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article
Google Scholar
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article
Google Scholar
Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).Article
Google Scholar
van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).Article
Google Scholar
Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).Article
Google Scholar
Graae, B. J. et al. Stay or go—how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).Article
Google Scholar
Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543 (2019).Article
Google Scholar
Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).Article
CAS
Google Scholar
Mamantov, M. A., Gibson-Reinemer, D. K., Linck, E. B. & Sheldon, K. S. Climate-driven range shifts of montane species vary with elevation. Glob. Ecol. Biogeogr. 30, 784–794 (2021).Article
Google Scholar
Alexander, J. M. et al. Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp. Bot. 126, 89–103 (2016).Article
Google Scholar
Pauchard, A. et al. Ain’t no mountain high enough: plant invasions reaching new elevations. Front. Ecol. Environ. 7, 479–486 (2009).Article
Google Scholar
Alexander, J. M., MIREN Consortium et al. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc. Natl Acad. Sci. USA 108, 656–661 (2011).Article
CAS
Google Scholar
Seipel, T. et al. Processes at multiple spatial scales determine non-native plant species richness and similarity in mountain regions around the world. Glob. Ecol. Biogeogr. 21, 236–246 (2012).Article
Google Scholar
Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Change 7, 577–580 (2017).Article
Google Scholar
McDougall, K. L. et al. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Invasions 20, 3461–3473 (2018).Article
Google Scholar
Petitpierre, B. et al. Will climate change increase the risk of plant invasions into mountains? Ecol. Appl. 26, 530–544 (2016).Article
Google Scholar
Lembrechts, J. J. et al. Microclimate variability in alpine ecosystems as stepping stones for non‐native plant establishment above their current elevational limit. Ecography 41, 900–909 (2017).Article
Google Scholar
Haider, S. et al. Mountain roads and non-native species modify elevational patterns of plant diversity. Glob. Ecol. Biogeogr. 27, 667–678 (2018).Article
Google Scholar
Wolf, A., Zimmerman, N. B., Anderegg, W. R. L., Busby, P. E. & Christensen, J. Altitudinal shifts of the native and introduced flora of California in the context of 20th-century warming. Glob. Ecol. Biogeogr. 25, 418–429 (2016).Article
Google Scholar
Seipel, T., Alexander, J. M., Edwards, P. J. & Kueffer, C. Range limits and population dynamics of non-native plants spreading along elevation gradients. Perspect. Plant Ecol. Evol. Syst. 20, 46–55 (2016).Article
Google Scholar
Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J. Vegetation Sci. 28, 939–950 (2017).Article
Google Scholar
Becker, T., Dietz, H., Billeter, R., Buschmann, H. & Edwards, P. J. Altitudinal distribution of alien plant species in the Swiss Alps. Perspect. Plant Ecol. Evol. Syst. 7, 173–183 (2005).Article
Google Scholar
Haider, S. et al. The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient. Biol. Invasions 12, 4003–4018 (2010).Article
Google Scholar
Pyšek, P., Jarošík, V., Pergl, J. & Wild, J. Colonization of high altitudes by alien plants over the last two centuries. Proc. Natl Acad. Sci. USA 108, 439–440 (2011).Article
Google Scholar
Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).Article
Google Scholar
Lenoir, J. et al. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33, 295–303 (2010).
