More stories

  • in

    Comprehensive characterisation of Culicoides clastrieri and C. festivipennis (Diptera: Ceratopogonidae) according to morphological and morphometric characters using a multivariate approach and DNA barcode

    Molecular analyses
    Results of molecular analyses
    The sequences obtained are available in GenBank (Supplementary Information 1). Sequence alignments were 399 bp for COI and 587 bp for 28S including gaps.
    Phylogenetic analysis
    Our molecular analysis (Fig. 1) with both markers generated seven supported clusters, six of which were in agreement with the morphological determination (i.e. C. alazanicus, C. brunnicans, C. circumscriptus, C. furcillatus, C. nubeculous and C. pictipennis). However, one cluster (i.e. two species) corresponded to undistinguished C. clastrieri and C. festivipennis.
    Figure 1

    Block diagram of the study.

    Full size image

    In addition, the COI mtDNA tree shows that C. furcillatus is the sister of the “C. clastrieri/festivipennis” clade. Indeed, C. pictipennis is the sister species of C. brunnicans while C. circumscriptus is positioned between the two clades.
    Moreover, the 28S rDNA tree shows that C. pictipennis is the sister of the “C. clastrieri/festivipennis” clade. The other species are positioned in several places without a clade.
    Intra- and inter-specific comparison
    The COI Genbank sequences show little intraspecific divergence in both C. clastrieri (0.1 ± 0.1%) and C. festivipennis (1.2 ± 0.4%). The interspecific difference between C. clastrieri and in C. festivipennis is 0.7 ± 0.2%.
    Small intraspecific divergences with COI sequences were observed in our sample: C. alazanicus (1.2 ± 0.4%), C. brunnicans (0.7 ± 0.2%), C. circumscriptus (2.2 ± 0.5%), C. clastrieri (0.3 ± 0.1%), C. festivipennis (0.4 ± 0.1%), C. furcillatus (1.5 ± 0.4%), C. nubeculosus (0.2 ± 0.1%) and C. pictipennis (1.1 ± 0.3%).
    Finally, C. festivipennis and C. clastrieri—grouped in the same main clade—showed small interspecific distances (0.4 ± 0.2%); these were not identified as separate species based on DNA barcodes. We therefore decided to create a new group (C. clastrieri/festivipennis clade) based on interspecific distance. The overall mean genetic distance (K2P) computed for the different species of Culicoides was found to be 16.6 ± 1.4%. Interspecific K2P values for different (Table 1) species and taxa ranged from 27.3% (between C. furcillatus and C. nubeculosus; between C. circumscriptus-and C. furcillatus) to 17.2 ± 2.1% (between C. circumscriptus and the C. clastrieri/festivipennis clade) for our samples. For the COI Genbank sequences, we observed approximatively the same proportion and the same species (Table 1). We remarked very little interspecific divergence between our sample of the C. clastrieri/festivipennis clade and the C. clastrieri/festivipennis Genbank clade (0.6 ± 0.4%).
    Table 1 Estimation of pairwise distance (± SD) of the Culicoides species for the COI domain of the mtDNA and D1D2 region of the rDNA.
    Full size table

    Analysis from 28S rDNA sequences did not show any intraspecific divergence whatever the taxa (0.000) with the exception of C. nubeculosus (0.1 ± 0.1%) and C. festivipennis/C.clastrieri (0.1 ± 0%). The overall mean genetic distance (K2P) computed for the different species of Culicoides was found to be 2.1 ± 0.03%. Interspecific K2P values for different species (Table 1) and taxa ranged from 1.2% (between C. circumscriptus and C. furcillatus; C. furcillatus and C. brunnicans, the main C. clastrieri/festivipennis clade and C. furcillatus) to 5.3 ± 0.9% (between C. circumscriptus and C. nubeculosus).
    Morphometric and morphological analyses
    In all, 148 specimens identified as C. alazanicus (n = 10), C. brunnicans (n = 27), C. circumscriptus (n = 27), C. clastrieri (n = 21), C. festivipennis (n = 20), C. furcillatus (n = 14), C. nubeculosus (n = 19) and C. pictipennis (n = 20) were analysed with 11 wing landmarks/specimens (Fig. 2).
    Figure 2

    Trees obtained from nucleotide analysis of: (a) COI mtDNA; (b) 28S rDNA (with MP method) sequences of C. alazanicus, C. brunnicans, C. circumscriptus C. clastrieri, C. festivipennis, C. furcillatus, C. nubeculosus and C. pictipennis and bootstrap values are shown in nodes (1000 replicates).

    Full size image

    Principal component analyses
    Principal component analysis (PCA) was used to observe possible grouping trends.
    Firstly, we performed a first normed PCA using the “Wing landmarks” model. The first three axes accounted for 76%, 15% and 8% of the total variance, which suggests a weak structuration of the data. This was confirmed by a scatterplot of PCA axes 1 and 2 that was unable to separate the species (Fig. 3).
    Figure 3

    Principal component analysis (PCA): percentage of variance explained for each PCA dimension and results.

    Full size image

    Secondly, we performed a first normed PCA on the “Wing morphological characters” model. The various specimens of each species are represented by a single point suggesting a close correlation of wing morphological characters. This model, without variance, is not validated and does not permit species separation.
    We studied the “Full wing (landmarks and morphological, characters)” model through a normed PCA on raw data. C. clastrieri could be clearly separated from C. festivipennis. The first five axes accounted for 40%, 25%, 12%, 10% and 5% of the total variance. The scatterplot separated unambiguously and without overlap C. clastrieri-C. festivipennis on the one hand and the six species on the other hand (Fig. 3).
    Finally, we performed a first normed PCA on the “Full model” (Morphological characters—wing, head, abdomen, legs—and wing landmarks). The first nine axes accounted for 26%, 23%, 22%, 10%, 8%., 4%, 3%, 2% and 1% of the total variance, which reveals good structuration of the data. This was confirmed by a scatterplot of PCA axes 1 and 2 that presents the same topology as the wing morphological model (Fig. 3).
    This supports discrimination according to the species’ wing pattern. Similarly, and some body pattern characters could be used to identify Culicoides from the clastrieri/festivipennis clade better and quicker. With that objective in mind, we performed analyses on three datasets: (1) “Wing landmarks” (11 landmarks); (2) “Full wing” (38 items) and (3) the “Full model” that includes 71 items.
    Discriminant analyses
    PLS-DA and sPLS-DA models were used in order to discriminate the extremes (i.e. the most sensitive and most robust groups) using the three datasets (species, models and components) as described. The accuracy and the balanced error rate (BER) for the two models were compared and are summarised in Supplementary Information 2 and Fig. 4.
    Figure 4

    Balanced error rate (BER) choosing the number of dimensions. Performance and ncomp selection.

    Full size image

    The tuning step of the number of components to select showed that 16 components were necessary to lower the BER (Fig. 4A,B) for the “Wing landmarks” data. The AUC values with 16 components are as follows: C. alazanicus (0.97, p  More

  • in

    Planting period is the main factor for controlling maize rough dwarf disease

    1.
    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).
    PubMed  Article  Google Scholar 
    2.
    García-Arenal, F. & McDonald, B. A. An analysis of the durability of resistance to plant viruses. Phytopathology 93, 941–952 (2003).
    PubMed  Article  Google Scholar 

    3.
    Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).
    PubMed  Article  Google Scholar 

    4.
    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
    CAS  PubMed  Article  Google Scholar 

    5.
    Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. 46, 75–100 (2008).
    CAS  PubMed  Article  Google Scholar 

    6.
    Biek, R. & Real, L. A. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19, 3515–3531 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Meentemeyer, R. K., Haas, S. E. & Václavík, T. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu. Rev. Phytopathol. 50, 379–402 (2012).
    CAS  PubMed  Article  Google Scholar 

    8.
    Boccardo, G. & Milne, R.G. Plant Reovirus Group. Description of Plant Viruses. No. 294. CM/AAB (1984).

    9.
    Dovas, C. I., Eythymiou, K. & Katis, N. I. First report of maize rough dwarf virus (MRDV) on maize crops in Greece. Plant Pathol. 53, 238–238 (2004).
    Article  Google Scholar 

    10.
    Lenardon, S. L., March, G. J., Nome, S. F. & Ornaghi, J. A. Recent outbreak of “Mal de Rio Cuarto” virus on corn in Argentina. Plant Dis. 82, 448 (1998).
    CAS  PubMed  Article  Google Scholar 

    11.
    Zhang, H., Chen, J., Lei, J. & Adams, M. J. Sequence analysis shows that a dwarfing disease on rice, wheat and maize in China is caused by rice black-streaked dwarf virus. Eur. J. Plant Pathol. 107, 563–567 (2001).
    CAS  Article  Google Scholar 

    12.
    Hoang, A. T. et al. Identification, characterization, and distribution of southern rice black-streaked dwarf virus in Vietnam. Plant Dis. 95, 1063–1069 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Achon, M. A., Serrano, L., Clemente-Orta, G. & Barcelo, A. The virome of maize rough dwarf disease: molecular genome diversification, phylogeny and selection. Ann Appl Biol. 176, 192–202 (2020).
    CAS  Article  Google Scholar 

    14.
    Lovisolo, O. Maize Rough Dwarf Virus. Descriptions of Plant Viruses No. 72. Commonw. Mycol. Inst. Asso. Appl. Biol. (1971).

    15.
    Achon, M. A. & Sobrepere, M. Incidence of potyviruses in commercial maize fields and their seasonal cycles in Spain. JPDP 108, 399–406 (2001).
    CAS  Google Scholar 

    16.
    Achon, M. A. & Alonso-Dueñas, N. Impact of 9 years of Bt-maize cultivation on the distribution of maize viruses. Transgenic Res. 18, 387–397 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Achon, M. A., Subira, J. & Sin, E. Seasonal occurrence of Laodelphax striatellus in Spain: effect on the incidence of Maize rough dwarf virus. Crop Prot. 47, 1–5 (2013).
    Article  Google Scholar 

    18.
    Achon, M. A., Serrano, L., Sabate, J. & Porta, C. Understanding the epidemiological factors that intensify the incidence of maize rough dwarf disease in Spain. Ann. Appl. Biol. 166, 311–320 (2015).
    CAS  Article  Google Scholar 

    19.
    CABI, 2017. Laodelphax striatellus. Crop protection compendium, Wallingford, UK: CAB International. https://www.cabi.org/isc/datasheet/10935 (2017).

    20.
    Milne, R. G. & Lovisolo, O. Maize rough dwarf and related viruses. Adv. Virus. Res. 21, 267–341 (1977).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Häni, A., Günthart, H. & Brunetti, R. Identifikation des Rauhverzwergungsvirus an Mais im Tessin. Landwirtschaft Schweiz 2, 131–136 (1989).
    Google Scholar 

    22.
    Hibino, H. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 34, 249–274 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Bar-Tsur, A., Saadi, H. & Antignu, Y. Resistance of corn genotypes to maize rough darf virus. Maydica 33, 189–200 (1988).
    Google Scholar 

    24.
    Rodriguez-Pardina, P. E., Gimenez-Pecci, M. P. & Laguna, I. G. Wheat: a new natural host for the Mal de rio cuarto virus in the endemic disease area, Rio Cuarto, Cordoba province, Argentina. Plant Dis. 82, 149–152 (1998).
    Article  Google Scholar 

    25.
    Wang, H. D. et al. Recent rice stripe virus epidemics in Zhejiang province, China, and experiments on sowing date, disease–yield loss relationships, and seedling susceptibility. Plant Dis. 92, 1190–1196 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Wang, H. D. et al. Studies on the epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang province, China. Plant Pathol. 58, 815–825 (2009).
    Article  Google Scholar 

    27.
    Cirilo, A. G. & Andrade, F. Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Sci. 34, 1039–1043 (1994).
    Article  Google Scholar 

    28.
    Farnham, D. E. Row spacing, plant density, and hybrid effects on corn grain yield and moisture. Agron. J. 93, 1049–1053 (2001).
    Article  Google Scholar 

    29.
    Kucharik, C. J. A multidecadal trend of earlier corn planting in the central USA. Agron. J. 98, 1544–1550 (2006).
    Article  Google Scholar 

    30.
    Bruns, H. A. & Abbas, H. K. Planting date effects on Bt and non-Bt corn in the mid-south USA. Agron. J. 98, 100–106 (2006).
    Article  Google Scholar 

    31.
    Achon, M. A. & Clemente, G. Nuevos retos en el control de las enfermedades virales del maíz. Vida rural 424, 44–50 (2017).
    Google Scholar 

    32.
    Maresma, A., Ballesta, A., Santiveri, F. & Lloveras, J. Sowing date affects maize development and yield in irrigated Mediterranean Environments. Agriculture 9, 67 (2019).
    Article  Google Scholar 

    33.
    Chaplin-Kramer, R. et al. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Harpaz, I. Maize Rough Dwarf (Israel Universities Press, Jerusalem, 1972).
    Google Scholar 

    35.
    Conti, M. Investigations on the epidemiology of maize rough dwarf virus. I. Overwintering of virus in its planthopper vector, Acta HI Congr. Un. Fitopat. Medit., Oeiras 22–28 Outubro 1972, 11. (1972).  

