More stories

  • in

    Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees

    1.
    Dharampal, P. S., Hetherington, M. C. & Steffan, S. A. Microbes make the meal: Oligolectic bees require microbes within their host pollen to thrive. Ecol. Entomol. https://doi.org/10.1111/een.12926 (2020).
    Article  Google Scholar 
    2.
    Sonnenburg, J. L. & Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Suzuki, T. A. Links between natural variation in the microbiome and host fitness in wild mammals. Integr. Comp. Biol. 57, 756–769 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Bo, T.-B. et al. Coprophagy prevention alters microbiome, metabolism, neurochemistry, and cognitive behavior in a small mammal. ISME J. https://doi.org/10.1038/s41396-020-0711-6 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    7.
    Sarkar, A. et al. The role of the microbiome in the neurobiology of social behaviour. Biol. Rev. 95, 12603 (2020).
    Article  Google Scholar 

    8.
    Vernier, C. L. et al. The gut microbiome defines social group membership in honey bee colonies. Sci. Adv. 6, 3431 (2020).
    ADS  Article  CAS  Google Scholar 

    9.
    Lemoine, M. M., Engl, T. & Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 39, 14–20 (2020).
    PubMed  Article  Google Scholar 

    10.
    Engel, P. et al. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. MBio. https://doi.org/10.1128/mBio.02164-15 (2006).
    Article  Google Scholar 

    11.
    Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: How systematic depletion of key symbionts erodes immunity. Trends Microbiol. https://doi.org/10.1016/j.tim.2020.06.006 (2020).
    Article  PubMed  Google Scholar 

    12.
    Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).
    CAS  PubMed  Article  Google Scholar 

    13.
    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. 114, 4775–4780 (2017).
    CAS  PubMed  Article  Google Scholar 

    14.
    Zheng, H. et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio. https://doi.org/10.1128/mBio.01326-16 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    15.
    Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4, 60–65 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17, 796–815 (2015).
    CAS  PubMed  Article  Google Scholar 

    17.
    Anderson, K. E. et al. Hive-stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol. Ecol. 23, 5904–5917 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Dharampal, P. S., Carlson, C., Currie, C. R. & Steffan, S. A. Pollen-borne microbes shape bee fitness. Proc. R. Soc. B Biol. Sci. 286, 20182894 (2019).
    CAS  Article  Google Scholar 

    19.
    Rothman, J. A., Leger, L., Graystock, P., Russell, K. & McFrederick, Q. S. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ. Microbiol. 21, 1462–2920. https://doi.org/10.1111/1462-2920.14641 (2019).
    CAS  Article  Google Scholar 

    20.
    Wu, Y. et al. Honey bee ( Apis mellifera ) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb. Biotechnol. 13, 1201–1212 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Praet, J. et al. Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ. Microbiol. 20, 214–227 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Forsgren, E., Olofsson, T. C., Vásquez, A. & Fries, I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41, 99–108 (2010).
    Article  Google Scholar 

    23.
    Cariveau, D. P., Elijah Powell, J., Koch, H., Winfree, R. & Moran, N. A. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J. 8, 2369–2379 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, e2001861 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Schwarz, R. S., Moran, N. A. & Evans, J. D. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc. Natl. Acad. Sci. 113, 9345–9350 (2016).
    CAS  PubMed  Article  Google Scholar 

    26.
    Maes, P. W., Rodrigues, A. P., Oliver, R., Mott, B. M. & Anderson, K. E. Diet related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honey bee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).
    CAS  PubMed  Article  Google Scholar 

    27.
    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. 108, 19288–19292 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Evans, J. D. & Lopez, D. L. Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 97, 752–756 (2004).
    CAS  PubMed  Article  Google Scholar 

    29.
    Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590 (2017).
    CAS  PubMed  Article  Google Scholar 

    30.
    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. 109, 11002–11007 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    31.
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Micro 14, 374–384 (2016).
    CAS  Article  Google Scholar 

    32.
    McFrederick, Q. S. & Rehan, S. M. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol. Ecol. 25, 2302–2311 (2016).
    CAS  PubMed  Article  Google Scholar 

    33.
    McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).
    PubMed  Article  Google Scholar 

    34.
    McFrederick, Q. S. et al. Environment or kin: whence do bees obtain acidophilic bacteria?. Mol. Ecol. 21, 1754–1768 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    McFrederick, Q. S., Wcislo, W. T., Hout, M. C. & Mueller, U. G. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees. FEMS Microbiol. Ecol. 88, 398–406 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Graystock, P., Rehan, S. M. & McFrederick, Q. S. Hunting for healthy microbiomes: Determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conserv. Genet. 18, 701–711 (2017).
    Article  Google Scholar 

    37.
    McFrederick, Q. S. et al. Specificity between lactobacilli and hymenopteran hosts is the exception rather than the rule. Appl. Environ. Microbiol. 79, 1803–1812 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, 1–17 (2017).
    Article  Google Scholar 

    40.
    Rothman, J. A., Andrikopoulos, C., Cox-Foster, D. & McFrederick, Q. S. Floral and foliar source affect the bee nest microbial community. Microb. Ecol. 78, 506–516 (2019).
    PubMed  Article  Google Scholar 

    41.
    Cohen, H., McFrederick, Q. S. & Philpott, S. M. Environment shapes the microbiome of the blue orchard bee, Osmia lignaria. Microb. Ecol. 80, 897–907 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Muñoz-Colmenero, M. et al. Differences in honey bee bacterial diversity and composition in agricultural and pristine environments—A field study. Apidologie. https://doi.org/10.1007/s13592-020-00779-w (2020).
    Article  Google Scholar 

    43.
    Kapheim, K. M. et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE 10, 1–14 (2015).
    Article  CAS  Google Scholar 

    44.
    Elijah Powell, J., Eiri, D., Moran, N. A. & Rangel, J. Modulation of the honey bee queen microbiota: Effects of early social contact. PLoS ONE 13, 1–14 (2018).
    Google Scholar 

    45.
    Tarpy, D. R., Mattila, H. R. & Newton, I. L. G. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl. Environ. Microbiol. 81, 3182–3191 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Dong, Z. X. et al. Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different developmental stages. Microbiol. Res. 231, 126370 (2020).
    CAS  PubMed  Article  Google Scholar 

    47.
    D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).
    Article  CAS  Google Scholar 

    48.
    Huang, S. K. et al. Influence of feeding type and Nosema ceranae infection on the gut microbiota of Apis cerana workers. mSystems 3, 177–195 (2018).
    Article  Google Scholar 

    49.
    Rothman, J. A., Carroll, M. J., Meikle, W. G., Anderson, K. E. & McFrederick, Q. S. Longitudinal effects of supplemental forage on the Honey Bee (Apis mellifera) microbiota and inter- and intra-colony variability. Microb. Ecol. 76, 814–824 (2018).
    CAS  PubMed  Article  Google Scholar 

    50.
    Zhang, Y. et al. Nosema ceranae infection enhances Bifidobacterium spp. abundances in the honey bee hindgut. Apidologie 50, 353–362 (2019).
    Article  Google Scholar 

    51.
    Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees (Princeton University Press, Princeton, 2019).
    Google Scholar 

    52.
    Santos, P. K. F., Arias, M. C. & Kapheim, K. M. Loss of developmental diapause as prerequisite for social evolution in bees. Biol. Lett. 15, 20190398 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Harmon-Threatt, A. Influence of nesting characteristics on health of wild bee communities. Annu. Rev. Entomol. 65, 39–56 (2020).
    CAS  PubMed  Article  Google Scholar 

    54.
    Johansen, C., Mayer, D., Stanford, A. & Kious, C. Alkali Bees: Their Biology and Management for Alfalfa Seed Production in the Pacific Northwest (Publication, Pacific Northwest Cooperative Extension Service, Genesee, 1982).
    Google Scholar 

    55.
    Cane, J. H. A native ground-nesting bee (Nomia melanderi) sustainably managed to pollinate alfalfa across an intensively agricultural landscape. Apidologie 39, 315–323 (2008).
    Article  Google Scholar 

    56.
    Cane, J. H. Pollinating bees (Hymenoptera: Apiformes) of U.S. alfalfa compared for rates of pod and seed set. J. Econ. Entomol. 95, 22–27 (2002).
    PubMed  Article  Google Scholar 

    57.
    Batra, S. W. & Bohart, G. E. Alkali bees: Response of adults to pathogenic fungi in brood cells. Science 165, 607 (1969).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Galbraith, D. A. et al. Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci. Rep. 8, 1–11 (2018).
    CAS  Article  Google Scholar 

    59.
    Bohart, G. E., Stephen, W. P. & Eppley, E. K. The biology of Heterostylum robustum (Diptera: Bombyliidae), a parasite of the alkali bee. Ann. Entomol. Soc. Am. 53, 425–435 (1960).
    Article  Google Scholar 

    60.
    Johansen, C. A., Mayer, D. F. & Eves, J. D. Biology and management of the alkali bee, Nomia melanderi Cockrell (Hymenoptera: Halictidae).Melanderii Cockrell (Hymenoptera: Halictidae).Melanderi (Washington State Entomology, Pullman, 1978).
    Google Scholar 

    61.
    Johansen, C. A. & Mayer, D. F. Pollinator Protection: A Bee and Pesticide Handbook (Wicwas Press, Kalamazoo, 1990).
    Google Scholar 

    62.
    Stephen, W. P. Solitary bees in North American agriculture: A perspective. In For Nonnative Crops, Whence Pollinators of the Future? (eds Strickler, K. & Cane, J. H.) 41–66 (Entomological Society of America, Annapolis, 2003).
    Google Scholar 

    63.
    Kapheim, K. M. et al. Draft genome assembly and population genetics of an agricultural pollinator, the solitary alkali bee (Halictidae: Nomia melanderi). G3 9, 625–634 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Batra, S. W. T. Aggression, territoriality, mating and nest aggregation of some solitary bees (Hymenoptera: Halictidae, Megachilidae, Colletidae, Anthophoridae). J. Kansas Entomol. Soc. 51, 547–559 (1978).
    Google Scholar 

    65.
    Mayer, D. F. & Miliczky, E. R. Emergence, male behavior, and mating in the alkali bee, Nomia melanderi Cockerell (Hymenoptera: Halictidae). J. Kansas Entomol. Soc. 71, 61–68 (1998).
    Google Scholar 

    66.
    Kapheim, K. M. & Johnson, M. M. Juvenile hormone, but not nutrition or social cues, affects reproductive maturation in solitary alkali bees (Nomia melanderi). J. Exp. Biol. https://doi.org/10.1242/jeb.162255 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Koch, H. & Schmid-Hempel, P. Bacterial communities in central European bumble bees: Low diversity and high specificity. Microb. Ecol. 62, 121–133 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Martinson, V. G., Moy, J. & Moran, N. A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 78, 2830–2840 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    70.
    Kapheim, K. M. & Johnson, M. M. Support for the reproductive ground plan hypothesis in a solitary bee: Links between sucrose response and reproductive status. Proc. R. Soc. B Biol. Sci. 284, 20162406 (2017).
    Article  CAS  Google Scholar 

    71.
    R Core Team. R: A Language and Environment for Statistical Computing (2019).

    72.
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. BioRxiv. https://doi.org/10.1101/221499 (2017).
    Article  Google Scholar 

    74.
    Jari Oksanen, F. et al. vegan: Community Ecology Package (2019).

    75.
    McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    78.
    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means (2020).

