More stories

  • in

    Co-cultivation of Mortierellaceae with Pseudomonas helmanticensis affects both their growth and volatilome

    The growth behaviour of Linnemannia is strain-specificMost strains showed comparable morphological characteristics on both media as well as in pure and co-culture. However, Linnemannia solitaria and Entomortierella galaxiae produced more aerial mycelium on PDA compared to LcA. There was more/less aerial mycelium in co-cultures with P. helmanticensis compared to pure cultures depending on the strain (Fig. 1, SI Fig. S3).The comparison of Linnemannia and E. galaxiae daily radial growth rates did not support a difference between these genera (p ≥ 0.3). The overall linear model indicated that the fungal daily growth rates mainly differed among species (Table 1). In addition, the effect of strains highlighted the heterogeneity among strains within species (Fig. 2, SI Figs. S4, S5). Although there was no relevant main effect of medium on the daily radial growth rate of the fungi, the medium did affect the fungi in a strain-specific manner (Table 1, Fig. 2, SI Figs. S4, S5). On nutrient poor LcA, the fungal daily radial growth rates were reduced for all species, except for L. solitaria, which grew better on LcA (SI Figs. S3, S4).Table 1 The effect of experimental factors on the fungal daily radial growth rate.Full size tableFigure 2Daily radial growth rate of pure Linnemannia and Entomortierella cultures as well as co-cultures with P. helmanticensis on nutrient rich PDA medium. (a) L. exigua, (b) L. gamsii, (c) L. hyalina, (d) L. sclerotiella, (e) L. solitaria, (f) E. galaxiae.Full size imageThe main effect of co-plating P. helmanticensis on radial growth rate was small, yet significant (0.7%, p  More

  • in

    Globally invariant metabolism but density-diversity mismatch in springtails

    Data reportingThe data underpinning this study is a compilation of existing datasets and therefore, no statistical methods were used to predetermine sample size, the experiments were not randomized and the investigators were not blinded to allocation during experiments and outcome assessment. The measurements were taken from distinct samples, repeated measurements from the same sites were averaged in the main analysis.Inclusion & ethicsData were primarily collected from individual archives of contributing co-authors. The data collection initiative was openly announced via the mailing list of the 10th International Seminar on Apterygota and via social media (Twitter, Researchgate). In addition, colleagues from less explored regions (Africa, South America) were contacted via personal networks of the initial authors group and literature search. All direct data providers who collected and standardised the data were invited as co-authors with defined minimum role (data provision and cleaning, manuscript editing and approval). For unpublished data, people who were directly involved in sorting and identification of springtails, including all local researchers, were invited as co-authors. Principal investigators were normally not included as co-authors, unless they contributed to conceptualisation and writing of the manuscript. All co-authors were informed and invited to contribute throughout the research process—from the study design and analysis to writing and editing. The study provided an inclusive platform for researchers around the globe to network, share and test their research ideas.Data acquisitionBoth published and unpublished data were collected, using raw data whenever possible entered into a common template. In addition, data available from Edaphobase47 was included. The following minimum set of variables was collected: collectors, collection method (including sampling area and depth), extraction method, identification precision and resources, collection date, latitude and longitude, vegetation type (generalized as grassland, scrub, woodland, agriculture and other for the analysis), and abundances of springtail taxa found in each soil sample (or sampling site). Underrepresented geographical areas (Africa, South America, Australia and Southeast Asia) were specifically targeted by a literature search in the Web of Science database using the keywords ‘springtail’ or ‘Collembola’, ‘density’ or ‘abundance’ or ‘diversity’, and the region of interest; data were acquired from all found papers if the minimum information listed above was provided. All collected datasets were cleaned using OpenRefine v3.3 (https://openrefine.org) to remove inconsistencies and typos. Geographical coordinates were checked by comparing the dataset descriptions with the geographical coordinates. In total, 363 datasets comprising 2783 sites were collected and collated into a single dataset (Supplementary Fig. 1).Calculation of community parametersCommunity parameters were calculated at the site level. Here, we defined a site as a locality that hosts a defined springtail community, is covered by a certain vegetation type, with a certain management, and is usually represented by a sampling area of up to a hundred metres in diameter, making species co-occurrence and interactions plausible. To calculate density, numerical abundance in all samples was averaged and recalculated per square metre using the sampling area. Springtail communities were assessed predominantly during active vegetation periods (i.e., spring, summer and autumn in temperate and boreal biomes, and summer in polar biomes). Our estimations of community parameters therefore refer to the most favourable conditions (peak yearly densities). This seasonal sampling bias is likely to have little effect on our conclusions, since most springtails survive during cold periods38,48. Finally, we used mean annual soil temperatures49 to estimate the seasonal mean community metabolism (described below) and tested for the seasonal bias in additional analysis (see Linear mixed-effects models).All data analyses were conducted in R v. 4.0.250 with RStudio interface v. 1.4.1103 (RStudio, PBC). Data was transformed and visualised with tidyverse packages51,52, unless otherwise mentioned. Background for the global maps was acquired via the maps package53,54. To calculate local species richness, we used data identified to species or morphospecies level (validated by the expert team). Since the sampling effort varied among studies, we extrapolated species richness using rarefaction curves based on individual samples with the Chao estimator51,52 in the vegan package53. For some sites, sample-level data were not available in the original publications, but site-level averages were provided, and an extensive sampling effort was made. In such cases, we predicted extrapolated species richness based on the completeness (ratio of observed to extrapolated richness) recorded at sites where sample-level data were available (only sites with 5 or more samples were used for the prediction). We built a binomial model to predict completeness in sites where no sample-level data were available using latitude and the number of samples taken at a site as predictors: glm(Completeness~N_samples*Latitude). We found a positive effect of the number of samples (Chisq = 1.97, p = 0.0492) and latitude (Chisq = 2.07, p = 0.0391) on the completeness (Supplementary Figs. 17–19). We further used this model to predict extrapolated species richness on the sites with pooled data (435 sites in Europe, 15 in Australia, 6 in South America, 4 in Asia, and 3 in Africa).To calculate biomass, we first cross-checked all taxonomic names with the collembola.org checklist55 using fuzzy matching algorithms (fuzzyjoin R package56) to align taxonomic names and correct typos. Then we merged taxonomic names with a dataset on body lengths compiled from the BETSI database57, a personal database of Matty P. Berg, and additional expert contributions. We used average body lengths for the genus level (body size data on 432 genera) since data at the species level were not available for many morphospecies (especially in tropical regions), and species within most springtail genera had similar body size ranges. Data with no genus-level identifications were excluded from the analysis. Dry and fresh body masses were calculated from body length using a set of group-specific length-mass regressions (Supplementary Table 1)58,59 and the results of different regressions applied to the same morphogroup were averaged. Dry mass was recalculated to fresh mass using corresponding group-specific coefficients58. We used fresh mass to calculate individual metabolic rates60 and account for the mean annual topsoil (0–5 cm) temperature at a given site61. Group-specific metabolic coefficients for insects (including springtails) were used for the calculation: normalization factor (i0) ln(21.972) [J h−1], allometric exponent (a) 0.759, and activation energy (E) 0.657 [eV]60. Community-weighted (specimen-based) mean individual dry masses and metabolic rates were calculated for each sample and then averaged by site after excluding 10% of maximum and 10% of minimum values to reduce impact of outliers. To calculate site-level biomass and community metabolism, we summed masses or metabolic rates of individuals, averaged them across samples, and recalculated them per unit area (m2).Parameter uncertaintiesOur biomass and community metabolism approximations contain several assumptions. To account for the uncertainty in the length-mass and mass-metabolism regression coefficients, in addition to the average coefficients, we also used maximum (average + standard error) and minimum coefficients (average—standard error; Supplementary Table 1) in all equations to calculate maximum and minimum estimations of biomass and community metabolism reported in the main text. Further, we ignored latitudinal variation in body sizes within taxonomic groups62. Nevertheless, latitudinal differences in springtail density (30-fold), environmental temperature (from −16.0 to +27.6 °C in the air and from −10.2 to +30.4 °C in the soil), and genus-level community compositions (there are only few common genera among polar regions and the tropics)55 are higher than the uncertainties introduced by indirect parameter estimations, which allowed us to detect global trends. Although most springtails are concentrated in the litter and uppermost soil layers20, their vertical distribution depends on the particular ecosystem63. Since sampling methods are usually ecosystem-specific (i.e. sampling is done deeper in soils with developed organic layers), we treated the methods used by the original data collectors as representative of a given ecosystem. Under this assumption, we might have underestimated the number of springtails in soils with deep organic horizons, so our global estimates are conservative and we would expect true global density and biomass to be slightly higher. To minimize these effects, we excluded sites where the estimations were likely to be unreliable (see data selection below).Data selectionOnly data collection methods allowing for area-based recalculation (e.g. Tullgren or Berlese funnels) were used for analysis. Data from artificial habitats, coastal ecosystems, caves, canopies, snow surfaces, and strong experimental manipulations beyond the bounds of naturally occurring conditions were excluded (Supplementary Fig. 1). To ensure data quality, we performed a two-step quality check: technical selection and expert evaluation. Collected data varied according to collection protocols, such as sampling depth and the microhabitats (layers) considered. To technically exclude unreliable density estimations, we explored data with a number of diagnostic graphs (Supplementary Table 2; Supplementary Figs. 12–20) and filtered it, excluding the following: (1) All woodlands where only soil or only litter was considered; (2) All scrub ecosystems where only ground cover (litter or mosses) was considered; (3) Agricultural sites in temperate zones where only soil with sampling depth 90% of cases were masked on the main maps; for the map with density-species richness visualisation, two corresponding masks were applied (Fig. 2).To estimate spatial variability of our predictions while accounting for the spatial sampling bias in our data (Fig. 1a) we performed a spatially stratified bootstrapping procedure. We used the relative area of each IPBES79 region (i.e., Europe and Central Asia, Asia and the Pacific, Africa, and the Americas) to resample the original dataset, creating 100 bootstrap resamples. Each of these resamples was used to create a global map, which was then reduced to create mean, standard deviation, 95% confidence interval, and coefficient of variation maps (Supplementary Figs. 4–7).Global biomass, abundance, and community metabolism of springtails were estimated by summing predicted values for each 30 arcsec pixel10. Global community metabolism was recalculated from joule to mass carbon by assuming 1 kg fresh mass = 7 × 106 J80, an average water proportion in springtails of 70%58, and an average carbon concentration of 45% (calculated from 225 measurements across temperate forest ecosystems)81. We repeated the procedure of global extrapolation and prediction for biomass and community metabolism using minimum and maximum estimates of these parameters from regression coefficient uncertainties (see Parameter uncertainties).Path analysisTo reveal the predictors of springtail communities at the global scale, we performed a path analysis. After filtering the selected environmental variables (see above) according to their global availability and collinearity, 13 variables were used (Supplementary Fig. 9b): mean annual air temperature, mean annual precipitation (CHELSA database67), aridity (CGIAR database68), soil pH, sand and clay contents combined (sand and clay contents were co-linear in our dataset), soil organic carbon content (SoilGrids database73), NDVI (MODIS database72), human population density (GPWv4 database74), latitude, elevation69, and vegetation cover reported by the data providers following the habitat classification of European Environment Agency (woodland, scrub, agriculture, and grasslands; the latter were coded as the combination of woodland, scrub, and agriculture absent). Before running the analysis, we performed the Rosner’s generalized extreme Studentized deviate test in the EnvStats package82 to exclude extreme outliers and we z-standardized all variables (Supplementary R Code).Separate structural equation models were run to predict density, dry biomass, community metabolism, and local species richness in the lavaan package83. To account for the spatial clustering of our data in Europe, instead of running a model for the entire dataset, we divided the data by the IPBES79 geographical regions and selected a random subset of sites for Eurasia, such that only twice the number of sites were included in the model as the second-most represented region. We ran the path analysis 99 times for each community parameter with different Eurasian subsets (density had n = 723 per iteration, local species richness had n = 352, dry biomass had n = 568, and community metabolism had n = 533). We decided to keep the share of the Eurasian dataset larger than other regions to increase the number of sites per iteration and validity of the models. The Eurasian dataset also had the best data quality among all regions and a substantial reduction in datasets from Eurasia would result in a low weight for high-quality data. We additionally ran a set of models in which the Eurasian dataset was represented by the same number of sites as the second-most represented region, which yielded similar effect directions for all factors, but slightly higher variations and fewer consistently significant effects. In the paper, only the first version of analysis is presented. To illustrate the results, we averaged effect sizes for the paths across all iterations and presented the distribution of these effect sizes using mirrored Kernel density estimation (violin) plots. We marked and discussed effects that were significant at p  More

