More stories

  • in

    Integrative taxonomy reveals new, widely distributed tardigrade species of the genus Paramacrobiotus (Eutardigrada: Macrobiotidae)

    Guidetti, R. & Bertolani, R. B. Tardigrade taxonomy: An updated check list of the taxa and a list of characters for their identification. Zootaxa 845, 1–46. https://doi.org/10.11646/zootaxa.845.1.1 (2005).Article 

    Google Scholar 
    Degma, P. & Guidetti, R. Notes to the current checklist of Tardigrada. Zootaxa 1579, 41–53. https://doi.org/10.11646/zootaxa.1579.1.2 (2007)Article 

    Google Scholar 
    Vicente, F. & Bertolani, R. Considerations on the taxonomy of the phylum Tardigrada. Zootaxa 3626, 245–248. https://doi.org/10.11646/zootaxa.3626.2.2 (2013).Article 

    Google Scholar 
    Degma, P. & Guidetti, R. Actual checklist of Tardigrada species. (Version 41: Edition: 16-05-2022). (2009–2022).Ramazzotti, G. & Maucci, W. Il phylum Tardigrada. III edizione riveduta e aggiornata. Mem. Ist. Ital. Idrobiol. 41, 1–1012 (1983).
    Google Scholar 
    Beasley, C. W. The phylum Tardigrada. in English Translation P. 3rd edn (eds Ramazzotti, G. & Maucci, W.) 1–1014 (Abilene, USA, 1995).Nelson, D. R., Guidetti, R., Rebecchi, L., Kaczmarek, Ł. & McInnes, S. Phylum Tardigrada. in Thorp and Covich’s Freshwater Invertebrates 505–522 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-804225-0.00015-0.Da Cunha, A. X. & do Nascimento-Ribeiro, F. A fauna de Tardígrados da Ilha da Madeira. Mem. Estud. Mus. Zool. Univ. Coimbra 1–24 (1962).Fontoura, P., Pilato, G. & Lisi, O. Tardigrada from Santo Antão Island (Archipelago of Cape Verde, West Africa) with the description of a new species. Zootaxa 2838, 30–40. https://doi.org/10.11646/zootaxa.2838.1.2 (2011).Article 

    Google Scholar 
    Gąsiorek, P., Vončina, K. & Michalczyk, Ł. Echiniscus testudo (Doyère, 1840) in New Zealand: Anthropogenic dispersal or evidence for the ‘Everything is Everywhere’ hypothesis?. N. Z. J. Zool. 46, 174–181. https://doi.org/10.1080/03014223.2018.1503607 (2019).Article 

    Google Scholar 
    Guidetti, R., Schill, R. O., Bertolani, R., Dandekar, T. & Wolf, M. New molecular data for tardigrade phylogeny, with the erection of Paramacrobiotus gen. nov. J. Zool. Syst. Evol. 47, 315–321. https://doi.org/10.1111/j.1439-0469.2009.00526.x (2009).Article 

    Google Scholar 
    Kaczmarek, Ł, Gawlak, M., Bartels, P. J., Nelson, D. R. & Roszkowska, M. Revision of the genus Paramacrobiotus Guidetti et al., 2009 with the description of a new species, re-descriptions and a key. Ann. Zool. 67, 627–656. https://doi.org/10.3161/00034541ANZ2017.67.4.001 (2017).Article 

    Google Scholar 
    Marley, N. J. et al. A clarification for the subgenera of Paramacrobiotus Guidetti, Schill, Bertolani, Dandekar and Wolf, 2009, with respect to the International Code of Zoological Nomenclature. Zootaxa 4407, 130–134. https://doi.org/10.11646/zootaxa.4407.1.9 (2018).Article 
    CAS 

    Google Scholar 
    Guidetti, R., Cesari, M., Bertolani, R., Altiero, T. & Rebecchi, L. High diversity in species, reproductive modes and distribution within the Paramacrobiotus richtersi complex (Eutardigrada, Macrobiotidae). Zool. Lett. 5, 1–28. https://doi.org/10.1186/s40851-018-0113-z (2019).Article 

    Google Scholar 
    Stec, D., Krzywański, Ł, Zawierucha, K. & Michalczyk, Ł. Untangling systematics of the Paramacrobiotus areolatus species complex by an integrative redescription of the nominal species for the group, with multilocus phylogeny and species delineation in the genus Paramacrobiotus. Zool. J. Linn. Soc. 188, 694–716. https://doi.org/10.1093/zoolinnean/zlz163 (2020).Article 

    Google Scholar 
    Murray, J. Scottish Tardigrada, a review of our present knowledge. Ann. Scot. Nat. Hist. 78, 88–95 (1911).
    Google Scholar 
    Murray, J. XXV.—Arctic Tardigrada, collected by Wm. S. Bruce. Trans. R. Soc. Edinb. 45, 669–681 (1907).Article 

    Google Scholar 
    Ramazzotti, G. Tre nouve specie di Tardigradi ed altre specie poco comuni. Atti Soc. Nat. Milano 10, 284–291 (1956).
    Google Scholar 
    Schill, R. O., Förster, F., Dandekar, T. & Wolf, M. Using compensatory base change analysis of internal transcribed spacer 2 secondary structures to identify three new species in Paramacrobiotus (Tardigrada). Org. Divers. Evol. 10, 287–296. https://doi.org/10.1007/s13127-010-0025-z (2010).Article 

    Google Scholar 
    Kaczmarek, Ł et al. Integrative description of bisexual Paramacrobiotus experimentalis sp. Nov. (Macrobiotidae) from republic of Madagascar (Africa) with microbiome analysis. Mol. Phylogenet. Evol. 145, 106730. https://doi.org/10.1016/j.ympev.2019.106730 (2020).Article 

    Google Scholar 
    Bertolani, R. Partenogenesi geografica triploide in un Tardigrado (Macrobiotus richtersi). Rend. Acc. Naz. Lincei. Ser. 8, 487–489 (1971).
    Google Scholar 
    Bertolani, R. Sex ratio and geographic parthenogenesis in Macrobioutus (Tardigrada). Experientia 28, 94–95. https://doi.org/10.1007/BF01928285 (1972).Article 

    Google Scholar 
    Bertolani, R. L. partenogenesi nei Tardigradi. Boll. Zool. 39, 577–581. https://doi.org/10.1080/11250007209431414 (1972).Article 

    Google Scholar 
    Bertolani, R. Cytology and Reproductive Mechanisms in Tardigrades. I. 93–114 (East Tennesse State University Press, Johnson City, 1982).
    Google Scholar 
    Lemloh, M., Brümmer, F. & Schill, R. O. Life-history traits of the bisexual tardigrades Paramacrobiotus tonollii and Macrobiotus sapiens. J. Zool. Syst. Evol. Res. 49, 58–61. https://doi.org/10.1111/j.1439-0469.2010.00599.x (2011).Article 

    Google Scholar 
    Guil, N. & Giribet, G. A comprehensive molecular phylogeny of tardigrades-adding genes and taxa to a poorly resolved phylum-level phylogeny. Cladistics 28, 21–49. https://doi.org/10.1111/j.1096-0031.2011.00364.x (2012).Article 

    Google Scholar 
    Kosztyła, P. et al. Experimental taxonomy confirms the environmental stability of morphometric traits in a taxonomically challenging group of microinvertebrates. Zool. J. Linn. Soc. 178, 765–775. https://doi.org/10.1111/zoj.12409 (2016).Article 

    Google Scholar 
    Kaczmarek, Ł et al. New records of Antarctic Tardigrada with comments on iterpopulation variability of the Paramacrobiotus fairbanksi Schill, Förster, Dandekar and Wolf, 2010. Diversity 12, 108. https://doi.org/10.3390/d12030108 (2020).Article 

    Google Scholar 
    Stec, D., Vecchi, M., Calhim, S. & Michalczyk, Ł. New multilocus phylogeny reorganises the family Macrobiotidae (Eutardigrada) and unveils complex morphological evolution of the Macrobiotus hufelandi group. Mol. Phylogenet. Evol. 160, 106987. https://doi.org/10.1016/j.ympev.2020.106987 (2021).Article 

    Google Scholar 
    Stec, D., Smolak, R., Kaczmarek, Ł & Michalczyk, Ł. An integrative description of Macrobiotus paulinae sp. Nov. (Tardigrada: Eutardigrada: Macrobiotidae: hufelandi group) from Kenya. Zootaxa 4052, 501–526. https://doi.org/10.11646/zootaxa.4052.5.1 (2015).Article 

    Google Scholar 
    Bryce, D. On some moss-dwelling Cathypnadae; with descriptions of five new species. Sci. Gossip Lond. 28, 271–275 (1892).
    Google Scholar 
    Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol. Ecol. Resour. 12(1), 136–141. https://doi.org/10.1111/j.1755-0998.2011.03073.x (2012).Article 
    CAS 

    Google Scholar 
    Stec, D., Kristensen, R. M. & Michalczyk, Ł. An integrative description of Minibiotus ioculator sp. nov. from the Republic of South Africa with notes on Minibiotus pentannulatus Londoño et al., 2017 (Tardigrada: Macrobiotidae). Zool. Anz. 286, 117–134. https://doi.org/10.1016/j.jcz.2020.03.007 (2020).Article 

    Google Scholar 
    Stec, D., Zawierucha, K. & Michalczyk, Ł. An integrative description of Ramazzottius subanomalus (Biserov, 1985 (Tardigrada) from Poland. Zootaxa 4300, 403–420. https://doi.org/10.11646/zootaxa.4300.3.4 (2017).Article 

    Google Scholar 
    Mironov, S. V., Dabert, J. & Dabert, M. A new feather mite species of the genus Proctophyllodes Robin, 1877 (Astigmata: Proctophyllodidae) from the Long-tailed Tit Aegithalos caudatus (Passeriformes: Aegithalidae)—Morphological description with DNA barcode data. Zootaxa 3253, 54–61. https://doi.org/10.11646/zootaxa.3253.1.2 (2012).Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. PCR Protocols: A Guide to Methods and Application 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 (Academic Press, 1990).Book 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. Phylogenetic uncertainty. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 

    Google Scholar 
    Vecchi, M. & Stec, D. Integrative descriptions of two new Macrobiotus species (Tardigrada, Eutardigrada, Macrobiotidae) from Mississippi (USA) and Crete (Greece). ZSE 97, 281–306. https://doi.org/10.3897/zse.97.65280 (2021).Article 

    Google Scholar 
    Thulin, G. Über die phylogenie und das system der. Hereditas 11, 207–266. https://doi.org/10.1111/j.1601-5223.1928.tb02488.x (1928).Article 

    Google Scholar 
    Stec, D. Mesobiotus datanlanicus sp. nov., a new tardigrade species (Macrobiotidae: Mesobiotus harmsworthi group) from Lâm Đồng Province in Vietnam. Zootaxa 4679, 164–180. https://doi.org/10.11646/zootaxa.4679.1.10 (2019).Article 

    Google Scholar 
    Katoh, K. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. NAR 30, 3059–3066. https://doi.org/10.1093/nar/gkf436 (2002).Article 
    CAS 