Google Scholar
Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).Article
CAS
Google Scholar
Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).Article
CAS
Google Scholar
Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).Article
Google Scholar
Kelly, C. & Price, T. D. Correcting for regression to the mean in behavior and ecology. Am. Nat. 166, 700–707 (2005).Article
Google Scholar
Mazalla, L. & Diekmann, M. Regression to the mean in vegetation science. J. Vegetation Sci. 33, e13117 (2022).Article
Google Scholar
Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).Article
CAS
Google Scholar
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).Article
CAS
Google Scholar
Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).Article
Google Scholar
Haider, S. et al. Think globally, measure locally: the MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecol. Evol. 12, e8590 (2022).Article
Google Scholar
Jacobsen, D. The dilemma of altitudinal shifts: caught between high temperature and low oxygen. Front. Ecol. Environ. 18, 211–218 (2020).Article
Google Scholar
Kueffer, C. et al. in Plant Invasions in Protected Areas Vol. 7 (eds Foxcroft, L. C. et al.) 89–113 (Springer, 2013).Halbritter, A. H., Alexander, J. M., Edwards, P. J. & Billeter, R. How comparable are species distributions along elevational and latitudinal climate gradients? Glob. Ecol. Biogeogr. 22, 1228–1237 (2013).Article
Google Scholar
Vitasse, Y. et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. 96, 1816–1835 (2021).Article
Google Scholar
Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).Article
Google Scholar
Matteodo, M., Wipf, S., Stöckli, V., Rixen, C. & Vittoz, P. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ. Res. Lett. 8, 024043 (2013).Article
Google Scholar
Lembrechts, J. et al. Disturbance is the key to plant invasions in cold environments. Proc. Natl Acad. Sci. USA 113, 14061–14066 (2016).Article
CAS
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).Article
Google Scholar
Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013). http://journal.r-project.org/archive/2013-1/kahle-wickham.pdfSeipel, T., Haider, S. & MIREN consortium. MIREN survey of plant species in mountains (v2.0). Zenodo https://doi.org/10.5281/zenodo.5529072 (2022). More
88 Shares149 Views
in Ecology
Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article
Google Scholar
Dereniowska, M. & Meinard, Y. The unknownness of biodiversity: its value and ethical significance for conservation action. Biol. Conserv. 260, 109199 (2021).Article
Google Scholar
Maron, M. et al. Towards a threat assessment framework for ecosystem services. Trends Ecol. Evol. 32, 240–248 (2017).Article
Google Scholar
Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).Article
CAS
Google Scholar
Taborsky, B. et al. Towards an evolutionary theory of stress responses. Trends Ecol. Evol. 36, 39–48 (2021).Article
Google Scholar
van de Leemput, I. A., Dakos, V., Scheffer, M. & van Nes, E. H. Slow recovery from local disturbances as an indicator for loss of ecosystem resilience. Ecosystems 21, 141–152 (2018).Article
Google Scholar
Fagan, W. F. & Holmes, E. E. Quantifying the extinction vortex. Ecol. Lett. 9, 51–60 (2005).
Google Scholar
Williams, N. F., McRae, L., Freeman, R., Capdevila, P. & Clements, C. F. Scaling the extinction vortex: body size as a predictor of population dynamics close to extinction events. Ecol. Evol. 11, 7069–7079 (2021).Article
Google Scholar
Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).Article
Google Scholar
Shaffer, M. L. in Challenges in the Conservation of Biological Resources (eds. Decker, D. J., Krasny, M. E., Goff, G. R., Smith, C. R. & Gross, D. W.) 107–118 (Routledge, 2019).Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).Article
CAS
Google Scholar
Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).Article
Google Scholar
Coulson, T., Mace, G. M., Hudson, E. & Possingham, H. The use and abuse of population viability analysis. Trends Ecol. Evol. 16, 219–221 (2001).Article
CAS
Google Scholar
Clements, C. F., Drake, J. M., Griffiths, J. I. & Ozgul, A. Factors influencing the detectability of early warning signals of population collapse. Am. Nat. 186, 50–58 (2015).Article
Google Scholar
Patterson, A. C., Strang, A. G. & Abbott, K. C. When and where we can expect to see early warning signals in multispecies systems approaching tipping points: insights from theory. Am. Nat. 198, E12–E26 (2021).Article
Google Scholar