    36.
    Thresh, J. M. The origins and epidemiology of some important plant virus diseases. Appl. Biol. 5, 1–65 (1980).
    Google Scholar 

    37.
    Grilli, M. P. The role of landscape structure on the abundance of a disease vector planthopper: a quantitative approach. Landsc. Ecol. 25, 383–394 (2010).
    Article  Google Scholar 

    38.
    Conti, M. Investigations on the epidemiology of maize rough dwarf virus III. Field symptoms, incidence and control. Maydica 21, 165–175 (1976).
    Google Scholar 

    39.
    Syobu, S. I., Otuka, A. & Matsumura, M. Trap catches of the small brown planthopper, Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae), in northern Kyushu district, Japan in relation to weather conditions. Appl. Entomol. Zool. 46, 41–50 (2011).
    Article  Google Scholar 

    40.
    Clemente-Orta, G., Albajes, R. & Achon, M. A. Early planting, management of edges and non-crop habitats reduce potyvirus infection in maize. Agron. Sustain. Dev. 40, 21 (2020).
    Article  Google Scholar 

    41.
    Clemente-Orta, G. et al. Changes in landscape composition influence the abundance of insects on maize: the role of fruit orchards and alfalfa crops. Agric. Ecosyst. Environ. 291, 106805 (2020).
    CAS  Article  Google Scholar 

    42.
    Grilli, M. P. & Bruno, M. Regional abundance of a planthopper pest: the effect of host match area and configuration. Entomol. Exp. Appl. 122, 133–143 (2007).
    Article  Google Scholar 

    43.
    Grilli, M. P. & Gorla, D. E. The effect of agroecosystem management on the abundance of Delphacodes kuscheli (Homopteran: Delphacidae), vector of the maize rough dwarf virus, in central Argentina. Maydica 43, 77–82 (1998).
    Google Scholar 

    44.
    MacArthur, R. H. & Wilson, E. O. Island Biogeography (Princeton University Press, Princeton, 1967).
    Google Scholar 

    45.
    Root, R. B. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleraceae). Ecol. Monogr. 43, 95–124 (1973).
    Article  Google Scholar 

    46.
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 87, 661–685 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Trumper, E.V. Modelos de epidemiologia matemática aplicados al estudio de1 sistema Virus MRC-maiz-Delphacidae (“Ma1 de Rio Cuarto”). Tesis doctoral. Universidad National de Cordoba (1996).

    48.
    Cheng, J. A. Rice Planthoppers in the Past Half Century in China. Rice Planthoppers: Ecology, Management Social Economics and Policy 1–32 (Springer, Dordrecht, 2015).
    Google Scholar 

    49.
    Liu, Z. et al. (2016) The effect of landscape composition on the abundance of Laodelphax striatellus Fallén in fragmented agricultural landscapes. Land 5, 36 (2016).
    Article  Google Scholar 

    50.
    Clemente-Orta, G. & Álvarez, H. A. L. influencia del paisaje agrícola en el control biológico desde una perspectiva espacial. Revista Ecosistemas 28, 13–25 (2019).
    Article  Google Scholar 

    51.
    Madeira, F. et al. Stable carbon and nitrogen isotope signatures to determine predator dispersal between alfalfa and maize. Biol. Control. 77, 66–75 (2014).
    Article  Google Scholar 

    52.
    Cantero-Martínez, C. & Moncunill, J. Sistemas agrícolas de la Plana de Lleida: Descripción y evaluación de los sistemas de producción en el área del canal Segarra-Garrigues antes de su puesta en funcionamiento. (2012).

    53.
    Braun-Blanquet, J. Fitosociología. Bases para el estudio de las comunidades vegetales (Blume, Madrid, 1979).
    Google Scholar 

    54.
    DePaulo, J. J. & Powell, C. A. Extraction of double-stranded RNA from plant tissues without the use of organic solvents. Plant Dis. 79, 246–248 (1995).
    CAS  Article  Google Scholar 

    55.
    Albajes, R., Lumbierres, B., Pons, X. & Comas, J. Representative taxa in field trials for environmental risk assessment of genetically modified maize. Bull. Entomol. Res. 103, 724–733 (2013).
    CAS  PubMed  Article  Google Scholar 

    56.
    Ardanuy, A., Lee, M. S. & Albajes, R. Landscape context influences leafhopper and predatory Orius spp. abundances in maize fields. Agric. Forest. Entomol. 20, 81–92 (2018).
    Article  Google Scholar 

    57.
    Holzinger, W. E., Kammerlander, I. & Nickel, H. The Auchenorrhyncha of Central Europe. In Fulgoromorpha, Cicadomorpha Excl-Cicadellidae Vol. 1 (ed. Brill) (Brill, Leiden-Boston, 2003).
    Google Scholar 

    58.
    ESRI. ArcGIS Desktop Version 10.3.1 (Environmental Systems Research Institute, Redlands, 2015).
    Google Scholar 

    59.
    Bartoń, K. (2018). Package “MuMIn” Title Multi-Model Inference. In: CRAN-R. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

    60.
    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
    MathSciNet  Article  Google Scholar 

    61.
    Paradis, E. Package “ape” Title Analyses of Phylogenetics and Evolution Depends R. https://cran.r-project.org/web/packages/ape/ape.pdf (2019).

    62.
    Max, K. et al. Caret: Title Classification and Regression Training. R package version: 6.0-84. https://cran.r-project.org/web/packages/caret/caret.pdf (2018).

    63.
    Bates, D. et al. Lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. R package version 1.1-21. https://cran.r-project.org/web/packages/lme4/lme4.pdf (2019).

    64.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Article  Google Scholar 

    65.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ R version 3.6.2. (2019). More

  • in

    Assembling mitogenome of Himalayan Black Bear (U. t. laniger) from low depth reads and its application in drawing phylogenetic inferences

    1.
    Garshelis, D. & Steinmetz, R. Ursus thibetanus. The IUCN Red List of Threatened Species 2016. https://dx.doi.org/Downloaded on 17 January 2020 (2016).
    2.
    Parter, S. H. The Book of Indian Animal (Bombay Natural History Society and Oxford University Press, India, 1980).
    Google Scholar 

    3.
    Sathyakumar, S. & Choudhury, A. Distribution and status of asiatic black bear in India. J. Bomb. Nat. Hist. Soci. 104, 316–323 (2007).
    Google Scholar 

    4.
    Pocock, R. I. The Fauna of British India, Including Ceylon and Burma, Mammalia Vol. 2 (Taylor and Francis, London, 1941).
    Google Scholar 

    5.
    Sathyakumar, S., Kaul, R., Ashraf, N. V. K., Mookerjee, A. & Menon, V. National Bear Conservation and Welfare Action Plan (Ministry of Environment and Forest, Wildlife Institute of India and Wildlife Trust of India, 2012).
    Google Scholar 

    6.
    Charoo, S.A., Sharma, L.K. & Sathyakumar, S. Asiatic Black Bear—Human Conflicts around Dachigam National Park, Kashmir. Technical Report. Wildlife Institute of India, Dehradun. 29 (2009).

    7.
    Hou, W. R. et al. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis). Int. J. Biol. Sci. 3, 85–90 (2007).
    CAS  Article  Google Scholar 

    8.
    Yu, L. et al. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evol. Biol. 7, 198 (2007).
    Article  Google Scholar 

    9.
    Hwang, D. S. et al. A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae). Mitochondrial. DNA 19, 418–429 (2008).
    CAS  PubMed  Google Scholar 

    10.
    Kadariya, R. et al. High genetic diversity and distinct ancient lineage of Asiatic black bears revealed by non-invasive surveys in the Annapurna Conservation Area Nepal. PLoS ONE 13, 0207622 (2018).
    Google Scholar 

    11.
    Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).
    CAS  Article  Google Scholar 

    12.
    Ekblom, R. & Galindo, J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb) 107, 1–15 (2011).
    CAS  Article  Google Scholar 

    13.
    Edwards, S. V., Shultz, A. J. & Campbell-Staton, S. C. Next-generation sequencing and the expanding domain of phylogeography. Folia Zool. 64, 187–206 (2015).
    Article  Google Scholar 

    14.
    Natesh, M. et al. Conservation priorities for endangered Indian tigers through a genomic lens. Sci. Rep. 7, 9614 (2017).
    ADS  Article  Google Scholar 

    15.
    Song, N., Cai, W. & Li, H. Deep-level phylogeny of Cicadomorpha inferred from mitochondrial genomes sequenced by NGS. Sci. Rep. 7, 10429 (2017).
    ADS  Article  Google Scholar 

    16.
    Delisle, I. & Strobeck, C. Conserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bears. Mol. Biol. Evol. 19, 357–361 (2002).
    CAS  Article  Google Scholar 

    17.
    Van Dijk, E., Auger, H., Jaszczyszyn, Y. & Thermes, C. T. years of next-generation sequencing technology. Trends Genet. 30(9), 418–426 (2014).
    Article  Google Scholar 

    18.
    Heather, J. & Chain, B. The sequence of sequencers: the history of sequencing DNA. Genomics 107(1), 1–8 (2016).
    CAS  Article  Google Scholar 

    19.
    Wang, S., Wang, B., Wang, F. & Wu, Z. Complete mitochondrial genome of Gallus domesticus (Galliformes: Phasianidae). Mitochondrial. DNA A DNA Mapp. Seq. Anal. 27(2), 978–979 (2016).
    Article  Google Scholar 

    20.
    Zhou, M., Yu, J., Li, J., Ouyang, B. & Yang, J. The complete mitochondrial genome of Budorcas taxicolor tibetana (Artiodactyla: Bovidae) and comparison with other Caprinae species: Insight into the phylogeny of the genus Budorcas Int. J. Biol. Macromol. 121, 223–232 (2019).
    CAS  Article  Google Scholar 

    21.
    Kamalakkannan, R. et al. The complete mitochondrial genome of Indian gaur, Bos gaurus and its phylogenetic implications. Sci. Rep. 10, 11936. https://doi.org/10.1038/s41598-020-68724-6 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach. Nucleic Acids Res. 41, 129 (2013).
    Article  Google Scholar 

    23.
    Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).
    CAS  Article  Google Scholar 

    24.
    Feng, H., Feng, C., Wang, L. & Huang, Y. Complete mitochondrial genome of the golden takin (Budorcas taxicolor bedfordi). Mitochondrial. DNA 1, 186–188 (2016).
    Article  Google Scholar 

    25.
    Kumar, A. et al. Sequencing and characterization of the complete mitochondrial genome of Mishmi takin (Budorcas taxi color taxicolor) and comparison with the other Caprinae species. Int. J. Biol. Macromol. 137, 87–94 (2019).
    CAS  Article  Google Scholar 

    26.
    Sarvani, R. K. et al. Characterization of the complete mitogenome of Indian Mouse Deer, Moschiola indica (Artiodactyla: Tragulidae) and its evolutionary significance. Sci. Rep. 8, 2697 (2018).
    ADS  Article  Google Scholar 

    27.
    Lan, T. et al. Evolutionary history of enigmatic bears in the Tibetan Plateau-Himalaya region and the identity of the yeti. Proc. R. Soc. B 284, 20171804 (2017).
    Article  Google Scholar 

    28.
    Jiagi, W. et al. Phylogeographic and demographic analysis of the Asian Black Bear (Ursus thibetanus) based on Mitochondrial DNA. PLoS ONE 10, e0136398 (2015).
    Article  Google Scholar 

    29.
    Timmermans, M. J. et al. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res. 38, e197 (2010).
    CAS  Article  Google Scholar 

    30.
    Cabrera-Brandt, M. A. & Gaitan-Espitia, J. D. Phylogenetic analysis of the complete mitogenome sequence of the raspberry weevil Aegorhinus superciliosus (Coleoptera: Curculionidae), supports monophyly of the tribe Aterpini. Gene 571, 205–211 (2015).
    CAS  Article  Google Scholar 

    31.
    Grant, J. R. & Stothard, P. The CGView Server: a comparative genomics tool for circular 423 genomes. Nucleic Acids Res. 36, 181–184 (2008).
    Article  Google Scholar 

    32.
    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
    CAS  Article  Google Scholar 

    33.
    Perna, N. T. & Kocher, T. D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358 (1995).
    ADS  CAS  Article  Google Scholar 

    34.
    Beier, S., Thiel, T., Munch, T., Scholz, U. & Mascher, M. MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583–2585 (2017).
    CAS  Article  Google Scholar 

    35.
    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 36, 573–580 (1999).
    Article  Google Scholar 

    36.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. Mega X: molecular evolutionary genetics analysis across computing platform. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  Article  Google Scholar 

    37.
    Mattei, E., Pietrosanto, M., Ferree, F. & Citterich, M. H. Web-Beagle: a web server for the alignment of RNA secondary structures. Nuc Acids Res. 43, 493–497 (2015).
    Article  Google Scholar 

    38.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 1–5 (2018).
    Article  Google Scholar 

    39.
    Nylander, J.A.A. MrModelTest Version 2. Programme Distributed by the Author. Evolutionary Biology Centre, Uppsala University (2004).