    Google Scholar 
    Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298. https://doi.org/10.1093/bib/bbn013 (2008).Article 
    CAS 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x (2011).Article 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29(6), 1695–1701. https://doi.org/10.1093/molbev/mss020 (2012).Article 
    CAS 

    Google Scholar 
    Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3 (2003).Article 
    CAS 

    Google Scholar 
    Xia, X. & Lemey, P. Assessing substitution saturation with DAMBE. In The Phylogenetic Handbook (eds Lemey, P. et al.) 615–630. https://doi.org/10.1017/CBO9780511819049.022 (Cambridge University Press, 2009).Chapter 

    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 (2003).Article 
    CAS 

    Google Scholar 
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1. 6. 2014. (2015).Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).Article 
    CAS 

    Google Scholar 
    Bandelt, H., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 (1999).Article 
    CAS 

    Google Scholar 
    Ehrenberg, C. G. Beitrag zur Bestimmung des Stationären Mikroskopischen Lebens in bis 20,000 Fuss Alpenhöhe. (1859).Guil, N. & Guidetti, R. A new species of Tardigrada (Eutardigrada: Macrobiotidae) from Iberian Peninsula and Canary Islands (Spain). Zootaxa 889, 1–11. https://doi.org/10.11646/zootaxa.889.1.1 (2005).Article 

    Google Scholar 
    Plate, L. H. Beiträge zur Naturgeschichte der Tardigraden. Zool. Jahrb. Abteilung Anat. Ontog. Tiere 3, 487–550. https://doi.org/10.5962/bhl.part.1265 (1889).Article 

    Google Scholar 
    Kaczmarek, Ł, Kayastha, P., Roszkowska, M., Gawlak, M. & Mioduchowska, M. Integrative redescription of the Minibiotus intermedius (Plate, 1888)—The type species of the genus Minibiotus R.O. Schuster, 1980. Diversity 14, 356. https://doi.org/10.3390/d14050356 (2022).Article 
    CAS 

    Google Scholar 
    Londoño, R., Daza, A., Lisi, O. & Quiroga, S. New species of waterbear Minibiotus pentannulatus (Tardigrada: Macrobiotidae) from Colombia. Rev. Mex. Biodivers. 88, 807–814. https://doi.org/10.1016/j.rmb.2017.10.040 (2017).Article 

    Google Scholar 
    Vecchi, M. et al. Macrobiotus naginae sp. nov., a new Xerophilous Tardigrade species from Rokua Sand Dunes (Finland). Zool. Stud. 61, e22 (2022).
    Google Scholar 
    Stec, D., Dudziak, M. & Michalczyk, Ł. Integrative descriptions of two new Macrobiotidae species (Tardigrada: Eutardigrada: Macrobiotoidea) from French Guiana and Malaysian Borneo. Zool. Stud. 59, e23 (2020).
    Google Scholar 
    Stec, D., Roszkowska, M., Kaczmarek, Ł & Michalczyk, Ł. Paramacrobiotus lachowskae, a new species of Tardigrada from Colombia (Eutardigrada: Parachela: Macrobiotidae). N. Z. J. Zool. 45, 43–60. https://doi.org/10.1080/03014223.2017.1354896 (2018).Article 

    Google Scholar 
    Sugiura, K., Matsumoto, M. & Kunieda, T. Description of a model tardigrade Paramacrobiotus metropolitanus sp. nov. (Eutardigrada) from Japan with a summary of its life history, reproduction and genomics. Zootaxa 5134, 92–112. https://doi.org/10.11646/zootaxa.5134.1.4 (2022).Article 

    Google Scholar 
    Tumanov, D. V. Three new species of Macrobiotus (Eutardigrada, Macrobiotidae, tenuis-group) from Tien Shan (Kirghizia) and Spitsbergen. J. Limnol. 66, 40. https://doi.org/10.4081/jlimnol.2007.s1.40 (2007).Article 

    Google Scholar 
    Zawierucha, K., Kolicka, M. & Kaczmarek, Ł. Re-description of the Arctic tardigrade Tenuibiotus voronkovi (Tumanov, 2007 (Eutardigrada; Macrobiotidea), with the first molecular data for the genus. Zootaxa 4196, 498. https://doi.org/10.11646/zootaxa.4196.4.2 (2016).Article 

    Google Scholar 
    Stec, D., Tumanov, D. T. & Kristensen, R. M. Integrative taxonomy identifies two new tardigrade species (Eutardigrada: Macrobiotidae) from Greenland. EJT 614, 1–40. https://doi.org/10.5852/ejt.2020.614 (2020).Article 

    Google Scholar 
    Fontaneto, D., Flot, J.-F. & Tang, C. Q. Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar. Biodiv. 45, 433–451. https://doi.org/10.1007/s12526-015-0319-7 (2015).Article 

    Google Scholar 
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499 (2013).Article 
    CAS 

    Google Scholar 
    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34(3), 772–773. https://doi.org/10.1093/molbev/msw260 (2017).Article 
    CAS 

    Google Scholar 
    Roszkowska, M., Stec, D., Gawlak, M. & Kaczmarek, Ł. An integrative description of a new tardigrade species Mesobiotus romani sp. nov. (Macrobiotidae: harmsworthi group) from the Ecuadorian Pacific coast. Zootaxa 4450, 550–564. https://doi.org/10.11646/zootaxa.4450.5.2 (2018).Article 

    Google Scholar 
    Pilato, G. & Binda, M. G. Definition of families, subfamilies, genera and subgenera of the Eutardigrada, and keys to their identification. Zootaxa 2404, 1–54. https://doi.org/10.11646/zootaxa.2404.1.1 (2010).Article 

    Google Scholar 
    Kaczmarek, Ł & Michalczyk, Ł. The Macrobiotus hufelandi group (Tardigrada) revisited. Zootaxa 4363, 101–123. https://doi.org/10.11646/zootaxa.4363.1.4 (2017).Article 

    Google Scholar 
    Michalczyk, Ł & Kaczmarek, Ł. A description of the new tardigrade Macrobiotus reinhardti (Eutardigrada: Macrobiotidae, harmsworthi group) with some remarks on the oral cavity armature within the genus Macrobiotus Schultze. Zootaxa 331, 1–24. https://doi.org/10.11646/zootaxa.331.1.1 (2003).Article 

    Google Scholar 
    Kaczmarek, Ł, Cytan, J., Zawierucha, K., Diduszko, D. & Michalczyk, Ł. Tardigrades from Peru (South America), with descriptions of three new species of Parachela. Zootaxa 3790, 357–379. https://doi.org/10.11646/zootaxa.3790.2.5 (2014).Article 

    Google Scholar 
    Kiosya, Y., Pogwizd, J., Matsko, Y., Vecchi, M. & Stec, D. Phylogenetic position of two Macrobiotus species with a revisional note on Macrobiotus sottilei Pilato, Kiosya, Lisi & Sabella, 2012 (Tardigrada: Eutardigrada: Macrobiotidae). Zootaxa 4933, 113–135. https://doi.org/10.11646/zootaxa.4933.1.5 (2021).Article 

    Google Scholar 
    Pilato, G. Analisi di nuovi caratteri nello studio degli Eutardigradi. Animalia 8, 51–57 (1981).
    Google Scholar 
    Michalczyk, Ł & Kaczmarek, Ł. The Tardigrada Register: a comprehensive online data repository for tardigrade taxonomy. J. Limnol. 72, e22. https://doi.org/10.4081/jlimnol.2013.s1.e22 (2013).Article 

    Google Scholar 
    Bertolani, R. et al. Phylogeny of Eutardigrada: New molecular data and their morphological support lead to the identification of new evolutionary lineages. Mol. Phylogenet. Evol. 76, 110–126. https://doi.org/10.1016/j.ympev.2014.03.006 (2014).Article 

    Google Scholar 
    Perry, E., Miller, W. R. & Kaczmarek, Ł. Recommended abbreviations for the names of genera of the phylum Tardigrada. Zootaxa 4608, 145. https://doi.org/10.11646/zootaxa.4608.1.8 (2019).Article 

    Google Scholar 
    Degma, P., Michalczyk, Ł & Kaczmarek, Ł. Macrobiotus derkai, a new species of Tardigrada (Eutardigrada, Macrobiotidae, huziori group) from the Colombian Andes (South America). Zootaxa 1731, 1–23. https://doi.org/10.11646/zootaxa.1731.1.1 (2008).Article 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & Diduszko, D. Some tardigrades from Siberia (Russia, Baikal region) with a description of Macrobiotus garynahi sp. nov. (Eutardigrada: Macrobiotidae: richtersi group). Zootaxa 1053, 35–45. https://doi.org/10.11646/zootaxa.1053.1.3 (2005).Article 

    Google Scholar 
    Michalczyk, Ł & Kaczmarek, Ł. Macrobiotus huziori, a new species of Tardigrada (Eutardigrada: Macrobiotidae) from Costa Rica (Central America). Zootaxa 1169, 47–59. https://doi.org/10.11646/zootaxa.1169.1.3 (2006).Article 

    Google Scholar 
    Michalczyk, L. & Kaczmarek, L. A new species Macrobiotus magdalenae (Tardigrada: Eutardigrada: Macrobiotidae, richtersi group) from Costa Rican rain forest (Central America). N. Z. J. Zool. 33, 189–196. https://doi.org/10.1080/03014223.2006.9518444 (2006).Article 

    Google Scholar 
    Michalczyk, Ł, Kaczmarek, Ł & Węglarska, B. Macrobiotus sklodowskae sp. nov. (Tardigrada: Eutardigrada: Macrobiotidae, richtersi group) from Cyprus. Zootaxa 1371, 45–56. https://doi.org/10.11646/zootaxa.1371.1.4 (2006).Article 

    Google Scholar 
    Tumanov, D. V. Notes on the Tardigrada of Thailand, with a description of Macrobiotus alekseevi sp. nov. (Eutardigrada, Macrobiotidae). Zootaxa 999, 1–6. https://doi.org/10.11646/zootaxa.999.1.1 (2005).Article 

    Google Scholar 
    Doyère, M. Memoire sur les tardigrades. Ann. Sci. Nat Zool. Ser. 2, 269–362 (1840).
    Google Scholar 
    Richters, F. Tardigrada. In Handbuch der Zoologie Vol. 3 (eds Kükenthal, W. & Krumbach, T.) 58–61 (Walter de Gruyter & Co., Berlin and Leipzig, 1926).
    Google Scholar 
    Stec, D., Cancellario, T. & Fontaneto, D. Diversification rates in Tardigrada indicate a decreasing tempo of lineage splitting regardless of reproductive mode. Org. Divers. Evol. 22(4), 965–974. https://doi.org/10.1007/s13127-022-00578-4 (2022).Article 

    Google Scholar 
    Dellicour, S. & Flot, J.-F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 18, 1234–1246. https://doi.org/10.1111/1755-0998.12908 (2018).Article 