Vinton, A. C., Gascoigne, S. J. L., Sepil, I. & Salguero-Gómez, R. Plasticity’s role in adaptive evolution depends on environmental change components. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.08.008 (2022).Levin, S. A. The problem of pattern and scale in ecology: the Robert H. MacArthur Award lecture. Ecology 73, 1943–1967 (1992).Article
Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article
Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).Article
CAS
Google Scholar
Haberle, I., Marn, N., Geček, S. & Klanjšček, T. Dynamic energy budget of endemic and critically endangered bivalve Pinna nobilis: a mechanistic model for informed conservation. Ecol. Model. 434, 109207 (2020).Article
Google Scholar
Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish. Fish Fish. 11, 149–158 (2010).Article
Google Scholar
Jennings, S. & Blanchard, J. L. Fish abundance with no fishing: predictions based on macroecological theory. J. Anim. Ecol. 73, 632–642 (2004).Article
Google Scholar
Valderrama, D. & Fields, K. H. Flawed evidence supporting the metabolic theory of ecology may undermine goals of ecosystem-based fishery management: the case of invasive Indo-Pacific lionfish in the western Atlantic. ICES J. Mar. Sci. 74, 1256–1267 (2017).Article
Google Scholar
Marshall, D. J. & McQuaid, C. D. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology. Proc. R. Soc. B 278, 281–288 (2011).Article
Google Scholar
Rombouts, I., Beaugrand, G., Ibaňez, F., Chiba, S. & Legendre, L. Marine copepod diversity patterns and the metabolic theory of ecology. Oecologia 166, 349–355 (2011).Article
Google Scholar
Allen, A. P. & Gillooly, J. F. The mechanistic basis of the metabolic theory of ecology. Oikos 116, 1073–1077 (2022).Article
Google Scholar
Lawton, J. H. From physiology to population dynamics and communities. Funct. Ecol. 5, 155–161 (1991).Article
Google Scholar
Ames, E. M. et al. Striving for population-level conservation: integrating physiology across the biological hierarchy. Conserv. Physiol. 8, coaa019 (2020).Article
Google Scholar
Berger-Tal, O. et al. Integrating animal behavior and conservation biology: a conceptual framework. Behav. Ecol. 22, 236–239 (2011).Article
Google Scholar
Baruah, G., Clements, C. F., Guillaume, F. & Ozgul, A. When do shifts in trait dynamics precede population declines? Am. Nat. 193, 633–644 (2019).Article
Google Scholar
Dakos, V. et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7, e41010 (2012).Article
CAS
Google Scholar
Ward, R. J., Griffiths, R. A., Wilkinson, J. W. & Cornish, N. Optimising monitoring efforts for secretive snakes: a comparison of occupancy and N-mixture models for assessment of population status. Sci. Rep. 7, 18074 (2017).Article
Google Scholar
Thompson, W. Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (Island Press, 2013).Clements, C. F., Blanchard, J. L., Nash, K. L., Hindell, M. A. & Ozgul, A. Body size shifts and early warning signals precede the historic collapse of whale stocks. Nat. Ecol. Evol. 1, 0188 (2017).Article
Google Scholar
Burant, J. B., Park, C., Betini, G. S. & Norris, D. R. Early warning indicators of population collapse in a seasonal environment. J. Anim. Ecol. 90, 1538–1549 (2021).Article
Google Scholar
Tuomainen, U. & Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev. 86, 640–657 (2011).Article
Google Scholar
Mazza, V., Dammhahn, M., Lösche, E. & Eccard, J. A. Small mammals in the big city: behavioural adjustments of non-commensal rodents to urban environments. Glob. Change Biol. 26, 6326–6337 (2020).Article
Google Scholar
Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).Article
Google Scholar
Speakman, J. R., Król, E. & Johnson, M. S. The functional significance of individual variation in basal metabolic rate. Physiol. Biochem. Zool. 77, 900–915 (2004).Article
Google Scholar
Péron, G. et al. Evidence of reduced individual heterogeneity in adult survival of long-lived species. Evolution 70, 2909–2914 (2016).Article
Google Scholar
Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224 (2016).Article
Google Scholar
Kirkwood, T. B. L., Rose, M. R., Harvey, P. H., Partridge, L. & Southwood, S. R. Evolution of senescence: late survival sacrificed for reproduction. Phil. Trans. R. Soc. Lond. B 332, 15–24 (1991).Article
CAS
Google Scholar
Mallela, A. & Hastings, A. The role of stochasticity in noise-induced tipping point cascades: a master equation approach. Bull. Math. Biol. 83, 53 (2021).Article
Google Scholar
Burthe, S. J. et al. Do early warning indicators consistently predict nonlinear change in long-term ecological data? J. Appl. Ecol. 53, 666–676 (2016).Article
Google Scholar
Vucetich, J. A. & Waite, T. A. Erosion of heterozygosity in fluctuating populations. Conserv. Biol. 13, 860–868 (1999).Article
