A simple and effective approach to quantitatively characterize structural complexity
1.
Zenner, E. Does old-growth condition imply high live-tree structural complexity?. For. Ecol. Manag. 195, 243–258 (2004).
Article Google Scholar
2.
Forest Ecosystem Management Assessment Team (FEMAT). Draft Supplemental Environmental Impact Statement on Management of Habitat for Late Successional and Oldgrowth Forest Related Species within the Range of the Northern Spotted Owl (US Government Printing Office, Washington, DC, 1993).
Google Scholar
3.
Wan, P. et al. Impacts of different forest management methods on the stand spatial structure of a natural Quercus aliena var. acuteserrata forest in Xiaolongshan, China. Ecol. Inform. 50, 86–94 (2019).
Article Google Scholar
4.
Carrer, M., Castagneri, D., Popa, I., Pividori, M. & Lingua, E. Tree spatial patterns and stand attributes in temperate forests: The importance of plot size, sampling design, and null model. For. Ecol. Manag. 407, 125–134 (2018).
Article Google Scholar
5.
Bauhus, J., Puettmann, K. & Messier, C. Silviculture for old-growth attributes. For. Ecol. Manag. 258, 525–537 (2009).
Article Google Scholar
6.
Messier, C., Puettmann, K. J. & Coates, D. K. Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change (Routledge, Abingdon, 2013).
Google Scholar
7.
McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manage. 218, 1–24 (2005).
Article Google Scholar
8.
Di Filippo, A., Biondi, F., Piovesan, G. & Ziaco, E. Tree ring-based metrics for assessing old-growth forest naturalness. J. Appl. Ecol. 54, 737–749 (2017).
Article Google Scholar
9.
Parrotta, J. A., Turnbull, J. W. & Jones, N. Catalyzing native forest regeneration on degraded tropical lands. For. Ecol. Manag. 99, 1–7 (1997).
Article Google Scholar
10.
Neumann, M. & Starlinger, F. The significance of different indices for stand structure and diversity in forests. For. Ecol. Manag. 145, 91–106 (2001).
Article Google Scholar
11.
McCleary, K. & Mowat, G. Using forest structural diversity to inventory habitat diversity of forest-dwelling wildlife in the West Kootenay region of British Columbia 2 1–13 (2002).
12.
Ishii, H. T., Tanabe, S.-I. & Hiura, T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. For. Sci. 50, 342–355 (2004).
Google Scholar
13.
Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
Article Google Scholar
14.
Long, J. N. & Shaw, J. D. The influence of compositional and structural diversity on forest productivity. Forestry 83, 121–128 (2010).
Article Google Scholar
15.
Dănescu, A., Albrecht, A. & Bauhus, J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 182, 319–333 (2016).
ADS PubMed Article Google Scholar
16.
Ehbrecht, M., Schall, P., Ammer, C. & Seidel, D. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric. For. Meteorol. 242, 1–9 (2017).
ADS Article Google Scholar
17.
Zenner, E. K. Do residual trees increase structural complexity in pacific northwest?. Ecol. Appl. 10, 800–810 (2000).
Article Google Scholar
18.
Hardiman, B. S., Bohrer, G., Gough, C. M., Vogel, C. S. & Curtisi, P. S. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92, 1818–1827 (2011).
PubMed Article Google Scholar
19.
Puettmann, K. J., Coates, K. D. & Messier, C. C. A Critique of Silviculture: Managing for Complexity (Island Press, Washington, D.C., 2012).
Google Scholar
20.
Robertson, G. P. & Tiedje, J. Spatial variability in a successional plant community: patterns of nitrogen availability. Ecology 69, 0–1524 (1988).
21.
Palmer, M. W. Spatial scale and patterns of species-environment relationships in hardwood forest of the North Carolina piedmont. Coenoses, 79–87 (1990).
22.
Lechowicz, M. & Bell, G. The ecology and genetics of fitness in forest plants. II. Microspatial heterogeneity of the edaphic environment. J. Ecol. 79, 687 (1991).
23.