    79.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    80.
    Lahti, L. & Shetty, S. Microbiome R Package (2012).

    81.
    Zheng, J. et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70, 2782–2858 (2020).
    CAS  PubMed  Article  Google Scholar 

    82.
    Rummel, P. S. et al. Maize root and shoot litter quality controls short-term emissions and bacterial community structure of arable soil. Biogeosciences 17, 1181–1198 (2020).
    ADS  CAS  Article  Google Scholar 

    83.
    McFrederick, Q. S., Vuong, H. Q. & Rothman, J. A. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers. Int. J. Syst. Evol. Microbiol. 68, 1879–1884 (2018).
    CAS  PubMed  Article  Google Scholar 

    84.
    Wittouck, S., Wuyts, S., Meehan, C. J., van Noort, V. & Lebeer, S. A genome-based species taxonomy of the Lactobacillus genus complex. mSystems. https://doi.org/10.1128/mSystems.00264-19 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    85.
    Engel, P. & Moran, N. A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
    CAS  PubMed  Article  Google Scholar 

    86.
    Cane, J. H., Dobson, H. E. M. & Boyer, B. Timing and size of daily pollen meals eaten by adult females of a solitary bee (Nomia melanderi) (Apiformes: Halictidae). Apidologie 48, 17–30 (2016).
    Article  CAS  Google Scholar 

    87.
    Engel, P., Bartlett, K. D. & Moran, N. A. The bacterium Frischella perrara causes scab formation in the gut of its honeybee host. MBio 6, 1–8 (2015).
    Article  CAS  Google Scholar 

    88.
    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).
    PubMed  Article  Google Scholar 

    89.
    Vásquez, A. & Olofsson, T. C. The lactic acid bacteria involved in the production of bee pollen and bee bread. J. Apic. Res. 48, 189–195 (2009).
    Article  Google Scholar 

    90.
    Vuong, H. Q. & McFrederick, Q. S. Comparative genomics of wild bee and flower isolated Lactobacillus reveals potential adaptation to the bee host. Genome Biol. Evol. 11, 2151–2161 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    There is little evidence that spicy food in hot countries is an adaptation to reducing infection risk

    1.
    Sherman, P. W. & Billing, J. Darwinian gastronomy: why we use spices: spices taste good because they are good for us. BioScience 49, 453–463 (1999).
    Article  Google Scholar 
    2.
    Billing, J. & Sherman, P. W. Antimicrobial functions of spices: why some like it hot. Q. Rev. Biol. 73, 3–49 (1998).
    CAS  PubMed  Article  Google Scholar 

    3.
    Galton, F. Comment on ‘On a method of investigating the development of institutions; applied to laws of marriage and descent’ by E. B. Tylor. J. Anthropol. Inst. Gt Br. Irel. 18, 245–272 (1889).
    Google Scholar 

    4.
    Bromham, L., Hua, X., Cardillo, M., Schneemann, H. & Greenhill, S. J. Parasites and politics: why cross-cultural studies must control for relatedness, proximity and covariation. R. Soc. Open Sci. 5, 181100 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Mace, R. & Holden, C. J. A phylogenetic approach to cultural evolution. Trends Ecol. Evol. 20, 116–121 (2005).
    PubMed  Article  Google Scholar 

    6.
    Freckleton, R. P. & Jetz, W. Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proc. R. Soc. B 276, 21–30 (2008).
    Article  Google Scholar 

    7.
    Hua, X., Greenhill, S. J., Cardillo, M., Schneemann, H. & Bromham, L. The ecological drivers of variation in global language diversity. Nat. Commun. 10, 2047 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Ohtsubo, Y. Adaptive ingredients against food spoilage in Japanese cuisine. Int. J. Food Sci. Nutr. 60, 677–687 (2009).
    PubMed  Article  Google Scholar 

    9.
    Murray, D. R. & Schaller, M. Historical prevalence of infectious diseases within 230 geopolitical regions: a tool for investigating origins of culture. J. Cross Cult. Psychol. 41, 99–108 (2010).
    Article  Google Scholar 

    10.
    Sherman, P. W. & Hash, G. A. Why vegetable recipes are not very spicy. Evol. Hum. Behav. 22, 147–163 (2001).
    PubMed  Article  Google Scholar 

    11.
    Havelaar, A. H. et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12, e1001923 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Lewnard, J. A., Lo, N. C., Arinaminpathy, N., Frost, I. & Laxminarayan, R. Childhood vaccines and antibiotic use in low- and middle-income countries. Nature 581, 94–99 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    McMichael, A. J. & Beaglehole, R. The changing global context of public health. Lancet 356, 495–499 (2000).
    CAS  PubMed  Article  Google Scholar 

    14.
    Salomon, J. A. et al. Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 (2012).
    PubMed  Article  Google Scholar 

    15.
    Kummu, M. & Varis, O. The world by latitudes: a global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 31, 495–507 (2011).
    Article  Google Scholar 

    16.
    Johnell, O., Borgstrom, F., Jonsson, B. & Kanis, J. Latitude, socioeconomic prosperity, mobile phones and hip fracture risk. Osteoporos. Int. 18, 333–337 (2007).
    CAS  PubMed  Article  Google Scholar 

    17.
    Kanis, J. A. et al. Variations in latitude may or may not explain the worldwide variation in hip fracture incidence. Osteoporos. Int. 23, 2401–2402 (2012).
    Article  Google Scholar 

    18.
    Fisman, D. et al. Geographical variability in the likelihood of bloodstream infections due to Gram-negative bacteria: correlation with proximity to the equator and health care expenditure. PLoS ONE 9, e114548 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Coccia, M. The effect of country wealth on incidence of breast cancer. Breast Cancer Res. Treat. 141, 225–229 (2013).
    PubMed  Article  Google Scholar 

    20.
    Buchter, B., Dunkel, M. & Li, J. Multiple sclerosis: a disease of affluence? Neuroepidemiology 39, 51–56 (2012).
    PubMed  Article  Google Scholar 

    21.
    Roberts, S. & Winters, J. Linguistic diversity and traffic accidents: Lessons from statistical studies of cultural traits. PLoS ONE 8, e70902 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
    Article  Google Scholar 

    25.
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).
    CAS  PubMed  Article  Google Scholar 

    26.
    Dunn, R. R., Davies, T. J., Harris, N. C. & Gavin, M. C. Global drivers of human pathogen richness and prevalence. Proc. R. Soc. B 277, 2587–2595 (2010).
    PubMed  Article  Google Scholar 

    27.
    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645 (2007).
    PubMed  Article  Google Scholar 

    28.
    Collen, B. et al. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23, 40–51 (2014).
    PubMed  Article  Google Scholar 

    29.
    Just, M. G. et al. Global biogeographic regions in a human‐dominated world: the case of human diseases. Ecosphere 5, 1–21 (2014).
    Article  Google Scholar 

    30.
    Morand, S., Owers, K. & Bordes, F. in Confronting Emerging Zoonoses (eds Yamada, A. et al.) 27–41 (Springer, 2014).

    31.
    Turner, J. Spice: the History of a Temptation (Alfred A. Knopf, 2004).

    32.
    Kraft, K. H. et al. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl Acad. Sci. USA 111, 6165–6170 (2014).
    CAS  PubMed  Article  Google Scholar 

    33.
    Portnoy, S. in The SAGE Encyclopedia of Food Issues Vol. 1 (ed. Albala, K.) 84–86 (SAGE Publications, 2015).

    34.
    Jain, A., Rakhi, N. & Bagler, G. Analysis of food pairing in regional cuisines of India. PLoS ONE 10, e0139539 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Zhu, Y.-X. et al. Geography and similarity of regional cuisines in China. PLoS ONE 8, e79161 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Kline, M. A., Shamsudheen, R. & Broesch, T. Variation is the universal: making cultural evolution work in developmental psychology. Philos. Trans. R. Soc. B 373, 20170059 (2018).
    Article  Google Scholar 

    37.
    Bagler, G. CulinaryDB (Indraprastha Institute of Information Technology Delhi, 2017); https://cosylab.iiitd.edu.in/culinarydb/

    38.
    Iranshahy, M. & Iranshahi, M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—a review. J. Ethnopharmacol. 134, 1–10 (2011).
    CAS  PubMed  Article  Google Scholar 

    39.
    Nakamura, Y. et al. Comparison of the glucosinolate–myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties. J. Agric. Food Chem. 56, 2702–2707 (2008).
    CAS  PubMed  Article  Google Scholar 

    40.
    Gupta, S. & Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 12, 600–609 (2011).
    CAS  Article  Google Scholar 

    41.
    Devi, K. P., Suganthy, N., Kesika, P. & Pandian, S. K. Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement. Altern. Med. 8, 1 (2008).
    Article  CAS  Google Scholar 

    42.
    Cox, S., Abu-Ghannam, N. & Gupta, S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 17, 205–220 (2010).
    CAS  Google Scholar 

    43.
    Lipkin, A. et al. An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 66, 2426–2431 (2005).
    CAS  PubMed  Article  Google Scholar 

    44.
    Maiyo, Z., Ngure, R., Matasyoh, J. & Chepkorir, R. Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr. J. Biotechnol. 9, 3178–3182 (2010).
    Google Scholar 

    45.
    Dan, S. Antibacterial activity of paeonol in vitro. Her. Med. 9, 009 (2012).
    Google Scholar 

    46.
    Uddin, G., Sadat, A. & Siddiqui, B. S. Phytochemical screening, in vitro antioxidant and antimicrobial activities of the crude fractions of Paeonia emodi Wall. Ex Royle. Middle East J. Sci. Res. 17, 367–373 (2013).
    Google Scholar 

    47.
    Joung, Y.-M. et al. Antioxidative and antimicrobial activities of lilium species extracts prepared from different aerial parts. Korean J. Food Sci. Technol. 39, 452–457 (2007).
    Google Scholar 