Google Scholar
Kramer, A. M. & Drake, J. M. Experimental demonstration of population extinction due to a predator-driven Allee effect. J. Anim. Ecol. 79, 633–639 (2010).Article
Google Scholar
Oram, E. & Spitze, K. Depth selection by Daphnia pulex in response to Chaoborus kairomone. Freshw. Biol. 58, 409–415 (2013).Article
Google Scholar
Trites, A. W. & Donnelly, C. P. The decline of Steller sea lions Eumetopias jubatus in Alaska: a review of the nutritional stress hypothesis. Mammal. Rev. 33, 3–28 (2003).Article
Google Scholar
Sibly, R. M., Barker, D., Hone, J. & Pagel, M. On the stability of populations of mammals, birds, fish and insects. Ecol. Lett. 10, 970–976 (2007).Article
Google Scholar
Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).Article
Google Scholar
Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).Article
Google Scholar
Tanner, R. L. & Dowd, W. W. Inter-individual physiological variation in responses to environmental variation and environmental change: integrating across traits and time. Comp. Biochem. Physiol. A 238, 110577 (2019).Article
CAS
Google Scholar
Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A. & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Glob. Change Biol. 27, 4564–4574 (2021).Article
CAS
Google Scholar
Fayet, A. L., Clucas, G. V., Anker‐Nilssen, T., Syposz, M. & Hansen, E. S. Local prey shortages drive foraging costs and breeding success in a declining seabird, the Atlantic puffin. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13442 (2021).Pierce, C. L. Predator avoidance, microhabitat shift, and risk-sensitive foraging in larval dragonflies. Oecologia 77, 81–90 (1988).Article
CAS
Google Scholar
Leibold, M. & Tessier, A. J. Contrasting patterns of body size for Daphnia species that segregate by habitat. Oecologia 86, 342–348 (1991).Article
Google Scholar
Charmantier, A. & Gienapp, P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol. Appl. 7, 15–28 (2014).Article
Google Scholar
Kopp, M. & Matuszewski, S. Rapid evolution of quantitative traits: theoretical perspectives. Evol. Appl. 7, 169–191 (2014).Article
Google Scholar
Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).Article
Google Scholar
Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).Article
Google Scholar
Chevin, L.-M., Collins, S. & Lefèvre, F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct. Ecol. 27, 967–979 (2013).Article
Google Scholar
Ferriere, R. & Legendre, S. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Phil. Trans. R. Soc. B 368, 20120081 (2013).Article
Google Scholar
Rebecchi, L., Boschetti, C. & Nelson, D. R. Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers and nematodes. Hydrobiologia 847, 2779–2799 (2020).Article
Google Scholar
Hansson, B. & Westerberg, L. On the correlation between heterozygosity and fitness in natural populations. Mol. Ecol. 11, 2467–2474 (2002).Article
Google Scholar
Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article
CAS
Google Scholar
McClanahan, T. R. et al. Highly variable taxa-specific coral bleaching responses to thermal stresses. Mar. Ecol. Prog. Ser. 648, 135–151 (2020).Article
Google Scholar
Reside, A. E. et al. Beyond the model: expert knowledge improves predictions of species’ fates under climate change. Ecol. Appl. 29, e01824 (2019).Article
Google Scholar
Desjonquères, C., Gifford, T. & Linke, S. Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshw. Biol. 65, 7–19 (2020).Article
Google Scholar
Sequeira, A. M. M. et al. A standardisation framework for bio-logging data to advance ecological research and conservation. Methods Ecol. Evol. 12, 996–1007 (2021).Article
Google Scholar
Shimada, T. et al. Optimising sample sizes for animal distribution analysis using tracking data. Methods Ecol. Evol. 12, 288–297 (2021).Article
Google Scholar
Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article
Google Scholar
Krause, D. J., Hinke, J. T., Perryman, W. L., Goebel, M. E. & LeRoi, D. J. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS ONE 12, e0187465 (2017).Article
Google Scholar
Besson, M. et al. Towards the fully automated monitoring of ecological communities. Ecol. Lett. https://doi.org/10.1111/ele.14123 (2022).Article
Google Scholar
Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).Article
Google Scholar
Ingram, D. J., Ferreira, G. B., Jones, K. E. & Mace, G. M. Targeting conservation actions at species threat response thresholds. Trends Ecol. Evol. 36, 216–226 (2021).Article
Google Scholar
Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991 (2018).Article
Google Scholar
Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).Article
CAS
Google Scholar
Enquist, B. J. et al. in Advances in Ecological Research Vol. 52 (eds Pawar, S. et al.) 249–318 (Academic Press, 2015).Wei, W. W. S. Multivariate Time Series Analysis and Applications (John Wiley & Sons, 2018).Holmes, E. E., Ward, E. J. & Wills, K. MARSS: multivariate autoregressive state-space models for analyzing time-series data. R J. 4, 11–19 (2012).Article
Google Scholar
Zhu, M., Yamakawa, T. & Sakai, T. Combined use of trawl fishery and research vessel survey data in a multivariate autoregressive state-space (MARSS) model to improve the accuracy of abundance index estimates. Fish. Sci. 84, 437–451 (2018).Article
CAS
Google Scholar
Lai, G., Chang, W.-C., Yang, Y. & Liu, H. Modeling long- and short-term temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval 95–104, https://doi.org/10.1145/3209978.3210006 (ACM, 2018).Bury, T. M. et al. Deep learning for early warning signals of tipping points. Proc. Natl Acad. Sci. USA 118, e2106140118 (2021).Article
CAS
Google Scholar
Lara-Benítez, P., Carranza-García, M. & Riquelme, J. C. An experimental review on deep learning architectures for time series forecasting. Int. J. Neural Syst. 31, 2130001 (2021).Article
Google Scholar
Guo, Q. et al. Application of deep learning in ecological resource research: theories, methods, and challenges. Sci. China Earth Sci. 63, 1457–1474 (2020).Article
Google Scholar
Rogers, T. L., Johnson, B. J. & Munch, S. B. Chaos is not rare in natural ecosystems. Nat. Ecol. Evol. 6, 1105–1111 (2022).Article
Google Scholar
Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob. Change Biol. 24, 3780–3790 (2018).Article
Google Scholar
Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).Article
Google Scholar
Koleček, J., Adamík, P. & Reif, J. Shifts in migration phenology under climate change: temperature vs. abundance effects in birds. Clim. Change 159, 177–194 (2020).Article
Google Scholar
Altermatt, F. et al. Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6, 218–231 (2015).Article
Google Scholar
Beermann, A. J. et al. Multiple-stressor effects on stream macroinvertebrate communities: a mesocosm experiment manipulating salinity, fine sediment and flow velocity. Sci. Total Environ. 610–611, 961–971 (2018).Article
Google Scholar
Clements, C. F. & Ozgul, A. Including trait-based early warning signals helps predict population collapse. Nat. Commun. 7, 10984 (2016).Article
CAS
Google Scholar
Jacquet, C. & Altermatt, F. The ghost of disturbance past: long-term effects of pulse disturbances on community biomass and composition. Proc. R. Soc. B 287, 20200678 (2020).Article
Google Scholar
Greggor, A. L. et al. Research priorities from animal behaviour for maximising conservation progress. Trends Ecol. Evol. 31, 953–964 (2016).Article
Google Scholar
Couvillon, M. J., Schürch, R. & Ratnieks, F. L. W. Waggle dance distances as integrative indicators of seasonal foraging challenges. PLoS ONE 9, e93495 (2014).Article
Google Scholar
Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Predictions replaced by facts: a keystone species’ behavioural responses to declining Arctic sea-ice. Biol. Lett. 11, 20150803 (2015).Article
Google Scholar
Holt, R. E. & Jørgensen, C. Climate change in fish: effects of respiratory constraints on optimal life history and behaviour. Biol. Lett. 11, 20141032 (2015).Article
Google Scholar
Gauzens, B. et al. Adaptive foraging behaviour increases vulnerability to climate change. Preprint at https://doi.org/10.1101/2021.05.05.442768 (2021).Lenda, M., Witek, M., Skórka, P., Moroń, D. & Woyciechowski, M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions 15, 2403–2414 (2013).Article
Google Scholar
Hertel, A. G. et al. Don’t poke the bear: using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).Article
Google Scholar
Tini, M. et al. Use of space and dispersal ability of a flagship saproxylic insect: a telemetric study of the stag beetle (Lucanus cervus) in a relict lowland forest. Insect Conserv. Divers. 11, 116–129 (2018).Article
Google Scholar
Kunc, H. P. & Schmidt, R. Species sensitivities to a global pollutant: a meta-analysis on acoustic signals in response to anthropogenic noise. Glob. Change Biol. 27, 675–688 (2021).Article
Google Scholar
Anestis, A., Lazou, A., Pörtner, H. O. & Michaelidis, B. Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am. J. Physiol. 293, R911–R921 (2007).CAS
Google Scholar
Pacherres, C. O., Schmidt, G. M. & Richter, C. Autotrophic and heterotrophic responses of the coral Porites lutea to large amplitude internal waves. J. Exp. Biol. 216, 4365–4374 (2013).