    Google Scholar 
    Magoga, G., Fontaneto, D. & Montagna, M. Factors affecting the efficiency of molecular species delimitation in a species-rich insect family. Mol. Ecol. Resour. 21, 1475–1489. https://doi.org/10.1111/1755-0998.13352 (2021).Article 
    CAS 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & McInnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part I: Central America. Zootaxa 3763, 1–62. https://doi.org/10.11646/zootaxa.3763.1.1 (2014).Article 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & McInnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part II: South America. Zootaxa 3923, 1–107. https://doi.org/10.11646/zootaxa.3923.1.1 (2015).Article 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & Mcinnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part III: North America and Greenland. Zootaxa 4203, 1–249. https://doi.org/10.11646/zootaxa.4203.1.1 (2016).Article 

    Google Scholar 
    Mcinnes, S. J., Michalczyk, Ł & Kaczmarek, Ł. Annotated zoogeography of non-marine Tardigrada. Part IV: Africa. Zootaxa 4284, 1. https://doi.org/10.11646/zootaxa.4284.1.1 (2017).Article 

    Google Scholar 
    Michalczyk, Ł, Kaczmarek, Ł & Mcinnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part V: Australasia. Zootaxa 5107, 1–119. https://doi.org/10.11646/zootaxa.5107.1.1 (2022).Article 

    Google Scholar 
    Pilato, G., Claxton, S. & Binda, M. G. Tardigrades from Australia. III. Echiniscus marcusi and Macrobiotus peteri, new species of tardigrades from New South Wales. Animalia 16, 43–48 (1989).
    Google Scholar 
    Pilato, G., Binda, M. G. & Lisi, O. Eutardigrada from New Zealand, with descriptions of two new species. N. Z. J. Zool. 33, 49–63. https://doi.org/10.1080/03014223.2006.9518430 (2006).Article 

    Google Scholar 
    Bartels, P. J., Pilato, G., Lisi, O. & Nelson, D. R. Macrobiotus (Eutardigrada, Macrobiotidae) from the Great Smoky Mountains National Park, Tennessee/North Carolina, USA (North America): Two new species and six new records. Zootaxa 2022, 45–57. https://doi.org/10.11646/zootaxa.2022.1.4 (2009).Article 

    Google Scholar 
    Binda, M. G., Pilato, G., Moncada, E. & Napolitano, A. Some tardigrades from Central Africa with the description of two new species: Macrobiotus ragonesei and M. priviterae (Eutardigrada Macrobiotidae). Trop. Zool. 14, 233–242. https://doi.org/10.1080/03946975.2001.10531155 (2001).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Lissi, O. Notes on tardigrades of the Seychelles with the description of two new species. Ital. J. Zool. 71, 171–178 (2004).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Lisi, O. Three new species of eutardigrades from the Seychelles. N. Z. J. Zool. 33, 39–48. https://doi.org/10.1080/03014223.2006.9518429 (2006).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Lisi, O. Notes on tardigrades of the Seychelles with the description of three new species. Ital. J. Zool. 71, 171–178. https://doi.org/10.1080/11250000409356569 (2004).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Catanzaro, R. Remarks on some tardigrades of the African fauna with the description of three new species of Macrobiotus Schultze 1834. Trop. Zool. 4, 167–178. https://doi.org/10.1080/03946975.1991.10539487 (1991).Article 

    Google Scholar 
    Maucci, W. & Durante Pasa, M. V. Tardigradi muscicoli delle Isole Andamane. Boll. Mus. Civ. St. Nat. Verona 7, 281–291 (1980).
    Google Scholar 
    Iharos, G. Neuere Daten zur Kenntnis der Tardigraden-Fauna von Neuguinea. Opusc. Zool. Bp. 11, 65–73 (1973).
    Google Scholar 
    Binda, M. G. & Pilato, G. Macrobiotus savai and Macrobiotus humilis, two new species of tardigrades from Sri Lanka. Boll. Accad. Gioenia Sci. Nat. Catania 34, 101–111 (2001).
    Google Scholar 
    Pilato, G. Macrobiotus centesimus, new species of eutardigrade from the South America. Boll. Accad. Gioenia Sci. Nat. Catania 33, 97–101 (2000).
    Google Scholar 
    Daza, A., Caicedo, M., Lisi, O. & Quiroga, S. New records of tardigrades from Colombia with the description of Paramacrobiotus sagani sp. nov. and Doryphoribius rosanae sp. nov. Zootaxa 4362, 29–50. https://doi.org/10.11646/zootaxa.4362.1.2 (2017).Article 

    Google Scholar 
    Claps, M. C. & Rossi, G. C. Tardígrados de Uruguay, con descripción de dos nuevas especies (Echiniscidae, Macrobiotidae). Iheringia Sér. Zool. 83, 17–22 (1997).
    Google Scholar 
    Iharos, G. Neue tardigraden-arten aus ungarn (neuere beitrage zur kenntnis der tardigraden-fauna ungarns. 6.). Acta Zool. Acad. Sci. Hung. 12(1–2), 111 (1966).
    Google Scholar 
    Pilato, G., Kiosya, Y., Lisi, O. & Sabella, G. New records of Eutardigrada from Belarus with the description of three new species. Zootaxa 3179, 39–60. https://doi.org/10.11646/zootaxa.3179.1.2 (2012).Article 

    Google Scholar 
    Pasa, D. & Maucci, W. Moss Tardigrada from the Scandinavian Peninsula. in Second International Symposium on Tardigrada, Vol. 79(25). 47–85 (1979).Lisi, O., Binda, M. G. & Pilato, G. Eremobiotus ginevrae sp. nov. and Paramacrobiotus pius sp. nov., two new species of Eutardigrada. Zootaxa 4103, 344–360. https://doi.org/10.11646/zootaxa.4103.4.3 (2016).Article 

    Google Scholar 
    Biserov, V. I. Macrobiotus lorenae sp. n., a new species of Tardigrada (Eutardigrada Macrobiotidae) from the Russian Far East. Arthr Sel. 5, 145–149 (1996).
    Google Scholar 
    Biserov, V. I. Tardigrades of the Caucasus with a taxonomic analysis of genus Ramazzottius. Zool. Anz. 236, 139–159 (1997).
    Google Scholar 
    Morek, W. et al. Redescription of Milnesium alpigenum Ehrenberg, 1853 (Tardigrada: Apochela) and a description of Milnesium inceptum sp. nov., a tardigrade laboratory model. Zootaxa 4586(1), 35. https://doi.org/10.11646/zootaxa.4586.1.2 (2019).Article 

    Google Scholar 
    Morek, W., Surmacz, B., López-López, A. & Michalczyk, Ł. “Everything is not everywhere”: Time-calibrated phylogeography of the genus Milnesium (Tardigrada). Mol. Ecol. 30, 3590–3609. https://doi.org/10.1111/mec.15951 (2021).Article 

    Google Scholar 
    Mogle, M. J., Kimball, S. A., Miller, W. R. & McKown, R. D. Evidence of avian-mediated long-distance dispersal in American tardigrades. PeerJ 6, e5035. https://doi.org/10.7717/peerj.5035 (2018).Article 

    Google Scholar 
    Vuori, T., Calhim, S. & Vecchi, M. A lift in snail’s gut provides an efficient colonization route for tardigrades. Ecology 103, e3702. https://doi.org/10.1002/ecy.3702 (2022).Article 

    Google Scholar 
    Książkiewicz, Z. & Roszkowska, M. Experimental evidence for snails dispersing tardigrades based on Milnesium inceptum and Cepaea nemoralis species. Sci. Rep. 12(4421), 1–10. https://doi.org/10.1038/s41598-022-08265-2 (2022).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Upwelling, climate change, and the shifting geography of coral reef development

    Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918. https://doi.org/10.1016/j.cub.2013.04.020 (2013).Article 
    CAS 

    Google Scholar 
    Beck, M. W. et al. The global flood protection savings provided by coral reefs. Nat. Commun. 9, 2186. https://doi.org/10.1038/s41467-018-04568-z (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuffner, I. B. & Toth, L. T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30, 706–715. https://doi.org/10.1111/cobi.12725 (2016).Article 

    Google Scholar 
    Allemand, D. et al. Biomineralisation in reef-building corals: From molecular mechanisms to environmental control. C. R. Palevol. 3, 453–467. https://doi.org/10.1016/j.crpv.2004.07.011 (2004).Article 

    Google Scholar 
    Glynn, P. W. Bioerosion and coral-reef growth: A dynamic balance. In Life and Death of Coral Reefs (ed Birkeland, C.) 68–95 (Chapman & Hall, 1997).Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976. https://doi.org/10.1038/nclimate2380 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Enochs, I. C. et al. Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific. Ecol. Monogr. 91, e01482. https://doi.org/10.1002/ecm.1482 (2021).Article 
    CAS 

    Google Scholar 
    Alvarado, J. J., Grassian, B., Cantera-Kintz, J. R., Carballo, J. L. & Londoño-Cruz, E. Coral reef bioerosion in the eastern tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 369–403 (Springer, 2017).Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402. https://doi.org/10.1038/ncomms2409 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Oppenheimer, M. et al. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).Alvarez-Filip, L., González-Barrios, F. J., Pérez-Cervantes, E., Molina-Hernández, A. & Estrada-Saldívar, N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun. Biol. 5, 440. https://doi.org/10.1038/s42003-022-03398-6 (2022).Article 

    Google Scholar 
    Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400. https://doi.org/10.1038/s41586-018-0194-z (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    van Woesik, R. & Cacciapaglia, C. W. Carbonate production of Micronesian reefs suppressed by thermal anomalies and Acanthaster as sea-level rises. PLoS ONE 14, e0224887. https://doi.org/10.1371/journal.pone.0224887 (2019).Article 
    CAS 

    Google Scholar 
    van Woesik, R. & Cacciapaglia, C. W. Thermal stress jeopardizes carbonate production of coral reefs across the western and central Pacific Ocean. PLoS ONE 16, e0249008. https://doi.org/10.1371/journal.pone.0249008 (2021).Article 
    CAS 

    Google Scholar 
    van Woesik, R. & Cacciapaglia, C. W. Keeping up with sea-level rise: Carbonate production rates in Palau and Yap, western Pacific Ocean. PLoS ONE 13, e0197077. https://doi.org/10.1371/journal.pone.0197077 (2018).Article 
    CAS 

    Google Scholar 
    Eakin, C. M. Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15, 109–119. https://doi.org/10.1007/BF01771900 (1996).Article 
    ADS 

    Google Scholar 
    Perry, C. T. & Morgan, K. M. Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Sci. Rep. 7, 40581. https://doi.org/10.1038/srep40581 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Connell, J. H. Disturbance and recovery of coral assemblages. Coral Reefs 16, S101–S113. https://doi.org/10.1007/s003380050246 (1997).Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. https://doi.org/10.1126/science.aan8048 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Dana, T. F. Development of contemporary eastern Pacific coral reefs. Mar. Biol. 33, 355–374. https://doi.org/10.1007/BF00390574 (1975).Article 

    Google Scholar 
    Cortés, J. Eastern tropical Pacific coral reefs. In The Encyclopedia of Modern Coral Reefs: Structure, Form and Process. 351–358 (2011).O’Dea, A., Hoyos, N., Rodríguez, F., Degracia, B. & de Gracia, C. History of upwelling in the tropical eastern Pacific and the paleogeography of the Isthmus of Panama. Palaeogeogr. Palaeoclimatol. Palaeoecol. 348–349, 59–66. https://doi.org/10.1016/j.palaeo.2012.06.007 (2012).Article 