  • in

    Reconciling policy instruments with drivers of deforestation and forest degradation: cross-scale analysis of stakeholder perceptions in tropical countries

    Global Forest Resources Assessment 2020 (FAO, 2020).Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).ADS 
    CAS 

    Google Scholar 
    Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).ADS 

    Google Scholar 
    Foley, J. A. et al. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007).
    Google Scholar 
    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).ADS 
    CAS 

    Google Scholar 
    Brandon, K. Ecosystem services from tropical forests: Review of current science. SSRN J. https://doi.org/10.2139/ssrn.2622749 (2014). Article 

    Google Scholar 
    Indarto, J. & Mutaqin, D. J. An overview of theoretical and empirical studies on deforestation. MPRA. Paper No. 70178 (2016).Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. Bioscience 52, 143–150 (2002).
    Google Scholar 
    Angelsen, A. & Kaimowitz, D. Rethinking the causes of deforestation: Lessons from economic models. World Bank Res. Obs. 14, 73–98 (1999).CAS 

    Google Scholar 
    Contreras-Hermosilla, A. The Underlying Causes of Forest Decline (Center for International Forestry Research, 2000).
    Google Scholar 
    Turner, B. L. et al. Two types of global environmental change: Definitional and spatial-scale issues in their human dimensions. Glob. Environ. Change 1, 14–22 (1990).
    Google Scholar 
    Meyer, W. B. & Turner, B. L. Human population growth and global land-use/cover change. Ann. Rev. Ecol. Syst. 2, 39–61 (1992).
    Google Scholar 
    Miyamoto, M., Mohd Parid, M., Noor Aini, Z. & Michinaka, T. Proximate and underlying causes of forest cover change in Peninsular Malaysia. For. Policy Econ. 44, 18–25 (2014).
    Google Scholar 
    Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D. & Webb, E. L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 31, 1362–1372 (2017).
    Google Scholar 
    Carodenuto, S. et al. A methodological framework for assessing agents, proximate drivers and underlying causes of deforestation: Field test results from southern cameroon. Forests 6, 203–224 (2015).
    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS 
    CAS 

    Google Scholar 
    Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).ADS 

    Google Scholar 
    Köthke, M., Leischner, B. & Elsasser, P. Uniform global deforestation patterns—An empirical analysis. For. Policy Econ. 28, 23–37 (2013).
    Google Scholar 
    Busch, J. & Ferretti-Gallon, K. What drives deforestation and what stops it? A meta-analysis. Rev. Environ. Econ. Policy 11, 3–23 (2017).
    Google Scholar 
    Ferrer Velasco, R. F., Köthke, M., Lippe, M. & Günter, S. Scale and context dependency of deforestation drivers: Insights from spatial econometrics in the tropics. PLoS One 15, e0226830 (2020).CAS 

    Google Scholar 
    Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).
    Google Scholar 
    Börner, J., Schulz, D., Wunder, S. & Pfaff, A. The effectiveness of forest conservation policies and programs. Ann. Rev. Resour. Econ. 12, 45–64 (2020).
    Google Scholar 
    Bemelmans-Videc, M.-L., Rist, R. C. & Vedung, E. Carrots, Sticks & Sermons: Policy Instruments and their Evaluation (Transaction Publishers, 1998).
    Google Scholar 
    Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).ADS 
    CAS 

    Google Scholar 
    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).ADS 

    Google Scholar 
    Wolff, S. & Schweinle, J. Effectiveness and economic viability of forest certification: A systematic review. Forests 13, 798 (2022).
    Google Scholar 
    Müller, R., Pistorius, T., Rohde, S., Gerold, G. & Pacheco, P. Policy options to reduce deforestation based on a systematic analysis of drivers and agents in lowland Bolivia. Land Use Policy 30, 895–907 (2013).
    Google Scholar 
    Tegegne, Y. T., Lindner, M., Fobissie, K. & Kanninen, M. Evolution of drivers of deforestation and forest degradation in the Congo Basin forests: Exploring possible policy options to address forest loss. Land Use Policy 51, 312–324 (2016).
    Google Scholar 
    Hoffmann, C., García Márquez, J. R. & Krueger, T. A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia. Land Use Policy 77, 379–391 (2018).
    Google Scholar 
    Henders, S., Ostwald, M., Verendel, V. & Ibisch, P. Do national strategies under the UN biodiversity and climate conventions address agricultural commodity consumption as deforestation driver?. Land Use Policy 70, 580–590 (2018).
    Google Scholar 
    Salvini, G. et al. How countries link REDD+ interventions to drivers in their readiness plans: implications for monitoring systems. Environ. Res. Lett. 9, 074004 (2014).ADS 

    Google Scholar 
    Bos, A. B. et al. Integrated assessment of deforestation drivers and their alignment with subnational climate change mitigation efforts. Environ. Sci. Policy 114, 352–365 (2020).CAS 

    Google Scholar 
    Fritz, S. et al. A continental assessment of the drivers of tropical deforestation with a focus on protected areas. Front. Conserv. Sci. https://doi.org/10.3389/fcosc.2022.830248 (2022).Article 

    Google Scholar 
    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).ADS 

    Google Scholar 
    Fedele, G., Locatelli, B., Djoudi, H. & Colloff, M. J. Reducing risks by transforming landscapes: Cross-scale effects of land-use changes on ecosystem services. PLoS One 13, e0195895 (2018).
    Google Scholar 
    Yackulic, C. B. et al. Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales. Ecol. Soc. https://doi.org/10.5751/ES-04275-160315 (2011).Article 

    Google Scholar 
    Loran, C., Ginzler, C. & Bürgi, M. Evaluating forest transition based on a multi-scale approach: Forest area dynamics in Switzerland 1850–2000. Reg. Environ. Change 16, 1807–1818 (2016).
    Google Scholar 
    Moonen, P. C. et al. Actor-based identification of deforestation drivers paves the road to effective REDD+in DR Congo. Land Use Policy 58, 123–132 (2016).
    Google Scholar 
    Strassburg, B. The tragedy of the tropics: A dynamic, cross-scale analysis of deforestation incentives. Working Paper—Centre for Social and Economic Research on the Global Environment No. 07-02 (2007).López-Carr, D. et al. Space versus place in complex human–natural systems: Spatial and multi-level models of tropical land use and cover change (LUCC) in Guatemala. Ecol. Model. 229, 64–75 (2012).
    Google Scholar 
    Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).
    Google Scholar 
    Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
    Google Scholar 
    Ferrer Velasco, R. et al. Towards accurate mapping of forest in tropical landscapes: A comparison of datasets on how forest transition matters. Remote Sens. Environ. 274, 112997 (2022).ADS 

    Google Scholar 
    Jayathilake, H. M., Prescott, G. W., Carrasco, L. R., Rao, M. & Symes, W. S. Drivers of deforestation and degradation for 28 tropical conservation landscapes. Ambio 50, 215–228 (2021).
    Google Scholar 
    Minang, P. A. et al. REDD+Readiness progress across countries: Time for reconsideration. Clim. Policy 14, 685–708 (2014).
    Google Scholar 
    Current pledges | Bonn challenge. https://www.bonnchallenge.org/pledges. Accessed: 15th August 2022.Nansikombi, H. et al. Can de facto governance influence deforestation drivers in the Zambian Miombo?. For. Policy Econ. 120, 102309 (2020).
    Google Scholar 
    Sullivan, A., York, A., White, D., Hall, S. & Yabiku, S. D. Jure versus de facto institutions: Trust, information, and collective efforts to manage the invasive mile-a-minute weed (Mikania micrantha). Int. J. Commons 11, 171–199 (2017).
    Google Scholar 
    Busch, J. & Amarjargal, O. Authority of second-tier governments to reduce deforestation in 30 tropical countries. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2020.00001 (2020).Article 

    Google Scholar 
    Sandström, C., Eckerberg, K. & Raitio, K. Studying conflicts, proposing solutions—Towards multi-level approaches to the analyses of forest conflicts. For. Policy Econ. 33, 123–127 (2013).
    Google Scholar 
    Hoogstra-Klein, M. A., Permadi, D. B. & Yasmi, Y. The value of cultural theory for participatory processes in natural resource management. For. Policy Econ. 20, 99–106 (2012).
    Google Scholar 
    de Jong, W., Ruiz, S. & Becker, M. Conflicts and communal forest management in northern Bolivia. For. Policy Econ. 8, 447–457 (2006).
    Google Scholar 
    Eckerberg, K. & Sandström, C. Forest conflicts: A growing research field. For. Policy Econ. 33, 3–7 (2013).
    Google Scholar 
    Sierra, R., Calva, O. & Guevara, A. La Deforestación en el Ecuador, 1990–2018. Factores promotores y tendencias recientes, 216 (2021).Wasserstrom, R. & Southgate, D. Deforestation, agrarian reform and oil development in Ecuador, 1964–1994. Nat. Resour. 04, 31 (2013).
    Google Scholar 
    Wiebe, P. C., Zhunusova, E., Lippe, M., Ferrer Velasco, R. & Günter, S. What is the contribution of forest-related income to rural livelihood strategies in the Philippines’ remaining forested landscapes?. For. Policy Econ. 135, 102658 (2022).
    Google Scholar 
    Le, H. D., Smith, C. & Herbohn, J. What drives the success of reforestation projects in tropical developing countries? The case of the Philippines. Glob. Environ. Change 24, 334–348 (2014).
    Google Scholar 
    Carandang, A. P. et al. Analysis of key drivers of deforestation and forest degradation in the Philippines. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) (2013).Phiri, D., Morgenroth, J. & Xu, C. Four decades of land cover and forest connectivity study in Zambia—An object-based image analysis approach. Int. J. Appl. Earth Obs. Geoinf. 79, 97–109 (2019).ADS 

    Google Scholar 
    Nansikombi, H., Fischer, R., Kabwe, G. & Günter, S. Exploring patterns of forest governance quality: Insights from forest frontier communities in Zambia’s Miombo ecoregion. Land Use Policy 99, 104866 (2020).
    Google Scholar 
    Zhang, H., Wang, P. & Wood, J. Does institutional quality matter for the nexus between environmental quality and economic growth?: A tropics perspective. In Business, Industry, and Trade in the Tropics (eds Wood, J. et al.) (Routledge, 2022).
    Google Scholar 
    Reed, J., Van Vianen, J., Deakin, E. L., Barlow, J. & Sunderland, T. Integrated landscape approaches to managing social and environmental issues in the tropics: Learning from the past to guide the future. Glob. Change Biol. 22, 2540–2554 (2016).ADS 