    40.
    Wayne, R. K., Van, V. B. & O’Brien, S. J. Molecular distance and divergence time in carnivores and primates. Mol. Biol. Evol. 8, 297–319 (1991).
    CAS  PubMed  Google Scholar 

    41.
    Rambaut, A. FigTree, Version1.4.4. Available at: https://tree.bio.ed.ac.uk/software/figtree/. (2018). More

  • in

    Impacts of streamflow alteration on benthic macroinvertebrates by mini-hydro diversion in Sri Lanka

    1.
    Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19(5–6), 397–441 (2003).
    Article  Google Scholar 
    2.
    Finn, M. A., Boulton, A. J. & Chessman, B. C. Ecological responses to artificial drought in two Australian rivers with differing water extraction. Fund. Appl. Limnol. 175(3), 231–248 (2009).
    Article  Google Scholar 

    3.
    Dewson, Z. S., James, A. B. & Death, R. G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J. N. Am. Benthol. Soc. 26(3), 401–415 (2007).
    Article  Google Scholar 

    4.
    Poff, N. L. & Zimmerman, J. K. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biol. 55(1), 194–205 (2010).
    Article  Google Scholar 

    5.
    Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshwater Biol. 60(2), 410–425 (2015).
    Article  Google Scholar 

    6.
    GOSL. CEB statistical digest, Ceylon electricity Board, Colombo, Sri Lanka (2012).

    7.
    Richter, B. D., Baumgartner, J. V., Wigington, R. & Braun, D. P. How much water does a river need?. Freshwater Biol. 37, 231–249 (1997).
    Article  Google Scholar 

    8.
    Dudgeon, D. Effects of water transfer on aquatic insects in a stream in Hong Kong. Regul. River 7, 369–377 (1992).
    Article  Google Scholar 

    9.
    Petts, G. E. & Bickerton, M. A. Influence of water abstraction on the macroinvertebrate community gradient within a glacial stream: La Borgne d’Arolla, Valais Switzerland. Freshwater Biol. 32, 375–386 (1994).
    Article  Google Scholar 

    10.
    Rader, R. B. & Belish, T. A. Influence of mild to severe flow alterations on invertebrates in three mountain streams. Regul. River 15, 353–363 (1999).
    Article  Google Scholar 

    11.
    Dunbar, M. J. et al. River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshwater Biol. 55(1), 226–242 (2010).
    Article  Google Scholar 

    12.
    Schneider, S. C. & Petrin, Z. Effects of flow regime on benthic algae and macroinvertebrates: a comparison between regulated and unregulated rivers. Sci. Total Environ. 579, 1059–1072 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Olden, J. D. & Naiman, R. J. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biol. 55(1), 86–107 (2010).
    Article  Google Scholar 

    14.
    Mueller, M., Pander, J. & Geist, J. The effects of weirs on structural stream habitat and biological communities. J. Appl. Ecol. 48(6), 1450–1461 (2011).
    Article  Google Scholar 

    15.
    Holt, C. R., Pfitzer, D., Scalley, C., Caldwell, B. A. & Batzer, D. P. Macroinvertebrate community responses to annual flow variation from river regulation: an 11-year study. River Res. Appl. 31(7), 798–807 (2015).
    Article  Google Scholar 

    16.
    Krajenbrink, H. J. et al. Macroinvertebrate community responses to river impoundment at multiple spatial scales. Sci. Total Environ. 650, 2648–2656 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Mbaka, J. G. & Wanjiru Mwaniki, M. A global review of the downstream effects of small impoundments on stream habitat conditions and macroinvertebrates. Environ. Rev. 23(3), 257–262 (2015).
    Article  Google Scholar 

    18.
    Anderson, D., Moggridge, H., Warren, P. & Shucksmith, J. The impacts of ‘run-of-river’hydropower on the physical and ecological condition of rivers. Water Environ. J. 29(2), 268–276 (2015).
    Article  Google Scholar 

    19.
    Bilotta, G. S., Burnside, N. G., Turley, M. D., Gray, J. C. & Orr, H. G. The effects of run-of-river hydroelectric power schemes on invertebrate community composition in temperate streams and rivers. Plos One 12(2), e0171634 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Gabbud, C., Robinson, C. T. & Lane, S. N. Summer is in winter: Disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Sci. Total Environ. 650, 2164–2180 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Quadroni, S., Crosa, G., Gentili, G. & Espa, P. Response of stream benthic macroinvertebrates to current water management in Alpine catchments massively developed for hydropower. Sci. Total Environ. 609, 484–496 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Rosero-López, D., Knighton, J., Lloret, P. & Encalada, A. C. Invertebrate response to impacts of water diversion and flow regulation in high-altitude tropical streams. River Res. Appl. 36(2), 223–233 (2019).
    Article  Google Scholar 

    23.
    Ogbeibu, A. E. & Oribhabor, B. J. Ecological impact of river impoundment using benthic macro-invertebrates as indicators. Water Res. 36(10), 2427–2436 (2002).
    CAS  PubMed  Article  Google Scholar 

    24.
    Álvarez-Cabria, M., Barquín, J. & Juanes, J. A. Spatial and seasonal variability of macroinvertebrate metrics: Do macroinvertebrate communities track river health?. Ecol. Indic. 10(2), 370–379 (2010).
    Article  CAS  Google Scholar 

    25.
    Hart, D. D. & Finelli, C. M. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annu. Rev. Ecol. Syst. 30, 363–395 (1999).
    Article  Google Scholar 

    26.
    Wills, T. C., Baker, E. A., Nuhfer, A. J. & Zorn, T. G. Response of the benthic macroinvertebrate community in a northern Michigan stream to reduced summer stream flows. River Res. Appl. 22(7), 819–836 (2006).
    Article  Google Scholar 

    27.
    James, A. B. W., Dewson, Z. S. & Death, R. G. The influence of flow reduction on macroinvertebrate drift density and distance in three New Zealand streams. J. N. Am. Benthol. Soc. 28, 220–232 (2009).
    Article  Google Scholar 

    28.
    Richter, B. D., Baumgartner, J. V., Braun, D. P. & Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. River 14(4), 329–340 (1998).
    Article  Google Scholar 

    29.
    Shieh, C. L., Guh, Y. R. & Wang, S. Q. The application of range of variability approach to the assessment of a check dam on riverine habitat alteration. Environ. Geol. 52, 427–435 (2007).
    Article  Google Scholar 

    30.
    Yang, P., Yin, X.-A., Yang, Z.-F. & Tang, J. A revised range of variability approach considering the periodicity of hydrological indicators. Hydrol. Process. 28, 6222–6235 (2014).
    ADS  Article  Google Scholar 

    31.
    Yu, C., Yin, X. & Yang, Z. A revised range of variability approach for the comprehensive assessment of the alteration of flow regime. Ecol. Eng. 96, 200–207 (2016).
    Article  Google Scholar 

    32.
    Ge, J., Peng, W., Huang, W., Qu, X. & Singh, S. K. Quantitative assessment of flow regime alteration using a revised range of variability methods. Water 10, 597 (2018).
    Article  Google Scholar 

    33.
    Timpe, K. & Kaplan, D. The changing hydrology of a dammed Amazon. Science Advances 3(11), e1700611 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Smakhtin, V. U. & Weragala, N. An assessment of hydrology and environmental flows in the Walawe river basin, Sri Lanka. Working Paper 103. International Water Management Institute (IWMI), Colombo, Sri Lanka (2005).

    35.
    Mood, A. M., Graybill, F. A. & Boes, P. D. C. Introduction to the Theory of Statistics Vol. 3 (McGraw-Hill, New York, 2005).
    Google Scholar 

    36.
    Zhang, Q., Xu, C. Y., Chen, Y. D. & Yang, T. Spatial assessment of hydrologic alteration across the Pearl River Delta, China, and possible underlying causes. Hydrol. Process. 23(11), 1565–1574 (2009).
    ADS  Article  Google Scholar 

    37.
    Lee, A., Cho, S., Kang, D. K. & Kim, S. Analysis of the effect of climate change on the Nakdong river stream flow using indicators of hydrological alteration. J. Hydro Environ. Res. 8(3), 234–247 (2014).
    Article  Google Scholar 

    38.
    Stefanidis, K., Panagopoulos, Y., Psomas, A. & Mimikou, M. Assessment of the natural flow regime in a Mediterranean river impacted from irrigated agriculture. Sci. Total Environ. 573, 1492–1502 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Assahira, C. et al. Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. Forest Ecol. Manag. 396, 113–123 (2017).
    Article  Google Scholar 

    40.
    Ali, R., Kuriqi, A., Abubaker, S. & Kisi, O. Hydrologic alteration at the upper and middle part of the yangtze river, China: towards sustainable water resource management under increasing water exploitation. Sustainability 11(19), 5176 (2019).
    Article  Google Scholar 

    41.
    Carlisle, D. M., Falcone, J., Wolock, D. M., Meador, M. R. & Norris, R. H. Predicting the natural flow regime: models for assessing hydrological alteration in streams. River Res. Appl. 26(2), 118–136 (2010).
    Google Scholar 

    42.
    Maynard, C. M. & Lane, S. N. Reservoir compensation releases: Impact on the macroinvertebrate community of the Derwent River, Northumberland, UK—a longitudinal study. River Res. Appl. 28(6), 692–702 (2012).
    Article  Google Scholar 

    43.
    Salmaso, F. et al. Benthic macroinvertebrates response to water management in a lowland river: effects of hydro-power vs irrigation off-stream diversions. Environ. Monit. Assess. 190(1), 33 (2018).
    Article  CAS  Google Scholar 

    44.
    Power, M. E., Sun, A., Parker, G., Dietrich, W. E. & Wootton, J. T. Hydraulic food-chain models. BioScience 45(3), 159–167 (1995).
    Article  Google Scholar 

    45.
    Jayawardana, J. M. C. K., Gunawardana, W. D. T. M., Udayakumara, E. P. N. & Westbrooke, M. Land use impacts on river health of Uma Oya, Sri Lanka: implications of spatial scales. Environ. Monit. Assess. 189(4), 192 (2017).
    CAS  PubMed  Article  Google Scholar 

    46.
    Weliange, W. S., Leichtfried, M., Amarasinghe, U. S. & Füreder, L. Longitudinal variation of benthic macroinvertebrate communities in two contrasting tropical streams in Sri Lanka. Int. Rev. Hydrobiol. 102(3–4), 70–82 (2017).
    Article  Google Scholar 

    47.
    Benzie, J. A. The colonisation mechanisms of stream benthos in a tropical river (Menik Ganga: Sri Lanka). Hydrobiologia 111(3), 171–179 (1984).
    Article  Google Scholar 

    48.
    Amarathunga, A. D. & Fernando, R. W. Suspended sediment concentration and its impact on aquatic invertebrates in the Gin River, Sri Lanka. Journal of Food and Agriculture 9(1–2), 24–38 (2016).
    Article  Google Scholar 

    49.
    Lancaster, J. & Downes, B. J. Aquatic entomology (OUP, Oxford, 2013).
    Google Scholar 

    50.
    Ramos, V., Formigo, N. & Maia, R. Environmental flows under the WFD implementation. Water Resour. Manag. 32(15), 5115–5149 (2018).
    Article  Google Scholar 

    51.
    Rosero-López, D. et al. Streamlined eco-engineering approach helps define environmental flows for tropical Andean headwaters. Freshwater Biol. 64(7), 1315–1325 (2019).
    Article  Google Scholar 

    52.
    Warfe, D. M., Hardie, S. A., Uytendaal, A. R., Bobbi, C. J. & Barmuta, L. A. The ecology of rivers with contrasting flow regimes: identifying indicators for setting environmental flows. Freshwater Biol. 59(10), 2064–2080 (2014).
    Article  Google Scholar 

    53.
    Wu, M., Chen, A., Zhang, X. & McClain, M. E. A comment on Chinese policies to avoid negative impacts on river ecosystems by hydropower projects. Water 12(3), 869 (2020).
    Article  Google Scholar 

    54.
    Chandrapala, L. Long term trends of rainfall and temperature in Sri Lanka. In Climate Variability and Agriculture (eds Abrol, Y. P. et al.) (Narosa Publishing House, New Delhi, 1996).
    Google Scholar 

    55.
    Halwatura, D. & Najim, M. M. M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Modell. Softw. 46, 155–162 (2013).
    Article  Google Scholar 

    56.
    USEPA (US ENVIRONMENTAL PROTECTION AGENCY). Field and laboratory methods for macroinvertebrate and habitat assessment of low gradient, non-tidal streams. Mid-Atlantic Coastal Streams (MACS) Workgroup, Environmental Services Division, Region 3, USEPA, Wheeling, West Virginia, USA (1997).