    Google Scholar 
    Glynn, P. W. & Colgan, M. W. Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the Eastern Pacific. Am. Zool. 32, 707–718. https://doi.org/10.1093/icb/32.6.707 (1992).Article 

    Google Scholar 
    Manzello, D. P. et al. Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world. Proc. Natl. Acad. Sci. USA 105, 10450–10455. https://doi.org/10.1073/pnas.0712167105 (2008).Article 
    ADS 

    Google Scholar 
    Eakin, C. M. & Glynn, P. W. Low tidal exposures and reef mortalities in the eastern Pacific. Coral Reefs 15, 120 (1996).Article 

    Google Scholar 
    Glynn, P. W. Some physical and biological determinants of coral community structure in the eastern pacific. Ecol. Monogr. 46, 431–456. https://doi.org/10.2307/1942565 (1976).Article 

    Google Scholar 
    Toth, L. T., Macintyre, I. G. & Aronson, R. B. Holocene reef development in the eastern tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 177–201 (Springer, 2017).Cortés, J., Macintyre, I. G. & Glynn, P. W. Holocene growth history of an eastern Pacific fringing reef, Punta Islotes, Costa Rica. Coral Reefs 13, 65–73. https://doi.org/10.1007/BF00300763 (1994).Article 
    ADS 

    Google Scholar 
    Glynn, P. W. et al. Eastern pacific coral reef provinces, coral community structure and composition: An overview. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 107–176 (Springer, 2017).Glynn, P. W. & Macintyre, I. G. Growth rate and age of coral reefs on the Pacific coast of Panama. In Proceedings of the 3rd International Coral Reef Symposium, Miami, vol. 2, 251–259 (1977).Glynn, P. W. & Stewart, R. H. Distribution of coral reefs in the Pearl Islands (Gulf of Panama) in relation to thermal conditions. Limnol. Oceanogr. 18, 367–379. https://doi.org/10.4319/lo.1973.18.3.0367 (1973).Article 
    ADS 

    Google Scholar 
    Glynn, P. W., Druffel, E. M. & Dunbar, R. B. A dead Central American coral reef tract: Possible link with the Little Ice Age (Costa Rica, Gulf of Papagayo, Gulf of Panama). J. Mar. Res. 41, 605–637. https://doi.org/10.1357/002224083788519740 (1983).Article 

    Google Scholar 
    Glynn, P. W. & Leyte Morales, G. E. Coral reefs of Huatulco, west México: Reef development in upwelling Gulf of Tehuantepec. Rev. Biol. Trop. 45, 1033–1047 (1997).
    Google Scholar 
    Tribollet, A. & Golubic, S. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24, 422–434. https://doi.org/10.1007/s00338-005-0003-7 (2005).Article 
    ADS 

    Google Scholar 
    D’Croz, L. & O’Dea, A. Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuar. Coast. Shelf S. 73, 325–340. https://doi.org/10.1016/j.ecss.2007.01.013 (2007).Article 
    ADS 

    Google Scholar 
    Randall, C. J., Toth, L. T., Leichter, J. J., Maté, J. L. & Aronson, R. B. Upwelling buffers climate change impacts on coral reefs of the eastern tropical Pacific. Ecology 101, e02918. https://doi.org/10.1002/ecy.2918 (2020).Article 

    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281. https://doi.org/10.1111/j.1466-8238.2011.00656.x (2012).Article 

    Google Scholar 
    Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284. https://doi.org/10.1111/geb.12693 (2018).Article 

    Google Scholar 
    R Development Core Team. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R Foundation for Statistical Computing vol. 2.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016). ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. (2022). https://paleolimbot.github.io/ggspatial/, https://github.com/paleolimbot/ggspatial.Toth, L. T. et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 336, 81–84. https://doi.org/10.1126/science.1221168 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Toth, L. T. et al. Climatic and biotic thresholds of coral-reef shutdown. Nat. Clim. Change 5, 369–374. https://doi.org/10.1038/nclimate2541 (2015).Article 
    ADS 

    Google Scholar 
    Guzman, H. & Cortés, J. Arrecifes coralinos del Pacífico oriental tropical: revisión y perspectivas. Rev. Biol. Trop. 41, 535–557 (1993).
    Google Scholar 
    Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming Ocean. Mar. Ecol. Prog. Ser. 416, 47–56. https://doi.org/10.3354/meps08775 (2010).Article 
    ADS 

    Google Scholar 
    Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci. 69, 79–109 (2001).
    Google Scholar 
    Paz-García, D. A., Hellberg, M. E., García-de-León, F. J. & Balart, E. F. Switch between morphospecies of Pocillopora corals. Am. Nat. 186, 434–440. https://doi.org/10.1086/682363 (2015).Article 

    Google Scholar 
    Tortolero-Langarica, J. J. A., Rodríguez-Troncoso, A. P., Cupul-Magaña, A. L. & Carricart-Ganivet, J. P. Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. PeerJ 2017, e3191. https://doi.org/10.7717/peerj.3191 (2017).Article 

    Google Scholar 
    Medellín-Maldonado, F. et al. Calcification of the main reef-building coral species on the Pacific coast of southern Mexico. Cienc. Mar. 42, 209–225. https://doi.org/10.7773/cm.v42i3.2650 (2016).Article 
    CAS 

    Google Scholar 
    Cabral-Tena, R. A. et al. Calcification of coral assemblages in the eastern Pacific: Reshuffling calcification scenarios under climate change. Ecol. Indic. 95, 726–734. https://doi.org/10.1016/j.ecolind.2018.08.021 (2018).Article 
    CAS 

    Google Scholar 
    Glynn, P. Coral growth in upwelling and nonupwelling areas off the Pacific coast of Panama. J. Mar. Res. 35, 567–585 (1977).
    Google Scholar 
    Guzman, H. M. & Cortes, J. Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull. Mar. Sci. 44, 1186–1194 (1989).
    Google Scholar 
    Cabral-Tena, R. A. et al. Functional potential of coral assemblages along a typical eastern tropical Pacific reef tract. Ecol. Indic. 119, 106795. https://doi.org/10.1016/j.ecolind.2020.106795 (2020).Article 

    Google Scholar 
    Manzello, D. P. Coral growth with thermal stress and ocean acidification: Lessons from the eastern tropical Pacific. Coral Reefs 29, 749–758. https://doi.org/10.1007/s00338-010-0623-4 (2010).Article 
    ADS 

    Google Scholar 
    González-Barrios, F. J. & Álvarez-Filip, L. A framework for measuring coral species-specific contribution to reef functioning in the Caribbean. Ecol. Indic. 95, 877–886. https://doi.org/10.1016/j.ecolind.2018.08.038 (2018).Article 

    Google Scholar 
    Jokiel, P. L., Maragos, J. & Franzisket, L. Coral growth: Buoyant weight technique. In Coral Reefs: Research Methods (eds Stoddart, D. R., & Johannes, R. E.) 529–541 (UNESCO, 1978).Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32, 987–997. https://doi.org/10.1007/s00338-013-1047-8 (2013).Article 
    ADS 

    Google Scholar 
    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. USA 118, e2015265118. https://doi.org/10.1073/pnas.201526511 (2021).Article 
    CAS 

    Google Scholar 
    Rose, C. S. & Risk, M. J. Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar. Ecol. 6, 345–363. https://doi.org/10.1111/j.1439-0485.1985.tb00142.x (1985).Article 
    ADS 

    Google Scholar 
    Prouty, N. G. et al. Vulnerability of coral reefs to bioerosion from land-based sources of pollution. J. Geophys. Res-Oceans 122, 9319–9331. https://doi.org/10.1002/2017JC013264 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Eakin, C. M. The damselfish-algal lawn symbiosis and its influence on the bioerosion of an El Niño impacted coral reef, Uva Island, Pacific Panama. ProQuest Dissertations and Theses (1991).Alvarado, J. J., Reyes-Bonilla, H. & Benítez-Villalobos, F. Diadema mexicanum, erizo de mar clave en los arrecifes coralinos del Pacífico Tropical Oriental: Lo que sabemos y perspectivas futuras (Diadematoida: Diadematidae). Rev. Biol. Trop. 63(Suppl 2), 135–157. https://doi.org/10.15517/rbt.v63i2.23140 (2015).Article 

    Google Scholar 
    Glynn, P. W. Widespread coral mortality and the 1982–83 El Niño warming event. Environ. Conserv. 11, 133–146. https://doi.org/10.1017/S0376892900013825 (1984).Article 

    Google Scholar 
    Glynn, P. W. El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7, 129–160 (1988).
    Google Scholar 
    Eakin, C. M. A tale of two ENSO events: Carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull. Mar. Sci. 69, 171–186 (2001).ADS 

    Google Scholar 
    Russ, G. R., Questel, S. L. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: Refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045. https://doi.org/10.1007/s00227-015-2728-3 (2015).Article 

    Google Scholar 
    Wellington, G. M. & Glynn, P. W. Responses of Coral Reefs to El Niño-Southern Oscillation Sea-Warming Events. In Geological Approaches to Coral Reef Ecology (ed Aronson, R. B.) 342–385 (Springer, 2007).Guzmán, H. M. & Cortés, J. Changes in reef community structure after fifteen years of natural disturbances in the eastern Pacific (Costa Rica). Bull. Mar. Sci. 69, 133–149 (2001).
    Google Scholar 
    Guzman, H. M. & Cortés, J. Reef recovery 20 years after the 1982–1983 El Niño massive mortality. Mar. Biol. 151, 401–411. https://doi.org/10.1007/s00227-006-0495-x (2007).Article 

    Google Scholar 
    Edmunds, P. J. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306. https://doi.org/10.3354/meps12805 (2019).Article 
    ADS 

    Google Scholar 
    Enochs, I. C. et al. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Proc. R. Soc. B 283, 20161742. https://doi.org/10.1098/rspb.2016.1742 (2016).Article 
    CAS 

    Google Scholar 
    Roff, G. Reef accretion and coral growth rates are decoupled in Holocene reef frameworks. Mar. Geol. 419, 106065. https://doi.org/10.1016/j.margeo.2019.106065 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Perry, C. T. et al. Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth. Glob. Change Biol. 21, 1153–1164. https://doi.org/10.1111/gcb.12792 (2015).Article 
    ADS 

    Google Scholar 
    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC (2014).Neumann, A. C. & Macintyre, I. Reef response to sea level rise: Keep-up, catch-up or give up. In Proceedings 5th International Coral Reef Congress, Tahiti 3, 105–110 (1985).Macintyre, I. G. Modern coral reefs of western Atlantic: New geological perspective. AAPG Bull. 72, 1360–1369. https://doi.org/10.1306/703C99A1-1707-11D7-8645000102C1865D (1988).Article 

    Google Scholar 
    Hallock, P. & Schlager, W. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389–398. https://doi.org/10.2307/3514476 (1986).Article 
    ADS 

    Google Scholar 
    Kleypas, J. A. Coral reef development under naturally turbid conditions: Fringing reefs near Broad Sound, Australia. Coral Reefs 15, 153–167. https://doi.org/10.1007/BF01145886 (1996).Article 
    ADS 