    Google Scholar 
    Fischer, R. et al. Interplay of governance elements and their effects on deforestation in tropical landscapes: Quantitative insights from Ecuador. World Dev. 148, 105665 (2021).
    Google Scholar 
    Torres, B., Vasco, C., Günter, S. & Knoke, T. Determinants of agricultural diversification in a hotspot area: Evidence from colonist and indigenous communities in the Sumaco biosphere reserve Ecuadorian Amazon. Sustainability 10, 1432 (2018).
    Google Scholar 
    Ojeda Luna, T., Zhunusova, E., Günter, S. & Dieter, M. Measuring forest and agricultural income in the Ecuadorian lowland rainforest frontiers: Do deforestation and conservation strategies matter?. For. Policy Econ. 111, 102034 (2020).
    Google Scholar 
    Kazungu, M. et al. Effects of household-level attributes and agricultural land-use on deforestation patterns along a forest transition gradient in the Miombo landscapes Zambia. Ecol. Econ. 186, 107070 (2021).
    Google Scholar 
    Kleemann, J. et al. Deforestation in continental ecuador with a focus on protected areas. Land 11, 268 (2022).
    Google Scholar 
    Mulenga, M. M. & Roos, A. Assessing the awareness and adoptability of pellet cookstoves for low-income households in Lusaka, Zambia. J. Energy South. Afr. 32, 52–61 (2021).
    Google Scholar 
    Eguiguren, P., Ojeda Luna, T., Torres, B., Lippe, M. & Günter, S. Ecosystem service multifunctionality: Decline and recovery pathways in the amazon and chocó lowland rainforests. Sustainability 12, 7786 (2020).CAS 

    Google Scholar 
    Vasco, C., Torres, B., Pacheco, P. & Griess, V. The socioeconomic determinants of legal and illegal smallholder logging: Evidence from the Ecuadorian Amazon. For. Policy Econ. 78, 133–140 (2017).
    Google Scholar 
    van der Ploeg, J., van Weerd, M., Masipiqueña, A. B. & Persoon, G. A. Illegal logging in the Northern Sierra Madre Natural Park, the Philippines. Conserv. Soc. 9, 202–215 (2011).
    Google Scholar 
    Liu, D. S., Iverson, L. R. & Brown, S. Rates and patterns of deforestation in the Philippines: Application of geographic information system analysis. For. Ecol. Manag. 57, 1–16 (1993).
    Google Scholar 
    Boquet, Y. Environmental challenges in the Philippines. In The Philippine Archipelago (ed. Boquet, Y.) 779–829 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-51926-5_22.Chapter 

    Google Scholar 
    MAGAP. ATPA: Reconversión Agro productiva Sostenible en la Amazonía Ecuatoriana (2014).Jones, K. W. et al. Forest conservation incentives and deforestation in the Ecuadorian Amazon. Environ. Conserv. 44, 56–65 (2017).
    Google Scholar 
    Lindsey, P. A. et al. Underperformance of African protected area networks and the case for new conservation models: Insights from Zambia. PLoS One 9, e94109 (2014).ADS 

    Google Scholar 
    Fischer, R. et al. Effectiveness of policy instrument mixes for forest conservation in the tropics – a stakeholder perspective from Ecuador, the Philippines and Zambia. Land Use Policy https://doi.org/10.1016/j.landusepol.2023.106546 (2022).Article 

    Google Scholar 
    Gurney, G. G. et al. Biodiversity needs every tool in the box: Use OECMs. Nature 595, 646–649 (2021).ADS 
    CAS 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).ADS 
    CAS 

    Google Scholar 
    Priebe, J. et al. Transformative change in context—Stakeholders’ understandings of leverage at the forest–climate nexus. Sustain. Sci. 17, 1921–1938 (2022).
    Google Scholar 
    Höhl, M. et al. Forest landscape restoration—What generates failure and success?. Forests 11, 938 (2020).
    Google Scholar 
    Köthke, M., Ahimbisibwe, V. & Lippe, M. The evidence base on the environmental, economic and social outcomes of agroforestry is patchy—An evidence review map. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.925477 (2022).Article 

    Google Scholar 
    Fischer, R., Giessen, L. & Günter, S. Governance effects on deforestation in the tropics: A review of the evidence. Environ. Sci. Policy 105, 84–101 (2020).
    Google Scholar 
    Bare, M., Kauffman, C. & Miller, D. C. Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa. Environ. Res. Lett. 10, 125010 (2015).ADS 

    Google Scholar 
    Vuohelainen, A. J., Coad, L., Marthews, T. R., Malhi, Y. & Killeen, T. J. The effectiveness of contrasting protected areas in preventing deforestation in Madre de Dios. Peru. Environ. Manag. 50, 645–663 (2012).ADS 

    Google Scholar 
    Hull, V. & Liu, J. Telecoupling: A new frontier for global sustainability. Ecol. Soc. 23, 41 (2018).
    Google Scholar 
    Aitchison, J. The statistical analysis of compositional data. J. Roy. Stat. Soc. 44, 139–160 (1982).MathSciNet 
    MATH 

    Google Scholar 
    Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. 15, 625–632 (2010).
    Google Scholar 
    Day, M., Gumbo, D., Moombe, K. B., Wijaya, A. & Sunderland, T. Zambia Country Profile: Monitoring, Reporting and Verification for REDD+ Vol. 113 (CIFOR, 2014).
    Google Scholar 
    Piotrowski, M. Nearing the tipping point. Drivers of Deforestation in the Amazon Region (2019).Sarker, P. K., Fischer, R., Tamayo, F., Navarrete, B. T. & Günter, S. Analyzing forest policy mixes based on the coherence of policies and the consistency of legislative policy instruments: A case study from Ecuador. For. Policy Econ. 144, 102838 (2022).
    Google Scholar 
    Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 22(140), 55–55 (1932).
    Google Scholar 
    Altinsoy, M. et al. Ambulatory ECG monitoring for syncope and collapse in United States, Europe, and Japan: The patients’ viewpoint. J. Arrhythm. 37, 1023–1030 (2021).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (R Foundation for Statistical Computing, Vienna, Austria, 2022).Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7.0 (2021).Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7 (2020).Komsta, L. & Novometsky, F. moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14.1 (2022).Zhang, Y., Zhou, M. & Shao, Y. mvnormalTest: Powerful tests for multivariate normality. R package version 1.0.0 (2020).Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0 (2020).Wickham, H. et al. Welcome to the Tidyverse. JOSS 4, 1686 (2019).ADS 

    Google Scholar 
    Bache, S. M. & Wickham, H. magrittr: A Forward-Pipe Operator for R. R package version 2.0.3 (2022).Ushey, K., Allaire, J., Wickham, H. & Ritchie, G. rstudioapi: Safely Access the RStudio API. R package version 0.13 (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24277-4.Book 
    MATH 

    Google Scholar 
    Wilkins, D. treemapify: Draw Treemaps in ‘ggplot2’. R package version 2.5.5 (2021).Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 

    Google Scholar 
    Mardia, K. V. Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519–530 (1970).MathSciNet 
    MATH 

    Google Scholar 
    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).MATH 

    Google Scholar 
    Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).
    Google Scholar 
    Conover, W. J. & Iman, R. L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 35, 124–129 (1981).MATH 

    Google Scholar 
    Student,. The probable error of a mean. Biometrika 6, 1–25 (1908).MATH 

    Google Scholar 
    Tukey, J. W. Comparing individual means in the analysis of variance. Biometrics 5, 99–114 (1949).MathSciNet 
    CAS 

    Google Scholar 
    Jolliffe, I. T. Principal Component Analysis (Springer, 2002).MATH 

    Google Scholar  More

  • in

    Upwelling, climate change, and the shifting geography of coral reef development

    Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918. https://doi.org/10.1016/j.cub.2013.04.020 (2013).Article 
    CAS 

    Google Scholar 
    Beck, M. W. et al. The global flood protection savings provided by coral reefs. Nat. Commun. 9, 2186. https://doi.org/10.1038/s41467-018-04568-z (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuffner, I. B. & Toth, L. T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30, 706–715. https://doi.org/10.1111/cobi.12725 (2016).Article 

    Google Scholar 
    Allemand, D. et al. Biomineralisation in reef-building corals: From molecular mechanisms to environmental control. C. R. Palevol. 3, 453–467. https://doi.org/10.1016/j.crpv.2004.07.011 (2004).Article 

    Google Scholar 
    Glynn, P. W. Bioerosion and coral-reef growth: A dynamic balance. In Life and Death of Coral Reefs (ed Birkeland, C.) 68–95 (Chapman & Hall, 1997).Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976. https://doi.org/10.1038/nclimate2380 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Enochs, I. C. et al. Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific. Ecol. Monogr. 91, e01482. https://doi.org/10.1002/ecm.1482 (2021).Article 
    CAS 

    Google Scholar 
    Alvarado, J. J., Grassian, B., Cantera-Kintz, J. R., Carballo, J. L. & Londoño-Cruz, E. Coral reef bioerosion in the eastern tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 369–403 (Springer, 2017).Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402. https://doi.org/10.1038/ncomms2409 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Oppenheimer, M. et al. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).Alvarez-Filip, L., González-Barrios, F. J., Pérez-Cervantes, E., Molina-Hernández, A. & Estrada-Saldívar, N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun. Biol. 5, 440. https://doi.org/10.1038/s42003-022-03398-6 (2022).Article 

    Google Scholar 
    Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400. https://doi.org/10.1038/s41586-018-0194-z (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    van Woesik, R. & Cacciapaglia, C. W. Carbonate production of Micronesian reefs suppressed by thermal anomalies and Acanthaster as sea-level rises. PLoS ONE 14, e0224887. https://doi.org/10.1371/journal.pone.0224887 (2019).Article 
    CAS 

    Google Scholar 
    van Woesik, R. & Cacciapaglia, C. W. Thermal stress jeopardizes carbonate production of coral reefs across the western and central Pacific Ocean. PLoS ONE 16, e0249008. https://doi.org/10.1371/journal.pone.0249008 (2021).Article 
    CAS 

    Google Scholar 
    van Woesik, R. & Cacciapaglia, C. W. Keeping up with sea-level rise: Carbonate production rates in Palau and Yap, western Pacific Ocean. PLoS ONE 13, e0197077. https://doi.org/10.1371/journal.pone.0197077 (2018).Article 
    CAS 

    Google Scholar 
    Eakin, C. M. Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15, 109–119. https://doi.org/10.1007/BF01771900 (1996).Article 
    ADS 

    Google Scholar 
    Perry, C. T. & Morgan, K. M. Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Sci. Rep. 7, 40581. https://doi.org/10.1038/srep40581 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Connell, J. H. Disturbance and recovery of coral assemblages. Coral Reefs 16, S101–S113. https://doi.org/10.1007/s003380050246 (1997).Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. https://doi.org/10.1126/science.aan8048 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Dana, T. F. Development of contemporary eastern Pacific coral reefs. Mar. Biol. 33, 355–374. https://doi.org/10.1007/BF00390574 (1975).Article 

    Google Scholar 
    Cortés, J. Eastern tropical Pacific coral reefs. In The Encyclopedia of Modern Coral Reefs: Structure, Form and Process. 351–358 (2011).O’Dea, A., Hoyos, N., Rodríguez, F., Degracia, B. & de Gracia, C. History of upwelling in the tropical eastern Pacific and the paleogeography of the Isthmus of Panama. Palaeogeogr. Palaeoclimatol. Palaeoecol. 348–349, 59–66. https://doi.org/10.1016/j.palaeo.2012.06.007 (2012).Article 

    Google Scholar 
    Glynn, P. W. & Colgan, M. W. Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the Eastern Pacific. Am. Zool. 32, 707–718. https://doi.org/10.1093/icb/32.6.707 (1992).Article 

    Google Scholar 
    Manzello, D. P. et al. Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world. Proc. Natl. Acad. Sci. USA 105, 10450–10455. https://doi.org/10.1073/pnas.0712167105 (2008).Article 
    ADS 

    Google Scholar 
    Eakin, C. M. & Glynn, P. W. Low tidal exposures and reef mortalities in the eastern Pacific. Coral Reefs 15, 120 (1996).Article 

    Google Scholar 
    Glynn, P. W. Some physical and biological determinants of coral community structure in the eastern pacific. Ecol. Monogr. 46, 431–456. https://doi.org/10.2307/1942565 (1976).Article 

    Google Scholar 
    Toth, L. T., Macintyre, I. G. & Aronson, R. B. Holocene reef development in the eastern tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 177–201 (Springer, 2017).Cortés, J., Macintyre, I. G. & Glynn, P. W. Holocene growth history of an eastern Pacific fringing reef, Punta Islotes, Costa Rica. Coral Reefs 13, 65–73. https://doi.org/10.1007/BF00300763 (1994).Article 
    ADS 