    57.
    Turner, A. M. & Trexler, J. C. Sampling aquatic invertebrates from marshes: evaluating the options. J. N. Am. Benthol. Soc. 16(3), 694–709 (1997).
    Article  Google Scholar 

    58.
    Mendis, A. S. & Fernando, C. H. A guide to the fresh water fauna of Ceylon (Sri Lanka) (Weerawardhena S. R. and Fernando C. H., eds), Gestetner, Sri Lanka, 42-126 pp. (1962).

    59.
    Starmühlner, F. Result of the Australian: ceylonese hydrological mission, Part xvii: The freshwater Gastropods of Ceylon. Bull. Fish. Res. St. Sri Lanka (Ceylon) 25(1), 97–181 (1974).
    Google Scholar 

    60.
    APHA. Standard Methods for Examinations of Water and Wastewater, 21st ed. APHA, AWWA and WEF DC, Washington (2005).

    61.
    Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation Vol. 2 (PRIMER-E Ltd, Plymouth, 2001).
    Google Scholar 

    62.
    Clarke, K. R. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18, 117–143 (1993).
    Article  Google Scholar 

    63.
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods PRIMER-E (Plymouth, UK, 2008).
    Google Scholar  More

  • in

    Environmental convergence in facial preferences: a cross-group comparison of Asian Vietnamese, Czech Vietnamese, and Czechs

    1.
    Müllerová, P. Vietnamese DIASPORA in the Czech Republic. Arch. Orient. 66, 121–126 (1998).
    Google Scholar 
    2.
    Kleisner, K., Chvátalová, V. & Flegr, J. Perceived intelligence is associated with measured intelligence in men but not women. PLoS ONE 9, e81237 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Třebický, V., Havlíček, J., Roberts, S. C., Little, A. C. & Kleisner, K. Perceived aggressiveness predicts fighting performance in mixed-martial-arts fighters. Psychol. Sci. 24, 1664–1672 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Linke, L., Saribay, S. A. & Kleisner, K. Perceived trustworthiness is associated with position in a corporate hierarchy. Pers. Individ. Dif. 99, 22–27 (2016).
    Article  Google Scholar 

    5.
    Little, A. C., Třebický, V., Havlíček, J., Roberts, S. C. & Kleisner, K. Human perception of fighting ability: Facial cues predict winners and losers in mixed martial arts fights. Behav. Ecol. 1, 089 (2015).
    Google Scholar 

    6.
    Todorov, A., Olivola, C. Y., Dotsch, R. & Mende-Siedlecki, P. Social attributions from faces: Determinants, consequences, accuracy, and functional significance. Psychology 66, 519 (2015).
    Article  Google Scholar 

    7.
    Schmälzle, R. et al. Visual cues that predict intuitive risk perception in the case of HIV. PLoS ONE 14, e0211770 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Asch, S. E. Forming impressions of personality. J. Abnorm. Soc. Psychol. 41, 258–290 (1946).
    CAS  Article  Google Scholar 

    9.
    Bar, M., Neta, M. & Linz, H. Very first impressions. Emotion 6, 269–278 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Willis, J. & Todorov, A. First impressions: Making up your mind after a 100-ms exposure to a face. Psychol. Sci. 17, 592–598 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Bothwell, R. K., Brigham, J. C. & Malpass, R. S. Cross-racial identification. Personal. Soc. Psychol. Bull. 15, 19–25 (1989).
    Article  Google Scholar 

    12.
    Meissner, C. A. & Brigham, J. C. Thirty years of investigating the own-race bias in memory for faces: A meta-analytic review. Psychol. Public Policy Law 7, 3 (2001).
    Article  Google Scholar 

    13.
    Sporer, S. L. Recognizing faces of other ethnic groups: An integration of theories. Psychol. Public Policy Law 7, 36–97 (2001).
    Article  Google Scholar 

    14.
    Hugenberg, K., Young, S. G., Bernstein, M. J. & Sacco, D. F. The categorization-individuation model: An integrative account of the other-race recognition deficit. Psychol. Rev. 117, 1168–1187 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Anzures, G. et al. Developmental origins of the other-race effect. Curr. Dir. Psychol. Sci. 22, 173–178 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Suhrke, J. et al. The other-race effect in 3-year-old German and Cameroonian children. Front. Psychol. 5, 198 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Sangrigoli, S. & de Schonen, S. Effect of visual experience on face processing: A developmental study of inversion and non-native effects. Dev. Sci. 7, 74–87 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Scott, L. S. & Monesson, A. The origin of biases in face perception. Psychol. Sci. 20, 676–680 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Ma, F., Xu, F. & Luo, X. Children’s and Adults}’ {Judgments of Facial {Trustworthiness}: The {Relationship} to Facial {Attractiveness}. Percept. Mot. Skills 121, 179–198 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Tanaka, J. W., Kiefer, M. & Bukach, C. M. A holistic account of the own-race effect in face recognition: Evidence from a cross-cultural study. Cognition 93, 1–9 (2004).
    Article  Google Scholar 

    21.
    Webster Michael, A. & MacLeod Donald, I. A. Visual adaptation and face perception. Philos. Trans. R. Soc. B 366, 1702–1725 (2011).
    CAS  Article  Google Scholar 

    22.
    Bukach, C. M., Cottle, J., Ubiwa, J. & Miller, J. Individuation experience predicts other-race effects in holistic processing for both Caucasian and Black participants. Cognition 123, 319–324 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Třebický, V. et al. Cross-{cultural} evidence for apparent {racial} outgroup {advantage}: Congruence between perceived {facial} aggressiveness and fighting {success}. Sci. Rep. 8, 9767 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Hebl, M. R., Williams, M. J., Sundermann, J. M., Kell, H. J. & Davies, P. G. Selectively friending: Racial stereotypicality and social rejection. J. Exp. Soc. Psychol. 48, 1329–1335 (2012).
    Article  Google Scholar 

    25.
    Cassidy, K. D., Quinn, K. A. & Humphreys, G. W. The influence of ingroup/outgroup categorization on same- and other-race face processing: The moderating role of inter- versus intra-racial context. J. Exp. Soc. Psychol. 47, 811–817 (2011).
    Article  Google Scholar 

    26.
    Johnson, K. J. & Fredrickson, B. L. We all look the same to Mepositive emotions eliminate the own-race bias in face recognition. Psychol. Sci. 16, 875–881 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Bernstein, M. J., Young, S. G. & Hugenberg, K. The cross-category effect: Mere social categorization is sufficient to elicit an own-group bias in face recognition. Psychol. Sci. 18, 706–712 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Hugenberg, K., Miller, J. & Claypool, H. M. Categorization and individuation in the cross-race recognition deficit: Toward a solution to an insidious problem. J. Exp. Soc. Psychol. 43, 334–340 (2007).
    Article  Google Scholar 

    29.
    Little, A. C., Jones, B. C. & DeBruine, L. M. Facial attractiveness: Evolutionary based research. Philos. Trans. R. Soc. B. 366, 1638–1659 (2011).
    Article  Google Scholar 

    30.
    Langlois, J. H. et al. Maxims or myths of beauty? A meta-analytic and theoretical review. Psychol. Bull. 126, 390–423 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Penton-Voak, I. S., Jacobson, A. & Trivers, R. Populational differences in attractiveness judgements of male and female faces: Comparing British and Jamaican samples. Evol. Hum. Behav. 25, 355–370 (2004).
    Article  Google Scholar 

    32.
    Saxton, T. K., Little, A. C., DeBruine, L. M., Jones, B. C. & Roberts, S. C. Adolescents’ preferences for sexual dimorphism are influenced by relative exposure to male and female faces. Pers. Individ. Dif. 47, 864–868 (2009).
    Article  Google Scholar 

    33.
    Badaruddoza, A. A paradox of human mate preferences and natural selection. J. Hum. Ecol. 21, 195–197 (2007).
    Article  Google Scholar 

    34.
    Coetzee, V., Greeff, J. M., Stephen, I. D. & Perrett, D. I. Cross-cultural agreement in facial attractiveness preferences: The role of ethnicity and gender. PLoS ONE 9, e99629 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Hulse, F. S. Selection for skin color among the Japanese. Am. J. Phys. Anthropol. 27, 143–155 (1967).
    Article  Google Scholar 

    36.
    Kleisner, K. et al. African and European perception of African female attractiveness. Evol. Hum. Behav. 38, 744–755 (2017).
    Article  Google Scholar 

    37.
    Kleisner, K., Priplatova, L., Frost, P. & Flegr, J. Trustworthy-looking face meets brown eyes. PLoS ONE 8, e53285 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Zebrowitz, L. A., Montepare, J. M. & Lee, H. K. They don’t all look alike: Individual impressions of other racial groups. J. Pers. Soc. Psychol. 65, 85 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Laeng, B., Mathisen, R. & Johnsen, J. A. Why do blue-eyed men prefer women with the same eye color?. Behav. Ecol. Sociobiol. 61, 371–384 (2007).
    Article  Google Scholar 

    40.
    Gründl, M., Knoll, S., Eisenmann-Klein, M. & Prantl, L. The blue-eyes stereotype: Do eye color, pupil diameter, and scleral color affect attractiveness?. Aesthetic Plast. Surg. 36, 234–240 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Langlois, J. H. & Roggman, L. A. Attractive faces are only average. Psychol. Sci. 1, 115–121 (1990).
    Article  Google Scholar 

    42.
    Rhodes, G. & Tremewan, T. Averageness, exaggeration, and facial attractiveness. Psychol. Sci. 7, 105–110 (1996).
    Article  Google Scholar 

    43.
    Rhodes, G. The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 57, 199–226 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Thornhill, R. & Gangestad, S. W. Facial attractiveness. Trends Cogn. Sci. 3, 452–460 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Rhodes, G. et al. Attractiveness of facial averageness and symmetry in non-western cultures: In search of biologically based standards of beauty. Perception 30, 611–625 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Langlois, J. H., Roggman, L. A. & Musselman, L. What is average and what is not average about attractive faces?. Psychol. Sci. 5, 214–220 (1994).
    Article  Google Scholar 

    47.
    Baudouin, J. Y. & Tiberghien, G. Symmetry, averageness, and feature size in the facial attractiveness of women. Acta Psychol. 117, 313–332 (2004).
    Article  Google Scholar 

    48.
    Perrett, D. I., May, K. A. & Yoshikawa, S. Facial shape and judgements of female attractiveness. Nature 368, 239–242 (1994).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Alley, T. R. & Cunningham, M. R. Averaged faces are attractive, but very attractive faces are not average. Psychol. Sci. 2, 123–125 (1991).
    Article  Google Scholar 

    50.
    Pittenger, J. B. On the difficulty of averaging faces: Comments on Langlois and Roggman. Psychol. Sci. 2, 351–353 (1991).
    Article  Google Scholar 

    51.
    Komori, M., Kawamura, S. & Ishihara, S. Averageness or symmetry: Which is more important for facial attractiveness?. Acta Psychol. 131, 136–142 (2009).
    Article  Google Scholar 

    52.
    Rhodes, G., Sumich, A. & Byatt, G. Are average facial configurations attractive only because of their symmetry?. Psychol. Sci. 10, 52–58 (1999).
    Article  Google Scholar 