Google Scholar
Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).Article
Google Scholar
Singh, R., Prathibha, P. & Jain, M. Effect of temperature on life-history traits and mating calls of a field cricket, Acanthogryllus asiaticus. J. Therm. Biol. 93, 102740 (2020).Article
Google Scholar
Pellegrini, A. Y., Romeu, B., Ingram, S. N. & Daura-Jorge, F. G. Boat disturbance affects the acoustic behaviour of dolphins engaged in a rare foraging cooperation with fishers. Anim. Conserv. 24, 613–625 (2021).Article
Google Scholar
McMahan, M. D. & Grabowski, J. H. Nonconsumptive effects of a range-expanding predator on juvenile lobster (Homarus americanus) population dynamics. Ecosphere 10, e02867 (2019).Article
Google Scholar
Vilhunen, S., Hirvonen, H. & Laakkonen, M. V.-M. Less is more: social learning of predator recognition requires a low demonstrator to observer ratio in Arctic charr (Salvelinus alpinus). Behav. Ecol. Sociobiol. 57, 275–282 (2005).Article
Google Scholar
Ortega, Z., Mencía, A. & Pérez-Mellado, V. Rapid acquisition of antipredatory responses to new predators by an insular lizard. Behav. Ecol. Sociobiol. 71, 1 (2017).Article
Google Scholar
Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B 374, 20180174 (2019).Article
Google Scholar
Pigeon, G., Ezard, T. H. G., Festa-Bianchet, M., Coltman, D. W. & Pelletier, F. Fluctuating effects of genetic and plastic changes in body mass on population dynamics in a large herbivore. Ecology 98, 2456–2467 (2017).Article
Google Scholar
Lomolino, M. V. & Perault, D. R. Body size variation of mammals in a fragmented, temperate rainforest. Conserv. Biol. 21, 1059–1069 (2007).Article
Google Scholar
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).Article
Google Scholar
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article
Google Scholar
Thoral, E. et al. Changes in foraging mode caused by a decline in prey size have major bioenergetic consequences for a small pelagic fish. J. Anim. Ecol. 90, 2289–2301 (2021).Article
Google Scholar
Stirling, I. & Derocher, A. E. Effects of climate warming on polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706 (2012).Article
Google Scholar
Spanbauer, T. L. et al. Body size distributions signal a regime shift in a lake ecosystem. Proc. R. Soc. B 283, 20160249 (2016).Article
Google Scholar
Bjorndal, K. A. et al. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic. Glob. Change Biol. 23, 4556–4568 (2017).Article
Google Scholar
Eshun-Wilson, F., Wolf, R., Andersen, T., Hessen, D. O. & Sperfeld, E. UV radiation affects antipredatory defense traits in Daphnia pulex. Ecol. Evol. 10, 14082–14097 (2020).Article
Google Scholar
Zhang, H., Hollander, J. & Hansson, L.-A. Bi-directional plasticity: rotifer prey adjust spine length to different predator regimes. Sci. Rep. 7, 10254 (2017).Article
Google Scholar
Simbula, G., Vignoli, L., Carretero, M. A. & Kaliontzopoulou, A. Fluctuating asymmetry as biomarker of pesticides exposure in the Italian wall lizards (Podarcis siculus). Zoology 147, 125928 (2021).Article
Google Scholar
Leary, R. F. & Allendorf, F. W. Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol. Evol. 4, 214–217 (1989).Article
CAS
Google Scholar
Gavrilchuk, K. et al. Trophic niche partitioning among sympatric baleen whale species following the collapse of groundfish stocks in the Northwest Atlantic. Mar. Ecol. Prog. Ser. 497, 285–301 (2014).Article
Google Scholar
Kershaw, J. L. et al. Declining reproductive success in the Gulf of St. Lawrence’s humpback whales (Megaptera novaeangliae) reflects ecosystem shifts on their feeding grounds. Glob. Change Biol. 27, 1027–1041 (2021).Article
CAS
Google Scholar
Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).Article
Google Scholar
Obbard, M. E. et al. Re-assessing abundance of Southern Hudson Bay polar bears by aerial survey: effects of climate change at the southern edge of the range. Arct. Sci. 4, 634–655 (2018).Article
Google Scholar
Hutchings, J. A. The cod that got away. Nature 428, 899–900 (2004).Article
CAS
Google Scholar
Zhang, F. Early warning signals of population productivity regime shifts in global fisheries. Ecol. Indic. 115, 106371 (2020).Article
Google Scholar
Fulton, G. R. The Bramble Cay melomys: the first mammalian extinction due to human-induced climate change. Pac. Conserv. Biol. 23, 1–3 (2017).Article
Google Scholar More
88 Shares109 Views
in Ecology
Rockström, J. et al. A safe operation space for humanity. Nature 461, 472–475 (2009).Article
Google Scholar
Chancel, L., Piketty, T., Saez, E. & Zucman, G. World Inequality Report 2022 (Belknap Press, 2022).Ivanova, D. et al. Environmental impact assessment of household consumption. J. Ind. Ecol. 20, 526–536 (2016).Article
CAS
Google Scholar
Steen-Olsen, K., Weinzettel, J., Cranston, G., Ercin, A. E. & Hertwich, E. G. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade. Environ. Sci. Technol. 46, 10883–10891 (2012).Article