    Google Scholar 
    Glynn, P. W. et al. Eastern pacific coral reef provinces, coral community structure and composition: An overview. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 107–176 (Springer, 2017).Glynn, P. W. & Macintyre, I. G. Growth rate and age of coral reefs on the Pacific coast of Panama. In Proceedings of the 3rd International Coral Reef Symposium, Miami, vol. 2, 251–259 (1977).Glynn, P. W. & Stewart, R. H. Distribution of coral reefs in the Pearl Islands (Gulf of Panama) in relation to thermal conditions. Limnol. Oceanogr. 18, 367–379. https://doi.org/10.4319/lo.1973.18.3.0367 (1973).Article 
    ADS 

    Google Scholar 
    Glynn, P. W., Druffel, E. M. & Dunbar, R. B. A dead Central American coral reef tract: Possible link with the Little Ice Age (Costa Rica, Gulf of Papagayo, Gulf of Panama). J. Mar. Res. 41, 605–637. https://doi.org/10.1357/002224083788519740 (1983).Article 

    Google Scholar 
    Glynn, P. W. & Leyte Morales, G. E. Coral reefs of Huatulco, west México: Reef development in upwelling Gulf of Tehuantepec. Rev. Biol. Trop. 45, 1033–1047 (1997).
    Google Scholar 
    Tribollet, A. & Golubic, S. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24, 422–434. https://doi.org/10.1007/s00338-005-0003-7 (2005).Article 
    ADS 

    Google Scholar 
    D’Croz, L. & O’Dea, A. Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuar. Coast. Shelf S. 73, 325–340. https://doi.org/10.1016/j.ecss.2007.01.013 (2007).Article 
    ADS 

    Google Scholar 
    Randall, C. J., Toth, L. T., Leichter, J. J., Maté, J. L. & Aronson, R. B. Upwelling buffers climate change impacts on coral reefs of the eastern tropical Pacific. Ecology 101, e02918. https://doi.org/10.1002/ecy.2918 (2020).Article 

    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281. https://doi.org/10.1111/j.1466-8238.2011.00656.x (2012).Article 

    Google Scholar 
    Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284. https://doi.org/10.1111/geb.12693 (2018).Article 

    Google Scholar 
    R Development Core Team. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R Foundation for Statistical Computing vol. 2.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016). ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. (2022). https://paleolimbot.github.io/ggspatial/, https://github.com/paleolimbot/ggspatial.Toth, L. T. et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 336, 81–84. https://doi.org/10.1126/science.1221168 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Toth, L. T. et al. Climatic and biotic thresholds of coral-reef shutdown. Nat. Clim. Change 5, 369–374. https://doi.org/10.1038/nclimate2541 (2015).Article 
    ADS 

    Google Scholar 
    Guzman, H. & Cortés, J. Arrecifes coralinos del Pacífico oriental tropical: revisión y perspectivas. Rev. Biol. Trop. 41, 535–557 (1993).
    Google Scholar 
    Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming Ocean. Mar. Ecol. Prog. Ser. 416, 47–56. https://doi.org/10.3354/meps08775 (2010).Article 
    ADS 

    Google Scholar 
    Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci. 69, 79–109 (2001).
    Google Scholar 
    Paz-García, D. A., Hellberg, M. E., García-de-León, F. J. & Balart, E. F. Switch between morphospecies of Pocillopora corals. Am. Nat. 186, 434–440. https://doi.org/10.1086/682363 (2015).Article 

    Google Scholar 
    Tortolero-Langarica, J. J. A., Rodríguez-Troncoso, A. P., Cupul-Magaña, A. L. & Carricart-Ganivet, J. P. Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. PeerJ 2017, e3191. https://doi.org/10.7717/peerj.3191 (2017).Article 

    Google Scholar 
    Medellín-Maldonado, F. et al. Calcification of the main reef-building coral species on the Pacific coast of southern Mexico. Cienc. Mar. 42, 209–225. https://doi.org/10.7773/cm.v42i3.2650 (2016).Article 
    CAS 

    Google Scholar 
    Cabral-Tena, R. A. et al. Calcification of coral assemblages in the eastern Pacific: Reshuffling calcification scenarios under climate change. Ecol. Indic. 95, 726–734. https://doi.org/10.1016/j.ecolind.2018.08.021 (2018).Article 
    CAS 

    Google Scholar 
    Glynn, P. Coral growth in upwelling and nonupwelling areas off the Pacific coast of Panama. J. Mar. Res. 35, 567–585 (1977).
    Google Scholar 
    Guzman, H. M. & Cortes, J. Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull. Mar. Sci. 44, 1186–1194 (1989).
    Google Scholar 
    Cabral-Tena, R. A. et al. Functional potential of coral assemblages along a typical eastern tropical Pacific reef tract. Ecol. Indic. 119, 106795. https://doi.org/10.1016/j.ecolind.2020.106795 (2020).Article 

    Google Scholar 
    Manzello, D. P. Coral growth with thermal stress and ocean acidification: Lessons from the eastern tropical Pacific. Coral Reefs 29, 749–758. https://doi.org/10.1007/s00338-010-0623-4 (2010).Article 
    ADS 

    Google Scholar 
    González-Barrios, F. J. & Álvarez-Filip, L. A framework for measuring coral species-specific contribution to reef functioning in the Caribbean. Ecol. Indic. 95, 877–886. https://doi.org/10.1016/j.ecolind.2018.08.038 (2018).Article 

    Google Scholar 
    Jokiel, P. L., Maragos, J. & Franzisket, L. Coral growth: Buoyant weight technique. In Coral Reefs: Research Methods (eds Stoddart, D. R., & Johannes, R. E.) 529–541 (UNESCO, 1978).Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32, 987–997. https://doi.org/10.1007/s00338-013-1047-8 (2013).Article 
    ADS 

    Google Scholar 
    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. USA 118, e2015265118. https://doi.org/10.1073/pnas.201526511 (2021).Article 
    CAS 

    Google Scholar 
    Rose, C. S. & Risk, M. J. Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar. Ecol. 6, 345–363. https://doi.org/10.1111/j.1439-0485.1985.tb00142.x (1985).Article 
    ADS 

    Google Scholar 
    Prouty, N. G. et al. Vulnerability of coral reefs to bioerosion from land-based sources of pollution. J. Geophys. Res-Oceans 122, 9319–9331. https://doi.org/10.1002/2017JC013264 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Eakin, C. M. The damselfish-algal lawn symbiosis and its influence on the bioerosion of an El Niño impacted coral reef, Uva Island, Pacific Panama. ProQuest Dissertations and Theses (1991).Alvarado, J. J., Reyes-Bonilla, H. & Benítez-Villalobos, F. Diadema mexicanum, erizo de mar clave en los arrecifes coralinos del Pacífico Tropical Oriental: Lo que sabemos y perspectivas futuras (Diadematoida: Diadematidae). Rev. Biol. Trop. 63(Suppl 2), 135–157. https://doi.org/10.15517/rbt.v63i2.23140 (2015).Article 

    Google Scholar 
    Glynn, P. W. Widespread coral mortality and the 1982–83 El Niño warming event. Environ. Conserv. 11, 133–146. https://doi.org/10.1017/S0376892900013825 (1984).Article 

    Google Scholar 
    Glynn, P. W. El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7, 129–160 (1988).
    Google Scholar 
    Eakin, C. M. A tale of two ENSO events: Carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull. Mar. Sci. 69, 171–186 (2001).ADS 

    Google Scholar 
    Russ, G. R., Questel, S. L. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: Refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045. https://doi.org/10.1007/s00227-015-2728-3 (2015).Article 

    Google Scholar 
    Wellington, G. M. & Glynn, P. W. Responses of Coral Reefs to El Niño-Southern Oscillation Sea-Warming Events. In Geological Approaches to Coral Reef Ecology (ed Aronson, R. B.) 342–385 (Springer, 2007).Guzmán, H. M. & Cortés, J. Changes in reef community structure after fifteen years of natural disturbances in the eastern Pacific (Costa Rica). Bull. Mar. Sci. 69, 133–149 (2001).
    Google Scholar 
    Guzman, H. M. & Cortés, J. Reef recovery 20 years after the 1982–1983 El Niño massive mortality. Mar. Biol. 151, 401–411. https://doi.org/10.1007/s00227-006-0495-x (2007).Article 

    Google Scholar 
    Edmunds, P. J. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306. https://doi.org/10.3354/meps12805 (2019).Article 
    ADS 

    Google Scholar 
    Enochs, I. C. et al. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Proc. R. Soc. B 283, 20161742. https://doi.org/10.1098/rspb.2016.1742 (2016).Article 
    CAS 

    Google Scholar 
    Roff, G. Reef accretion and coral growth rates are decoupled in Holocene reef frameworks. Mar. Geol. 419, 106065. https://doi.org/10.1016/j.margeo.2019.106065 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Perry, C. T. et al. Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth. Glob. Change Biol. 21, 1153–1164. https://doi.org/10.1111/gcb.12792 (2015).Article 
    ADS 

    Google Scholar 
    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC (2014).Neumann, A. C. & Macintyre, I. Reef response to sea level rise: Keep-up, catch-up or give up. In Proceedings 5th International Coral Reef Congress, Tahiti 3, 105–110 (1985).Macintyre, I. G. Modern coral reefs of western Atlantic: New geological perspective. AAPG Bull. 72, 1360–1369. https://doi.org/10.1306/703C99A1-1707-11D7-8645000102C1865D (1988).Article 

    Google Scholar 
    Hallock, P. & Schlager, W. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389–398. https://doi.org/10.2307/3514476 (1986).Article 
    ADS 

    Google Scholar 
    Kleypas, J. A. Coral reef development under naturally turbid conditions: Fringing reefs near Broad Sound, Australia. Coral Reefs 15, 153–167. https://doi.org/10.1007/BF01145886 (1996).Article 
    ADS 

    Google Scholar 
    van Woesik, R. & Done, T. J. Coral communities and reef growth in the southern Great Barrier Reef. Coral Reefs 16, 103–115. https://doi.org/10.1007/s003380050064 (1997).Article 

    Google Scholar 
    Sully, S. & van Woesik, R. Turbid reefs moderate coral bleaching under climate-related temperature stress. Glob. Change Biol. 26, 1367–1373. https://doi.org/10.1111/gcb.14948 (2020).Article 
    ADS 

    Google Scholar 
    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Romero-Torres, M. et al. Coral reef resilience to thermal stress in the eastern tropical Pacific. Glob. Change Biol. 26, 3880–3890. https://doi.org/10.1111/gcb.15126 (2020).Article 
    ADS 

    Google Scholar 
    Martínez-Castillo, V., Rodríguez-Troncoso, A. P., Mayfield, A. B., Rodríguez-Zaragoza, F. A. & Cupul-Magaña, A. L. Coral recovery in the central Mexican Pacific 20 years after the 1997–1998 El Niño Event. Oceans 3, 48–59. https://doi.org/10.3390/oceans3010005 (2022).Article 

    Google Scholar 
    Anton, A. et al. Differential thermal tolerance between algae and corals may trigger the proliferation of algae in coral reefs. Glob. Change Biol. 26, 4316–4327. https://doi.org/10.1111/gcb.15141 (2020).Article 
    ADS 

    Google Scholar 
    Roth, F. et al. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology 102, e03226. https://doi.org/10.1002/ecy.3226 (2021).Article 

    Google Scholar 
    Roik, A., Röthig, T., Pogoreutz, C., Saderne, V. & Voolstra, C. R. Coral reef carbonate budgets and ecological drivers in the central Red Sea—A naturally high temperature and high total alkalinity environment. Biogeosciences 15, 6277–6296. https://doi.org/10.5194/bg-15-6277-2018 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34. https://doi.org/10.1038/s41561-019-0486-4 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, T. B., Glynn, P. W., Maté, J. L., Toth, L. T. & Gyory, J. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95, 1663–1673. https://doi.org/10.1890/13-0468.1 (2014).Article 