    53.
    Scott, L. S., Tanaka, J. W., Sheinberg, D. L. & Curran, T. The role of category learning in the acquisition and retention of perceptual expertise: A behavioral and neurophysiological study. Brain Res. 1210, 204–215 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Komori, M., Kawamura, S. & Ishihara, S. Effect of averageness and sexual dimorphism on the judgment of facial attractiveness. Vis. Res. 49, 862–869 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jones, D. & Hill, K. Criteria of facial attractiveness in five populations. Hum. Nat. 4, 271–296 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Little, A. C., Connely, J., Feinberg, D. R., Jones, B. C. & Roberts, S. C. Human preference for masculinity differs according to context in faces, bodies, voices, and smell. Behav. Ecol. 22, 862–868 (2011).
    Article  Google Scholar 

    57.
    Van den Berghe, P. L. & Frost, P. Skin color preference, sexual dimorphism and sexual selection: A case of gene culture co-evolution?*. Ethn. Racial Stud. 9, 87–113 (1986).
    Article  Google Scholar 

    58.
    Fink, B., Neave, N. & Seydel, H. Male facial appearance signals physical strength to women. Am. J. Hum. Biol. 19, 82–87 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Scheib Joanna, E., Gangestad Steven, W. & Randy, T. Facial attractiveness, symmetry and cues of good genes. Proc. R. Soc. Lond. Ser. B. 266, 1913–1917 (1999).
    Article  Google Scholar 

    60.
    Perrett, D. I. et al. Effects of sexual dimorphism on facial attractiveness. Nature 394, 884–887 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Penton-Voak, I. S. et al. Menstrual cycle alters face preference [7]. Nature 399, 741–742 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Rhodes, G., Hickford, C. & Jeffery, L. Sex-typicality and attractiveness: Are supermale and superfemale faces super-attractive?. Br. J. Psychol. 91, 125–140 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Kościński, K. Facial attractiveness: General patterns of facial preferences. Anthropol. Rev. 70, 45–79 (2007).
    Article  Google Scholar 

    64.
    Johnston, V. S., Hagel, R., Franklin, M., Fink, B. & Grammer, K. Male facial attractiveness: Evidence for hormone-mediated adaptive design. Evol. Hum. Behav. 22, 251–267 (2001).
    Article  Google Scholar 

    65.
    Scott, I. M. et al. Human preferences for sexually dimorphic faces may be evolutionarily novel. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1409643111 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Brooks, R. et al. National income inequality predicts women’s preferences for masculinized faces better than health does. Proc. R. Soc. B 278, 810–812 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    67.
    DeBruine, L. M., Jones, B. C., Little, A. C., Crawford, J. R. & Welling, L. L. M. Further evidence for regional variation in women’s masculinity preferences. Proc. R. Soc. Lond. B. 278, 813–814 (2011).
    Google Scholar 

    68.
    Dunson, D. B., Colombo, B. & Baird, D. D. Changes with age in the level and duration of fertility in the menstrual cycle. Hum. Reprod. 17, 1399–1403 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Hassan, M. A. M. & Killick, S. R. Effect of male age on fertility: Evidence for the decline in male fertility with increasing age. Fertil. Steril. 79, 1520–1527 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    70.
    Buss, D. M. Sex differences in human mate preferences: Evolutionary hypotheses tested in 37 cultures. Behav. Brain Sci. 12, 1–14 (1989).
    Article  Google Scholar 

    71.
    Maestripieri, D., Klimczuk, A. C. E., Traficonte, D. M. & Wilson, M. C. A greater decline in female facial attractiveness during middle age reflects women’s loss of reproductive value. Front. Psychol. 5, 1–6 (2014).
    Article  Google Scholar 

    72.
    McLellan, B. & McKelvie, S. J. Effects of age and gender on perceived facial attractiveness. Can. J. Behav. Sci. Can. Sci. Comport. 25, 135–142 (1993).
    Article  Google Scholar 

    73.
    Bovet, J., Barkat-Defradas, M., Durand, V., Faurie, C. & Raymond, M. Women’s attractiveness is linked to expected age at menopause. J. Evol. Biol. 31, 229–238 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Coetzee, V., Perrett, D. I. & Stephen, I. D. Facial adiposity: A cue to health?. Perception 38, 1700–1711 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    75.
    Coetzee, V., Chen, J., Perrett, D. I. & Stephen, I. D. Deciphering faces: Quantifiable visual cues to weight. Perception 39, 51–61 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Schneider, T. M., Hecht, H. & Carbon, C. C. Judging body weight from faces: The height-weight illusion. Perception 41, 121–124 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Grillot, R. L., Simmons, Z. L., Lukaszewski, A. W. & Roney, J. R. Hormonal and morphological predictors of women’s body attractiveness. Evol. Hum. Behav. 35, 176–183 (2014).
    Article  Google Scholar 

    78.
    Hume, D. K. & Montgomerie, R. Facial attractiveness signals different aspects of “quality” in women and men. Evol. Hum. Behav. 22, 93–112 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Tovée, M. J., Swami, V., Furnham, A. & Mangalparsad, R. Changing perceptions of attractiveness as observers are exposed to a different culture. Evol. Hum. Behav. 27, 443–456 (2006).
    Article  Google Scholar 

    80.
    Třebický, V., Fialová, J., Kleisner, K. & Havlíček, J. Focal LENGTH AFFECTS DEPICTED SHAPE AND PERCEPTION OF FACIAL IMAGES. PLoS ONE 11, e0149313 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    81.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1 (2017).
    Article  Google Scholar 

    82.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).
    MathSciNet  MATH  Article  Google Scholar 

    83.
    Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 37 (2012).
    Article  Google Scholar 

    84.
    Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. (2019).

    85.
    Mitteroecker, P., Windhager, S., Müller, G. B. & Schaefer, K. The morphometrics of “masculinity” in human faces. PLoS ONE 10, e0118374 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    86.
    Valenzano, D. R., Mennucci, A., Tartarelli, G. & Cellerino, A. Shape analysis of female facial attractiveness. Vis. Res. 46, 1282–1291 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    De Haan, M., Pascalis, O. & Johnson, M. H. Specialization of neural mechanisms underlying face recognition in human infants. J. Cogn. Neurosci. 14, 199–209 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    88.
    Kelly, D. J. et al. Development of the other-race effect during infancy: Evidence toward universality?. J. Exp. Child Psychol. 104, 105–114 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Krasotkina, A., Götz, A., Höhle, B. & Schwarzer, G. Perceptual narrowing in speech and face recognition: Evidence for intra-individual cross-domain relations. Front. Psychol. 9, 1711 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Kelly, D. J. et al. Cross-race preferences for same-race. Infancy 11, 87–95 (2007).
    MathSciNet  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Kleisner, K. et al. How and why patterns of sexual dimorphism in human faces vary across the world.. Infancy https://doi.org/10.31234/osf.io/7vdmb (2020).
    Article  Google Scholar 

    92.
    Hopper, W. J., Finklea, K. M., Winkielman, P. & Huber, D. E. Measuring sexual dimorphism with a race-gender face space. J. Exp. Psychol. Hum. Percept. Perform. 40, 1779–1788 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    93.
    Tan, K. W., Tiddeman, B. & Stephen, I. D. Skin texture and colour predict perceived health in Asian faces. Evol. Hum. Behav. 39, 320–335 (2018).
    Article  Google Scholar  More

  • in

    Effect of gallic acid on the larvae of Spodoptera litura and its parasitoid Bracon hebetor

    1.
    Adeyemi, M. M. H. The potential of secondary metabolites in plant material as deterents against insect pests: a review. Afr. J. Pure Appl. Chem. 4, 243–246 (2010).
    CAS  Google Scholar 
    2.
    Walling, L. L. The myriad plant response to herbivores. J. Plant Growth Regul. 19, 195–216 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Croteau, R., Kutchan, T. M. & Lewis, N. G. Natural products (Secondary metabolites). In Biochemistry & Molecular Biology of Plants (eds Buchanan, B. B. et al.) 1250–1318 (American Society of Plants Biologists, Rockville, 2000).
    Google Scholar 

    4.
    Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach 2nd edn. (Wiley, Chichester, England, 2002).
    Google Scholar 

    5.
    Pham, A. & Hwang, S. Chemical-based resistance of Brassica oleracea and Rorippa dubia in response to Spodoptera litura attack. J. Appl. Entomol. 144, 201–2011 (2019).
    Article  CAS  Google Scholar 

    6.
    Niemetz, R. & Gross, G. G. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry 66, 2001–2011 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Barbosa, P. et al. Plant allelochemicals and insect parasitoids effects of nicotine on Cotesia congregata (Say) (Hymenoptera:Braconidae) and Hyposoter annulipes (Cresson) (Hymenoptera: Ichneumonidae). J. Chem. Ecol. 12, 1319–1328 (1986).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Reitz, S. R. & Trumble, J. T. Effects of linear furanocoumarins on the herbivore Spodoptera exigua and the parasitoid Archytas marmoratus: host quality and parasitoid success. Entomol. Exp. Appl. 84, 9–16 (1997).
    CAS  Article  Google Scholar 

    9.
    Vinson, S. B. & Barbosa, P. Interrelationships of nutritional ecology of parasitoids. In Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates (eds Slansky, F., Jr. & Rodriguez, J. G.) 673–695 (Wiley, New York, 1987).
    Google Scholar 

    10.
    Vinson, S. B. & Iwantsch, G. F. Host Suitability for Insect Parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).
    Article  Google Scholar 

    11.
    Duffey, S. S., Bloem, K. A. & Campbell, B. C. Consequences of sequestration of plant natural products in plant insect-parasitoid interactions. In Interactions of Plant Resistance and Parasitoids and Predators of Insects (eds Boethel, D. J. & Eikenbary, R. D.) 31–60 (Wiley, New York, 1986).
    Google Scholar 

    12.
    Rowell-Rahier, M., Pasteels, J. M. Phenolglucosides and interactions at three trophic levels: Salicaceae herbivores-predators. In Insect Plant Interactions Volume 2. pp. 75–94. Boca Raton, Florida: CRC. (1990).

    13.
    Kester, K. M. & Barbosa, P. Behavioral and ecological constraints imposed by plants on insect parasitoids: implications for biological control. Biol. Control 1, 94–106 (1991).
    Article  Google Scholar 

    14.
    Dhir, B. C., Mohapatra, H. K. & Senapati, B. Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian J. Plant Prot. 20, 215–217 (1992).
    Google Scholar 

    15.
    Armes, N. J., Wightman, J. A., Jadhav, D. R. & Ranga-Rao, G. V. Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pesticide Sci. 50, 240–248 (1997).
    CAS  Article  Google Scholar 

    16.
    Kranthi, K. R., Jadhav, D. R., Wanjari, R. R., Ali, S. S. & Russell, D. Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bull. Entomol. Res. 91, 37–46 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Brower, J. H., Smith, L., Vail, P. V. & Flinn, P. W. Biological control. In Integrated Management of Insects in Stored Products (eds Subramanyam, B. & Hagstrum, D. W.) 223–286 (Marcel Dekker Inc, New York, 1996).
    Google Scholar 

    18.
    Reinert, J. A. & King, E. W. Action of Bracon hehetor Say as a parasite of Plodia interpunctella at controlled densities. Ann. Entomol. Soc. Am. 64, 1335–1340 (1971).
    Article  Google Scholar 

    19.
    Press, J. W., Flaherty, B. R. & McDonald, I. C. Survival and reproduction of Bracon hebetor on insecticide-treated Ephestia cautella larvae. J. Georgia Entomol. Soc. 16, 231–234 (1981).
    CAS  Google Scholar 

    20.
    Gerling, D. & Rotary, N. Hypersensitivity, resulting from host-unsuitability, as exemplified by two parasite species attacking Spodoptera littoralis (Lepidoptera: Noctuidae). Entomophaga 18, 391–396 (1973).
    Article  Google Scholar 

    21.
    Selin-Rani, S. et al. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere 165, 257–267 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Ghumare, S. S. & Mukherjee, S. N. Performance of Spodoptera litura (Fabricius) on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect. Indian J. Exp. Biol. 41, 895–899 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    23
    Ananthakrishnan, T. N., Gurusubramanian, G. & Gopichandran, R. Influence of chemical profiles of host plant on the infestation diversity of Retithrips syriacus (Mayet). J. Biosci. 7, 483–489 (1991).
    Google Scholar 

    24.
    Bhattacharya, A. K. & Chenchaiah, K. C. Seed coat phenolic compounds of Cajanus cajan as chemical barrier in formulation of artificial diet of Spodoptera litura (F.). Ann. Plant Prot. Sci. 15, 92–96 (2007).
    Google Scholar 

    25.
    Gautam, S., Samiksha, R., Arora, S. & Sohal, S. K. Chemical profiling of polyphenols in extracts from bark of Acacia nilotica (Linn.) and their efficacy against Spodoptera litura (Fab.). Arch. Phytopathol. Plant Prot. 51, 41–53 (2018).
    CAS  Article  Google Scholar 