    Google Scholar 
    van Woesik, R. & Done, T. J. Coral communities and reef growth in the southern Great Barrier Reef. Coral Reefs 16, 103–115. https://doi.org/10.1007/s003380050064 (1997).Article 

    Google Scholar 
    Sully, S. & van Woesik, R. Turbid reefs moderate coral bleaching under climate-related temperature stress. Glob. Change Biol. 26, 1367–1373. https://doi.org/10.1111/gcb.14948 (2020).Article 
    ADS 

    Google Scholar 
    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Romero-Torres, M. et al. Coral reef resilience to thermal stress in the eastern tropical Pacific. Glob. Change Biol. 26, 3880–3890. https://doi.org/10.1111/gcb.15126 (2020).Article 
    ADS 

    Google Scholar 
    Martínez-Castillo, V., Rodríguez-Troncoso, A. P., Mayfield, A. B., Rodríguez-Zaragoza, F. A. & Cupul-Magaña, A. L. Coral recovery in the central Mexican Pacific 20 years after the 1997–1998 El Niño Event. Oceans 3, 48–59. https://doi.org/10.3390/oceans3010005 (2022).Article 

    Google Scholar 
    Anton, A. et al. Differential thermal tolerance between algae and corals may trigger the proliferation of algae in coral reefs. Glob. Change Biol. 26, 4316–4327. https://doi.org/10.1111/gcb.15141 (2020).Article 
    ADS 

    Google Scholar 
    Roth, F. et al. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology 102, e03226. https://doi.org/10.1002/ecy.3226 (2021).Article 

    Google Scholar 
    Roik, A., Röthig, T., Pogoreutz, C., Saderne, V. & Voolstra, C. R. Coral reef carbonate budgets and ecological drivers in the central Red Sea—A naturally high temperature and high total alkalinity environment. Biogeosciences 15, 6277–6296. https://doi.org/10.5194/bg-15-6277-2018 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34. https://doi.org/10.1038/s41561-019-0486-4 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, T. B., Glynn, P. W., Maté, J. L., Toth, L. T. & Gyory, J. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95, 1663–1673. https://doi.org/10.1890/13-0468.1 (2014).Article 

    Google Scholar 
    Guest, J. R. et al. A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J. Appl. Ecol. 55, 2865–2875. https://doi.org/10.1111/1365-2664.13179 (2018).Article 

    Google Scholar 
    Courtney, T. A. et al. Disturbances drive changes in coral community assemblages and coral calcification capacity. Ecosphere 11, e03066. https://doi.org/10.1002/ecs2.3066 (2020).Article 

    Google Scholar 
    Bachman, S. D., Kleypas, J. A., Erdmann, M. & Setyawan, E. A global atlas of potential thermal refugia for coral reefs generated by internal gravity waves. Front. Mar. Sci. 9, 1346. https://doi.org/10.3389/fmars.2022.921879 (2022).Article 

    Google Scholar 
    Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 1, e0000004. https://doi.org/10.1371/journal.pclm.0000004 (2022).Article 

    Google Scholar 
    Kuffner, I. B., Stathakopoulos, A., Toth, L. T. & Bartlett, L. A. Reestablishing a stepping-stone population of the threatened elkhorn coral Acropora palmata to aid regional recovery. Endanger. Species Res. 43, 461–473. https://doi.org/10.3354/esr01083 (2020).Article 

    Google Scholar 
    Perry, C. T., Lange, I. D. & Januchowski-Hartley, F. A. ReefBudget Indo Pacific: Online resource and methodology. http://geography.exeter.ac.uk/reefbudget/ (2018).Nava, H. & Carballo, J. L. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J. Exp. Biol. 211, 2827–2831. https://doi.org/10.1242/jeb.019216 (2008).Article 

    Google Scholar 
    Carballo, J. L., Bautista, E., Nava, H., Cruz-Barraza, J. A. & Chávez, J. A. Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol. Evol. 3, 872–886. https://doi.org/10.1002/ece3.452 (2013).Article 

    Google Scholar 
    Smith, T. B. Temperature effects on herbivory for an Indo-Pacific parrotfish in Panamá: Implications for coral-algal competition. Coral Reefs 27, 397–405. https://doi.org/10.1007/s00338-007-0343-6 (2008).Article 
    ADS 

    Google Scholar 
    Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W. & Serafy, J. E. Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar. Ecol. Prog. Ser. 495, 233–247. https://doi.org/10.3354/meps10594 (2014).Article 
    ADS 

    Google Scholar 
    Palacios, M. M., Muñoz, C. G. & Zapata, F. A. Fish corallivory on a pocilloporid reef and experimental coral responses to predation. Coral Reefs 33, 625–636. https://doi.org/10.1007/s00338-014-1173-y (2014).Article 
    ADS 

    Google Scholar 
    Toth, L. T. Holocene Coral-Reef Development in the Tropical Eastern Pacific. (Florida Institute of Technology, 2013).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. https://cran.r-project.org/package=nlme.R-project (2021).Holgate, S. J. et al. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29, 493–504. https://doi.org/10.2112/JCOASTRES-D-12-00175.1 (2013).Article 

    Google Scholar 
    Permanent Service for Mean Sea Level. Balboa Tide Gauge Data. http://www.psmsl.org/data/obtaining/ (2022). More

  • in

    Colombian biodiversity is governed by a rich and diverse policy mix

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    CAS 

    Google Scholar 
    Gadgil, M., Berkes, F. & Folke, C. Indigenous knowledge for biodiversity conservation. Ambio 22, 151–156 (1993).
    Google Scholar 
    Gadgil, M., Berkes, F. & Folke, C. Indigenous knowledge: from local to global. Ambio 50, 967–969 (2021).Article 

    Google Scholar 
    The IPBES regional assessment report on biodiversity and ecosystem services for the Americas. IPBES https://doi.org/10.5281/zenodo.3236252 (2018).Claes, J. et al. Valuing nature conservation: a methodology for quantifying the benefits of protecting the planet’s natural capital (McKinsey & Company, 2020).Retsa, A., Schelske, O., Wilke, B., Rutherford, G. & de Jong, R. Biodiversity and ecosystem services: a business case for re/insurance (Swiss Re, 2020).Petersson, M. & Stoett, P. Lessons learnt in global biodiversity governance. Int. Environ. Agreem. Polit. Law Econ. 22, 333–352 (2022).
    Google Scholar 
    Dasgupta, P. The economics of biodiversity: the Dasgupta review. GOV.UK www.gov.uk/official-documents. (2021).Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Glob. Environ. Change 62, 1–13 (2020).Article 

    Google Scholar 
    Hale, T. & Roger, C. Orchestration and transnational climate governance. Rev. Int. Organ. 9, 59–82 (2014).Article 

    Google Scholar 
    Ring, I. & Barton, D. N. Economic instruments in policy mixes for biodiversity conservation and ecosystem governance. in Handbook of Ecological Economics (eds Martinez-Alier, J. & Muradian, R.) Ch, 17 (Edward Elgar, 2015).Von Essen, M. & Lambin, E. Jurisdictional approaches to sustainable resource use. Front. Ecol. Environ. 19, 159–167 (2021).Article 

    Google Scholar 
    Taylor, C., Pollard, S., Rocks, S. & Angus, A. Selecting policy instruments for better environmental regulation: a critique and future research agenda. Environ. Policy Gov. 22, 268–292 (2012).Article 

    Google Scholar 
    Ring, I. & Schröter-Schlaack, C. Instrument mixes for biodiversity policies. POLICYMIX Report https://policymix.nina.no (2011).Howlett, M. & Rayner, J. Design principles for policy mixes: cohesion and coherence in ‘new governance arrangements’. Policy Soc. 26, 1–18 (2007).
    Google Scholar 
    Soulé, M. The “new conservation”. Conserv. Biol. 27, 895–897 (2013).Article 

    Google Scholar 
    Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).Article 
    CAS 

    Google Scholar 
    Runhaar, H., Driessen, P. & Uittenbroek, C. Towards a systematic framework for the analysis of environmental policy integration. Environ. Policy Gov. 24, 233–246 (2014).Article 

    Google Scholar 
    Visseren-Hamakers, I. J. Integrative governance: the relationships between governance instruments taking center stage. Environ. Plan. C. Polit. Space 36, 1341–1354 (2018).Article 

    Google Scholar 
    Lafferty, W. & Hovden, E. Environmental policy integration: towards an analytical framework. Environ. Polit. 12, 1–22 (2003).Article 

    Google Scholar 
    Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2021).Article 

    Google Scholar 
    Decision adopted by the conference of the parties to the Convention on Biological Diversity. 14/3 Mainstreaming biodiversity in the energy and mining, infrastructure, manufacturing and processing sectors. Convention on Biological Diversity https://www.cbd.int/doc/decisions/cop-14/cop-14-dec-03-en.pdf (2018).Update of the zero draft of the post-2020 global biodiversity framework. Convention on Biological Diversity https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdf (2020).Whitehorn, P. R. et al. Mainstreaming biodiversity: a review of national strategies. Biol. Conserv. 235, 157–163 (2019).Article 

    Google Scholar 
    Alpízar, F. et al. Mainstreaming of natural capital and biodiversity into planning and decision-making: cases from Latin America and the Caribbean (IDB, 2020).Daily, G. Nature’s Services (Island Press, 1997).Hill, R. et al. Working with indigenous, local and scientific knowledge in assessments of nature and nature’s linkages with people. Curr. Opin. Environ. Sustain. 43, 8–20 (2020).Article 

    Google Scholar 
    Baptiste, B. et al. Greening peace in Colombia. Nat. Ecol. Evol. 1, 1–3 (2017).Article 

    Google Scholar 
    Biodiversidad en cifras. Instituto Alexander von Humboldt https://cifras.biodiversidad.co/ (2022).Censo nacional de población y vivienda. Estadísticas para grupos étnicos. DANE https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/grupos-etnicos/informacion-tecnica (2018).Boyd, E., Corbera, E. & Estrada, M. UNFCCC negotiations (pre-Kyoto to COP-9): what the process says about the politics of CDM-sinks. Int. Environ. Agreem. Polit. Law Econ. 8, 95–112 (2008).
    Google Scholar 
    Alvarez, C. F. et al. Evaluación nacional de biodiversidad y servicios ecosistémicos: resumen para tomadores de decisión. Instituto Alexander von Humboldt. http://www.humboldt.org.co/images/pdf/10721/RTDFinalv290621.pdf (2021).Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).Article 

    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).Article 

    Google Scholar 
    Laikre, L. Genetic diversity is overlooked in international conservation policy implementation. Conserv. Genet. 11, 349–354 (2010).Article 

    Google Scholar 
    Ministerio de Ambiente y Desarrollo Sostenible. Resolución 1912 del 15 de Septiembre de 2017, listado de especies silvestres amenazadas de la diversidad biológica colombiana continental y marino costera en el territorio nacional. (2017). https://www.minambiente.gov.co/wp-content/uploads/2021/10/resolucion-1912-de-2017.pdfNewton, A. C. Biodiversity risks of adopting resilience as a policy goal. Conserv. Lett. 9, 369–376 (2016).Article 