    Google Scholar 
    Guest, J. R. et al. A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J. Appl. Ecol. 55, 2865–2875. https://doi.org/10.1111/1365-2664.13179 (2018).Article 

    Google Scholar 
    Courtney, T. A. et al. Disturbances drive changes in coral community assemblages and coral calcification capacity. Ecosphere 11, e03066. https://doi.org/10.1002/ecs2.3066 (2020).Article 

    Google Scholar 
    Bachman, S. D., Kleypas, J. A., Erdmann, M. & Setyawan, E. A global atlas of potential thermal refugia for coral reefs generated by internal gravity waves. Front. Mar. Sci. 9, 1346. https://doi.org/10.3389/fmars.2022.921879 (2022).Article 

    Google Scholar 
    Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 1, e0000004. https://doi.org/10.1371/journal.pclm.0000004 (2022).Article 

    Google Scholar 
    Kuffner, I. B., Stathakopoulos, A., Toth, L. T. & Bartlett, L. A. Reestablishing a stepping-stone population of the threatened elkhorn coral Acropora palmata to aid regional recovery. Endanger. Species Res. 43, 461–473. https://doi.org/10.3354/esr01083 (2020).Article 

    Google Scholar 
    Perry, C. T., Lange, I. D. & Januchowski-Hartley, F. A. ReefBudget Indo Pacific: Online resource and methodology. http://geography.exeter.ac.uk/reefbudget/ (2018).Nava, H. & Carballo, J. L. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J. Exp. Biol. 211, 2827–2831. https://doi.org/10.1242/jeb.019216 (2008).Article 

    Google Scholar 
    Carballo, J. L., Bautista, E., Nava, H., Cruz-Barraza, J. A. & Chávez, J. A. Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol. Evol. 3, 872–886. https://doi.org/10.1002/ece3.452 (2013).Article 

    Google Scholar 
    Smith, T. B. Temperature effects on herbivory for an Indo-Pacific parrotfish in Panamá: Implications for coral-algal competition. Coral Reefs 27, 397–405. https://doi.org/10.1007/s00338-007-0343-6 (2008).Article 
    ADS 

    Google Scholar 
    Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W. & Serafy, J. E. Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar. Ecol. Prog. Ser. 495, 233–247. https://doi.org/10.3354/meps10594 (2014).Article 
    ADS 

    Google Scholar 
    Palacios, M. M., Muñoz, C. G. & Zapata, F. A. Fish corallivory on a pocilloporid reef and experimental coral responses to predation. Coral Reefs 33, 625–636. https://doi.org/10.1007/s00338-014-1173-y (2014).Article 
    ADS 

    Google Scholar 
    Toth, L. T. Holocene Coral-Reef Development in the Tropical Eastern Pacific. (Florida Institute of Technology, 2013).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. https://cran.r-project.org/package=nlme.R-project (2021).Holgate, S. J. et al. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29, 493–504. https://doi.org/10.2112/JCOASTRES-D-12-00175.1 (2013).Article 

    Google Scholar 
    Permanent Service for Mean Sea Level. Balboa Tide Gauge Data. http://www.psmsl.org/data/obtaining/ (2022). More

  • in

    Integrative taxonomy reveals new, widely distributed tardigrade species of the genus Paramacrobiotus (Eutardigrada: Macrobiotidae)

    Guidetti, R. & Bertolani, R. B. Tardigrade taxonomy: An updated check list of the taxa and a list of characters for their identification. Zootaxa 845, 1–46. https://doi.org/10.11646/zootaxa.845.1.1 (2005).Article 

    Google Scholar 
    Degma, P. & Guidetti, R. Notes to the current checklist of Tardigrada. Zootaxa 1579, 41–53. https://doi.org/10.11646/zootaxa.1579.1.2 (2007)Article 

    Google Scholar 
    Vicente, F. & Bertolani, R. Considerations on the taxonomy of the phylum Tardigrada. Zootaxa 3626, 245–248. https://doi.org/10.11646/zootaxa.3626.2.2 (2013).Article 

    Google Scholar 
    Degma, P. & Guidetti, R. Actual checklist of Tardigrada species. (Version 41: Edition: 16-05-2022). (2009–2022).Ramazzotti, G. & Maucci, W. Il phylum Tardigrada. III edizione riveduta e aggiornata. Mem. Ist. Ital. Idrobiol. 41, 1–1012 (1983).
    Google Scholar 
    Beasley, C. W. The phylum Tardigrada. in English Translation P. 3rd edn (eds Ramazzotti, G. & Maucci, W.) 1–1014 (Abilene, USA, 1995).Nelson, D. R., Guidetti, R., Rebecchi, L., Kaczmarek, Ł. & McInnes, S. Phylum Tardigrada. in Thorp and Covich’s Freshwater Invertebrates 505–522 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-804225-0.00015-0.Da Cunha, A. X. & do Nascimento-Ribeiro, F. A fauna de Tardígrados da Ilha da Madeira. Mem. Estud. Mus. Zool. Univ. Coimbra 1–24 (1962).Fontoura, P., Pilato, G. & Lisi, O. Tardigrada from Santo Antão Island (Archipelago of Cape Verde, West Africa) with the description of a new species. Zootaxa 2838, 30–40. https://doi.org/10.11646/zootaxa.2838.1.2 (2011).Article 

    Google Scholar 
    Gąsiorek, P., Vončina, K. & Michalczyk, Ł. Echiniscus testudo (Doyère, 1840) in New Zealand: Anthropogenic dispersal or evidence for the ‘Everything is Everywhere’ hypothesis?. N. Z. J. Zool. 46, 174–181. https://doi.org/10.1080/03014223.2018.1503607 (2019).Article 

    Google Scholar 
    Guidetti, R., Schill, R. O., Bertolani, R., Dandekar, T. & Wolf, M. New molecular data for tardigrade phylogeny, with the erection of Paramacrobiotus gen. nov. J. Zool. Syst. Evol. 47, 315–321. https://doi.org/10.1111/j.1439-0469.2009.00526.x (2009).Article 

    Google Scholar 
    Kaczmarek, Ł, Gawlak, M., Bartels, P. J., Nelson, D. R. & Roszkowska, M. Revision of the genus Paramacrobiotus Guidetti et al., 2009 with the description of a new species, re-descriptions and a key. Ann. Zool. 67, 627–656. https://doi.org/10.3161/00034541ANZ2017.67.4.001 (2017).Article 

    Google Scholar 
    Marley, N. J. et al. A clarification for the subgenera of Paramacrobiotus Guidetti, Schill, Bertolani, Dandekar and Wolf, 2009, with respect to the International Code of Zoological Nomenclature. Zootaxa 4407, 130–134. https://doi.org/10.11646/zootaxa.4407.1.9 (2018).Article 
    CAS 

    Google Scholar 
    Guidetti, R., Cesari, M., Bertolani, R., Altiero, T. & Rebecchi, L. High diversity in species, reproductive modes and distribution within the Paramacrobiotus richtersi complex (Eutardigrada, Macrobiotidae). Zool. Lett. 5, 1–28. https://doi.org/10.1186/s40851-018-0113-z (2019).Article 

    Google Scholar 
    Stec, D., Krzywański, Ł, Zawierucha, K. & Michalczyk, Ł. Untangling systematics of the Paramacrobiotus areolatus species complex by an integrative redescription of the nominal species for the group, with multilocus phylogeny and species delineation in the genus Paramacrobiotus. Zool. J. Linn. Soc. 188, 694–716. https://doi.org/10.1093/zoolinnean/zlz163 (2020).Article 

    Google Scholar 
    Murray, J. Scottish Tardigrada, a review of our present knowledge. Ann. Scot. Nat. Hist. 78, 88–95 (1911).
    Google Scholar 
    Murray, J. XXV.—Arctic Tardigrada, collected by Wm. S. Bruce. Trans. R. Soc. Edinb. 45, 669–681 (1907).Article 

    Google Scholar 
    Ramazzotti, G. Tre nouve specie di Tardigradi ed altre specie poco comuni. Atti Soc. Nat. Milano 10, 284–291 (1956).
    Google Scholar 
    Schill, R. O., Förster, F., Dandekar, T. & Wolf, M. Using compensatory base change analysis of internal transcribed spacer 2 secondary structures to identify three new species in Paramacrobiotus (Tardigrada). Org. Divers. Evol. 10, 287–296. https://doi.org/10.1007/s13127-010-0025-z (2010).Article 

    Google Scholar 
    Kaczmarek, Ł et al. Integrative description of bisexual Paramacrobiotus experimentalis sp. Nov. (Macrobiotidae) from republic of Madagascar (Africa) with microbiome analysis. Mol. Phylogenet. Evol. 145, 106730. https://doi.org/10.1016/j.ympev.2019.106730 (2020).Article 

    Google Scholar 
    Bertolani, R. Partenogenesi geografica triploide in un Tardigrado (Macrobiotus richtersi). Rend. Acc. Naz. Lincei. Ser. 8, 487–489 (1971).
    Google Scholar 
    Bertolani, R. Sex ratio and geographic parthenogenesis in Macrobioutus (Tardigrada). Experientia 28, 94–95. https://doi.org/10.1007/BF01928285 (1972).Article 

    Google Scholar 
    Bertolani, R. L. partenogenesi nei Tardigradi. Boll. Zool. 39, 577–581. https://doi.org/10.1080/11250007209431414 (1972).Article 

    Google Scholar 
    Bertolani, R. Cytology and Reproductive Mechanisms in Tardigrades. I. 93–114 (East Tennesse State University Press, Johnson City, 1982).
    Google Scholar 
    Lemloh, M., Brümmer, F. & Schill, R. O. Life-history traits of the bisexual tardigrades Paramacrobiotus tonollii and Macrobiotus sapiens. J. Zool. Syst. Evol. Res. 49, 58–61. https://doi.org/10.1111/j.1439-0469.2010.00599.x (2011).Article 

    Google Scholar 
    Guil, N. & Giribet, G. A comprehensive molecular phylogeny of tardigrades-adding genes and taxa to a poorly resolved phylum-level phylogeny. Cladistics 28, 21–49. https://doi.org/10.1111/j.1096-0031.2011.00364.x (2012).Article 

    Google Scholar 
    Kosztyła, P. et al. Experimental taxonomy confirms the environmental stability of morphometric traits in a taxonomically challenging group of microinvertebrates. Zool. J. Linn. Soc. 178, 765–775. https://doi.org/10.1111/zoj.12409 (2016).Article 

    Google Scholar 
    Kaczmarek, Ł et al. New records of Antarctic Tardigrada with comments on iterpopulation variability of the Paramacrobiotus fairbanksi Schill, Förster, Dandekar and Wolf, 2010. Diversity 12, 108. https://doi.org/10.3390/d12030108 (2020).Article 

    Google Scholar 
    Stec, D., Vecchi, M., Calhim, S. & Michalczyk, Ł. New multilocus phylogeny reorganises the family Macrobiotidae (Eutardigrada) and unveils complex morphological evolution of the Macrobiotus hufelandi group. Mol. Phylogenet. Evol. 160, 106987. https://doi.org/10.1016/j.ympev.2020.106987 (2021).Article 

    Google Scholar 
    Stec, D., Smolak, R., Kaczmarek, Ł & Michalczyk, Ł. An integrative description of Macrobiotus paulinae sp. Nov. (Tardigrada: Eutardigrada: Macrobiotidae: hufelandi group) from Kenya. Zootaxa 4052, 501–526. https://doi.org/10.11646/zootaxa.4052.5.1 (2015).Article 

    Google Scholar 
    Bryce, D. On some moss-dwelling Cathypnadae; with descriptions of five new species. Sci. Gossip Lond. 28, 271–275 (1892).
    Google Scholar 
    Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol. Ecol. Resour. 12(1), 136–141. https://doi.org/10.1111/j.1755-0998.2011.03073.x (2012).Article 
    CAS 