    48.
    He, J., Chen, L., Heber, D., Shi, W. & Lu, Q.-Y. Antibacterial compounds from Glycyrrhiza uralensis. J. Nat. Prod. 69, 121–124 (2006).
    CAS  PubMed  Article  Google Scholar 

    49.
    Dhingra, V., Pakki, S. R. & Narasu, M. L. Antimicrobial activity of artemisinin and its precursors. Curr. Sci. 78, 709–713 (2000).
    CAS  Google Scholar 

    50.
    Gupta, V. K. et al. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol. 116, 377–380 (2008).
    PubMed  Article  Google Scholar 

    51.
    Chen, C. et al. Chemical composition and antimicrobial and DPPH scavenging activity of essential oil of Toona sinensis (A. Juss.) Roem from China. BioResources 9, 5262–5278 (2014).
    Google Scholar 

    52.
    Arzanlou, M. & Bohlooli, S. Introducing of green garlic plant as a new source of allicin. Food Chem. 120, 179–183 (2010).
    CAS  Article  Google Scholar 

    53.
    Shittu, L. et al. Antibacterial and antifungal activities of essential oils of crude extracts of Sesame radiatum against some common pathogenic micro-organisms. Iran. J. Pharmacol. Ther. 6, 165–170 (2008).
    Google Scholar 

    54.
    Medina, E., Romero, C., Brenes, M. & de Castro, A. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Prot. 70, 1194–1199 (2007).
    CAS  PubMed  Article  Google Scholar 

    55.
    South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).
    Article  Google Scholar 

    56.
    R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2016).

    57.
    GADM Maps and Data (GADM, 2012); https://www.gadm.org

    58.
    Bivand, R. et al. rgeos: interface to geometry engine—open source (GEOS) v.0.3-21 https://cran.r-project.org/package=rgeos (2016).

    59.
    Bromham, L. Curiously the same: swapping tools between linguistics and evolutionary biology. Biol. Philos. 32, 855–886 (2017).
    Article  Google Scholar 

    60.
    Mace, R. & Pagel, M. The comparative method in anthropology. Curr. Anthropol. 35, 549–564 (1994).
    Article  Google Scholar 

    61.
    Harvey, P. H. & Pagel, M. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, 1991).

    62.
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Article  Google Scholar 

    63.
    Miller, M. A. & Paige, J. C. Other food borne infections. Vet. Clin. North Am. Food Anim. Pract. 14, 71–89 (1998).
    CAS  PubMed  Article  Google Scholar 

    64.
    Fisman, D. N. & Laupland, K. Guess who’s coming to dinner? Emerging foodborne zoonoses. Can. J. Infect. Dis. Med. Microbiol. 21, 8–10 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Sookias, R. B., Passmore, S. & Atkinson, Q. D. Deep cultural ancestry and human development indicators across nation states. R. Soc. Open Sci. 5, 171411 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Johnson, P. C. D., Barry, S. J. E., Ferguson, H. M. & Muller, P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol. Evol. 6, 133–142 (2015).
    PubMed  Article  Google Scholar 

    67.
    O’Hagan, A. Kendall’s Advanced Theory Of Statistics Vol. 2B: Bayesian Inference (Halsted, 1994).

    68.
    Bonds, M. H., Keenan, D. C., Rohani, P. & Sachs, J. D. Poverty trap formed by the ecology of infectious diseases. Proc. R. Soc. B: 277, 1185–1192 (2010).
    Article  Google Scholar  More

  • in

    Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies

    1.
    Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: Selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Poinsot, D., Charlat, S. & Merçot, H. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: Confronting the models with the facts. BioEssays 25, 259–265 (2003).
    PubMed  Article  Google Scholar 

    3.
    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).
    CAS  PubMed  Article  Google Scholar 

    4.
    Vavre, F., Fleury, F., Lepetit, D., Fouillet, P. & Boulétreau, M. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol. Biol. Evol. 16, 1711–1723 (1999).
    CAS  PubMed  Article  Google Scholar 

    5.
    Sintupachee, S., Milne, J. R., Poonchaisri, S., Baimai, V. & Kittayapong, P. Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb. Ecol. 51, 294–301 (2006).
    CAS  PubMed  Article  Google Scholar 

    6.
    Li, S.-J. et al. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J. 11, 1019–1028 (2017).
    CAS  PubMed  Article  Google Scholar 

    7.
    Turelli, M. & Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353, 440 (1991).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Oliveira, D. C. S. G., Raychoudhury, R., Lavrov, D. V. & Werren, J. H. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol. Biol. Evol. 25, 2167–2180 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Raychoudhury, R. et al. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity 104, 318–326 (2010).
    CAS  PubMed  Article  Google Scholar 

    10.
    Telschow, A., Gadau, J., Werren, J. H. & Kobayashi, Y. Genetic incompatibilities between mitochondria and nuclear genes: Effect on gene flow and speciation. Front. Genet. 10, 62 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Kodandaramaiah, U., Simonsen, T. J., Bromilow, S., Wahlberg, N. & Sperling, F. Deceptive single-locus taxonomy and phylogeography: Wolbachia-associated divergence in mitochondrial DNA is not reflected in morphology and nuclear markers in a butterfly species. Ecol. Evol. 3, 5167–5176 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Ritter, S. et al. Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae). PLoS ONE 8, e78107 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Whitworth, T. L., Dawson, R. D., Magalon, H. & Baudry, E. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proc. R. Soc. B Biol. Sci. 274, 1731–1739 (2007).
    CAS  Article  Google Scholar 

    14.
    Barton, N. & Bengtsson, B. O. The barrier to genetic exchange between hybridising populations. Heredity 57, 357–376 (1986).
    PubMed  Article  Google Scholar 

    15.
    Vavre, F., Fleury, F., Varaldi, J., Fouillet, P. & Boulétreau, M. Infection polymorphism and cytoplasmic incompatibility in Hymenoptera-Wolbachia associations. Heredity 88, 361–365 (2002).
    CAS  PubMed  Article  Google Scholar 

    16.
    Jaenike, J., Dyer, K. A., Cornish, C. & Minhas, M. S. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol. 4, e325 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Telschow, A., Flor, M., Kobayashi, Y., Hammerstein, P. & Werren, J. H. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: Mainland-island model. PLoS ONE 2, e701 (2007).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Flor, M., Hammerstein, P. & Telschow, A. Wolbachia-induced unidirectional cytoplasmic incompatibility and the stability of infection polymorphism in parapatric host populations. J. Evol. Biol. 20, 696–706 (2007).
    CAS  PubMed  Article  Google Scholar 

    19.
    Graham, R. I. & Wilson, K. Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect. BMC Evol. Biol. 12, 204 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Ahmed, M. Z., Breinholt, J. W. & Kawahara, A. Y. Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol. Biol. 16, 118 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Salunkhe, R. C., Narkhede, K. P. & Shouche, Y. S. Distribution and evolutionary impact of Wolbachia on butterfly hosts. Indian J. Microbiol. 54, 249 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Talavera, G., Lukhtanov, V. A., Pierce, N. E. & Vila, R. Establishing criteria for higher-level classification using molecular data: The systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics 29, 166–192 (2013).
    Article  Google Scholar 

    23.
    Espeland, M. et al. A Comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770-778.e5 (2018).
    CAS  PubMed  Article  Google Scholar 

    24.
    Dincă, V., Lee, K. M., Vila, R. & Mutanen, M. The conundrum of species delimitation: A genomic perspective on a mitogenetically super-variable butterfly. Proc. R. Soc. B Biol. Sci. 286, 20191311 (2019).
    Article  CAS  Google Scholar 

    25.
    Gaunet, A. et al. Two consecutive Wolbachia-mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae). Zool. Scr. 48, 507–519 (2019).
    Article  Google Scholar 

    26.
    Dinca, V., Zakharov, E. V., Hebert, P. D. N. & Vila, R. Complete DNA barcode reference library for a country’s butterfly fauna reveals high performance for temperate Europe. Proc. R. Soc. B Biol. Sci. 278, 347–355 (2011).
    Article  Google Scholar 

    27.
    Ugelvig, L. V., Vila, R., Pierce, N. E. & Nash, D. R. A phylogenetic revision of the Glaucopsyche section (Lepidoptera: Lycaenidae), with special focus on the Phengaris-Maculinea clade. Mol. Phylogenet. Evol. 61, 237–243 (2011).
    CAS  PubMed  Article  Google Scholar 

    28.
    Sañudo-Restrepo, C. P., Dincă, V., Talavera, G. & Vila, R. Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Mol. Phylogenet. Evol. 66, 369–379 (2013).
    PubMed  Article  Google Scholar 

    29.
    Todisco, V. et al. Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zool. 3, 4 (2018).
    Article  Google Scholar 

    30.
    Sucháčková Bartoňová, A., Beneš, J., Fric, Z. F. & Konvička, M. Genetic confirmation of Aricia artaxerxes (Fabricius, 1793) (Lepidoptera, Lycaenidae) in the Czech Republic, its conservation significance and biogeographic context. Nota Lepidopterol. 42(2), 163–176 (2019).
    Article  Google Scholar 

    31.
    Kames, P. Die Aufklärung des Differenzierungsgrades und der Phylogenese der beiden Aricia-Arten agestis Den. et Schiff. und artaxerxes Fabr. (allous G.-Hb.) mit Hilfe von Eizuchten und Kreuzungsversuchen (Lep., Lycaenidae). Mitt. Entomol. Ges. Basel, N. F. 26, 7–13, 29–64 (1976).

    32.
    Korb, S., Faltynek Fric, Z. & Bartonova, A. On the status of Aricia cf. scythissa (Nekrutenko, 1985) (Lepidoptera: Lycaenidae) based on molecular investigations. Euroasian Entomol. J. 14, 237–240 (2015).
    Google Scholar 

    33.
    Wiemers, M., Chazot, N., Wheat, C. W., Schweiger, O. & Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938, 97–124 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Settele, J., Steiner, R., Reinhardt, R., Feldmann, R. & Hermann, G. Schmetterlinge: Die Tagfalter Deutschlands (Ulmer Eugen Verlag, Stuttgart, 2015).
    Google Scholar 

    35.
    Monteiro, A. & Pierce, N. E. Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1alpha gene sequences. Mol. Phylogenet. Evol. 18, 264–281 (2001).
    CAS  PubMed  Article  Google Scholar 

    36.
    Wahlberg, N. & Wheat, C. W. Genomic outposts serve the phylogenomic pioneers: Designing novel nuclear markers for genomic DNA extractions of lepidoptera. Syst. Biol. 57, 231–242 (2008).
    CAS  PubMed  Article  Google Scholar 

    37.
    Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Sahoo, R. K. et al. Evolution of Hypolimnas butterflies (Nymphalidae): Out-of-Africa origin and Wolbachia-mediated introgression. Mol. Phylogenet. Evol. 123, 50–58 (2018).
    PubMed  Article  Google Scholar 

    39.
    Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Kearse, M. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Kajtoch, Ł et al. Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. Sci. Rep. 9, 847 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Ratnasingham, S. & Hebert, P. D. N. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).