Song, B. et al. Modeling canopy structure and heterogeneity across scales: from crowns to canopy. For. Ecol. Manage. 96, 217–229 (1997).
Article Google Scholar
24.
Zenner, E. & Peck, J. Characterizing structural conditions in mature managed red pine: spatial dependency of metrics and adequacy of plot size. For. Ecol. Manag. 257, 311–320 (2009).
Article Google Scholar
25.
Pommerening, A. & Uria-Diez, J. Do large forest trees tend towards high species mingling? Ecol. Inform. 42 (2017).
26.
Wang, H., Peng, H., Hui, G., Hu, Y. & Zhao, Z. Large trees are surrounded by more heterospecific neighboring trees in Korean pine broad-leaved natural forests. Sci. Rep. 8, 9149 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
27.
Hubbell, S. P., Ahumada, J. A., Condit, R. & Foster, R. B. Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecol. Res. 16, 859–875 (2001).
Article Google Scholar
28.
Stoll, P. & Newbery, D. M. Evidence of species-specific neighborhood effects in the dipterocarpaceae of a bornean rain forest. Ecology 86, 3048–3062 (2005).
Article Google Scholar
29.
Pillay, T. & Ward, D. Spatial pattern analysis and competition between Acacia karroo trees in humid savannas. Plant Ecol. 213 (2012).
30.
Fueldner, K., Sattler, S., Zucchini, W. & Gadow, K. V. Modelling person-specific tree selection probabilities in a thinning. Allgemeine Forst Und Jagdzeitung (1996).
31.
Zenner, E. & Hibbs, D. A new method for modeling the heterogeneity of forest structure. For. Ecol. Manag. 129 (2000).
32.
Pommerening, A. Approaches to quantifying forest structures. Forestry 75(3), 305–324 (2002).
Article Google Scholar
33.
Beckschäfer, P. et al. Enhanced structural complexity index: an improved index for describing forest structural complexity. Open J. For. 3, 23–29 (2013).
Google Scholar
34.
Kint, V., van Meirvenne, M., Nachtergale, L., Geudens, G. & Lust, N. Spatial methods for quantifying forest stand structure development: a comparison between nearest-neighbor indices and variogram analysis. For. Sci. 49, 36–49 (2003).
Google Scholar
35.
Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).
Article Google Scholar
36.
Ripley, B. D. Spatial Statistics (Wiley, New York, 1981).
37.
Ripley, B. D. Modelling spatial patterns. J. R. Stat. Soc. 39(2), 172–212 (1977).
MathSciNet Google Scholar
38.
Pommerening, A. & Grabarnik, P. Individual-Based Methods in Forest Ecology and Management (Springer, Berlin, 2019).
39.
Gadow, K., Albert, M. & Hui, G. Das Winkelmaß – ein Strukturparameter zur beschreibung der Individualverteilung in Waldbeständen. Centralblatt für das gesamte Forstwesen 115(1), 1–10 (1998).
Google Scholar
40.
Aguirre, O., Hui, G., Gadow, K. v. & Jiménez, J. An analysis of spatial forest structure using neighbourhood-based variables. For. Ecol. Manag. 183, 137–145 (2003).
41.
Hui, G. & Gadow, K. Das Winkelmass – Theoretische Überlegungen zum optimalen Standardwinkel. Allgemeine Forst u. Jagdzeitung 173(9), 173–177 (2002).
Google Scholar
42.
Pommerening, A. Evaluating structural indices by reversing forest structural analysis. For. Ecol. Manage. 224, 266–277 (2006).
Article Google Scholar
43.
Li, Y., Hui, G., Zhao, Z., Hu, Y. & Adler, P. The bivariate distribution characteristics of spatial structure in natural Korean pine broad-leaved forest. Journal of Vegetation Science 23 (2012).
44.
Graz, F. P. Spatial diversity of dry savanna woodlands. Assessing the spatial diversity of a dry savanna woodland stand in northern Namibia using neighbourhood-based measures. Biodivers. Conserv. 00, 1–16 (2004).