    Google Scholar 
    Stec, D., Kristensen, R. M. & Michalczyk, Ł. An integrative description of Minibiotus ioculator sp. nov. from the Republic of South Africa with notes on Minibiotus pentannulatus Londoño et al., 2017 (Tardigrada: Macrobiotidae). Zool. Anz. 286, 117–134. https://doi.org/10.1016/j.jcz.2020.03.007 (2020).Article 

    Google Scholar 
    Stec, D., Zawierucha, K. & Michalczyk, Ł. An integrative description of Ramazzottius subanomalus (Biserov, 1985 (Tardigrada) from Poland. Zootaxa 4300, 403–420. https://doi.org/10.11646/zootaxa.4300.3.4 (2017).Article 

    Google Scholar 
    Mironov, S. V., Dabert, J. & Dabert, M. A new feather mite species of the genus Proctophyllodes Robin, 1877 (Astigmata: Proctophyllodidae) from the Long-tailed Tit Aegithalos caudatus (Passeriformes: Aegithalidae)—Morphological description with DNA barcode data. Zootaxa 3253, 54–61. https://doi.org/10.11646/zootaxa.3253.1.2 (2012).Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. PCR Protocols: A Guide to Methods and Application 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 (Academic Press, 1990).Book 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. Phylogenetic uncertainty. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 

    Google Scholar 
    Vecchi, M. & Stec, D. Integrative descriptions of two new Macrobiotus species (Tardigrada, Eutardigrada, Macrobiotidae) from Mississippi (USA) and Crete (Greece). ZSE 97, 281–306. https://doi.org/10.3897/zse.97.65280 (2021).Article 

    Google Scholar 
    Thulin, G. Über die phylogenie und das system der. Hereditas 11, 207–266. https://doi.org/10.1111/j.1601-5223.1928.tb02488.x (1928).Article 

    Google Scholar 
    Stec, D. Mesobiotus datanlanicus sp. nov., a new tardigrade species (Macrobiotidae: Mesobiotus harmsworthi group) from Lâm Đồng Province in Vietnam. Zootaxa 4679, 164–180. https://doi.org/10.11646/zootaxa.4679.1.10 (2019).Article 

    Google Scholar 
    Katoh, K. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. NAR 30, 3059–3066. https://doi.org/10.1093/nar/gkf436 (2002).Article 
    CAS 

    Google Scholar 
    Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298. https://doi.org/10.1093/bib/bbn013 (2008).Article 
    CAS 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x (2011).Article 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29(6), 1695–1701. https://doi.org/10.1093/molbev/mss020 (2012).Article 
    CAS 

    Google Scholar 
    Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3 (2003).Article 
    CAS 

    Google Scholar 
    Xia, X. & Lemey, P. Assessing substitution saturation with DAMBE. In The Phylogenetic Handbook (eds Lemey, P. et al.) 615–630. https://doi.org/10.1017/CBO9780511819049.022 (Cambridge University Press, 2009).Chapter 

    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 (2003).Article 
    CAS 

    Google Scholar 
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1. 6. 2014. (2015).Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).Article 
    CAS 

    Google Scholar 
    Bandelt, H., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 (1999).Article 
    CAS 

    Google Scholar 
    Ehrenberg, C. G. Beitrag zur Bestimmung des Stationären Mikroskopischen Lebens in bis 20,000 Fuss Alpenhöhe. (1859).Guil, N. & Guidetti, R. A new species of Tardigrada (Eutardigrada: Macrobiotidae) from Iberian Peninsula and Canary Islands (Spain). Zootaxa 889, 1–11. https://doi.org/10.11646/zootaxa.889.1.1 (2005).Article 

    Google Scholar 
    Plate, L. H. Beiträge zur Naturgeschichte der Tardigraden. Zool. Jahrb. Abteilung Anat. Ontog. Tiere 3, 487–550. https://doi.org/10.5962/bhl.part.1265 (1889).Article 

    Google Scholar 
    Kaczmarek, Ł, Kayastha, P., Roszkowska, M., Gawlak, M. & Mioduchowska, M. Integrative redescription of the Minibiotus intermedius (Plate, 1888)—The type species of the genus Minibiotus R.O. Schuster, 1980. Diversity 14, 356. https://doi.org/10.3390/d14050356 (2022).Article 
    CAS 

    Google Scholar 
    Londoño, R., Daza, A., Lisi, O. & Quiroga, S. New species of waterbear Minibiotus pentannulatus (Tardigrada: Macrobiotidae) from Colombia. Rev. Mex. Biodivers. 88, 807–814. https://doi.org/10.1016/j.rmb.2017.10.040 (2017).Article 

    Google Scholar 
    Vecchi, M. et al. Macrobiotus naginae sp. nov., a new Xerophilous Tardigrade species from Rokua Sand Dunes (Finland). Zool. Stud. 61, e22 (2022).
    Google Scholar 
    Stec, D., Dudziak, M. & Michalczyk, Ł. Integrative descriptions of two new Macrobiotidae species (Tardigrada: Eutardigrada: Macrobiotoidea) from French Guiana and Malaysian Borneo. Zool. Stud. 59, e23 (2020).
    Google Scholar 
    Stec, D., Roszkowska, M., Kaczmarek, Ł & Michalczyk, Ł. Paramacrobiotus lachowskae, a new species of Tardigrada from Colombia (Eutardigrada: Parachela: Macrobiotidae). N. Z. J. Zool. 45, 43–60. https://doi.org/10.1080/03014223.2017.1354896 (2018).Article 

    Google Scholar 
    Sugiura, K., Matsumoto, M. & Kunieda, T. Description of a model tardigrade Paramacrobiotus metropolitanus sp. nov. (Eutardigrada) from Japan with a summary of its life history, reproduction and genomics. Zootaxa 5134, 92–112. https://doi.org/10.11646/zootaxa.5134.1.4 (2022).Article 

    Google Scholar 
    Tumanov, D. V. Three new species of Macrobiotus (Eutardigrada, Macrobiotidae, tenuis-group) from Tien Shan (Kirghizia) and Spitsbergen. J. Limnol. 66, 40. https://doi.org/10.4081/jlimnol.2007.s1.40 (2007).Article 

    Google Scholar 
    Zawierucha, K., Kolicka, M. & Kaczmarek, Ł. Re-description of the Arctic tardigrade Tenuibiotus voronkovi (Tumanov, 2007 (Eutardigrada; Macrobiotidea), with the first molecular data for the genus. Zootaxa 4196, 498. https://doi.org/10.11646/zootaxa.4196.4.2 (2016).Article 

    Google Scholar 
    Stec, D., Tumanov, D. T. & Kristensen, R. M. Integrative taxonomy identifies two new tardigrade species (Eutardigrada: Macrobiotidae) from Greenland. EJT 614, 1–40. https://doi.org/10.5852/ejt.2020.614 (2020).Article 

    Google Scholar 
    Fontaneto, D., Flot, J.-F. & Tang, C. Q. Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar. Biodiv. 45, 433–451. https://doi.org/10.1007/s12526-015-0319-7 (2015).Article 

    Google Scholar 
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499 (2013).Article 
    CAS 

    Google Scholar 
    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34(3), 772–773. https://doi.org/10.1093/molbev/msw260 (2017).Article 
    CAS 

    Google Scholar 
    Roszkowska, M., Stec, D., Gawlak, M. & Kaczmarek, Ł. An integrative description of a new tardigrade species Mesobiotus romani sp. nov. (Macrobiotidae: harmsworthi group) from the Ecuadorian Pacific coast. Zootaxa 4450, 550–564. https://doi.org/10.11646/zootaxa.4450.5.2 (2018).Article 

    Google Scholar 
    Pilato, G. & Binda, M. G. Definition of families, subfamilies, genera and subgenera of the Eutardigrada, and keys to their identification. Zootaxa 2404, 1–54. https://doi.org/10.11646/zootaxa.2404.1.1 (2010).Article 

    Google Scholar 
    Kaczmarek, Ł & Michalczyk, Ł. The Macrobiotus hufelandi group (Tardigrada) revisited. Zootaxa 4363, 101–123. https://doi.org/10.11646/zootaxa.4363.1.4 (2017).Article 

    Google Scholar 
    Michalczyk, Ł & Kaczmarek, Ł. A description of the new tardigrade Macrobiotus reinhardti (Eutardigrada: Macrobiotidae, harmsworthi group) with some remarks on the oral cavity armature within the genus Macrobiotus Schultze. Zootaxa 331, 1–24. https://doi.org/10.11646/zootaxa.331.1.1 (2003).Article 

    Google Scholar 
    Kaczmarek, Ł, Cytan, J., Zawierucha, K., Diduszko, D. & Michalczyk, Ł. Tardigrades from Peru (South America), with descriptions of three new species of Parachela. Zootaxa 3790, 357–379. https://doi.org/10.11646/zootaxa.3790.2.5 (2014).Article 

    Google Scholar 
    Kiosya, Y., Pogwizd, J., Matsko, Y., Vecchi, M. & Stec, D. Phylogenetic position of two Macrobiotus species with a revisional note on Macrobiotus sottilei Pilato, Kiosya, Lisi & Sabella, 2012 (Tardigrada: Eutardigrada: Macrobiotidae). Zootaxa 4933, 113–135. https://doi.org/10.11646/zootaxa.4933.1.5 (2021).Article 

    Google Scholar 
    Pilato, G. Analisi di nuovi caratteri nello studio degli Eutardigradi. Animalia 8, 51–57 (1981).
    Google Scholar 
    Michalczyk, Ł & Kaczmarek, Ł. The Tardigrada Register: a comprehensive online data repository for tardigrade taxonomy. J. Limnol. 72, e22. https://doi.org/10.4081/jlimnol.2013.s1.e22 (2013).Article 

    Google Scholar 
    Bertolani, R. et al. Phylogeny of Eutardigrada: New molecular data and their morphological support lead to the identification of new evolutionary lineages. Mol. Phylogenet. Evol. 76, 110–126. https://doi.org/10.1016/j.ympev.2014.03.006 (2014).Article 

    Google Scholar 
    Perry, E., Miller, W. R. & Kaczmarek, Ł. Recommended abbreviations for the names of genera of the phylum Tardigrada. Zootaxa 4608, 145. https://doi.org/10.11646/zootaxa.4608.1.8 (2019).Article 

    Google Scholar 
    Degma, P., Michalczyk, Ł & Kaczmarek, Ł. Macrobiotus derkai, a new species of Tardigrada (Eutardigrada, Macrobiotidae, huziori group) from the Colombian Andes (South America). Zootaxa 1731, 1–23. https://doi.org/10.11646/zootaxa.1731.1.1 (2008).Article 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & Diduszko, D. Some tardigrades from Siberia (Russia, Baikal region) with a description of Macrobiotus garynahi sp. nov. (Eutardigrada: Macrobiotidae: richtersi group). Zootaxa 1053, 35–45. https://doi.org/10.11646/zootaxa.1053.1.3 (2005).Article 

    Google Scholar 
    Michalczyk, Ł & Kaczmarek, Ł. Macrobiotus huziori, a new species of Tardigrada (Eutardigrada: Macrobiotidae) from Costa Rica (Central America). Zootaxa 1169, 47–59. https://doi.org/10.11646/zootaxa.1169.1.3 (2006).Article 

    Google Scholar 
    Michalczyk, L. & Kaczmarek, L. A new species Macrobiotus magdalenae (Tardigrada: Eutardigrada: Macrobiotidae, richtersi group) from Costa Rican rain forest (Central America). N. Z. J. Zool. 33, 189–196. https://doi.org/10.1080/03014223.2006.9518444 (2006).Article 