    43.
    Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).
    CAS  PubMed  Article  Google Scholar 

    44.
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    45.
    Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3 (2018).

    47.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2019).

    48.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  Article  Google Scholar 

    49.
    Dellicour, S. & Mardulyn, P. SPADS 1.0: A toolbox to perform spatial analyses on DNA sequence data sets. Mol. Ecol. Resour. 14, 647–651 (2014).
    PubMed  Article  Google Scholar 

    50.
    Watson, D. F. & Philip, G. M. A Refinement of inverse distance weighted interpolation. Geoprocessing 2, 315–327 (1985).
    Google Scholar 

    51.
    Manni, F., Guérard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s algorithm. Hum. Biol. 76, 173–190 (2004).
    PubMed  Article  Google Scholar 

    52.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 016 (2018).
    Article  Google Scholar 

    53.
    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).
    CAS  PubMed  Article  Google Scholar 

    54.
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/. (2014).

    55.
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).
    CAS  PubMed  Article  Google Scholar 

    56.
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).

    57.
    Aagaard, K. et al. Phylogenetic relationships in brown argus butterflies (Lepidoptera: Lycaenidae: Aricia) from northwestern Europe. Biol. J. Linn. Soc. 75, 27–37 (2002).
    Article  Google Scholar 

    58.
    Hernández-Roldán, J. L. et al. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies. Mol. Ecol. 25, 4267–4284 (2016).
    PubMed  Article  Google Scholar 

    59.
    Jiang, W. et al. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae). Infect. Genet. Evol. 27, 202–211 (2014).
    PubMed  Article  Google Scholar 

    60.
    Mallet, J., Wynne, I. R. & Thomas, C. D. Hybridisation and climate change: Brown argus butterflies in Britain (Polyommatus subgenus Aricia). Insect Conserv. Divers. 4, 192–199 (2011).
    Article  Google Scholar 

    61.
    Gutzwiller, F., Dedeine, F., Kaiser, W., Giron, D. & Lopez-Vaamonde, C. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol. Evol. 5, 4049–4062 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Mascarenhas, R. O., Prezotto, L. F., Perondini, A. L. P., Marino, C. L. & Selivon, D. Wolbachia in guilds of Anastrepha fruit flies (Tephritidae) and parasitoid wasps (Braconidae). Genet. Mol. Biol. 39, 600–610 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Sucháčková Bartoňová, A. et al. Recently lost connectivity in the Western Palaearctic steppes: The case of a scarce specialist butterfly. Conserv. Genet. 21, 561–575 (2020).
    Article  Google Scholar 

    64.
    Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: The rule and not the exception?. Front. Zool. 9, 1–12 (2012).
    Article  Google Scholar 

    65.
    de Lattin, G. Grundriss der Zoogeographie (VEB Gustav Fischer Verlag, Jena, 1967).
    Google Scholar 

    66.
    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).
    Article  Google Scholar 

    67.
    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467 (2005).
    PubMed  Article  Google Scholar 

    69.
    Heiser, M., Dapporto, L. & Schmitt, T. Coupling impoverishment analysis and partitioning of beta diversity allows a comprehensive description of Odonata biogeography in the Western Mediterranean. Org. Divers. Evol. 14, 203–214 (2014).
    Article  Google Scholar 

    70.
    Vodă, R. et al. Historical and contemporary factors generate unique butterfly communities on islands. Sci. Rep. 6, 28828 (2016).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Scalercio, S. et al. How long is 3 km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. J. Anim. Ecol. 89, 2013–2026 (2020).
    PubMed  Article  Google Scholar 

    72.
    Descimon, H. & Mallet, J. Bad species. in Ecology and Evolution of European Butterflies (Oxford University Press, Oxford, 2009).

    73.
    Habel, J. C., Schmitt, T. & Müller, P. The fourth paradigm pattern of post-glacial range expansion of European terrestrial species: The phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). J. Biogeogr. 32, 1489–1497 (2005).
    Article  Google Scholar 

    74.
    Varga, Z. Das Prinzip der areal-analytischen Methode in der Zoogeographie und die Faunenelement-Einteilung der europäischen Tagschmetterlinge (Lepidoptera: Diurna). Acta Biol. Debrecina 14, 223–285 (1977).
    Google Scholar 

    75.
    Schmitt, T. & Zimmermann, M. To hybridize or not to hybridize: What separates two genetic lineages of the Chalk-hill Blue Polyommatus coridon (Lycaenidae, Lepidoptera) along their secondary contact zone throughout eastern Central Europe?. J. Zool. Syst. Evol. Res. 50, 106–115 (2012).
    Article  Google Scholar 

    76.
    Janoušek, V. et al. Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between Musmusculus musculus and M. m. domesticus. Mol. Ecol. 21, 3032–3047 (2012).
    PubMed  Article  Google Scholar 

    77.
    Nürnberger, B., Lohse, K., Fijarczyk, A., Szymura, J. M. & Blaxter, M. L. Para-allopatry in hybridizing fire-bellied toads (Bombinabombina and B. variegata): Inference from transcriptome-wide coalescence analyses. Evolution 70, 1803–1818 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Vitali, F. & Schmitt, T. Ecological patterns strongly impact the biogeography of western Palaearctic longhorn beetles (Coleoptera: Cerambycoidea). Org. Divers. Evol. 17, 163–180 (2017).
    Article  Google Scholar 

    79.
    Narita, S., Nomura, M., Kato, Y. & Fukatsu, T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: Evolutionary and biogeographical implications. Mol. Ecol. 15, 1095–1108 (2006).
    CAS  PubMed  Article  Google Scholar 

    80.
    Kageyama, S. et al. Feminizing Wolbachia endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species. Evol. Lett. 1, 232–244 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Nosil, P., Harmon, L. J. & Seehausen, O. Ecological explanations for (incomplete) speciation. Trends Ecol. Evol. (Amst.) 24, 145–156 (2009).
    Article  Google Scholar 

    82.
    Talavera, G., Lukhtanov, V. A., Rieppel, L., Pierce, N. E. & Vila, R. In the shadow of phylogenetic uncertainty: The recent diversification of Lysandra butterflies through chromosomal change. Mol. Phylogenet. Evol. 69, 469–478 (2013).
    PubMed  Article  Google Scholar 

    83.
    Kühne, G., Kosuch, J., Hochkirch, A. & Schmitt, T. Extra-Mediterranean glacial refugia in a Mediterranean faunal element: The phylogeography of the chalk-hill blue Polyommatus coridon (Lepidoptera, Lycaenidae). Sci. Rep. 7, srep43533 (2017).
    ADS  Article  Google Scholar 

    84.
    Wiemers, M., Keller, A. & Wolf, M. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus). BMC Evol. Biol. 9, 300 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    85.
    Duron, O. & Hurst, G. D. Arthropods and inherited bacteria: From counting the symbionts to understanding how symbionts count. BMC Biol. 11, 45 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Bailly-Bechet, M. et al. How long does Wolbachia remain on board?. Mol. Biol. Evol. 34, 1183–1193 (2017).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota

    Relative species abundance distribution
    In order to evaluate sample quality, we analysed both the Relative Species Abundance distribution (RSA) and the rarefaction curves. For each sample, we compared the RSA derived by shotgun and 16S sequencing. RSA histograms in logarithmic scale show that the distributions obtained by shotgun and 16S have similar shape at phylum level (Fig. 1a, b). In Fig. 1b, the 16S sample is characterized by a more patchy distribution, having identified less phyla. At phylum level, both strategies produce positively skewed samples in the log2-transformed distributions, except for 16S outliers, because none of the phyla is significantly rare (Fig. 2a).
    Figure 1

    RSA histograms in logarithmic scale (Preston plots 21) of bacterial abundances in one sample selected as anexample (caeca25): (a) genera sampled by shotgun sequencing, (b) genera sampled by 16S rRNA sequencing, (c) phyla sampled by shotgun sequencing and (d) phyla sampled by 16S sequencing.

    Full size image

    Figure 2

    Box plot of the RSA skewness of bacterial communities at (a) phylum level and (b) genus level. Bacterial communities are sampled with (left) shotgun sequencing and (right) 16S sequencing.

    Full size image

    On the other hand, at genus level, the two strategies display different shapes (Fig. 1c, d, Supplementary Fig. S1, S2, S3, S4). Indeed, the log2-transformed distributions derived by shotgun sequencing generally have a skewness closer to zero compared to those obtained by 16S, i.e. are more symmetrical (Figure 2b): a paired Student’s t-test on the skewness shows a significant difference between them (P = 8·10–6). This indicates that shotgun samples are characterized by a higher sampling size. According to Preston, left-skewed shapes of the RSA can be explained as artefacts of small sample size21,22, since insufficient sampling of the original space produces a truncation of the left tail of the RSA, increasing its skewness.
    In shotgun samples, the RSA skewness at genus level is related to the total number of reads (Supplementary Fig. S5): the shotgun samples with the lowest total number of reads have the largest skewness. Specifically, Supplementary Figure S5 shows that shotgun samples cluster in two groups, one characterized by a low number of reads (# reads  500,000, 50/78 samples) and a less skewed RSA.
    Noticeably, the high-skewness group includes all 9 samples from 1st day, all 15 crop samples from 14th day and 4 out of 18 crop samples from 35th day. The samples collected at day 1 were very poor in terms of biomass and the crop samples contained more feed residues than caecal samples, making the DNA extraction less efficient both in terms of DNA quantity and quality. For the comparative analysis we removed samples with less than 500,000 reads being characterized by a low quality. This choice was corroborated by the analysis of the rarefaction curves, showing that shotgun samples with less than 500,000 reads do not reach a plateau in terms of identified genera (Supplementary Fig. S6). All the 50 samples included in the comparative analysis have a total number of reads  > 500,000 and a skewness lower than the median of 16S samples, indicating a good sampling depth. Since included samples were characterized by a high microbial load, we are confident to extend the results of the following analyses only to samples with few contaminant DNA and low cross-contaminations. Nonetheless, we have shown that shotgun samples have a RSA similar to 16S samples when a low number of total reads is available, thus hypothesizing that in differential analyses carried on samples with a low microbial load regime, shotgun sequencing could perform similarly to 16S sequencing or even worse.
    For a balanced comparison, also 16S samples corresponding to the discarded shotgun samples were removed.
    Differential analysis for the experimental conditions
    Since in many situations a metagenomic analysis is used to discriminate between different experimental conditions, we compared the results of differential analysis performed on reads obtained by the two strategies. To this aim, we analysed the fold changes of genera abundances between compartments of the GI tract and between sampling times (Fig. 3 for caeca vs crop, Supplementary Fig. S7 for 14th vs. 35th day) common to both sequencing strategies (288 genera for caeca vs crop, and 246 for 14th vs. 45th day). Comparing the genera abundances between caeca and crop, 16S identified 108 statistically significant differences (adjusted P  More