    Google Scholar 
    Jeanrenaud, S. Changing people/nature representations in international conservation discourses. IDS Bull. 33, 111–122 (2002).Article 

    Google Scholar 
    Louder, E. & Wyborn, C. Biodiversity narratives: stories of the evolving conservation landscape. Environ. Conserv. 47, 251–259 (2020).Article 

    Google Scholar 
    Bonilla-Mejía, L. & Higuera-Mendieta, I. Protected areas under weak institutions: evidence from Colombia. World Dev. 122, 585–596 (2019).Article 

    Google Scholar 
    African Development Bank Group et al. Joint statement by the Multilateral Development Banks at Paris, COP21. European Investment Bank https://www.eib.org/attachments/press/joint-mdb-statement-climate_nov-28_final.pdf (2021).Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).Article 

    Google Scholar 
    Friedman, K., Garcia, S. M. & Rice, J. Mainstreaming biodiversity in fisheries. Mar. Policy 95, 209–220 (2018).Article 

    Google Scholar 
    Turismo de naturaleza, oportunidad para conocer y proteger la biodiversidad de Colombia. MADS https://www.minambiente.gov.co/negocios-verdes/turismo-de-naturaleza-oportunidad-para-conocer-y-proteger-la-biodiversidad-de-colombia/ (2022).Pacheco, P., Schoneveld, G., Dermawan, A., Komarudin, H. & Djama, M. Governing sustainable palm oil supply: disconnects, complementarities, and antagonisms between state regulations and private standards. Regul. Gov. 14, 568–598 (2020).Article 

    Google Scholar 
    Peters, B. G. & Pierre, J. Developments in intergovernmental relations: towards multi-level governance. Policy Polit. 29, 131–135 (2001).Article 

    Google Scholar 
    Lustig, N. Fiscal redistribution in middle income countries. OECD Social, Employment and Migration Working Papers. 171 (2015).Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl Acad. Sci. USA 98, 5446–5451 (2001).Article 
    CAS 

    Google Scholar 
    Rule of law index 2020. World Justice Project https://worldjusticeproject.org/sites/default/files/documents/WJP-ROLI-2020-Online_0.pdf (2020).Recommendation of the council on policy coherence for sustainable development OECD/LEGAL/0381. OECD https://www.oecd.org/gov/pcsd/recommendation-on-policy-coherence-for-sustainable-development-eng.pdf (2019).Arellana, J., Oviedo, D., Guzman, L. A. & Alvarez, V. Urban transport planning and access inequalities: a tale of two Colombian cities. Res. Transp. Bus. Manag. https://doi.org/10.1016/j.rtbm.2020.100554 (2020).Leyes | Ministerio de Ambiente y Desarrollo Sostenible. MADS https://www.minambiente.gov.co/index.php/normativa/leyes (2021).Cavelier Adarve, I. & Rodríguez Becerra, M. in Nuevos Enfoques para el Estudio de las Relaciones Internacionales de Colombia (eds Tickner A.B. & Bitar, S.) Ch. 4 (Ediciones Uniandes-Universidad de los Andes, 2017).Política Nacional para la Gestión Integral de la biodiversidad y los Servicios Ecosistémicos (PNGIBSE) MADS (2012). https://www.minambiente.gov.co/wp-content/uploads/2021/10/Poli%CC%81tica-Nacional-de-Gestio%CC%81n-Integral-de-la-Biodiver.pdfPotts, J., Wenban-Smith, M. & Turley, L. State of sustainability initiatives review: standards and the extractive economy (IISD, 2018).Junguito Bonnet, R. El papel de los gremios en la economía colombiana. Rev. Desarro. Soc. 82, 103–131 (2019).Article 

    Google Scholar 
    Savvidou, G., Dzebo, A. & Atteridge, A. Aid Atlas: new tool to visualize development finance flows. JSTOR https://www.jstor.org/stable/resrep22982 (2019).BIOFIN- Movilizando recursos para la biodiversidad en Colombia, plan financiero. UNDP https://www.biofin.org/sites/default/files/content/knowledge_products/Plan%20Financiero%20Movilizando%20recursos%20para%20la%20biodiversidad%20en%20Colombia.pdf (2018).Echeverri, A. et al. Data for: a policy mix approach to biodiversity governance in Colombia (Dryad, 2022).Gibbs, G. Analyzing Qualitative Data (SAGE Publications, 2007).Maxwell, J. A. Qualitative Research Design: An Interactive Approach (SAGE Publications, 2012).Gould, R. K. et al. A protocol for eliciting nonmaterial values through a cultural ecosystem services frame. Conserv. Biol. 29, 575–586 (2015).Article 

    Google Scholar 
    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).Article 

    Google Scholar 
    Robinson, J. G. Ethical pluralism, pragmatism, and sustainability in conservation practice. Biol. Conserv. 144, 958–965 (2011).Article 

    Google Scholar 
    Sandbrook, C. What is conservation? Oryx 49, 565–566 (2015).Article 

    Google Scholar 
    Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).Article 

    Google Scholar 
    Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar  More

  • in

    Net loss of biomass predicted for tropical biomes in a changing climate

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. 108, 9899–9904 (2011).Article 
    CAS 

    Google Scholar 
    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).Article 
    CAS 

    Google Scholar 
    Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).Article 
    CAS 

    Google Scholar 
    Betts, R. A. et al. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol. 78, 157–175 (2004).Article 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).Article 
    CAS 

    Google Scholar 
    Rammig, A. et al. Estimating the risk of Amazonian forest dieback. N. Phytol. 187, 694–706 (2010).Article 
    CAS 

    Google Scholar 
    Huntingford, C. et al. Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Philos. Trans. R. Soc. B Biol. Sci. 363, 1857–1864 (2008).Article 

    Google Scholar 
    Galbraith, D. et al. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. N. Phytol. 187, 647–665 (2010).Article 

    Google Scholar 
    Kumar, D., Pfeiffer, M., Gaillard, C., Langan, L. & Scheiter, S. Climate change and elevated CO2 favor forest over savanna under different future scenarios in South Asia. Biogeosciences 18, 2957–2979 (2021).Article 
    CAS 

    Google Scholar 
    Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).Article 
    CAS 

    Google Scholar 
    Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).Article 
    CAS 

    Google Scholar 
    Koch, A., Hubau, W. & Lewis, S. L. Earth system models are not capturing present-day tropical forest carbon dynamics. Earths Future 9, e2020EF001874 (2021).Article 
    CAS 

    Google Scholar 
    Negrón-Juárez, R. I., Koven, C. D., Riley, W. J., Knox, R. G. & Chambers, J. Q. Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environ. Res. Lett. 10, 064017 (2015).Article 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).Article 
    CAS 

    Google Scholar 
    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).Article 
    CAS 

    Google Scholar 
    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. 106, 20610–20615 (2009).Article 
    CAS 

    Google Scholar 
    Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S. & Fisher, J. B. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369, 137–160 (2011).
    Google Scholar 
    Huang, L. et al. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Sci. Rep. 6, 24639 (2016).Article 
    CAS 

    Google Scholar 
    Castanho, A. D. A. et al. Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate. Environ. Res. Lett. 15, 034053 (2020).Article 

    Google Scholar 
    Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): global datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v3. NERC EDS Centre for Environmental Data Analysis https://doi.org/10.5285/5f331c418e9f4935b8eb1b836f8a91b8 (2021).Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).Article 
    CAS 

    Google Scholar 
    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).Article 
    CAS 

    Google Scholar 
    Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).Article 

    Google Scholar 
    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).Article 
    CAS 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).Article 
    CAS 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the amazon rainforest. Science 323, 1344–1347 (2009).Article 
    CAS 

    Google Scholar 
    Ross, C. W. et al. Woody-biomass projections and drivers of change in sub-Saharan Africa. Nat. Clim. Change 11, 449–455 (2021).Article 

    Google Scholar 
    Larjavaara, M., Lu, X., Chen, X. & Vastaranta, M. Impact of rising temperatures on the biomass of humid old-growth forests of the world. Carbon Balance Manag. 16, 31 (2021).Article 

    Google Scholar 
    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).Article 
    CAS 

    Google Scholar 
    Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutierrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation and plant mortality in a tropical forest. Ecology 102, e03541 (2021).Article 

    Google Scholar 
    Magnabosco Marra, D. et al. Windthrows control biomass patterns and functional composition of Amazon forests. Glob. Change Biol. 24, 5867–5881 (2018).Article 

    Google Scholar 
    Negrón-Juárez, R. I. et al. Windthrow variability in central amazonia. Atmosphere 8, 28 (2017).Article 

    Google Scholar 
    Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, 40 (2020).Article 

    Google Scholar 
    Yin, Y. et al. Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nat. Commun. 11, 1900 (2020).Article 
    CAS 

    Google Scholar 
    Koch, A. & Kaplan, J. O. Tropical forest restoration under future climate change. Nat. Clim. Change 12, 279–283 (2022).Article 

    Google Scholar 
    Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).Article 
    CAS 

    Google Scholar 
    Case, M. F. & Staver, A. C. Fire prevents woody encroachment only at higher-than-historical frequencies in a South African savanna. J. Appl. Ecol. 54, 955–962 (2017).Article 
    CAS 

    Google Scholar 
    Mau, A. C., Reed, S. C., Wood, T. E. & Cavaleri, M. A. Temperate and tropical forest canopies are already functioning beyond their thermal thresholds for photosynthesis. Forests 9, 47 (2018).Article 

    Google Scholar 
    Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).Article 
    CAS 

    Google Scholar 
    Martens, C. et al. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Glob. Change Biol. 27, 340–358 (2021).Article 
    CAS 

    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold?. J. Geophys. Res. Biogeosciences 113, G00B07 (2008).Article 

    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Seasonal patterns of tropical forest leaf area index and CO2 exchange. J. Geophys. Res. Biogeosciences 113, G00B06 (2008).Article 

    Google Scholar 
    Langenbrunner, B., Pritchard, M. S., Kooperman, G. J. & Randerson, J. T. Why does amazon precipitation decrease when tropical forests respond to increasing CO2? Earths Future 7, 450–468 (2019).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Maurer, E. P., Brekke, L., Pruitt, T. & Duffy, P. B. Fine-resolution climate projections enhance regional climate change impact studies. EOS Trans. Am. Geophys. Union 88, 504–504 (2007).Article 

    Google Scholar 
    Reclamation. Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with preceding Information, and Summary of User Needs. https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/BCSD5HydrologyMemo.pdf (2014).Silva de Miranda, P. L. et al. Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America. Glob. Ecol. Biogeogr. 27, 899–912 (2018).Article 

    Google Scholar 
    Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).Article 

    Google Scholar 
    Middleton, N., Thomas, D. & UNEP. World Atlas of Desertification (Arnold, 1997).Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of Savanna and forest as alternative biome states. Science 334, 230–232 (2011).Article 
    CAS 

    Google Scholar 
    ESRI Data & Maps. World Continents Version 10.3. (2015).Uribe, M. R. et al. Net loss of biomass predicted for tropical biomes in a changing climate. Dryad https://doi.org/10.7280/D1D124 (2023). More