    Google Scholar 
    Michalczyk, Ł, Kaczmarek, Ł & Węglarska, B. Macrobiotus sklodowskae sp. nov. (Tardigrada: Eutardigrada: Macrobiotidae, richtersi group) from Cyprus. Zootaxa 1371, 45–56. https://doi.org/10.11646/zootaxa.1371.1.4 (2006).Article 

    Google Scholar 
    Tumanov, D. V. Notes on the Tardigrada of Thailand, with a description of Macrobiotus alekseevi sp. nov. (Eutardigrada, Macrobiotidae). Zootaxa 999, 1–6. https://doi.org/10.11646/zootaxa.999.1.1 (2005).Article 

    Google Scholar 
    Doyère, M. Memoire sur les tardigrades. Ann. Sci. Nat Zool. Ser. 2, 269–362 (1840).
    Google Scholar 
    Richters, F. Tardigrada. In Handbuch der Zoologie Vol. 3 (eds Kükenthal, W. & Krumbach, T.) 58–61 (Walter de Gruyter & Co., Berlin and Leipzig, 1926).
    Google Scholar 
    Stec, D., Cancellario, T. & Fontaneto, D. Diversification rates in Tardigrada indicate a decreasing tempo of lineage splitting regardless of reproductive mode. Org. Divers. Evol. 22(4), 965–974. https://doi.org/10.1007/s13127-022-00578-4 (2022).Article 

    Google Scholar 
    Dellicour, S. & Flot, J.-F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 18, 1234–1246. https://doi.org/10.1111/1755-0998.12908 (2018).Article 

    Google Scholar 
    Magoga, G., Fontaneto, D. & Montagna, M. Factors affecting the efficiency of molecular species delimitation in a species-rich insect family. Mol. Ecol. Resour. 21, 1475–1489. https://doi.org/10.1111/1755-0998.13352 (2021).Article 
    CAS 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & McInnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part I: Central America. Zootaxa 3763, 1–62. https://doi.org/10.11646/zootaxa.3763.1.1 (2014).Article 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & McInnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part II: South America. Zootaxa 3923, 1–107. https://doi.org/10.11646/zootaxa.3923.1.1 (2015).Article 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & Mcinnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part III: North America and Greenland. Zootaxa 4203, 1–249. https://doi.org/10.11646/zootaxa.4203.1.1 (2016).Article 

    Google Scholar 
    Mcinnes, S. J., Michalczyk, Ł & Kaczmarek, Ł. Annotated zoogeography of non-marine Tardigrada. Part IV: Africa. Zootaxa 4284, 1. https://doi.org/10.11646/zootaxa.4284.1.1 (2017).Article 

    Google Scholar 
    Michalczyk, Ł, Kaczmarek, Ł & Mcinnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part V: Australasia. Zootaxa 5107, 1–119. https://doi.org/10.11646/zootaxa.5107.1.1 (2022).Article 

    Google Scholar 
    Pilato, G., Claxton, S. & Binda, M. G. Tardigrades from Australia. III. Echiniscus marcusi and Macrobiotus peteri, new species of tardigrades from New South Wales. Animalia 16, 43–48 (1989).
    Google Scholar 
    Pilato, G., Binda, M. G. & Lisi, O. Eutardigrada from New Zealand, with descriptions of two new species. N. Z. J. Zool. 33, 49–63. https://doi.org/10.1080/03014223.2006.9518430 (2006).Article 

    Google Scholar 
    Bartels, P. J., Pilato, G., Lisi, O. & Nelson, D. R. Macrobiotus (Eutardigrada, Macrobiotidae) from the Great Smoky Mountains National Park, Tennessee/North Carolina, USA (North America): Two new species and six new records. Zootaxa 2022, 45–57. https://doi.org/10.11646/zootaxa.2022.1.4 (2009).Article 

    Google Scholar 
    Binda, M. G., Pilato, G., Moncada, E. & Napolitano, A. Some tardigrades from Central Africa with the description of two new species: Macrobiotus ragonesei and M. priviterae (Eutardigrada Macrobiotidae). Trop. Zool. 14, 233–242. https://doi.org/10.1080/03946975.2001.10531155 (2001).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Lissi, O. Notes on tardigrades of the Seychelles with the description of two new species. Ital. J. Zool. 71, 171–178 (2004).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Lisi, O. Three new species of eutardigrades from the Seychelles. N. Z. J. Zool. 33, 39–48. https://doi.org/10.1080/03014223.2006.9518429 (2006).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Lisi, O. Notes on tardigrades of the Seychelles with the description of three new species. Ital. J. Zool. 71, 171–178. https://doi.org/10.1080/11250000409356569 (2004).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Catanzaro, R. Remarks on some tardigrades of the African fauna with the description of three new species of Macrobiotus Schultze 1834. Trop. Zool. 4, 167–178. https://doi.org/10.1080/03946975.1991.10539487 (1991).Article 

    Google Scholar 
    Maucci, W. & Durante Pasa, M. V. Tardigradi muscicoli delle Isole Andamane. Boll. Mus. Civ. St. Nat. Verona 7, 281–291 (1980).
    Google Scholar 
    Iharos, G. Neuere Daten zur Kenntnis der Tardigraden-Fauna von Neuguinea. Opusc. Zool. Bp. 11, 65–73 (1973).
    Google Scholar 
    Binda, M. G. & Pilato, G. Macrobiotus savai and Macrobiotus humilis, two new species of tardigrades from Sri Lanka. Boll. Accad. Gioenia Sci. Nat. Catania 34, 101–111 (2001).
    Google Scholar 
    Pilato, G. Macrobiotus centesimus, new species of eutardigrade from the South America. Boll. Accad. Gioenia Sci. Nat. Catania 33, 97–101 (2000).
    Google Scholar 
    Daza, A., Caicedo, M., Lisi, O. & Quiroga, S. New records of tardigrades from Colombia with the description of Paramacrobiotus sagani sp. nov. and Doryphoribius rosanae sp. nov. Zootaxa 4362, 29–50. https://doi.org/10.11646/zootaxa.4362.1.2 (2017).Article 

    Google Scholar 
    Claps, M. C. & Rossi, G. C. Tardígrados de Uruguay, con descripción de dos nuevas especies (Echiniscidae, Macrobiotidae). Iheringia Sér. Zool. 83, 17–22 (1997).
    Google Scholar 
    Iharos, G. Neue tardigraden-arten aus ungarn (neuere beitrage zur kenntnis der tardigraden-fauna ungarns. 6.). Acta Zool. Acad. Sci. Hung. 12(1–2), 111 (1966).
    Google Scholar 
    Pilato, G., Kiosya, Y., Lisi, O. & Sabella, G. New records of Eutardigrada from Belarus with the description of three new species. Zootaxa 3179, 39–60. https://doi.org/10.11646/zootaxa.3179.1.2 (2012).Article 

    Google Scholar 
    Pasa, D. & Maucci, W. Moss Tardigrada from the Scandinavian Peninsula. in Second International Symposium on Tardigrada, Vol. 79(25). 47–85 (1979).Lisi, O., Binda, M. G. & Pilato, G. Eremobiotus ginevrae sp. nov. and Paramacrobiotus pius sp. nov., two new species of Eutardigrada. Zootaxa 4103, 344–360. https://doi.org/10.11646/zootaxa.4103.4.3 (2016).Article 

    Google Scholar 
    Biserov, V. I. Macrobiotus lorenae sp. n., a new species of Tardigrada (Eutardigrada Macrobiotidae) from the Russian Far East. Arthr Sel. 5, 145–149 (1996).
    Google Scholar 
    Biserov, V. I. Tardigrades of the Caucasus with a taxonomic analysis of genus Ramazzottius. Zool. Anz. 236, 139–159 (1997).
    Google Scholar 
    Morek, W. et al. Redescription of Milnesium alpigenum Ehrenberg, 1853 (Tardigrada: Apochela) and a description of Milnesium inceptum sp. nov., a tardigrade laboratory model. Zootaxa 4586(1), 35. https://doi.org/10.11646/zootaxa.4586.1.2 (2019).Article 

    Google Scholar 
    Morek, W., Surmacz, B., López-López, A. & Michalczyk, Ł. “Everything is not everywhere”: Time-calibrated phylogeography of the genus Milnesium (Tardigrada). Mol. Ecol. 30, 3590–3609. https://doi.org/10.1111/mec.15951 (2021).Article 

    Google Scholar 
    Mogle, M. J., Kimball, S. A., Miller, W. R. & McKown, R. D. Evidence of avian-mediated long-distance dispersal in American tardigrades. PeerJ 6, e5035. https://doi.org/10.7717/peerj.5035 (2018).Article 

    Google Scholar 
    Vuori, T., Calhim, S. & Vecchi, M. A lift in snail’s gut provides an efficient colonization route for tardigrades. Ecology 103, e3702. https://doi.org/10.1002/ecy.3702 (2022).Article 

    Google Scholar 
    Książkiewicz, Z. & Roszkowska, M. Experimental evidence for snails dispersing tardigrades based on Milnesium inceptum and Cepaea nemoralis species. Sci. Rep. 12(4421), 1–10. https://doi.org/10.1038/s41598-022-08265-2 (2022).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Scenarios of land use and land cover change in the Colombian Amazon to evaluate alternative post-conflict pathways

    Study areaIn Colombia, the Amazon region represents 42.3% of the territory with an estimated area of 483,164 km2. In this area, 14% is dominated by agricultural lands, secondary vegetation and fragmented forests. Currently, 86% of the area corresponds to natural areas in a good state of conservation, where forests are the dominant coverage6. In the northwest area, the region borders the Andean Cordillera and Orinoquía to the north. The political-administrative division includes the departments Amazonas, Caquetá, Guainía, Guaviare, Putumayo and Vaupés, and part of the departments Cauca, Meta, Nariño and Vichada. The human population is estimated at ~ 1.4 million, with a density of 2.5 inhab/km2. Internal conflict and poverty make this region one of the most important population dynamics in the country in terms of displacement36. The geographical location of the study area and the spatial pattern of the loss of forests that occurred between 2002 and 2016 are shown in Fig. 1.Figure 1Study area. Colombian Amazon and location of Amazonian tropical forests that were lost between 2002 and 2016. (Maps were generated using software ArcGis 10.7.1 https://www.esri.com).Full size imageLand cover maps and variables for change analysisThematic land cover maps used in this research were produced by the Colombian Amazon Land Cover Monitoring System (SIMCOBA) of the Amazon Institute for Scientific Research SINCHI (https://siatac.co/simcoba/). SIMCOBA has prepared land cover maps for the periods 2002, 2007, 2012, 2014, 2016 and 2018. Three of the land cover maps prepared were used in this study: 2002, 2016 and 2018 a scale of 1:100,00033. The maps were generated from the visual interpretation of a mosaic of Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) images, using the PIAO technique (Photo Interprétation Assistée par Ordinateur). The classification categories of the land cover maps were based on the Corine land cover methodology adapted for Colombia37.The SIMCOBA system calculates the annual rates of Amazon forest loss (forest loss/ha/annual) by comparing the cover maps of the last two periods and subtracting from the previous map those forests that are no longer present in the most current map (Fig. 3). This process only considers the forests loss and the permanent forests. New forests due to natural regeneration or restoration are omitted in the calculations6.To facilitate the interpretation of changes and cover transitions, the classification categories of the maps were re-categorized into 7 types: “Amazon forests”, “floodplain forests”, “fragmented forests and secondary vegetation”, “grasslands and shrublands”, “water bodies and wetlands”, “pastures and crops” and “urban and artificialized cover”. The land cover maps were resampled at a resolution of 60 m × 60 m to facilitate the computational analysis of the explanatory model, the simulations of the scenarios, and to keep the detailed spatial resolution of the coverage and explanatory variables16.A geospatial database was created with a set of variables for the cover changes to create an explanatory model for each transition. Driving factors of change are grouped into the following variables: (1) accessibility, (2) climate, (3) landscape features, (4) production practices and environmental degradation, (5) landscape management, (6) socioeconomy, and (7) soil characteristics. We considered 41 explanatory variables (see supplementary information Table S1).Accessibility variables such as roads and navigable rivers were obtained from the geodatabase at a scale of 1:100,000 of the Agustín Codazzi Geographical Institute of Colombia (IGAC). Bioclimatic temperature data were obtained from Worldclim v1.438. Cover variables (e.g., patch sizes Amazon forests and distance to pastures and crops) were created using the software ArcGis (v.10.7.1)39 from the 2002 land cover map to understand which drivers were more influential in the dynamics of land-use changes since 2002 that resulted in the distribution of land cover in 2016.Degradation variables, such as advances of the agricultural frontier, were obtained from the Territorial Environmental Information System of the Colombian Amazon (SIAT-AC)40; livestock density data came from the Colombian Agricultural Institute (ICA); the fire density were processed from MODIS and VIIRS images (https://siatac.co/puntos-de-calor/); and the location of mining titles was obtained from the National Mining Agency.The information on the landscape features and socioeconomic variables was obtained from different sources: (1) the limit of the protected natural areas was provided by the National System of Protected Areas (SINAP)41, (2) the Amazon Forest Reserve areas (Second Law of 1959) were obtained from the Ministry of Environment and Sustainable Development (MADS), (3) the location of the indigenous reservations was provided by the Ministry of the Interior, and (4) the limits of the areas of Indigenous Reservations and the legal status of the Amazonian region were obtained from the SINCHI cartographic database40.Socioeconomic information was spatialized from data from the National Administrative Department of Statistics (DANE). Soil-type data were obtained from IGAG, and topographic and altitudinal variables were derived from a DEM at 100 m resolution from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER V003) sensor42. All explanatory variables were resampled at a resolution of 60 m.Patterns of land cover changes and transitionsThe transformation patterns of territory are mainly defined by human intentions and the activities that these groups plan to develop after making the land cover changes, as well as the dynamics of vegetation regeneration43. In this study, these changes in the study area were obtained and analyzed employing the Land Change Modeller (LCM) module of TerrSet34 and using the land cover maps for 2002 and 2016 as input information (Fig. 2).Figure 2(Source: Open Data—SINCHI Institute https://datos.siatac.co/pages/coberturas) (Maps were generated using software ArcGis 10.7.1 ).Land cover maps 2002, 2016 and 2018, produced by the Colombian Amazon Land Cover Monitoring System (SIMCOBA) of the Amazonian Research Institute SINCHIFull size imageTo represent dynamics and changes in the vegetation during the study period, a total of 14 transitions of greater importance in terms of area were considered (transitions with an area  More