  • in

    Ancient CO2 levels favor nitrogen fixing plants over a broader range of soil N compared to present

    1.
    Tajika, E. Climate change during the last 150 million years: Reconstructing from a carbon cycle model. Earth Planet Sci. Lett. 160, 659–707 (1998).
    Article  Google Scholar 
    2.
    Li, H.-L. et al. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change. Sci. Rep. 5, 14023 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    van Velzen, R., Doyle, J. J. & Geurts, R. A resurrected scenario: Single gain and massive loss of nitrogen-fixing nodulation. Trends Plant Sci. 24, 49–57 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Griesmann, M. et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361, eaat1743 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    5.
    Menge, D. N. L. & Crews, T. E. Can evolutionary constraints explain the rarity of nitrogen-fixing trees in high-latitude forests?. New Phytol. 211, 1195–1201 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Menge, D. N. L. et al. Nitrogen-fixing tree abundance in higher-latitude North America is not constrained by diversity. Ecol. Lett. 20, 842–851 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Tedersoo, L. et al. Global database of plants with root-symbiotic nitrogen fixation: NodDB. J. Veg. Sci. 29, 560–568 (2018).
    Article  Google Scholar 

    8.
    Swensen, S. M. & Benson, D. R. Evolution of actinorhizal host plants and Frankia endosymbionts. In Nitrogen-fixing Actinorhizal Symbioses, 73–104 (Springer Netherlands, 2008).

    9.
    Houlton, B. Z., Wang, Y.-P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731 (2004).
    Article  Google Scholar 

    11.
    Cheng, W., Inubushi, K., Yagi, K., Sakai, H. & Kobayashi, K. Effects of elevated carbon dioxide concentration on biological nitrogen fixation, nitrogen mineralization and carbon decomposition in submerged rice soil. Biol. Fertil. Soils. 34, 7–13 (2001).
    CAS  Article  Google Scholar 

    12.
    Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2004).
    Article  Google Scholar 

    13.
    Pawlowski, K. & Newton, W. E. Nitrogen-fixing Actinorhizal Symbioses. (Springer Netherlands, 2008). https://doi.org/10.1007/978-1-4020-3547-0.

    14.
    Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Glob. Biogeochem. Cycles. 20, GB4003 (2006).
    ADS  Article  CAS  Google Scholar 

    15.
    Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7, 737–750 (1997).
    Google Scholar 

    16.
    Benjamin, W. S. et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. PNAS 111, 8101–8106 (2014).
    Article  CAS  Google Scholar 

    17.
    Li, X. et al. Seasonal and spatial variations of bulk nitrogen deposition and the impacts on the carbon cycle in the arid/semiarid grassland of inner Mongolia, China. PLoS ONE 10, e0144689 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Lamarque, J. F. et al. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition. J. Geophys. Res. Atmos. 110, D19303 (2005).
    ADS  Article  Google Scholar 

    19.
    Tian, D. & Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10, 24019 (2015).
    Article  CAS  Google Scholar 

    20.
    Binkley, D. & Högberg, P. Tamm review: Revisiting the influence of nitrogen deposition on Swedish forests. For. Ecol. Manag. 368, 222–239 (2016).
    Article  Google Scholar 

    21.
    Lee, J. A. Unintentional experiments with terrestrial ecosystems: Ecological effects of sulphur and nitrogen pollutants. J. Ecol. 86, 1–12 (1998).
    CAS  Article  Google Scholar 

    22.
    Southon, G. E., Field, C., Caporn, S. J. M., Britton, A. J. & Power, S. A. Nitrogen deposition reduces plant diversity and alters ecosystem functioning: Field-scale evidence from a nationwide survey of UK heathlands. PLoS ONE 8, e59031 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Vitousek, P. M., Menge, D. N. L., Reed, S. C. & Cleveland, C. C. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B. 368, 20130119 (2013).
    Article  CAS  Google Scholar 

    24.
    Skogen, K. A., Holsinger, K. E. & Cardon, Z. G. Nitrogen deposition, competition and the decline of a regionally threatened legume, Desmodium cuspidatum. Oecologia 165, 261–269 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Salvagiotti, F. et al. Growth and nitrogen fixation in high-yielding soybean: Impact of nitrogen fertilization. Agron J. 101, 958–970 (2009).
    CAS  Article  Google Scholar 

    26.
    Markham, J. H. & Zekveld, C. Nitrogen fixation makes biomass allocation to roots independent of soil nitrogen supply. Can. J. Bot. 85, 787–793 (2007).
    CAS  Article  Google Scholar 

    27.
    Coley, P. D. Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim. Change. 39, 455–472 (1998).
    Article  Google Scholar 

    28.
    Coley, P. D., Massa, M., Lovelock, C. E. & Winter, K. Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133, 62–69 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Roger, M. G., Damian, J. B. & Jason, L. L. The effects of elevated [CO2] on the C:N and C:P mass ratios of plant tissues. Plant Soil 224, 1–14 (2000).
    Article  Google Scholar 

    30.
    McLauchlan, K. K., Williams, J. J., Craine, J. M. & Jeffers, E. S. Changes in global nitrogen cycling during the Holocene epoch. Nature 495, 352–355 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Hossain, M. A., Ishimine, Y., Akamine, H. & Kuramochi, H. Effect of nitrogen fertilizer application on growth, biomass production and N-uptake of torpedograss (Panicum repens L.). Weed Biol. Manag. 4, 86–94 (2004).
    CAS  Article  Google Scholar 

    32.
    Thomas, R. B., Bashkin, M. A. & Richter, D. D. Nitrogen inhibition of nodulation and N2 fixation of a tropical N2-fixing tree (Gliricidia sepium) grown in elevated atmospheric CO2. New Phytol. 145, 233–243 (2000).
    CAS  Article  Google Scholar 

    33.
    Dordas, C. A. & Sioulas, C. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind. Crops Prod. 27, 75–85 (2008).
    CAS  Article  Google Scholar 

    34.
    Xu, D. et al. Interactive effects of nitrogen and silicon addition on growth of five common plant species and structure of plant community in alpine meadow. CATENA 169, 80–89 (2018).
    CAS  Article  Google Scholar 

    35.
    Roy, A. & Bousquet, J. The evolution of the actinorhizal symbiosis through phylogenetic analysis of host plants. Acta Bot. Gall 143, 635–650 (1996).
    Article  Google Scholar 

    36.
    Swensen, S. M. The evolution of actinorhizal symbioses: Evidence for multiple origins of the symbiotic association. Am. J. Bot. 83, 1503–1512 (1996).
    Article  Google Scholar 

    37.
    van Velzen, R. et al. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc. Natl. Acad. Sci. 115, E4700–E4709 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    38.
    Rogers, A., Ainsworth, E. A. & Leakey, A. D. B. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes?. Plant Physiol. 151, 1009–1016 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    DeLuca, T. H., Zackrisson, O., Gundale, M. J. & Nilsson, M. C. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320, 1181 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Zheng, M., Zhou, Z., Luo, Y., Zhao, P. & Mo, J. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Glob. Change Biol. 25, 3018–3030 (2019).
    ADS  Article  Google Scholar 

    41.
    Fisher, J. B. et al. Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Glob. Biogeochem. Cycles. 24, GB1014 (2010).
    ADS  Article  CAS  Google Scholar 

    42.
    Gentili, F., Wall, L. G. & Huss-Danell, K. Effects of phosphorus and nitrogen on nodulation are seen already at the stage of early cortical cell divisions in Alnus incana. Ann. Bot. 98, 309–315 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Chen, H. & Markham, J. Using microcontrollers and sensors to build an inexpensive CO2 control system for growth chambers. Appl. Plant Sci. 8, e11393 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Werner, G. D. A., Cornwell, W. K., Sprent, J. I., Kattge, J. & Kiers, E. T. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 5, 4087 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Chen, H., Renault, S. & Markham, J. The effect of Frankia and multiple ectomycorrhizal fungil species on Alnus growing in low fertility soil. Symbiosis. 80, 207–215 (2020).
    CAS  Article  Google Scholar 

    46.
    Noridge, N. A. & Benson, D. R. Isolation and nitrogen-fixing activity of Frankia sp. strain CpI1 vesicles. J. Bacteriol. 166, 301–305 (1986).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Markham, J. H. Does Dryas integrifolia fix nitrogen?. Botany. 87, 1106–1109 (2009).
    CAS  Article  Google Scholar  More

  • in

    Pseudomonas eucalypticola sp. nov., a producer of antifungal agents isolated from Eucalyptus dunnii leaves

    Phylogenetic analysis
    A 1444 bp fragment of the 16S rRNA gene was amplified from the P. eucalypticola strain NP-1 T, sequenced and the sequence deposited in GenBank under accession number MN 238,862. A similarity search with this sequence was performed using EzBioCloud. Thirty valid species belonging to P. fluorescens intrageneric group (IG) proposed by Mulet et al.15 exhibited at least 97% similarity with NP-1 T, and these include P. vancouverensis ATCC 700688 T (98.8% similarity), P. moorei DSM12647T (98.8% similarity), P. koreensis Ps9-14 T (98.8% similarity), P. parafulva NBRC16636T (98.5% similarity) and P. reinekei Mt-1 T (98.5% similarity). The similarities with the other 25 species are provided in Supplementary Table S1. A phylogenetic tree based on the 16S rRNA sequence was constructed and is shown in Fig. 1. Strain NP-1 T forms a weakly supported cluster with P. kuykendallii NRRL B-59562 T, but both strains are situated on separate branches. Strain NP-1 T grouped in none known group or subgroup within P. fluorescens lineage, and it clusters of the outer edge of a much larger group containing several Pseudomonas groups/subgroups. However, Pseudomonas species cannot be identified based only on 16S rRNA analysis.
    Figure 1

    Neighbor-joining phylogenetic tree based on the 16S rRNA gene of Pseudomonas eucalypticola NP-1T and phylogenetically close members of Pseudomonas. The evolutionary distances were computed using the Jukes-Cantor method. The optimal tree with a sum of branch length = 0.23535266 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches. Cellvibrio japonicus Ueda107T was used as outgroup.