  • in

    Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin

    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol 8, 15–25 (2010).CAS 

    Google Scholar 
    Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830, 3670–3695 (2013).CAS 

    Google Scholar 
    Blin, K., Kim, H. U., Medema, M. H. & Weber, T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief. Bioinform. 20, 1103–1113 (2019).CAS 

    Google Scholar 
    Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).CAS 

    Google Scholar 
    Scherlach, K. & Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760 (2009).CAS 

    Google Scholar 
    Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).
    Google Scholar 
    Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).ADS 
    CAS 

    Google Scholar 
    Naqvi, S. W. A. et al. Marine hypoxia/anoxia as a source of CH 4 and N 2 O. Biogeosciences 7, 2159–2190 (2010).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I., Sayles, F. L., Bacon, M. P. & Brewer, P. G. Temporal changes in the hydrography and chemistry of the Cariaco Trench. Deep-Sea Res. Part A. Oceanogr. Res. Pap. 34, 945–963 (1987).ADS 
    CAS 

    Google Scholar 
    Taylor, G. T. et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol. Oceanogr. 46, 148–163 (2001).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I., Astor, Y., Bohrer, R., Ho, T.-Y. & Muller-Karger, F. Controls on temporal variability of the geochemistry of the deep Cariaco Basin. Deep-Sea Res. I Oceanogr. Res. Pap. 48, 1605–1625 (2001).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I. et al. Interannual and subdecadal variability in the nutrient geochemistry of the Cariaco Basin. Oceanography 27, 148–159 (2014).
    Google Scholar 
    Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57, 1331–1346 (2012).ADS 
    CAS 

    Google Scholar 
    Canfield, D. E. et al. A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean coast. Science 330, 1375–1378 (2010).ADS 
    CAS 

    Google Scholar 
    Schlosser, C. et al. H 2 S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved Fe concentrations. Sci. Rep. 8, 1–8 (2018).
    Google Scholar 
    Rapp, I. et al. Controls on redox-sensitive trace metals in the Mauritanian oxygen minimum zone. Biogeosciences 16, 4157–4182 (2019).ADS 
    CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
    Google Scholar 
    Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).Edgcomb, V. P. et al. Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples. Deep-Sea Res. II: Top. Stud. Oceanogr. 129, 213–222 (2016).ADS 
    CAS 

    Google Scholar 
    Cabello-Yeves, P. J. et al. The microbiome of the Black Sea water column analyzed by shotgun and genome centric metagenomics. Environ. Microbiome 16, 1–15 (2021).
    Google Scholar 
    Suter, E. A., Pachiadaki, M., Taylor, G. T., Astor, Y. & Edgcomb, V. P. Free‐living chemoautotrophic and particle‐attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environ. Microbiol. 20, 693–712 (2018).CAS 

    Google Scholar 
    Mestre, M. et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol. Ecol. 26, 6827–6840 (2017).CAS 

    Google Scholar 
    Li, J. et al. Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea. Biogeosciences 18, 113–133 (2021).ADS 
    CAS 

    Google Scholar 
    Mestre, M., Borrull, E., Sala, M. M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).
    Google Scholar 
    Pelve, E. A., Fontanez, K. M. & DeLong, E. F. Bacterial succession on sinking particles in the ocean’s interior. Front. Microbiol. 8, 2269 (2017).
    Google Scholar 
    Duret, M. T., Lampitt, R. S. & Lam, P. Prokaryotic niche partitioning between suspended and sinking marine particles. Environ. Microbiol. Rep. 11, 386–400 (2019).CAS 

    Google Scholar 
    Sinninghe Damsté, J. S., Rijpstra, W. I. C., Geenevasen, J. A. J., Strous, M. & Jetten, M. S. M. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J. 272, 4270–4283 (2005).
    Google Scholar 
    Fuchsman, C. A., Staley, J. T., Oakley, B. B., Kirkpatrick, J. B. & Murray, J. W. Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiol. Ecol. 80, 402–416 (2012).CAS 

    Google Scholar 
    Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 1–12 (2021).
    Google Scholar 
    Letzel, A.-C., Pidot, S. J. & Hertweck, C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat. Prod. Rep. 30, 392–428 (2013).CAS 

    Google Scholar 
    Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).
    Google Scholar 
    Mungan, M. D. et al. ARTS 2.0: feature updates and expansion of the antibiotic resistant target seeker for comparative genome mining. Nucleic Acids Res. 48, W546–W552 (2020).CAS 

    Google Scholar 
    Alanjary, M. et al. The antibiotic resistant target seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res. 45, W42–W48 (2017).CAS 

    Google Scholar 
    Waters, A. L., Hill, R. T., Place, A. R. & Hamann, M. T. The expanding role of marine microbes in pharmaceutical development. Curr. Opin. Biotechnol. 21, 780–786 (2010).CAS 

    Google Scholar 
    Long, R. A. & Azam, F. Antagonistic interactions among marine pelagic bacteria. Appl. Environ. Microbiol. 67, 4975–4983 (2001).ADS 
    CAS 

    Google Scholar 
    Graça, A. P., Calisto, R. & Lage, O. M. Planctomycetes as novel source of bioactive molecules. Front. Microbiol. 7, 1241 (2016).
    Google Scholar 
    Murphy, C. L. et al. Genomes of novel Myxococcota reveal severely curtailed machineries for predation and cellular differentiation. Appl. Environ. Microbiol. 87, e01706–e01721 (2021).CAS 

    Google Scholar 
    Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).CAS 

    Google Scholar 
    Charlesworth, J. C. & Burns, B. P. Untapped resources: biotechnological potential of peptides and secondary metabolites in archaea. Archaea 2015, 282035 (2015).Wang, S. & Lu, Z. in Biocommunication of Archaea (ed. Witzany, G.) 67–101 (Springer, 2017).Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).CAS 

    Google Scholar 
    McInnes, L., Healy, J. & Melville, J. Umap: uniform manifold approximation and projection for dimension reduction. Journal of Open Source Software 3, 861 (2018).Rattray, J. E. et al. A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis. Biol. Direct 4, 1–16 (2009).
    Google Scholar 
    Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 1–19 (2021).
    Google Scholar 
    Choudoir, M. J., Pepe-Ranney, C. & Buckley, D. H. Diversification of secondary metabolite biosynthetic gene clusters coincides with lineage divergence in Streptomyces. Antibiotics 7, 12 (2018).
    Google Scholar 
    Li, Y. & Rebuffat, S. The manifold roles of microbial ribosomal peptide–based natural products in physiology and ecology. J. Biol. Chem. 295, 34–54 (2020).CAS 

    Google Scholar 
    Ma, L. & Payne, S. M. AhpC is required for optimal production of enterobactin by Escherichia coli. J. Bacteriol. 194, 6748–6757 (2012).CAS 

    Google Scholar 
    Davis, C. et al. The role of glutathione S-transferase GliG in gliotoxin biosynthesis in Aspergillus fumigatus. Chem. Biol. 18, 542–552 (2011).CAS 

    Google Scholar 
    Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).
    Google Scholar 
    Wang, Y. et al. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J. Bacteriol. 193, 3606–3617 (2011).CAS 

    Google Scholar 
    Laursen, J. B. & Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104, 1663–1686 (2004).CAS 

    Google Scholar 
    McParland, E. et al. Cycling of suspended particulate phosphorus in the redoxcline of the Cariaco Basin. Mar. Chem. 176, 64–74 (2015).CAS 

    Google Scholar 
    McRose, D. L. & Newman, D. K. Redox-active antibiotics enhance phosphorus bioavailability. Science 371, 1033–1037 (2021).ADS 
    CAS 

    Google Scholar 
    Cundliffe, E. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207–233 (1989).ADS 
    CAS 

    Google Scholar 
    Webber, M. A. & Piddock, L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).CAS 

    Google Scholar 
    Vetting, M. W. et al. Pentapeptide repeat proteins. Biochemistry 45, 1–10 (2006).CAS 

    Google Scholar 
    Kauppinen, S., Siggaard-Andersen, M. & von Wettstein-Knowles, P. β-ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of thefabB gene and identification of the cerulenin binding residue. Carlsberg Res. Commun. 53, 357–370 (1988).CAS 

    Google Scholar 
    Kloosterman, A. M., Shelton, K. E., van Wezel, G. P., Medema, M. H. & Mitchell, D. A. RRE-Finder: a genome-mining tool for class-independent RiPP discovery. mSystems 5, e00267–20 (2020).CAS 

    Google Scholar 
    Barry, S. M. & Challis, G. L. Mechanism and catalytic diversity of Rieske non-heme iron-dependent oxygenases. ACS Catal. 3, 2362–2370 (2013).CAS 

    Google Scholar 
    Benjdia, A., Balty, C. & Berteau, O. Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Front. Chem. 5, 87 (2017).
    Google Scholar 
    Pandey, R. P., Parajuli, P. & Sohng, J. K. Metabolic engineering of glycosylated polyketide biosynthesis. Emerg. Top. Life Sci. 2, 389–403 (2018).CAS 

    Google Scholar 
    Argueta, E. A., Amoh, A. N., Kafle, P. & Schneider, T. L. Unusual non-enzymatic flavin catalysis enhances understanding of flavoenzymes. FEBS Lett. 589, 880–884 (2015).CAS 

    Google Scholar 
    Jarrett, J. T. Surprise! A hidden B12 cofactor catalyzes a radical methylation. J. Biol. Chem. 294, 11726–11727 (2019).CAS 

    Google Scholar 
    Byers, D. M. & Gong, H. Acyl carrier protein: structure–function relationships in a conserved multifunctional protein family. Biochem. Cell Biol. 85, 649–662 (2007).CAS 

    Google Scholar 
    D’Andrea, L. D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).
    Google Scholar 
    Ganesh, S. et al. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 9, 2682–2696 (2015).CAS 

    Google Scholar 
    Ganesh, S., Parris, D. J., DeLong, E. F. & Stewart, F. J. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J. 8, 187–211 (2014).CAS 

    Google Scholar 
    Fuchsman, C. A., Kirkpatrick, J. B., Brazelton, W. J., Murray, J. W. & Staley, J. T. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol. Ecol. 78, 586–603 (2011).CAS 

    Google Scholar 
    Alldredge, A. L. & Cohen, Y. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235, 689–691 (1987).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I. et al. Temporal variability in the nutrient chemistry of the Cariaco Basin. in Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences, Vol. 64. (ed. Neretin, L.) 139–160 (Springer Dordrecht, 2006).Firn, R. D. & Jones, C. G. The evolution of secondary metabolism–a unifying model. Mol. Microbiol. 37, 989–994 (2000).CAS 

    Google Scholar 
    Junkins, E. N., McWhirter, J. B., McCall, L.-I. & Stevenson, B. S. Environmental structure impacts microbial composition and secondary metabolism. ISME Commun. 2, 1–10 (2022).
    Google Scholar 
    Penn, K. et al. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J. 3, 1193–1203 (2009).CAS 

    Google Scholar 
    Thaker, M. N. et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31, 922–927 (2013).CAS 