45.
Pastorella, F. & Paletto, A. Stand structure indices as tools to support forest management: an application in Trentino forests (Italy). J. For. Sci. 59, 159–168 (2013).
Article Google Scholar
46.
Zhao, Z. et al. Testing the significance of different tree spatial distribution patterns based on the Uniform Angle Index. Can. J. For. Res. 44(11), 1417–1425 (2014).
Article Google Scholar
47.
Zhang, G. et al. Composition of basal area in natural forests based on the uniform angle index. Ecol. Inform. 45, 1–8 (2018).
Article Google Scholar
48.
Stiell, W. How uniformity of tree distribution affects stand growth. For. Chron. 54, 156–158 (1978).
Article Google Scholar
49.
Jay, A., Nichols, J. & Vanclay, J. Social and ecological issues for private native forestry in north-eastern New South Wales Australia. Small Scale For. 6, 115–126 (2007).
Article Google Scholar
50.
Zhang, G. et al. Designing near-natural planting patterns for plantation forests in China. For. Ecosyst. 6, 137 (2019).
Article Google Scholar
51.
Moeur, M. Characterising spatial patterns of trees using stem-mapped data. For. Sci. 39, 756–775 (1993).
ADS Google Scholar
52.
Stohlgren, T. Spatial patterns of giant sequoia (Sequoiadendrongiganteum) in two sequoia groves in Sequoia National Park California. Can. J. For. Res. 23, 120–132 (2011).
Article Google Scholar
53.
Pommerening, A. & Grabarnik, P. Individual-based Methods in Forest Ecology and Management (2019).
54.
Clark, P. & Evans, F. Distance to nearest neighbor as a measure of spatial relations. Ecology 35, 445–453 (1954).
Article Google Scholar
55.
Assunçáo, R. Testing spatial randomness by means of angle. Biometrics 50, 531–537 (1994).
MATH Article Google Scholar
56.
Corral-Rivas JJ. PhD thesis. University of Göttingen (2006).
57.
Hui, G., Zhang, G., Zhao, Z. & Yang, A. Methods of forest structure research: a review. Curr. For. Rep. 5(3), 142–154. https://doi.org/10.1007/S40725-019-00090-7 (2019).
Article Google Scholar
58.
Gadow, K., Hui, G. & Albert, M. Das Winkelmaß – Ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Centralblatt für das Gesamte Forstwesen 115, 1–10 (1998).
Google Scholar
59.
Wang, H. et al. The influence of sampling unit size and spatial arrangement patterns on neighborhood-based spatial structure analyses of forest stands. For. Syst. 25, e056 (2016).
Google Scholar
60.
Kraft, G. Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben, Vol. 154 (Klindworth’s Verlag, Hanover, 1884).
61.
Röhrig, E. & Gussone, H. A. Waldbau auf Ökologischer Grundlage: Zweiter Band (Hamburg, Paul Parey, 1982).
Google Scholar
62.
Hawley, R. C. & Smith, M. D. The practice of silviculture. Ecology 17(1), 172 (1936).
Article Google Scholar
63.
Larsen, J. B. & Nielsen, A. B. Nature-based forest management—Where are we going?. For. Ecol. Manag. 238, 107–117 (2007).
Article Google Scholar
64.
Ajani, J. The Forest Wars (Melbourne University, Melbourne, 2007).
Google Scholar
65.
Nichols, J. D., Bristow, M. & Vanclay, J. K. Mixed-species plantations: prospects and challenges. For. Ecol. Manag. 233, 383–390 (2006).
Article Google Scholar
66.
Carnus, J.-M. et al. Planted forests and biodiversity. J. For. 104, 65–77 (2006).
Google Scholar
67.
Gadow, K. V. & Hui, G. Y. Characterizing forest spatial structure and diversity Institute of Forest Management, Georg-August-University Göttingen, Büsgenweg 5, D-37077 Göttingen, Germany Published in: Sustainable Forestry in Temperate Regions; Proc. of an international workshop organized at the University of Lund, Sweden: 20–30. More