    Full size image

    The MLSA approach based on the concatenated sequences of the partial 16S rRNA, gyrB, rpoB and rpoD genes, has been demonstrated to greatly facilitate the identification of new Pseudomonas strains16. According to the 16S rRNA alignment, 33 species from P. fluorescens IG and one species from P. pertucinogena IG were selected for MLSA. The concatenated sequences of the type strains of each selected species comprised a total of 3813 bp (Supplementary Table S2) and were used for phylogenetic tree construction. The analysis of concatenated gene sequences indicated that strain NP-1 T belongs to the P. fluorescens lineage, and this finding was supported by a bootstrap value of 91% (Fig. 2).However, NP-1 T still cannot be determined which group belongs to17.
    Figure 2

    Neighbor-joining phylogenetic tree based on concatenated 16S rRNA, gyrB, rpoB and rpoD gene partial of Pseudomonas eucalypticola NP-1T and the type strains of other Pseudomonas species. The evolutionary distances were computed using the Jukes-Cantor method. The evolutionary distances were computed using the Jukes-Cantor method e optimal tree with the sum of branch length = 1.37677586 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches.

    Full size image

    For further identification of NP-1 T, a phylogenomic tree inferred with GBDP was constructed by using Type (Strain) Genome Server (TYGS)18, and all reference type strains and their genome sources are listed in Supplementary Table S3. The result showed the presence of an independent branch supported by a bootstrap value of 88% that can be differentiated from the other Pseudomonas species type strains (Fig. 3) and revealed that NP-1 T clustered with P. coleopterorum LMG 28558 T and P. rhizosphaerae LMG 21640 T which affiliated with P. fluorescens IG, but does not belong to any group. Strain NP-1 T was not be affiliated with any previously described Pseudomonas species and can thus be considered to represent a novel species. Based on above-described the results, P. coleopterorum, P. rhizosphaerae, P. graminis and P. lutea were selected for further analysis with NP-1 T.
    Figure 3

    Phylogenomic tree of strain NP-1T and related type strains of the genus Pseudomonas available on the TYGS database. The tree inferred with FastME 2.1.6.1 based on GBDP distances calculated from the genome sequences. The branch lengths are scaled in terms of the GBDP distance formula d5. The numbers above the branches show the GBDP pseudo-bootstrap support values  > 60% from 100 replications, and the average branch support is 94.6%.

    Full size image

    General taxonomic genome feature
    The draft genome assembly of strain NP-1 T contains 6,401,699 bp. The genome of NP-1 T, which consists of one chromosome and one plasmid, has been deposited in GenBank under the accession numbers CP056030 and CP056031, respectively. The genome has a G + C content of 63.96 mol%, as determined from the complete genome sequence, and 83.45% of the genome is coding and consists of 5,788 genes. The similarity of the genome of P. eucalypticola NP-1 T to other publicly available genomes of closely related Pseudomonas species was determined using ANI, digital DDH and G + C mol %5,6,7,8,9. Each of these comparisons yielded different ANIm and ANIb values, but the highest ANIb and ANIm values of 78.7 and 86.5 were obtained for NP-1 T and P. rhizosphaerae LMG 21640 T. The similarity between P. coleopterorum LMG 28558 T and NP-1 T was higher than that between P. graminis DSM 11363 T and P. lutea LMG 21974 T (Table 1). All ANIb and ANIm values obtained from the comparisons of NP-1 T with the other tested species were below 95%, which confirmed that strain NP-1 T belongs to an independent species. The TETRA frequencies between NP-1 T and the other tested type strains were lower than 0.99, which is the recommended cutoff value for species (Table 2). The digital DNA-DNA hybridization (dDDH) comparison with the draft genome of the type strain NP-1 T yielded low percentages ( More

  • in

    Sludge amendment accelerating reclamation process of reconstructed mining substrates

    1.
    Kuang, X. Y., Cao, Y. G., Luo, G. B. & Huang, Y. H. Responses of melilotus officinalis growth to the composition of different topsoil substitute materials in the reclamation of open-pit mining grassland area in Inner Mongolia. Materials 12, 1–21. https://doi.org/10.3390/ma12233888 (2019).
    CAS  Article  Google Scholar 
    2.
    Cheng, W., Bian, Z. F., Dong, J. H. & Lei, S. G. Soil properties in reclaimed farmland by filling subsidence basin due to underground coal mining with mineral wastes in China. Trans. Nonferrous Metals Soc. China. 24, 2627–2635. https://doi.org/10.1016/S1003-6326(14)63392-6 (2014).
    CAS  Article  Google Scholar 

    3.
    Du, T., Wang, D. M., Bai, Y. J. & Zhang, Z. Z. Optimizing the formulation of coal gangue planting substrate using wastes: The sustainability of coal mine ecological restoration. Ecol. Eng. 143, 1–10. https://doi.org/10.1016/j.ecoleng.2019.105669 (2020).
    Article  Google Scholar 

    4.
    Yin, N. N., Zhang, Z., Wang, L. P. & Qian, K. M. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ. Sci. Pollut. Res. 23, 17840–17849. https://doi.org/10.1007/s11356-016-6941-5 (2016).
    CAS  Article  Google Scholar 

    5.
    Clemente, R. et al. Combination of soil organic and inorganic amendments helps plants overcome trace element induced oxidative stress and allows phytostabilisation. Chemosphere 223, 223–231. https://doi.org/10.1016/j.chemosphere.2019.02.056 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    Wu, D. et al. Integrated application of sewage sludge, earthworms and Jatropha curcas on abandoned rare-earth mine land soil. Chemosphere 214, 47–54. https://doi.org/10.1016/j.chemosphere.2018.09.087 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    Blankinship, J. C., Fonte, S. J., Six, J. & Schimel, J. P. Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem. Geoderma 272, 39–50. https://doi.org/10.1016/j.geoderma.2016.03.008 (2016).
    ADS  Article  Google Scholar 

    8.
    Wang, S., Li, T., Zheng, Z. & Chen, H. Y. H. Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. Sci. Total Environ. 654, 1023–1032. https://doi.org/10.1016/j.scitotenv.2018.11.032 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Parvin, S., Van Geel, M., Yeasmin, T., Lievens, B. & Honnay, O. Variation in arbuscular mycorrhizal fungal communities associated with lowland rice (Oryza sativa) along a gradient of soil salinity and arsenic contamination in Bangladesh. Sci. Total Environ. 686, 546–554. https://doi.org/10.1016/j.scitotenv.2019.05.450 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Lanfranco, L., Fiorilli, V., Venice, F. & Bonfante, P. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J. Exp. Bot. 69, 2175–2188. https://doi.org/10.1093/jxb/erx432 (2018).
    CAS  Article  PubMed  Google Scholar 

    11.
    Singh, A. K., Rai, A., Pandey, V. & Singh, N. Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics. J. Environ. Manag. 192, 142–149. https://doi.org/10.1016/j.jenvman.2017.01.041 (2017).
    CAS  Article  Google Scholar 

    12.
    Zhang, J., Ekblad, A., Sigurdsson, B. D. & Wallander, H. The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-arctic grassland. Soil Biol. Biochem. 147, 1–9. https://doi.org/10.1016/j.soilbio.2020.107826 (2020).
    CAS  Article  Google Scholar 

    13.
    Singh, A. K., Rai, A. & Singh, N. Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma 277, 41–50. https://doi.org/10.1016/j.geoderma.2016.05.004 (2016).
    ADS  CAS  Article  Google Scholar 

    14.
    Xiao, L. et al. Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the Loess Plateau. Geoderma 334, 1–8. https://doi.org/10.1016/j.geoderma.2018.07.043 (2019).
    ADS  CAS  Article  Google Scholar 

    15.
    Qian, K. M., Wang, P. & Yin, N. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. Int. J. Min. Sci. Technol. 22, 553–557. https://doi.org/10.1016/j.ijmst.2012.01.019 (2012).
    CAS  Article  Google Scholar 

    16.
    Ahirwal, J. & Maiti, S. K. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate. J. Environ. Manag. 201, 369–377. https://doi.org/10.1016/j.jenvman.2017.07.003 (2017).
    CAS  Article  Google Scholar 

    17.
    Yuan, Y., Zhao, Z. Q., Li, X. Z., Wang, Y. Y. & Bai, Z. K. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China. Sci. Total Environ. 613, 1196–1206. https://doi.org/10.1016/j.scitotenv.2017.09.170 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    18.
    Hassan, W. et al. Labile organic carbon fractions, regulator of CO2 emission: Effect of plant residues and water regimes. Clean: Soil, Air, Water 44, 1358–1367. https://doi.org/10.1002/clen.201400405 (2016).
    CAS  Article  Google Scholar 

    19.
    Cheng, X. R., Yu, M. K. & Wang, G. G. Effects of thinning on soil organic carbon fractions and soil properties in Cunninghamia lanceolata stands in Eastern China. Forests. 8, 1–21. https://doi.org/10.3390/f8060198 (2017).
    Article  Google Scholar 

    20.
    Zhong, Y. Q. W., Yan, W. M. & Shangguan, Z. P. Soil carbon and nitrogen fractions in the soil profile and their response to long-term nitrogen fertilization in a wheat field. CATENA 135, 38–46. https://doi.org/10.1016/j.catena.2015.06.018 (2015).
    CAS  Article  Google Scholar 

    21.
    Wang, Y., Ling, C., Chen, Y., Jiang, X. R. & Chen, G. Q. Microbial engineering for easy downstream processing. Biotechnol. Adv. 37, 1–9. https://doi.org/10.1016/j.biotechadv.2019.03.004 (2019).
    CAS  Article  PubMed  Google Scholar 

    22.
    Ye, G. P. et al. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment. Soil Biol. Biochem. 134, 15–24. https://doi.org/10.1016/j.soilbio.2019.03.018 (2019).
    CAS  Article  Google Scholar 

    23.
    Du, R. et al. Advanced nitrogen removal with simultaneous Anammox and denitrification in sequencing batch reactor. Bioresour. Technol. 162, 316–322. https://doi.org/10.1016/j.biortech.2014.03.041 (2014).
    CAS  Article  PubMed  Google Scholar 

    24.
    Luna, L. et al. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. CATENA 143, 256–264. https://doi.org/10.1016/j.catena.2016.04.013 (2016).
    CAS  Article  Google Scholar 