    26.
    Bernays, E. A., Driver, G. C. & Bilgener, M. Herbivores and plant tannins. Adv. Ecol. Res. 19, 263–302 (1989).
    Article  Google Scholar 

    27.
    Sharma, R. & Sohal, S. K. Oviposition response of melon fruit fly, Bactrocera cucurbitae (Coquillett) to different phenolic compounds. J. Biopest. 9, 46–51 (2016).
    CAS  Google Scholar 

    28.
    Nathan, S. S. & Kalaivani, K. Combined effects of azadirachtin and nucleopolyhedrovirus (SpltNPV) on Spodoptera litura Fabricius (Lepidoptera: Noctuidae) larvae. Biol. Control 39, 96–104 (2006).
    CAS  Article  Google Scholar 

    29.
    Deota, P. T. & Upadhyay, P. R. Biological studies of azadirachtin and its derivatives against polyphagous pest, Spodoptera litura. Nat. Prod. Res. 19, 529–539 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Shu, B. et al. Azadirachtin affects the growth of Spodoptera litura Fabricius by inducing apoptosis in larval midgut. Frontiers Physiol. 9, 137 (2018).
    Article  Google Scholar 

    31.
    De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T. & Tumlinson, J. H. Herbivore-infested plants selectively attract parasitoids. Nature 393, 570–573 (1998).
    ADS  Article  Google Scholar 

    32.
    Camphell, B. C. & Duffey, S. S. Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control. Science 205, 700–702 (1979).
    ADS  Article  Google Scholar 

    33.
    Campbell, B. C. & Duffey, S. S. Alleviation of α-tomatine-induced toxicity to the parasitoid, Hyposoter exiguae, by phytosterols in the diet of the host, Heliothis zea. J. Chem. Ecol. 7, 927–946 (1981).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Bloem, K. A. & Duffey, S. S. Interactive effect of protein and rutin on larval Heliothis zea and the endoparasitoid Hyposoter exiguae. Entomol. Exp. Appl. 54, 149–161 (1990).
    CAS  Article  Google Scholar 

    35.
    El-Heneidy, A. H., Barbosa, P. & Gross, P. Influence of dietary nicotine on fall armyworm, Spodoptera frugiperda and its parasitoid, the ichneumonid wasp Hyposoter annulipes. Entomol. Exp. Appl. 46, 227–232 (1988).
    CAS  Article  Google Scholar 

    36.
    Reitz, S. R. & Trumble, J. T. Tritrophic interactions among linear furanocoumarins, the Herbivore Trichoplusia ni (Lepidoptera: Noctuidae), and the polyembryonic parasitoid Copidosoma floridanum (Hymenoptera: Encyrtidae). Environ. Entomol. 25, 1391–1397 (1996).
    Article  Google Scholar 

    37.
    Mondy, N. et al. Importance of sterols acquired through host feeding in synovigenic parasitoid oogenesis. J. Insect Physiol. 52, 897–904 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Punia, A., Chauhan, N. S., Kaur, S. & Sohal, S. K. Effect of Ellagic acid on the larvae of Spodoptera litura (Lepidoptera: Noctuidae) and its parasitoid Bracon hebetor (Hymenoptera: Braconidae). J. Asia-Pac. Entomol. 23, 660–665 (2020).
    Article  Google Scholar 

    39.
    Barbosa, P. & Saunders, J. A. Plant allelochemicals: Linkages between herbivores and their natural enemies. Rec. Adv. Phytochem. 19, 107–137 (1985).
    CAS  Google Scholar 

    40.
    Ode, P., Berenbaum, J. R., Zangerl, M. R. & Hardy, I. C. W. Host plant, host plant chemistry and the polyembryonic parasitoid Copidosoma sosares: indirect effects in a tritrophic interaction. Oikos 104, 388–400 (2004).
    CAS  Article  Google Scholar 

    41.
    Narendra, G., Khokhar, S. & Ram, P. Effect of insecticides on some biological parameters of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammtidae). J. Biol. Control 21, 130–134 (2013).
    Google Scholar 

    42.
    Abedi, Z., Saber, M., Gharekhani, G., Mehrvar, A. & Kamita, S. G. Lethal and sublethal effects of azadirachtin and cypermethrin on Habrobracon hebetor (Hymenoptera: Braconidae). J. Econ. Entomol. 107, 638–645 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Radcliffe, E. B. Population responses of green peach aphid in Minnesota on potatoes treated with various insecticides. Proc. N Cent. Branch Entomol. Soc. Am. 27, 103–105 (1972).
    Google Scholar 

    44.
    Flanders, S. E. Environmental resistance to the establishment of parasitic hymenoptera. Ann. Entomol. Soc. Am. 33, 245–253 (1940).
    Article  Google Scholar 

    45.
    Kaplan, I., Carrillo, J., Garvey, M. & Ode, P. J. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. Curr. Opin. Insect Sci. 14, 112–119 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Ayyangar, G. S. G. & Rao, P. J. Changes in haemolymph constituents of Spodoptera litura (Fabr.) under the influence of azadirachtin. Indian J. Entomol. 52, 69–83 (1990).
    Google Scholar 

    47.
    Zibaee, A. & Bandani, A. R. Effects of Artemisia annua L. (Asteracea) on the digestive enzymatic profiles and the cellular immune reactions of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae), against Beauveria bassiana. Bull. Entomol. Res. 100, 185–196 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    48.
    Kalyani, S. S. & Holihosur, R. S. N. Toxic effect of crude aqueous leaf extracts of Clerodendron inerme, on the total haemocyte count of sixth instar larva of Helicoverpa armigera (H). Int. J. Innov. Res. Sci. Technol. 1, 221–224 (2015).
    Google Scholar 

    49.
    Saxena, B. P. & Tikku, K. Effect of plumbagin on haemocytes of Dysdercus koenigii F. Proc. Anim. Sci. 99, 119–124 (1990).
    Article  Google Scholar 

    50.
    Sakihama, Y. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177, 67–80 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Krishnan, N. & Sehnal, F. Compartmentalization of oxidative stress and antioxidant defense in the larval gut of Spodoptera littoralis. Arch. Insect Biochem. Physiol. 63, 1–10 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Lindroth, R. L. Biochemical detoxication: mechanism of differential tiger swallowtail tolerance to phenolic glycosides. Oecologia 81, 219–224 (1989).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Despres, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Terriere, L. C. Induction of detoxication enzymes in insects. Annu. Rev. Entomol. 29, 71–88 (1984).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Li, X. C., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    56.
    Koul, O. G., Singh, R. & Singh, J. Bioefficacy and mode-of-action of Aglaroxin B and Aglaroxin C from Aglaia elaeagmoidea (syn. A. Irox burghiana) against Helicoverpa armigera and Spodoptera litura. Biopesticides Int. 1, 54–64 (2005).
    Google Scholar 

    57.
    Waldbauer, G. P. The Consumption and Utilization of Food by Insects. Adv. Insect Physiol. 5, 229–288 (1968).
    Article  Google Scholar 

    58.
    Tauber, O. E. & Yeager, J. F. On total hemolymph (blood) cell counts of insects I. Orthoptera, odonata, hemiptera, and homoptera. Ann. Entomol. Soc. Am. 28, 229–240 (1935).
    Article  Google Scholar 

    59.
    Arnold, J. W. & Hinks, C. F. Insect haemocytes under light microscopy: techniques. In Insect Haemocyte Development, Forms, Functions and Techniques (ed. Gupta, A. P.) 531–538 (Cambridge University Press, Cambridge, 1979).
    Google Scholar 

    60.
    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).
    CAS  Article  Google Scholar  More

  • in

    Effects of a bacteria-produced algicide on non-target marine invertebrate species