CAS
Google Scholar
Tukker, A. et al. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Glob. Environ. Change 40, 171–181 (2016).Article
Google Scholar
Bruckner, B., Hubacek, K., Shan, Y., Zhong, H. & Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 5, 311–320 (2022).Article
Google Scholar
Hubacek, K. et al. Global carbon inequality. Energy, Ecol. Environ. 2, 361–369 (2017).Article
Google Scholar
Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Change 23, 1178–1186 (2013).Article
Google Scholar
Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).Article
CAS
Google Scholar
Lucas, P. L., Wilting, H. C., Hof, A. F. & Van Vuuren, D. P. Allocating planetary boundaries to large economies: distributional consequences of alternative perspectives on distributive fairness. Glob. Environ. Change 60, 102017 (2020).Article
Google Scholar
Beylot, A. et al. Assessing the environmental impacts of EU consumption at macro-scale. J. Clean. Prod. 216, 382–393 (2019).Article
Google Scholar
Koslowski, M., Moran, D. D., Tisserant, A., Verones, F. & Wood, R. Quantifying Europe’s biodiversity footprints and the role of urbanization and income. Glob. Sustain. 3, e1 (2020).Lutter, S., Pfister, S., Giljum, S., Wieland, H. & Mutel, C. Spatially explicit assessment of water embodied in European trade: a product-level multi-regional input-output analysis. Glob. Environ. Change 38, 171–182 (2016).Article
Google Scholar
Stadler, K. et al. EXIOBASE 3 (3.8.1) [Data set]. Zenodo https://doi.org/10.5281/ZENODO.4588235 (2021).Roadmap to a Resource Efficient Europe (European Commission, 2011).Steinmann, Z. J. N. et al. Headline environmental indicators revisited with the global multi-regional input–output database EXIOBASE. J. Ind. Ecol. 22, 565–573 (2018).Article
Google Scholar
Ivanova, D. et al. Mapping the carbon footprint of EU regions. Environ. Res. Lett. 12, 054013 (2017).Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).Article
CAS
Google Scholar
Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 5, 157–166 (2022).Dorninger, C. et al. The effect of industrialization and globalization on domestic land-use: a global resource footprint perspective. Glob. Environ. Change 69, 102311 (2021).Article
Google Scholar
Mekonnen, M. M. & Gerbens-Leenes, W. The water footprint of food. Water 12, 12 (2020).Article
Google Scholar
Prell, C. & Feng, K. Unequal carbon exchanges: the environmental and economic impacts of iconic U.S. consumption items. J. Ind. Ecol. 20, 537–546 (2016).Article
Google Scholar
Prell, C., Feng, K., Sun, L., Geores, M. & Hubacek, K. The economic gains and environmental losses of US consumption: a world-systems and input-output approach. Soc. Forces 93, 405–428 (2014).Article
Google Scholar
Prell, C. Wealth and pollution inequalities of global trade: a network and input-output approach. Soc. Sci. J. 53, 111–121 (2016).Article
Google Scholar
World Economic Outlook (October 2022) (International Monetary Fund, 2022); https://www.imf.org/external/datamapper/datasets/WEOWilting, H. C., Schipper, A. M., Ivanova, O., Ivanova, D. & Huijbregts, M. A. J. Subnational greenhouse gas and land-based biodiversity footprints in the European Union. J. Ind. Ecol. 25, 79–94 (2021). https://doi.org/10.1111/jiec.13042Cabernard, L. & Pfister, S. A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Sci. Total Environ. 755, 142587 (2021).Jakob, M., Ward, H. & Steckel, J. C. Sharing responsibility for trade-related emissions based on economic benefits. Glob. Environ. Chang. 66, 102207 (2021).Article
Google Scholar
Wood, R. et al. The structure, drivers and policy implications of the European carbon footprint. Clim. Policy 20, S39–S57 (2020).Article
Google Scholar
Wood, R. et al. Growth in environmental footprints and environmental impacts embodied in trade: resource efficiency indicators from EXIOBASE3. J. Ind. Ecol. 22, 553–564 (2018).Article
Google Scholar
Hubacek, K., Chen, X., Feng, K., Wiedmann, T. & Shan, Y. Evidence of decoupling consumption-based CO2 emissions from economic growth. Adv. Appl. Energy 4, 100074 (2021).Article
Google Scholar
Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).Article
CAS
Google Scholar
Dorninger, C. et al. Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century. Ecol. Econ. 179, 106824 (2021).Article
Google Scholar
Hickel, J., Dorninger, C., Wieland, H. & Suwandi, I. Imperialist appropriation in the world economy: drain from the global South through unequal exchange, 1990–2015. Glob. Environ. Change 73, 102467 (2022).Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).Article
CAS
Google Scholar
Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).Article
CAS
Google Scholar
Ivanova, D. & Wood, R. The unequal distribution of household carbon footprints in Europe and its link to sustainability. Glob. Sustain. 3, e18 (2020).Hickel, J., O’Neill, D. W., Fanning, A. L. & Zoomkawala, H. National responsibility for ecological breakdown: a fair-shares assessment of resource use, 1970–2017. Lancet Planet. Heal. 6, e342–e349 (2022).Article