    25.
    Hao, X. H. et al. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutr. Cycl. Agroecosyst. 81, 17–24. https://doi.org/10.1007/s10705-007-9145-z (2008).
    Article  Google Scholar 

    26.
    Fokom, R. et al. Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil Tillage Res. 120, 69–75. https://doi.org/10.1016/j.still.2011.11.004 (2012).
    Article  Google Scholar 

    27.
    Wang, W. et al. Glomalin changes in urban-rural gradients and their possible associations with forest characteristics and soil properties in Harbin City, Northeastern China. J. Environ. Manag. 224, 225–234. https://doi.org/10.1016/j.jenvman.2018.07.047 (2018).
    CAS  Article  Google Scholar 

    28.
    Anirwal, J., Kumar, A., Pietrzykowski, M. & Maiti, S. K. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: A case study from India. Environ. Sci. Pollut. Res. 25, 27992–28003. https://doi.org/10.1007/s11356-018-2789-1 (2018).
    CAS  Article  Google Scholar 

    29.
    Sun, S., Li, S., Avera, B. N., Strahm, B. D. & Badgley, B. D. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 83, 1–14. https://doi.org/10.1128/AEM.00966-17 (2017).
    CAS  Article  Google Scholar 

    30.
    Amir, H. et al. Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: A field experiment. Sci. Total Environ. 651, 334–343. https://doi.org/10.1016/j.scitotenv.2018.09.153 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    31.
    Klabi, R. et al. Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community. Soil Biol. Biochem. 70, 176–182. https://doi.org/10.1016/j.soilbio.2013.12.019 (2014).
    CAS  Article  Google Scholar 

    32.
    Prasad, R., Tuteja, N. & Varma, A. Mycorrhiza—Nutrient Uptake, Biocontrol Ecorestoration 161–163 (Springer International Publishing, Cham, 2017).
    Google Scholar 

    33.
    Becher, P. G. et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat. Microbiol. 5, 821–829. https://doi.org/10.1038/s41564-020-0697-x (2020).
    CAS  Article  PubMed  Google Scholar 

    34.
    Houston, T. F. & Bougher, N. L. Records of hypogeous mycorrhizal fungi in the diet of some Western Australian bolboceratine beetles (Coleoptera: Geotrupidae, Bolboceratinae). Aust. J. Entomol. 49, 49–55. https://doi.org/10.1111/j.1440-6055.2009.00720.x (2010).
    Article  Google Scholar 

    35.
    Han, X. G. et al. Dynamics of arbuscular mycorrhizal fungi in relation to root colonization, spore density, and soil properties among different spreading stages of the exotic plant threeflower beggarweed (Desmodium triflorum) in a Zoysia tenuifolia lawn. Weed Sci. 67, 689–701. https://doi.org/10.1017/wsc.2019.50 (2019).
    Article  Google Scholar 

    36.
    Sandeep, S., Manjaiah, K. M., Mayadevi, M. R. & Singh, A. K. Monitoring temperature sensitivity of soil organic carbon decomposition under maize-wheat cropping systems in semi-arid India. Environ. Monit. Assess. 188, 1–15. https://doi.org/10.1007/s10661-016-5455-4 (2016).
    CAS  Article  Google Scholar 

    37.
    Ahirwal, J. & Maiti, S. K. Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. CATENA 166, 114–123. https://doi.org/10.1016/j.catena.2018.03.026 (2018).
    CAS  Article  Google Scholar 

    38.
    Stumpf, L., Pauletto, E. A. & Pinto, L. F. S. Soil aggregation and root growth of perennial grasses in a constructed clay minesoil. Soil Tillage Res. 161, 71–78. https://doi.org/10.1016/j.still.2016.03.005 (2016).
    Article  Google Scholar 

    39.
    Helliwell, J. R. et al. The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface. Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-14904-w (2017).
    CAS  Article  Google Scholar 

    40.
    Fu, W. J. et al. The carbon storage in moso bamboo plantation and its spatial variation in Anji County of southeastern China. J. Soils Sedim. 14, 320–329. https://doi.org/10.1007/s11368-013-0665-7 (2014).
    CAS  Article  Google Scholar 

    41.
    Zhang, Z. H., Wang, Q., Wang, H., Nie, S. M. & Liang, Z. W. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP). Sci. Total Environ. 581, 657–665. https://doi.org/10.1016/jscitotenv.2016.12.176 (2017).
    ADS  Article  PubMed  Google Scholar 

    42.
    Janos, D. P., Garamszegi, S. & Beltran, B. Glomalin extraction and measurement. Soil Biol. Biochem. 40, 728–739. https://doi.org/10.1016/j.soilbio.2007.10.007 (2008).
    CAS  Article  Google Scholar 

    43.
    Dave, B. P. & Soni, A. Diversity of halophilic Archaea at salt pans around Bhavnagar Coast, Gujarat. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 83, 225–232. https://doi.org/10.1007/s40011-012-0124-z (2013).
    Article  Google Scholar 

    44.
    Magurran, A. E. Ecological Diversity and Its Measurement 61–80 (Princeton University Press, Princeton, 1988).
    Google Scholar  More

  • in

    Characterization of a green Stentor with symbiotic algae growing in an extremely oligotrophic environment and storing large amounts of starch granules in its cytoplasm

    Distribution of Stentor pyriformis in Japan and its optimal culture conditions
    S. pyriformis was described by Johnson in 18936. This algae-bearing Stentor has separated spherical macronuclei without pigmentation, which certainly differentiates it from other Stentor species (see Table S1, Fig. 5B). While the most common algae-bearing Stentor, S. polymorphus assumes a slender trumpet shape (often shortened), S. pyriformis never resembles such a slender trumpet, but assumes a pear or short conical shape, even when it is swimming6. Presence or absence of colored pigmentation is also a prominent characteristic for separating Stentor species. Among algae-bearing Stentor spp., S. polymorphus and S. pyriformis only are considered colorless species, whereas colored species are S. amethystinus, S. fuliginosus, S. araucanus, and S. tartari8 (Table S1). Therefore, S. pyriformis is a clearly discernible species; however, it remains underexplored. Indeed, we could only find one paper on the new habitats of S. pyriformis7, with the exception of the paper of species consolidation of this genus8. We confirmed the presence of S. pyriformis at 23 locations (Fig. 1A). This indicates that S. pyriformis is by no means a rare organism. We assume one of the reasons why S. pyriformis has been poorly studied is the difficulty of cultivation. In fact, Johnson6 noted that he could not keep them more than a month and never observed any cells in fission. In addition, after five years of failure, it was finally possible to culture S. pyriformis for more than several months. Because of objectively unfounded data that we could not include in the distribution data (Fig. 1A), we noticed the wetlands where we found S. pyriformis were limited to small ponds or bogs locating near the mountain peak or along the ridge (Fig. 1B). That is, the ponds depending on rainfall without inflowing rivers. Because there is no nutrient flowing in, waters in these ponds showed noticeable oligotrophic tendency, i.e., extremely low electric conductivity (Fig. 1A), which gave us some clues on culture.
    The most important point of culture for S. pyriformis was keeping the medium lower electric conductivity. We use the KCM medium diluted by 2% with Milli-Q water, and changed medium once a week. A non-photosynthetic cryptophyte, Chilomonas paramecium was selected for food. We selected the food so that it would not itself grow in the culture medium. Growing organisms, like photosynthetic algae, seemed to cause damage to S. pyriformis. Using this culture method, S. pyriformis can be maintained for more than four years (see Table 1). For the organisms not easy to grow in culture, Professor Michael Melkonian mentioned no protist is ‘uncultivable’, there is just human failure30. Here, it just became possible to culture S. pyriformis 120 years after its discovery; however, this method does not always work. S. pyriformis appears to be extremely fragile and disintegrates when any variables are unintentionally altered, that is, the culture is still unstable. When its condition deteriorates, the cells divide unevenly in such a way that a part of the cell is broken. When this happens, the cells become spherical, and the drug drops to the bottom of the dish. It retains this shape for more than a month, but eventually disappears. The doubling time of S. pyriformis remains 3 to 4 weeks, even under favorable conditions (data not shown). We occasionally encountered the blooming of S. pyriformis all over the bottom of the ponds (Fig. 1C). S. pyriformis, therefore, does not seem to be a particularly slow growing species, but our culture method appears to be far from the optimal culture conditions for them. Three S. pyriformis strains used in this study are available from the authors upon request.
    Ultrastructure
    In this study, we compared the conventional chemical fixation method with the rapid-freezing fixation method for electron microscopic observation. As a result, large vacuoles were observed in the cytoplasm when chemical fixation was used, but not by rapid freezing. Instead, many multi-vesicular bodies were observed in the cytoplasm. The quick-freezing and freeze-substitution method is considered superior in that it can prevent deformation of the intracellular structure compared to chemical fixation31. Therefore, it is possible that the originally existing multi-vesicular bodies were artificially disintegrated by chemical fixation, and the constituent biological membranes fused together, eventually forming large vacuoles. To the authors’ knowledge, no intracellular structure similar to the multi-vesicular body in S. pyriformis has been reported in protists. As multi-vesicular bodies of S. pyriformis could only be observed using the freeze-substitution method, similar granules may also be found in other protists if the same technique is used for electron microscopy. In animals, on the other hand, aggregates of secretory vesicles resembling the multi-vesicular bodies of S. pyriformis are present in cardiac telocytes32. The extracellular vesicles form multi-vesicular structures of about 1 μm in diameter and contain materials for intercellular communication that are involved in cardiac physiology and regeneration. Because S. pyriformis cells often form aggregates at the bottom of the pond, some chemicals may be released from the multi-vesicular body, attracting nearby cells and forming aggregates.
    Observation by the freeze-substitution method revealed that the symbiosome membrane was in close contact with the symbiotic chlorella. Furthermore, fluffy projections were observed on the cell wall of the symbiotic chlorella. These characteristics were consistent with those of C. variabilis, which is symbiotic in the cells of P. bursaria9. The only difference was that in S. pyriformis, the symbiotic chlorella cells were scattered in the cytoplasm, whereas the symbiotic Chlorella in P. bursaria were anchored directly below the cell surface.
    Storage granules
    The iodine in Lugol’s solution selectively binds to α-1, 4-linked glucose found in polysaccharides, such as starch33 and glycogen34. The color stained with Lugol’s solution reflects the type of glucose polymer. Starches with high amylose content stain blue-violet (cf. Fig. 4B), high amylopectin stains red–purple, and glycogen stains reddish brown (Table 2). The granules in the cytoplasm of S. pyriformis stained reddish brown with Lugol’s solution (Fig. 4A), suggesting that these granules are composed of α-1,4-linked glucans with high number of α-1,6-linked branch points, either amylopectin-rich starch or glycogen. The pyrenoid of Chlorella spp. is surrounded by a starch sheath of two large plates35. As shown in Fig. 4F,G, the image contrast formed by electron staining of the starch granule in the chloroplast (arrow) was lost by treatment with Lugol’s solution. Although the detailed mechanism is unknown, this observation suggests that electron-stained heavy metals (osmium, lead, and lanthanoid ions) bound to the granules may have been eliminated by iodine in Lugol’s solution. The cytoplasmic granules of S. pyriformis showed the same staining properties as the starch granules in the chloroplasts of symbiotic chlorella, suggesting that both types of granules share chemical characteristics as polysaccharides.
    Alveolates make up one of the most diverse and largest groups of protists. They include three major taxa: dinoflagellates, ciliates, and apicomplexan protozoa. All three alveolate lineages store glucose in an α-1,4-linked glucose chain with α-1, 6 branches. Ciliates are known to synthesize glycogen granules. For example, Tetrahymena has glycogen granules between 35 and 40 nm in diameter, each granule being a collection of small γ-granules of 2–3 nm in size36. Dinoflagellates and apicomplexans typically produce more complex and larger spherical starch particles, usually greater than 1 μm in size37,38. Amylopectin-rich starch and glycogen are very similar polysaccharides, but they differ in granule size and birefringence (Table 2). Starch granules are large, birefringent, and have a high refractive index, but glycogen does not exhibit birefringence, and its granules generally have a size of 300 nm or less. When observed with a polarizing microscope, the starch granules show a Maltese cross pattern. This pattern is derived from the radial arrangement of amylose and amylopectin molecules in granules and is one of the criteria for starch identification. Since the cytoplasmic granules of S. pyriformis are large in size (1–3 μm) and show a typical Maltese cross pattern as shown in Fig. 4E, these granules are likely to be starch granules rich in amylopectin.
    Phylogeny of S. pyriformis and its morphology
    Relationships of Stentor species were not clearly resolved. BI and ML analyses indicated basal diverging of the S. pyriformis + S. amethystinus clade from others, but NJ analysis did not indicate so (Fig. 5). Recent phylogenetic analyses inclusive of Stentor species also indicated basal diverging of S. amethystinus from the others; however, the monophyly of the others is not highly supported21,22. Therefore, the one thing that can be said is that S. pyriformis is closely related to S. amethystinus.
    For the identification of Stentor species, the shape of macronucleus, presence or absence of cortical pigmentation, and symbiotic algae are very important and iconic characteristics8,19. S. pyriformis and S. amethystinus share beaded macronuclei and the presence of symbiotic chlorella (Table S1, Fig. 5B). Pigmentation is present in S. amethystinus, but not in S. pyriformis. Pigmentation is a noticeable characteristic, which tinctures the whole body of Stentor cells. The pigment is thought to function as a defense against predators39. However, the kind of pigment compound depends on the species40, and the relationship between pigment possession and phylogeny is poor (Fig. 5). Of note, colorless vesicles exist in S. pyriformis (Fig. 2D). The short and fat shape is also a common characteristic for S. pyriformis and S. amethystinus, in this genus with many elongated trumpet shape species6,8.
    Symbiotic algae in S. pyriformis
    Algae-targeted PCR products from whole cells of S. pyriformis were sequenced directly, and clear peaks were obtained for each. This shows that all or nearly all of the algal symbionts in each Stentor cell are unified, regardless of samples under long-term culture or nature. In addition, all symbionts were closely related to C. variabilis (Fig. S3), which has been known as a representative symbiont of P. bursaria (Oligohymenophorea), the model organism of multi-algae retaining protists (MARP41) style symbioses. For the chlorellacean species, the diversity of ITS2 sequence comparisons has often been adopted. For two organisms to compare, ITS2 sequence differences (gaps are counted as a fifth character) usually fall either less than 2% for single species or more than 10% for different species42,43. This characteristic simply encourages a species concept. The ITS2 sequences of S. pyriformis algae differ only by one nucleotide site out of 248 sites from those of P. bursaria algae (Fig. 6A), which strongly suggests the symbiotic chlorella of S. pyriformis are also C. variabilis. Several Stentor species retain coccoid green algae8 (Table S1), but only three algal sequences have been published. Two algal sequences from S. polymorphus belonged to different clades from Chlorellaceae44,45. As for the other algal sequence of S. amethystinus, the symbiont may belong to Chlorellaceae46. This sequence (EF589816) is short (991 bp) and only covers a part of SSU rDNA; therefore, it was not included in our phylogenetic analyses (Fig. S3). The sequence differs from C. variabilis with 10 base changes and 3 indels, indicating that it is not C. variabilis.
    Figure 6