  • in

    Restoration of insect communities after land use change is shaped by plant diversity: a case study on carabid beetles (Carabidae)

    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).Article 
    CAS 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Cons. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    Yang, L. H. & Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2, 26–32. https://doi.org/10.1016/j.cois.2014.06.004 (2014).Article 

    Google Scholar 
    Bowler, D. E., Heldbjerg, H., Fox, A. D., de Jong, M. & Böhning-Gaese, K. Long-term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 33, 1120–1130. https://doi.org/10.1111/cobi.13307 (2019).Article 

    Google Scholar 
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354. https://doi.org/10.1126/science.1127863 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).Article 

    Google Scholar 
    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556. https://doi.org/10.1038/nature09492 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Siemann, E., Tilman, D. & Haarstad, J. Insect species diversity, abundance and body size relationships. Nature 380, 704–706. https://doi.org/10.1038/380704a0 (1996).Article 
    ADS 
    CAS 

    Google Scholar 
    Borer, E. T., Seabloom, E. W. & Tilman, D. Plant diversity controls arthropod biomass and temporal stability. Ecol. Lett. 15, 1457–1464. https://doi.org/10.1111/ele.12006 (2012).Article 

    Google Scholar 
    Ebeling, A. et al. Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic Appl. Ecol. 26, 50–63. https://doi.org/10.1016/j.baae.2017.09.014 (2018).Article 

    Google Scholar 
    Ebeling, A. et al. Plant diversity induces shifts in the functional structure and diversity across trophic levels. Oikos 127, 208–219. https://doi.org/10.1111/oik.04210 (2018).Article 

    Google Scholar 
    Ebeling, A. et al. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9, e106529. https://doi.org/10.1371/journal.pone.0106529 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Marquard, E. et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90, 3290–3302 (2009).Article 

    Google Scholar 
    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845. https://doi.org/10.1126/science.1060391 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Simons, N. K. et al. Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS ONE 9, e107033. https://doi.org/10.1371/journal.pone.0107033 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Wardle, D. A., Nicholson, K. S., Bonner, K. I. & Yeates, G. W. Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil Biol. Biochem. 31, 1691–1706 (1999).Article 
    CAS 

    Google Scholar 
    Luff, M. L. & Rushton, S. P. The ground beetle and spider fauna of managed and unimproved upland pasture. Agr. Ecosyst. Environ. 25, 195–206 (1989).Article 

    Google Scholar 
    Dennis, P., Young, M. R., Howard, C. L. & Gordon, I. J. The response of epigeal beetles (Col, Carabidae, Staphylinidae) to varied grazing regimes on upland Nardus stricta grasslands. J. Appl. Ecol. 34, 433–443 (1997).Article 

    Google Scholar 
    Murdoch, W. W., Evans, F. C. & Peterson, C. H. Diversity and pattern in plants and insects. Ecology 53, 819–829 (1972).Article 

    Google Scholar 
    Siemann, E., Tilman, D., Haarstad, J. & Ritchie, M. Experimental tests of the dependence of arthropod diversity on plant diversity. Am. Nat. 152, 738–750 (1998).Article 
    CAS 

    Google Scholar 
    Joern, A. & Laws, A. N. Ecological mechanisms underlying arthropod species diversity in grasslands. Annu. Rev. Entomol. 58, 19–36. https://doi.org/10.1146/annurev-ento-120811-153540 (2013).Article 
    CAS 

    Google Scholar 
    Hunter, M. D. & Price, P. W. Playing chutes and ladders: Heterogeneity and relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732 (1992).Article 

    Google Scholar 
    Knops, J. M. H. et al. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 2, 286–293 (1999).Article 
    CAS 

    Google Scholar 
    Thiele, H. U. Carabid beetles in their environment. A study on habitat selection by adaptions in physiology and behaviour. (Springer- Verlag, 1977).Harvey, J. A., van der Putten, W. H., Turin, H., Wagenaar, R. & Bezemer, T. M. Effects of changes in plant species richness and community traits on carabid assemblages and feeding guilds. Agr. Ecosyst. Environ. 127, 100–106 (2008).Article 

    Google Scholar 
    Luff, M. L. Use of Carabids as environmental indicators in grasslands and cereals. Ann. Zool. Fenn. 33, 185–195 (1996).
    Google Scholar 
    Kotze, D. J. et al. Forty years of carabid beetle research in Europe—from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys https://doi.org/10.3897/zookeys.100.1523 (2011).Article 

    Google Scholar 
    Barnes, A. D. et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6, eabb6603. https://doi.org/10.1126/sciadv.abb6603 (2020).Article 
    ADS 

    Google Scholar 
    Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B: Biol. Sci. 273, 1715–1727. https://doi.org/10.1098/rspb.2006.3530 (2006).Article 
    CAS 

    Google Scholar 
    Lövei, G. L. & Magura, T. Ground beetle (Coleoptera: Carabidae) diversity is higher in narrow hedges composed of a native compared to non-native trees in a Danish agricultural landscape. Insect Conserv. Divers. 10, 141–150. https://doi.org/10.1111/icad.12210 (2017).Article 

    Google Scholar 
    Loreau, M. Consumers as maximizers of matter and energy flow in ecosystems. Am. Nat. 145, 22–42. https://doi.org/10.1086/285726 (1995).Article 

    Google Scholar 
    Mielke, L. et al. Nematode grazing increases the allocation of plant-derived carbon to soil bacteria and saprophytic fungi, and activates bacterial species of the rhizosphere. Pedobiologia 90, 150787. https://doi.org/10.1016/j.pedobi.2021.150787 (2022).Article 

    Google Scholar 
    Holland, J. M. & Luff, M. L. The effects of agricultural practices on Carabidae in temperate agroecosystems. Integr. Pest Manag. Rev. 5, 109–129. https://doi.org/10.1023/A:1009619309424 (2000).Article 

    Google Scholar 
    Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: An experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).Article 

    Google Scholar 
    Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2017.06.002 (2017).Article 

    Google Scholar 
    Freude, H., Harde, K. W. & Lohse, G. A. Die Käfer Mitteleuropas Bd.1–11. (Goecke & Evers, 1965–83).Koch, K. Die Käfer Mitteleuropas. Ökologie Bd.1–6. (Goecke & Evers, 1989–95).R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110. https://doi.org/10.1093/jpe/rtw107 (2017).Article 

    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, 2009).Oksanen, J. et al. vegan: Community Ecology Package v. 2.6–2 (2022).Lenth, R. et al., emmeans: Estimated Marginal Means, aka Least-Squares Means v. 1.8.1-1 (2022).Lovei, G. L. & Sunderland, K. D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41, 231–256 (1996).Article 
    CAS 

    Google Scholar 
    Ravenek, J. M. et al. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123, 1528–1536. https://doi.org/10.1111/oik.01502 (2014).Article 

    Google Scholar 
    Root, R. Organization of a plant -arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).Article 

    Google Scholar 
    Duelli, P. & Obrist, M. K. Regional biodiversity in an agricultural landscape: The contribution of seminatural habitat islands. Basic Appl. Ecol. 4, 129–138 (2003).Article 

    Google Scholar 
    Perner, J. & Malt, S. Assessment of changing agricultural land use: Response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agr. Ecosyst. Environ. 98, 169–181 (2003).Article 

    Google Scholar 
    Purtauf, T., Dauber, J. & Wolters, V. Carabid communities in the spatio-temporal mosaic of a rural landscape. Landsc. Urban Plan. 67, 185–193 (2004).Article 

    Google Scholar 
    Eisenhauer, N. et al. Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Res. Ideas Outcomes https://doi.org/10.3897/rio.5.e47042 (2019).Article 

    Google Scholar 
    Guerrero-Ramirez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642. https://doi.org/10.1038/s41559-017-0325-1 (2017).Article 

    Google Scholar 
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592. https://doi.org/10.1126/science.1217909 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecol. Lett. 12, 443–451. https://doi.org/10.1111/j.1461-0248.2009.01299.x (2009).Article 

    Google Scholar 
    Blake, S., Foster, G. N., Fisher, G. E. J. & Ligertwood, G. L. Effects of management practices on the carabid faunas of newly established wildflower meadows in southern Scotland. Ann. Zool. Fenn. 33, 139–147 (1996).
    Google Scholar 
    Boetzl, F. A., Krimmer, E., Krauss, J. & Steffan-Dewenter, I. Agri-environmental schemes promote ground-dwelling predators in adjacent oilseed rape fields: Diversity, species traits and distance-decay functions. J. Appl. Ecol. 56, 10–20. https://doi.org/10.1111/1365-2664.13162 (2019).Article 

    Google Scholar 
    Knapp, M., Seidl, M., Knappová, J., Macek, M. & Saska, P. Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Sci. Rep. 9, 8967. https://doi.org/10.1038/s41598-019-45378-7 (2019).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Reconciling oil palm and ecosystems

    Oil palm plantations can supplant once biodiverse tropical forests. As planted areas expand, it is vital to plan landscapes to better balance biodiversity and oil palm production. Strategic ‘set-asides’ offer a key approach.In recent decades, oil palm has expanded spectacularly in some of the most biodiverse areas of the tropics, especially in Indonesia and Malaysia. This expansion has caused extensive deforestation (including loss of more than 2.1 million ha of primary forests in Borneo2, as well as other forests and agroforests), and management of plantations often relies heavily on clearing, herbicides and pesticides. This has generated many direct and indirect impacts on wildlife, ecosystems, climate and human communities3. Further expansion is ongoing, and global demand continues to rise4. More