Google Scholar
Otto, I. M., Kim, K. M., Dubrovsky, N. & Lucht, W. Shift the focus from the super-poor to the super-rich. Nat. Clim. Change 9, 82–84 (2019).Article
Google Scholar
Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).Nielsen, K. S., Nicholas, K. A., Creutzig, F., Dietz, T. & Stern, P. C. The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. Nat. Energy 6, 1011–1016 (2021).Article
Google Scholar
Jakob, M. Why carbon leakage matters and what can be done against it. One Earth 4, 609–614 (2021).Article
Google Scholar
Lave, L. B. Using input–output analysis to estimate economy-wide discharges. Environ. Sci. Technol. 29, 420A–426A (1995).Article
CAS
Google Scholar
Wiedmann, T. A review of recent multi-region input–output models used for consumption-based emission and resource accounting. Ecol. Econ. 69, 211–222 (2009).Article
Google Scholar
Ewing, B. R. et al. Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol. Indic. 23, 1–8 (2012).Article
Google Scholar
Brizga, J., Feng, K. & Hubacek, K. Household carbon footprints in the Baltic States: a global multi-regional input–output analysis from 1995 to 2011. Appl. Energy 189, 780–788 (2017).Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).Article
CAS
Google Scholar
Zhong, H., Feng, K., Sun, L., Cheng, L. & Hubacek, K. Household carbon and energy inequality in Latin American and Caribbean countries. J. Environ. Manag. 273, 110979 (2020).Article
Google Scholar
Stadler, K. et al. EXIOBASE 3: developing a time series of detailed environmentally extended multi-regional input–output tables. J. Ind. Ecol. 22, 502–515 (2018).Article
Google Scholar
Hardadi, G., Buchholz, A. & Pauliuk, S. Implications of the distribution of German household environmental footprints across income groups for integrating environmental and social policy design. J. Ind. Ecol. 25, 95–113 (2021).Zhang, Q. et al. Transboundary health impacts of transported global air pollution and international trade. Nature 543, 705–709 (2017).Article
CAS
Google Scholar
Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).Article
CAS
Google Scholar
IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).Schmidt, S. et al. Understanding GHG emissions from Swedish consumption—current challenges in reaching the generational goal. J. Clean. Prod. 212, 428–437 (2019).Article
Google Scholar
Huijbregts, M. A. J. Priority Assessment of Toxic Substances in the Frame of LCA. Development and Application of the Multi-Media Fate, Exposure and Effect Model USES-LCA (Interfaculty Department of Envrionmental Science, 1999).Huijbregts, M. A. J. Priority Assessment of Toxic Substances in the Frame of LCA. Time Horizon Dependency in Toxicity Potentials Calculated with the Multi-Media Fate, Exposure and Effects Model USES-LCA (Institute for Biodiversity and Ecosystem Dynamics, 2000).International Reference Life Cycle Data System (ILCD) Handbook (Publications Office EU, 2011).Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints an d their ecosystem consequences. Sci. Rep. 7, 40743 (2017).Chaudhary, A., Pfister, S. & Hellweg, S. Spatially explicit analysis of biodiversity loss due to global agriculture, pasture and forest land use from a producer and consumer perspective. Environ. Sci. Technol. 50, 3928–3936 (2016).Article
CAS
Google Scholar
Chaudhary, A., Verones, F., De Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).Article
CAS
Google Scholar
Marquardt, S. G. et al. Consumption-based biodiversity footprints—do different indicators yield different results? Ecol. Indic. 103, 461–470 (2019).Article
Google Scholar
World Development Indicators DataBank (World Bank, 2022); https://databank.worldbank.org/source/world-development-indicatorsWorld Population Prospects 2022 (United Nations, 2022); https://population.un.org/wpp/Natural Earth Vector (Natural Earth, 2022); https://www.naturalearthdata.com/Lahti, L., Huovari, J., Kainu, M. & Biecek, P. Retrieval and analysis of eurostat open data with the Eurostat package. R J. 9, 385–392 (2017).Castellani, V., Beylot, A. & Sala, S. Environmental impacts of household consumption in Europe: comparing process-based LCA and environmentally extended input-output analysis. J. Clean. Prod. 240, 117966 (2019).Article
Google Scholar More
This portal is not a newspaper as it is updated without periodicity. It cannot be considered an editorial product pursuant to law n. 62 of 7.03.2001. The author of the portal is not responsible for the content of comments to posts, the content of the linked sites. Some texts or images included in this portal are taken from the internet and, therefore, considered to be in the public domain; if their publication is violated, the copyright will be promptly communicated via e-mail. They will be immediately removed.