    Algicide preparation
    Four batches of algicide were used for experiments, labeled Batch 3, Batch 4–5–6, Batch 7, and Batch 8, following methods used by Grasso27. For each batch, a single colony of Shewanella sp. IRI-160 was transferred from a modified LM medium plate to liquid LM medium for overnight growth, then inoculated into f/2 with 0.05% casamino acids and incubated for 10 days at room temperature with bubbling. Bacteria and other compounds greater than 60 kDa in size were filtered out using a HemoFlow HF80S 60 kDa dialysis cartridge (Fresenius Medical Care, Waltham, MA), creating a batch of sterile filtered exudate referred to as IRI-160AA. Samples of the algicide were diluted with ultrapure water, then total nitrogen (TN) was measured with a TOC-V total organic carbon analyzer equipped with a Total Nitrogen Measuring Unit (Shimadzu Corp., Kyoto, Japan). The algicide has approximately 5.02 mg/L TN. The 24-h EC50 for K. veneficum differed among batches but was always close to 1% (actual EC50s ranged from 0.93% in Batch 4–5–6 to 1.5% in Batch 3), thus a 1% concentration of the algicide was included in all invertebrate assays27. Animals were also exposed to a media control to ensure mortality was due to the algicide.
    Statistical analyses
    For all statistics, data were analyzed using Shapiro–Wilk normality tests and Brown-Forsythe equal variance tests. If they failed either, data were transformed and reanalyzed. If transformed data passed both tests, then analysis proceeded. If neither log or square-root transformed data passed both normality and equal variance tests, then a non-parametric test was run if possible. Specific details on statistical analyses are provided in each section below.
    Copepod mortality
    Mortality experiments followed established methods for determining acute toxicity in aquatic animals30,31,33,49. For A. tonsa adults, we collected animals in Fall of 2018 after sunset near the mouth of the Broadkill River (Delaware, USA) using a plankton net. Cod ends were diluted and maintained in field collected seawater with ambient food at room temperature (~ 20 °C) until use in experiments. Adults were filtered out of the bulk collection with a 500-μm mesh, then sorted for adult females. We transferred one adult female (n = 24 for 40%, 48 for 30%, and 72 for all other concentrations) into each well of a 12-well plate containing 5 mL of test solution; test solutions included a seawater control (0%); algicide mixtures prepared from Batch 3 of the IRI-160AA in 20 psu, 0.2 μm-filtered sea water collected from Indian River Inlet, DE, USA (FSW) (1%, 5%, 10%, 13.5%, 18%, 24%, 30%, and 40% v/v); and a 24% media solution as a media control. The plates were incubated at 25 °C in low-light (~ 2.37 × 1013 photons cm-2 s−1) on a 14:10 h day:night cycle for 48 h. Every 6 h for the first 24 h, and again at 48 h, we counted the number alive and dead.
    For A. tonsa nauplii, adult females and males were placed in two 1 L beakers at room temperature with a 150-μm mesh placed several centimeters off the bottom (to prevent egg cannibalism), a slow bubbler (~ 2 small bubbles s−1), and ambient seawater diluted with 20 psu FSW until the water was mostly clear. Adults were allowed to mate in the beaker for approximately 24 h, after which we removed the mesh, thus removing the adults and leaving behind any nauplii and eggs. After another 24 h, the contents of the beakers were poured through a 20-μm mesh, and we extracted the nauplii and placed them into experimental treatments (0% seawater control, algicide at 1%, 5%, 10%, 13.5%, 18%, 24%, and 30% v/v concentrations, plus a 24% media control; n = 48 animals for all concentrations) following the procedure outlined above for the adult female copepods. This experiment was conducted three times; the first two mortality experiments used Batch 3 of the IRI-160AA, and the third mortality experiment used Batch 8.
    From the data collected, we generated a Probit model50 and obtained a 24-h LC50. Another approach looks at mortality over several time points in order to generate a time series of survival (e.g., Robineau et al.51, Keller et al.52). This also allows the generation of an LC50 at several time points (e.g., 6, 12, 18, and 24 h), which can better inform how a certain animal may survive over time. We used SigmaPlot to generate graphs of survival over time, and R statistical software53 and the R package ecotoxicology54 for generating and graphing the Probit model and running a χ2 test to evaluate the model.
    Crab mortality
    We conducted mortality experiments for the blue crab (Callinectes sapidus) in larval (Z1-stage zoeae) and postlarval (megalopae) stages in a similar manner to mortality experiments with Acartia tonsa. We collected ovigerous female blue crabs during the Summer of 2018 by dip net and drop net at sunset from the Delaware Bay (similar to methods used by Kernehan55) in Cape Henlopen State Park and maintained them in a recirculating water tray containing filtered ambient seawater (~ 30 psu) at room temperature. We staged egg masses every few days55, and females predicted to hatch within ~ 3 days were moved to 7-gallon buckets in a 25 °C incubator containing ~ 30 psu sea water and a bubbler. Zoea larvae (Z1-stage) hatched from these females were kept in large finger bowls with 30 psu sea water at room temperature and were fed lab-reared rotifers (Brachionus rotundiformis, Reed Mariculture). These animals became subjects for mortality and sub-lethal experiments within approximately a day of hatching. Four experiments were conducted; three mortality experiments used Batch 4–5–6 of the IRI-160AA, while the fourth experiment (24 individuals for each concentration) used Batch 7.
    Megalopae were collected by plankton net set on rising tides at night during the Summer and Fall of 2018. They were maintained in large finger bowls at room temperature and fed with Artemia nauplii and went into experiments within a few days of collection. Only megalopae in intermolt based on morphology56 were used in experiments. Megalopae experiments used Batch 3 of the IRI-160AA.
    Both zoeae and megalopae were exposed to 1%, 5%, 10%, 13.5%, 18%, and 24% algicide concentrations, plus a 0% seawater control and a 24% media control (n = 84 animals for the 0% concentration and 60 for all other concentrations for zoeae, and n = 24 animals for megalopae for all concentrations). Animals were incubated at 25 °C under low-light (~ 2.37 × 1013 photons cm-2 s-1) on a 14:10 light:dark cycle for the duration of experiments. We checked on zoeae and megalopae every 6 h for 24 h; megalopae were checked at an additional 48-h time point.
    Oyster mortality
    Oyster larvae (eyed pediveligers of Crassostrea virginica) were provided by University of Maryland’s Horn Point Laboratory. Animals were maintained on a damp coffee filter in a sealed plastic container on ice during transport, then released into room-temperature fingerbowls containing 20 psu water and fed a locally-isolated alga (Storeatula major) at room temperature. Experiments occurred in similar fashion to those conducted on Acartia tonsa and Callinectes sapidus. Larvae were assayed in 12-well plates (n = 36 animals for all concentrations). Animals were exposed to 1%, 5%, 10%, 13.5%, 18%, and 24% algicide concentrations, plus a 0% seawater control, and 24% media control. Animals were incubated at 25 °C under a 14:10 light:dark cycle for the duration of experiments. Survival was evaluated every 6 h for 24 h and again at 48 h. Larvae were additionally examined at the start of the experiment and at the 24- and 48-h time points for an activity assay. These experiments used Batch 3 of the IRI-160AA.
    Wild-type adult C. virginica were collected from the Delaware Bay near the University of Delaware Lewes Campus, while Haskins-disease-resistant strain individuals were collected from aquaculture cages maintained by the Delaware Center for the Inland Bays. On the first day, individuals were cleaned with a wire brush, and divided into two buckets containing approximately 10 L of 20 psu seawater and were fed Isochrysis galbana (~ 100,000 cells L−1). On the second day the water was changed and they were again fed. On the third day, water was changed and animals were not fed. On the fourth day, individuals were removed from the buckets, dried with a paper towel, labeled with permanent marker, and placed in pairs into forty-one 1 L plastic containers containing 1 L of various algicide solutions: 0%, 1%, 5%, 10%, 13.5%, 18%, and 24% (n = 28 for 0%, 22 for 1% and 18%, and 20 for all other concentrations). Individuals were checked every 6 h for 24 h and assessed if they were alive or dead. Closed individuals were assumed to be alive. If open individuals were observed, we gently tapped on the container to see if the individual shut its shell; animals that responded to this stimulus were marked as alive. Only animals that did not respond to repeated stimuli were scored as dead. Proportion surviving was compared across algicide concentration and strain. These experiments all used Batch 8 of the IRI-160AA.
    Copepod sub-lethality
    Respiration
    We conducted respiration experiments on A. tonsa adult females and young nauplii in a 24-well microplate respirometer (Loligo Systems). First, we sorted animals into fingerbowls containing 100 mL of their respective algicide concentrations. After 24 h of algicide exposure, we removed animals via pipette and put one animal into each well of the respirometer plate (200 μL wells for adult females and 80 μL for nauplii) filled with 0.2 μm filtered FSW, then sealed the plate with Parafilm and a weight. Each experiment also had 4 to 6 wells with only FSW to calculate background oxygen consumption. The experiment occurred in darkness within a 25 °C incubator at night and lasted several hours (n = 26–39 animals for adult females, 11–18 for nauplii). Oxygen concentrations in each well were recorded every minute. At the end of the experiment, respiration rates were calculated in R statistical software using the respR package57 over a period of time when the animals were still in independent respiration, and a one-way ANOVA on ranks in SigmaPlot (Systat Software, San Jose, CA) compared treatments. Experiments with adult females used Batch 3 of IRI-160AA, while nauplii experiments used Batch 8.
    Activity
    Experiments determining effects on swimming activity utilized Locomotor Activity Monitors (LAMs; TriKinetics). Three beams of infrared light cross a 3 mL test tube containing an animal and register when the animal crosses the beams. We sorted batches of adult female A. tonsa into fingerbowls containing different algicide treatments. Animals were incubated at 25 °C in low-light conditions (~ 2.37 × 1013 photons cm−2 s−1) for 24 h on a 11:13-h light:dark cycle. Animals were pipetted into plastic test tubes (one animal per tube) containing ~ 3 mL of FSW, which then went into the LAMs (n = 21–36 animals). The experiment lasted 24 h with beam breaks summed at one-minute intervals, allowing the data to be analyzed wholly for the 24-h period as well as across different light phases to account for light:dark mediated activity rhythms. Experiments started in the afternoon and ran overnight, creating an initial light phase (L1), a dark phase (D), and a second light phase (L2). Comparing treatments across the entire time period was done using a one-way ANOVA on ranks, while analyzing the data based on the different light phases was performed via a one-way repeated-measures ANOVA. Additionally, at the end of the LAM activity experiments we collected the individuals and noted mortality. This data was analyzed via a one-way ANOVA on ranks. Copepod activity experiments used Batch 3 of the IRI-160AA. Nauplii were too small to generate a reliable signal in the LAMs and were not used in these experiments.
    Crab sub-lethality
    Respiration
    Respiration experiments followed methods described for A. tonsa above and involved zoeae and megalopae. A one-way ANOVA on ranks was calculated using the data for each life stage. The first four zoeae experiments used Batch 4–5-6 of IRI-160AA, while the last two experiments used Batch 7. Megalopae experiments all used Batch 3.
    Activity
    Activity level experiments followed methods described for A. tonsa above and involved zoeae and megalopae. The 24-h data were analyzed using a one-way ANOVA on square root transformed data for zoeae, and a one-way ANOVA on ranks for megalopae. The data broken down by light phase were analyzed via one-way repeated measures ANOVA on log-transformed data for both zoeae and megalopae. These experiments all used Batch 3 of IRI-160AA.
    At the end of experiments we collected the individuals and noted mortality. This data was analyzed via a one-way ANOVA for zoeae and a one-way ANOVA on ranks for the megalopae.
    Metamorphosis
    We sorted megalopae into finger bowls containing 100 mL of filtered estuary water with different concentrations of the IRI-160AA algicide (0%, 1%, and 17% v/v). After 24-h of exposure, we sorted animals into 12-well plates containing FSW (n = 60 individuals for each treatment). Water was changed daily, and animals were fed freshly hatched Artemia daily. Every 12 h, we counted how many megalopae had molted into first crabs until most had metamorphosed (5.5 days) and used a Kaplan–Meier Survival Analysis with a Gehan-Breslow test to determine if there was a difference in time to metamorphosis (TTM) across treatments. These experiments used Batch 3 of the IRI-160AA.
    Abdomen Pumping and Grooming
    Crabs with egg masses were collected from the Delaware Bay near Lewes, DE and separated into numbered baskets and maintained in a flow-through sea water table. They were fed thawed squid (Loligo opalescens) every day, and eggs were photographed every two to three days under a dissecting scope until they reached ~ 6 days until hatching (i.e., late-stage sensu Tankersley et al.)36. Homogenized egg water (seawater plus homogenized eggs, designated SW + HE, ~ 20 eggs mL−1) was utilized to induce pumping and grooming behavior and made according to Tankersley et al.36.
    Ovigerous females were exposed to several sub-lethal concentrations of algicide combined with the homogenized egg solution and monitored for pumping and grooming behavior. Test solutions were diluted to 1.5 L with filtered 30 psu seawater, and 3.75 mL aliquot of a pre-prepared homogenized egg solution was added to achieve a final concentration of ~ 20 eggs/mL. These experiments used Batch 4–5–6, Batch 7, and Batch 3 of the IRI-160AA.
    Between three and six crabs were tested at a time, and all crabs were staged the day of the experiment to verify that their eggs were no more than six days from hatching. All experiments were performed under dim red light to reduce disturbance. Each crab was tested in every treatment. A crab was placed into a translucent container (20.1 × 16.5 × 11.4 cm) with a given treatment condition and acclimated for 2.5 min. Then, for the following 2.5 min, the number of times the crab pumped its abdomen was recorded. Immediately following the end of the first crab’s measurement period, another crab was placed into the same treatment to begin its acclimation period. Each crab was returned to a flowing water table between treatments and remained there for at least twenty minutes before beginning the acclimation period of its next treatment. The treatment series began and ended with 30 psu seawater (SW), and proceeded through an increasing gradient of 0, 7, 11, and 17% IRI-160AA in SW + HE.
    Each measurement period of the pumping experiments was filmed. The videos were reviewed later, and the time the crabs spent grooming their egg masses was recorded.
    A χ2 test was performed for the 24 crabs tested to assess if the proportion of crabs performing the behaviors differed among treatments. A one-way repeated-measures ANOVA (Friedman Repeated Measures Analysis of Variance on Ranks) was used to assess trends in the number of pumps and the time spent grooming. Only crabs that performed the behavior were included in each analysis.
    Oyster sub-lethality
    Respiration
    Respiration on oyster pediveligers following methods described for A. tonsa nauplii above. Two individuals were placed in each 80 µl well, with rates calculated per individual. Data were analyzed via a one-way ANOVA on Ranks. These experiments all used Batch 3 of IRI-160AA.
    Activity
    Activity experiments on pediveliger larvae were conducted in LAMs and followed similar methods to Acartia tonsa and Callinectes sapidus. The 24-h data was tested via a one-way ANOVA on ranks, while the data broken down by light phase was analyzed via a one-way repeated measures ANOVA. These experiments used Batch 3 of IRI-160AA.
    An additional analysis of pediveliger activity occurred during the mortality experiment by ranking how active each animal appeared to be on a scale of 1 (High Activity, HA, animal was actively swimming), 2 (Medium Activity, MA, animal had its velum extended and cilia active, sometimes scooting across the bottom), 3 (Low Activity, LA, animal was enclosed in its shell but viscera moved when the shell was touched), and 4 (Dead/No Activity, D, animal was completely unresponsive even to repeated stimulation). Ranking occurred at the start of the experiment (where all animals scored as HA), at the 24-h mark, and at the 48-h mark. This assessment was analyzed via a χ2 test for both the 24-h and 48-h data sets. At the end of the LAM experiments, animals were analyzed in the same manner.
    Activity experiments on the wild-type adult C. virginica occurred during the mortality experiments. At each 6-h time point, animals in the containers (0%, 1%, 5%, 10%, 13.5%, 18%, and 24% v/v IRI-160AA treatments) were scored as either Open (O) or Closed (C), and analyzed via a two-way repeated measures ANOVA on the proportion of animals that opened at each time point in each concentration.
    Feeding
    Feeding experiments occurred only on adult C. virginica. Animals and containers from the mortality experiments were rinsed to remove algicide residue, then filled with 1 L of 20 psu seawater and Isochrysis galbana at ~ 100,000 cells L−1, and one animal from each container was returned to it. Five milliliters from each container were removed immediately and in vivo chlorophyll a florescence was measured using a fluorometer (Turner Systems). Air stones were added to the containers to keep the algae in suspension, and lids were added to prevent liquid from bubbling out. After 6 h, another fluorescence reading was taken. Animals were given another 6 h to feed, and a final fluorescence reading was taken at the 12-h time point. Clearance rates (CR) were calculated according to Thessen et al.58 from time zero to six hours (initial rate, 0–6), and from six to twelve hours (end rate, 6–12), and compared across time ranges and treatments and strains using a three-way ANOVA. More

  • in

    Mapping coral calcification strategies from in situ boron isotope and trace element measurements of the tropical coral Siderastrea siderea

    1.
    Cesar, H. J. S., Burke, L. & Pet-Soede, L. The Economics of Worldwide Coral Reef Degradation. 23 (Cesar Environmental Economics Consulting: The Netherlands). https://www.icran.org/pdf/cesardegradationreport.pdf (2003).
    2.
    Tambutté, E. et al. Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26, 517–529 (2007).
    ADS  Article  Google Scholar 