    Sequence differences of SSU, ITS1, 5.8S and ITS2 rRNA gene (without group I introns) among Chlorella variabilis. “PbS-gt” indicates Paramecium bursaria symbiont genotypes. Genotype 1 includes SAG 211-6, ATCC 50258 (NC64A), NIES-2541, and some other US and Japanese strains. Genotype 2 is the alga of Chinese P. bursaria strain Cs2, and genotype 3 is the alga of Australian P. bursaria strain MRBG1. For further information, see Hoshina et al.53. “SpS” indicates the algal sequence of Stentor pyriformis strains collected from Japan. (A). Different positions. Numerals represent the nucleotide number in aligned sequences (2462 aligned sites). (B). Distance tree of above four types of sequences. (C). E23_2 helix of SSU rRNA structure that includes hemi-CBC at the alignment position 656. (D). Deformation of ITS1 Helix 1 associated with the mutations including several nucleotide insertions.

    Full size image

    In the case of P. bursaria-C. variabilis symbiosis, C. variabilis has been shown to be vastly different from other free-living species. C. variabilis demands organic nitrogen compounds47 and leaks nearly half of the photosynthate to outside algal cells48,49. Furthermore, they are sensitive to the C. variabilis virus (CvV; so-called ‘NC64A virus’), which is abundant in natural freshwater50,51,52. Therefore, C. variabilis should be considered an already evolved species that is unable to survive without the protection of the host cell53.
    Four C. variabilis rDNA sequences obtained from S. pyriformis were identical, with the exception of a nucleotide position in the S1512 intron. Here, the regions without group I introns, i.e., SSU, ITS1, 5.8S, and ITS2 rDNA, are compared among C. variabilis sequences of S. pyriformis and of P. bursaria. Several published sequences cover the above SSU-ITS region, of which varieties are shown as P. bursaria symbiont genotype (PbS-gt) 1 to 3 (Fig. 6A). Due to the small number of sequences, it is still unknown whether these genotypes depend on (or are related to) their living regions. Genotype 1 was from USA and Japan, genotype 2 was from China, and genotype 3 was from Australia. All available sequences for S. pyriformis symbionts were obtained in this study, and they were all from Japan. As a result, all sequences of S. pyriformis symbionts were aggregated into a single genotype SpS, which was distantly related to all P. bursaria symbionts, including those from Japan (Fig. 6B). Five variable sites are found in SSU rDNA among C. variabilis genotypes, of which four are concentrated to that of the symbionts of S. pyriformis (SpS) (Fig. 6A). C/T substitution at alignment position 656 will be a hemi-compensatory base change (hemi-CBC) at the E23_2 helix of SSU rRNA structure (Fig. 6C), whereas the other four sites are at single strand regions (data not shown). Mutations (1821–1828) including comparatively large indels were seen in ITS1 region (Fig. 6A). It was found that all these mutations are assembled in helix 1 (for chlorellacean ITS1 structure, see Bock et al.54,55). Thermodynamic analysis via Mfold56,57 predicted that PbS sequences form linear helix 1 similar to the other chlorellacean species, but SpS sequences including the additional nucleotides may form a dichotomous branching of helix 1 (Fig. 6D).
    The group I introns inserted in SSU rDNA of S. pyriformis symbionts are identical to those of P. bursaria symbionts28,58 in terms of numbers (three introns) and insertion sites (S943, S1367 and S1512). The sequences of S943 and S1512 introns are matched more than 99%. However, with respect to the S1367 intron, a large length gap was found (168 nucleotides) at the tip of P8 (Fig. S4). This section has been indicated as a homing endonuclease gene remnant28, and those of S. pyriformis symbionts are presumed to be a more degenerated form than those of P. bursaria symbionts.
    At any rate, the symbiotic algae of S. pyriformis were found to be C. variabilis. Because S. pyriformis never lost the symbiotic algae in four years of culture, and all four algae had nearly identical genetic characteristics, the symbiotic relationships between S. pyriformis and C. variabilis can be regarded as stable, or permanent. Although S. pyriformis and P. bursaria share C. variabilis as their endosymbionts, considering the genetic differences depending on their host species, the sharing event has not happened recently. Symbiont sharing among various host species has also been known for some ciliates41,59 (Carolibrandtia ciliaticola in Fig. S3), and a script to spread a particular algal symbiont has been suggested41. Given the physiological characters of C. variabilis (mentioned above), this algal species might be an ideal algal symbiont, and it will be no surprise if the other protists also retained C. variabilis as their algal partners. Research on the symbiotic algae that other Stentor spp. have and on host and regional dependencies are awaited.
    Adaptation of S. pyriformis to oligotrophic environment in highland marsh
    In Japan, S. pyriformis lives only in alpine ponds (Fig. 1), where the winter is cold, and the surface of the pond is always covered with ice. The water in these ponds has low electrical conductivity (~ 10 μS/cm), and there are few living organisms except S. pyriformis, meaning that only little food is available in wintertime. The reason this ciliate is rich in stored carbohydrate granules may be due to its need for nutrients to survive such harsh winter environments.
    Preliminary studies suggest that many protists, especially ciliates, may make starch. Large amounts of cytoplasmic granules that show a Maltese cross were observed in chlorella-bearing ciliates such as P. bursaria, while only a small amount of such granules was observed in Euplotes aediculatus, Paramecium caudatum, Blepharisma japonicum, and Tetrahymena pyriformis. Protists with symbiotic algae seem to produce particularly large amounts of stored carbohydrate granules in the cytoplasm, but the mechanism of starch synthesis may be widely shared by ciliates.
    P. bursaria has been shown to be more resistant to starvation conditions than the aposymbiotic strain of the same species13. Under food-deprived conditions, P. bursaria was interpreted to have survived by digesting symbiotic algae. Resting cyst formation and cannibalism are known as other strategies for protozoans to survive starvation conditions60. This study suggests that the use of carbohydrate granules stored in cells may be another possible strategy for ciliates to survive harsh environments such as highland oligotrophic bogs. More