    3.
    Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).
    ADS  CAS  Article  Google Scholar 

    4.
    Mass, T. et al. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr. Biol. 23, 1126–1131. https://doi.org/10.1016/j.cub.2013.05.007 (2013).
    CAS  Article  PubMed  Google Scholar 

    5.
    Guo, W. Seawater temperature and buffering capacity modulate coral calcifying pH. Sci. Rep. 9, 1–13 (2019).
    Article  Google Scholar 

    6.
    McCulloch, M. et al. Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).
    ADS  CAS  Article  Google Scholar 

    7.
    Guo, W. et al. Ocean acidification has impacted coral growth on the great barrier reef. Geophys. Res. Lett. https://doi.org/10.1029/2019gl086761 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Sevilgen, D. S. et al. Full in vivo characterization of carbonate chemistry at the site of calcification in corals. Sci. Adv. https://doi.org/10.1126/sciadv.aau7447 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Venn, A., Tambutté, E., Holcomb, M., Allemand, D. & Tambutté, S. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS ONE 6, e20013 (2011).
    ADS  CAS  Article  Google Scholar 

    10.
    Cai, W.-J. et al. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat. Commun. 7, 1–8 (2016).
    Google Scholar 

    11.
    Holcomb, M. et al. Coral calcifying fluid pH dictates response to ocean acidification. Sci. Rep. 4, 5207. https://doi.org/10.1038/srep05207 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    DeCarlo, T. M., Holcomb, M. & McCulloch, M. T. Reviews and syntheses: revisiting the boron systematics of aragonite and their application to coral calcification. Biogeosciences 15, 2819–2834. https://doi.org/10.5194/bg-15-2819-2018 (2018).
    ADS  CAS  Article  Google Scholar 

    13.
    McCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M. & Trotter, J. A. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nat. Commun. 8, 15686. https://doi.org/10.1038/ncomms15686 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Horvath, K. M. et al. Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea. Sci. Rep. 6, 29613. https://doi.org/10.1038/srep29613 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Tambutté, E. et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat. Commun. 6, 7368. https://doi.org/10.1038/ncomms8368 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Stewart, J. A., Anagnostou, E. & Foster, G. L. An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite. Chem. Geol. 447, 148–160. https://doi.org/10.1016/j.chemgeo.2016.10.029 (2016).
    ADS  CAS  Article  Google Scholar 

    17.
    Allison, N., Finch, A. A. & EIMF. δ11B, Sr, Mg and B in a modern Porites coral: the relationship between calcification site pH and skeletal chemistry. Geochim. Cosmochim. Acta 74, 1790–1800 (2010).
    ADS  CAS  Article  Google Scholar 

    18.
    Rollion-Bard, C. & Blamart, D. SIMS method and examples of applications in coral biomineralization. In Biomineralization Sourcebook: Characterization of Biominerals and Biomimetic Materials (eds DiMasi, E. & Gower, L. B.) 249–261 (CRC Press, Boca Raton, 2014).
    Google Scholar 

    19.
    Trotter, J. et al. Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet. Sci. Lett. 303, 163–173. https://doi.org/10.1016/j.epsl.2011.01.030 (2011).
    ADS  CAS  Article  Google Scholar 

    20.
    Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74, 4988–5001 (2010).
    ADS  CAS  Article  Google Scholar 

    21.
    Hönisch, B. et al. Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and vital effects. Geochim. Cosmochim. Acta 68, 3675–3685. https://doi.org/10.1016/j.gca.2004.03.002 (2004).
    ADS  CAS  Article  Google Scholar 

    22.
    Tanaka, K. et al. Response of Acropora digitifera to ocean acidification: constraints from δ11B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH. Coral Reefs 34, 1139–1149 (2015).
    ADS  Article  Google Scholar 

    23.
    Reynaud, S., Hemming, N. G., Juillet-Leclerc, A. & Gattuso, J.-P. Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp. Coral Reefs 23, 539–546 (2004).
    Google Scholar 

    24.
    Anagnostou, E., Huang, K.-F., You, C.-F., Sikes, E. & Sherrell, R. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: evidence of physiological pH adjustment. Earth Planet. Sci. Lett. 349, 251–260 (2012).
    ADS  Article  Google Scholar 

    25.
    Jurikova, H. et al. Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: zooming into a potential pH-proxy by combining bulk and high-resolution approaches. Chem. Geol. 513, 143–152. https://doi.org/10.1016/j.chemgeo.2019.01.005 (2019).
    ADS  CAS  Article  Google Scholar 

    26.
    Kasemann, S. A., Schmidt, D. N., Bijma, J. & Foster, G. L. In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH. Chem. Geol. https://doi.org/10.1016/j.chemgeo.2008.12.015 (2009).
    Article  Google Scholar 

    27.
    Rollion-Bard, C., Chaussidon, M. & France-Lanord, C. pH control on oxygen isotopic composition of symbiotic corals. Earth Planet. Sci. Lett. 215, 275–288. https://doi.org/10.1016/S0012-821X(03)00391-1 (2003).
    ADS  CAS  Article  Google Scholar 

    28.
    Standish, C. D. et al. The effect of matrix interferences on in situ boron isotope analysis by laser ablation multi-collector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 33, 959–968 (2019).
    ADS  CAS  Article  Google Scholar 

    29.
    Sadekov, A. et al. Accurate and precise microscale measurements of boron isotope ratios in calcium carbonates using laser ablation multicollector-ICPMS. J. Anal. At. Spectrom. 34, 550–560 (2019).
    CAS  Article  Google Scholar 

    30.
    Fietzke, J. et al. Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material. J. Anal. At. Spectrom. 25, 1953–1957 (2010).
    CAS  Article  Google Scholar 

    31.
    Oppelt, A., López, M. & Rocha, C. Biogeochemical analysis of the calcification patterns of cold-water corals Madrepora oculata and Lophelia pertusa along contact surfaces with calcified tubes of the symbiotic polychaete Eunice norvegica: evaluation of a ‘mucus’ calcification hypothesis. Deep Sea Res. I Oceanogr. Res. Pap. 127, 90–104. https://doi.org/10.1016/j.dsr.2017.08.006 (2017).
    ADS  CAS  Article  Google Scholar 

    32.
    Fowell, S. et al. Historical trends in pH and carbonate biogeochemistry on the Belize Mesoamerican Barrier Reef System. Geophys. Res. Lett. 45, 3228–3237 (2018).
    ADS  CAS  Article  Google Scholar 

    33.
    Runcorn, S. K. Corals as paleontological clocks. Sci. Am. 215, 26–33 (1966).
    Article  Google Scholar 

    34.
    DeCarlo, T. M. & Cohen, A. L. Dissepiments, density bands and signatures of thermal stress in Porites skeletons. Coral Reefs 36, 749–761. https://doi.org/10.1007/s00338-017-1566-9 (2017).
    ADS  Article  Google Scholar 

    35.
    Barnes, D. & Lough, J. On the nature and causes of density banding in massive coral skeletons. J. Exp. Mar. Biol. Ecol. 167, 91–108 (1993).
    Article  Google Scholar 

    36.
    DeCarlo, T. M. et al. Coral Sr-U thermometry. Paleoceanography 31, 626–638 (2016).
    ADS  Article  Google Scholar 

    37.
    Gagnon, A. C., Adkins, J. F., Fernandez, D. P. & Robinson, L. F. Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation. Earth Planet. Sci. Lett. 261, 280–295. https://doi.org/10.1016/j.epsl.2007.07.013 (2007).
    ADS  CAS  Article  Google Scholar 

    38.
    Blamart, D. et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: implications for biomineralization and paleo-pH. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001686 (2007).
    Article  Google Scholar 

    39.
    Jokiel, P. L. Coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proc. Biol. Sci. 280, 20130031–20130031. https://doi.org/10.1098/rspb.2013.0031 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Galli, G. & Solidoro, C. ATP supply may contribute to light-enhanced calcification in corals more than abiotic mechanisms. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00068 (2018).
    Article  Google Scholar 

    41.
    Barott, K. L., Venn, A. A., Perez, S. O., Tambutté, S. & Tresguerres, M. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl. Acad. Sci. 112, 607–612. https://doi.org/10.1073/pnas.1413483112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    42.
    Bernardet, C., Tambutté, E., Techer, N., Tambutté, S. & Venn, A. Ion transporter gene expression is linked to the thermal sensitivity of calcification in the reef coral Stylophora pistillata. Sci. Rep. 9, 1–13 (2019).
    Article  Google Scholar 

    43.
    Le Goff, C. et al. In vivo pH measurement at the site of calcification in an octocoral. Sci. Rep. 7, 11210. https://doi.org/10.1038/s41598-017-10348-4 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Zoccola, D. et al. Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci. Rep. 5, 9983. https://doi.org/10.1038/srep09983 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Furla, P., Galgani, I., Durand, I. & Allemand, D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445–3457 (2000).
    CAS  PubMed  Google Scholar 

    46.
    DeLong, K. L., Maupin, C. R., Flannery, J. A., Quinn, T. M. & Shen, C.-C. Refining temperature reconstructions with the Atlantic coral Siderastrea siderea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 462, 1–15. https://doi.org/10.1016/j.palaeo.2016.08.028 (2016).
    Article  Google Scholar 

    47.
    Castillo, K. D., Ries, J. B. & Weiss, J. M. Declining coral skeletal extension for forereef colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System Southern Belize. PLoS ONE 6, e14615 (2011).
    ADS  CAS  Article  Google Scholar 

    48.
    Castillo, K. D., Ries, J. B., Weiss, J. M. & Lima, F. P. Decline of forereef corals in response to recent warming linked to history of thermal exposure. Nat. Clim. Change 2, 756–760. https://doi.org/10.1038/nclimate1577 (2012).
    Article  Google Scholar 

    49.
    Foster, G. L. Seawater pH, pCO2 and CO32− variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic forminifera. Earth Planet. Sci. Lett. 271, 254–266. https://doi.org/10.1016/j.epsl.2008.04.015 (2008).
    ADS  CAS  Article  Google Scholar 

    50.
    Foster, G. L. et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem. Geol. 358, 1–14. https://doi.org/10.1016/j.chemgeo.2013.08.027 (2013).
    ADS  CAS  Article  Google Scholar 

    51.
    le Roux P. J. et al. In situ, multiplemultiplier, laser ablation ICP‐MS measurement of boron isotopic composition (δ11B) at the nanogram level. Chem. Geol. 203(1–2), 123–138. https://doi.org/10.1016/j.chemgeo.2003.09.006 (2004).
    ADS  CAS  Article  Google Scholar 

    52.
    Inoue, M., Nohara, M., Okai, T., Suzuki, A. & Kawahata, H. Concentrations of trace elements in carbonate reference materials coral JCp-1 and Giant Clam JCt-1 by inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 28, 411–416. https://doi.org/10.1111/j.1751-908X.2004.tb00759.x (2004).
    CAS  Article  Google Scholar 

    53.
    Thil, F. et al. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral. Rapid Commun. Mass Spectrom. 30, 359–371 (2016).
    CAS  Article  Google Scholar 

    54.
    Hathorne, E. C. et al. Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements. Geochem. Geophys. Geosyst. 14, 3730–3750. https://doi.org/10.1002/ggge.20230 (2013).
    ADS  CAS  Article  Google Scholar 

    55.
    Hijmans, R. & Van Etten, J. Geographic analysis and modeling with raster data. R Package Version 2, 1–25 (2012).
    Google Scholar 

    56.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2010).

    57.
    Foster, G. L., von Strandmann, P. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003201 (2010).
    Article  Google Scholar 

    58.
    Klochko, K., Kaufman, A. J., Yao, W. S., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2006.05.034 (2006).
    Article  Google Scholar 

    59.
    Holcomb, M., DeCarlo, T., Gaetani, G. & McCulloch, M. Factors affecting B/Ca ratios in synthetic aragonite. Chem. Geol. 437, 67–76 (2016).
    ADS  CAS  Article  Google Scholar 

    60.
    Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Oceanogr. Res. Pap. 37, 755–766. https://doi.org/10.1016/0198-0149(90)90004-F (1990).
    ADS  CAS  Article  Google Scholar 

    61.
    Lee, K. et al. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 74, 1801–1811 (2010).
    ADS  CAS  Article  Google Scholar 

    62.
    Zeebe, R. E. & Wolf-Gladrow, D. A. CO2in Seawater: Equilibrium, Kinetics, Isotopes in Seawater: Equilibrium, Kinetics, Isotopes Vol. 65 (Elsevier, Amsterdam, 2001).
    Google Scholar 

    63.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar  More