    Google Scholar 
    Taylor, C. D. & Doherty, K. W. Submersible Incubation Device (SID), autonomous instrumentation for the in situ measurement of primary production and other microbial rate processes. Deep-Sea Res. Part A. Oceanogr. Res. Pap. 37, 343–358 (1990).ADS 
    CAS 

    Google Scholar 
    Pachiadaki, M. G., Rédou, V., Beaudoin, D. J., Burgaud, G. & Edgcomb, V. P. Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Front. Microbiol. 7, 846 (2016).
    Google Scholar 
    Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008).ADS 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 

    Google Scholar 
    Stewart, F. J., Ulloa, O. & DeLong, E. F. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ. Microbiol. 14, 23–40 (2012).CAS 

    Google Scholar 
    Conroy, J. L. et al. Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nat. Geosci. 2, 46–50 (2009).ADS 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 

    Google Scholar 
    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63 (1990).ADS 
    CAS 

    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
    Google Scholar 
    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    Google Scholar 
    Team, R. C. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).
    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 1303.3997v2 (2013).Ben Woodcroft. CoverM. https://github.com/wwood/CoverM (2022).Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 1–11 (2010).
    Google Scholar 
    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 

    Google Scholar 
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).CAS 

    Google Scholar 
    Konopka, T. umap. Uniform manifold approximation and projection (2018).Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version 2, 1–189 (2016).
    Google Scholar 
    Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: fast density-based clustering with R. J. Stat. Softw. 91, 1–30 (2019).
    Google Scholar 
    Geller-McGrath, D. et al. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. https://github.com/d-mcgrath/cariaco_basin (2023). More

  • in

    This baby turtle surprised scientists by swimming against the current

    In 2008, I had just begun volunteering at Equilibrio Azul — a non-profit marine-research and -conservation organization based in Quito — when colleagues discovered a hawksbill sea turtle (Eretmochelys imbricata) nesting at La Playita beach in Ecuador. The eastern Pacific population of hawksbill sea turtles is one of the most endangered in the world and was considered functionally extinct in the region before this turtle and others were observed.That discovery was a tipping point for hawksbill research in Ecuador and throughout the Pacific Ocean. Since 2008, we’ve found about 20 nests each year at La Playita, and one season, we documented 50.We have tagged 11 adult females with satellite transmitters. Previously, most of our understanding of these turtles had been based on observations in the Caribbean, where the reptiles are strictly coral-reef dwellers. But Ecuador’s reefs are mostly rocky, with patches of coral, and we were surprised to see females migrate south to mangroves, mainly for food.
    Women in science
    In this image, we have just attached a transmitter to a baby turtle — a first for hawksbill turtles this young and in the eastern Pacific region. We did not know much about hawksbills at this young age. It is tricky working with baby turtles, because they grow very fast, and the transmitters, which give us location data, can easily fall off. We’ve used cement to glue the devices to the shells of six newborns so far. The longest the transmitters have lasted is three months and the shortest period was only six weeks — but the devices provided our first insights into the ‘lost years’ of sea-turtle biology.Our findings have overturned assumptions that neonates were just carried along by currents. Instead, we found that one-day-old turtles can swim against the current. They aim for a specific direction — north by northwest — as they learn to dive and swim. We tracked one-year-old hawksbills to Costa Rican waters, a journey of roughly 2,000 kilometres, before we lost their signal.Cristina Miranda is a scientific coordinator at Equilibrio Azul in Quito, Ecuador. Interview by Virginia Gewin. More

  • in

    Reconciling oil palm and ecosystems

    Oil palm plantations can supplant once biodiverse tropical forests. As planted areas expand, it is vital to plan landscapes to better balance biodiversity and oil palm production. Strategic ‘set-asides’ offer a key approach.In recent decades, oil palm has expanded spectacularly in some of the most biodiverse areas of the tropics, especially in Indonesia and Malaysia. This expansion has caused extensive deforestation (including loss of more than 2.1 million ha of primary forests in Borneo2, as well as other forests and agroforests), and management of plantations often relies heavily on clearing, herbicides and pesticides. This has generated many direct and indirect impacts on wildlife, ecosystems, climate and human communities3. Further expansion is ongoing, and global demand continues to rise4. More

  • in

    Joint use of location and acceleration data reveals influences on transitions among habitats in wintering birds

    Goose capture and trackingWe used rocket netting and leg snares to capture white-fronted geese in three regions in Texas (Rolling Plains, Lower Texas Coast, and South Texas Brushlands) and one region in Louisiana (Chenier Plain) from October to February 2016–2018 (Fig. 1). We determined age and sex of individuals by cloacal inversion, rectrices and other plumage characteristics27,28. We fit a solar powered GPS/ACC/Global System for Mobile communication (GSM) neckband tracking device (Cellular Tracking Technologies Versions BT3.0, BT3.5 and BT3.75; 44–54 g; Rio Grande, New Jersey, USA, and Ornitela OrniTrack-N38; 36 g; Vilnius, Lithuania), and an aluminum U.S. Geological Survey Bird Banding Laboratory metal leg band (Supplementary Fig. S1) on each bird. Geese were captured and tagged under USGS Bird Banding Permits #21314 and #23792, and Texas A&M University-Kingsville Institutional Animal Care and Use Committee #2015-09-01B. Captive geese were permitted under TAMUK IACUC #2018-01-11 and United States Fish and Wildlife Service Waterfowl Sale and Disposal permit #MB03808D-0. All applicable field methods were carried out in accordance with relevant guidelines and regulations. All animal handling protocols were approved by TAMUK IACUC committees and the USGS Bird Banding Laboratory. When multiple white-fronted geese were captured simultaneously, devices were only placed on adult females or adult males to eliminate the potential of placing devices on mated pairs, thus biasing independent data collection due to monogamous, long-term pair bonds in white-fronted geese. Location duty cycles were set to collect a GPS location every 30 min (i.e., 48/day) and location accuracy was 7.2 and 6.5 m for CTT and Ornitela devices, respectively. Data were uploaded once daily to respective online user interface websites when within areas of GSM coverage. When not in coverage areas, data were stored onboard the device until birds returned to coverage areas. All devices were equipped with a tri-axial ACC sensor which measured G-force (g; CTT devices) or millivolts (mV; Ornitela devices) at a fixed sampling scheme; CTT BT3.5 and Ornitela devices collected ACC data for a duration of 3 s every 6 min at 10 Hz, while BT3.0 devices collected data for a duration of 10 s every 6 min at 10 Hz. Generation BT3.0 devices were subsampled to match the sampling scheme of 3 s bursts before analyses. Ornitela units measured in mV were converted to G-force. We applied manufacturer- and tag-specific ACC calibration to all units, respectively, by collecting ACC data on each possible rotation for all axes when the device was stationary and applying the calibration to the raw ACC values (see Ref.29 for full calibration procedure). All devices recorded temperature in °C at each GPS fix. We censored GPS and ACC data from the time of release until individuals appeared to resume normal movement activity (i.e., roosting and foraging), as geese typically flew to the nearest wetland immediately after release where they remained without leaving while acclimating to wearing devices, which ranged from 1 to 7 days30. We defined the start of the winter period following a southward migratory movement from staging areas in Canada, without additional migratory movements southward below 40° 0′ 00″ N, or from the time of device deployment (minus device acclimation period) until geese made large northward migratory movements, or 28 February if geese remained in wintering areas.Figure 1Primary wintering regions of the Midcontinent population of greater white-fronted goose (Anser albifrons frontalis) in North America (excluding regions in Mexico). Transmitters were deployed during winters 2016–2018 in the Chenier Plain (Louisiana), Lower Texas Coast, and Rolling/High Plains regions. Geese that made winter movements outside of these defined regions were classified as ‘Other’ regions. Map created using Esri ArcMap (version 10.3.1; www.esri.com).Full size imageLand cover covariatesWe used publicly available spatial landcover data sets (30-m resolution) in combination with remote sensing to create landscape layers using programs Esri ArcMap (version 10.3.1), Erdas Imagine, and Program R (version 3.5.231). We used 2017 and 2018 National Agricultural Statistics Service Cropland Data Layer (CDL) data sets for agricultural crop types and freshwater wetlands, and the 2010 Coastal Change Analysis Program layer for saltwater and coastal wetland classifications29,32. Additionally, we used multi-spectral Landsat 8 Operational Land Imager satellite imagery, with principal component analysis on eight Landsat bands and a normalized difference vegetation index band, and unsupervised classification33,34 to accurately identify and create a spatial layer for peanut fields. We developed this layer for two regions with annual peanut agriculture (i.e., the Rolling/High Plains and South Texas Brushlands) using ground-truthed peanut fields, because the CDL layer did not identify this crop accurately based on our field observations during captures. We achieved  > 90% accuracy of peanut identification for each image independently based on annual ground-truthed observations of peanut fields. Finally, we grouped like-habitat categories to reduce the total number of categories to eight: corn, grass/winter wheat, herbaceous wetlands, other grains (i.e., soybeans, sorghum, and peanuts), rice, woody wetlands, open water/unconsolidated shore and other (Supplementary Table S1). White-fronted geese used several ecologically distinct regions in both winters of our study (Fig. 1), where the landscape composition of specific landcover types varied. To account for regional variability, we added region ID as a categorical variable to all GPS locations. Regions included the MAV, Chenier Plain, Texas Mid-coast, Lower Texas Coast, South Texas Brushlands, Texas Rolling/High Plains, and Other (i.e., locations outside of these identified wintering regions; Fig. 1). We used regional shapefiles of Gulf Coast Joint Venture Initiative Areas (Laguna Madre [Lower Texas Coast], Texas Mid-coast, and Chenier Plain35), and Level III Ecoregions (Mississippi Alluvial Valley, Texas Rolling/High Plains, and South Texas Brushlands36) as boundaries to classify data into regions. Due to insufficient and incompatible spatial layers for Mexico, we limited analyses to locations within the US.Location and acceleration data collectionRemotely determining behaviors of individuals using ACC data is most accurately addressed by developing a training dataset of known behaviors linked with ACC measurements of those behaviors18,37. To develop a training dataset, we collected video footage of two domestic white-fronted geese in Texas, US, and 18 tagged wild Greenland white-fronted geese (A. a. flavirostris) fitted with the same device types and the same data collection scheme, in Wexford, Ireland and Hvanneyri, Iceland during winters 2017–2018. We supplemented wild recordings with behavioral recordings of captive white-fronted geese as a proxy for wild individuals due to difficulty filming wild geese in inclement weather and obstructed video footage, which is common in ACC literature19,20,38,39. To replicate devices placed on wild white-fronted geese and account for potential variation in ACC measurements between device brands, among device versions and individual geese, we deployed three versions of devices used in this study on captive white-fronted geese during filming sessions38,40. We attached tracking devices to captive geese one week prior to video collection to allow geese to adjust to wearing devices. We collected ACC measurements for 3 s bursts, at 1 min intervals, at 10 Hz. We constructed a 149 m2 enclosure in an agricultural field to imitate an environment that wild geese may encounter. We created two enclosure settings allowing captive geese to forage on sprouted winter wheat (~ 2–15 cm) or on a randomly dispersed mixture of grain seeds (corn, wheat, sorghum) to account for both ‘grazing’ of vascular vegetation and ‘gleaning’ of agricultural grains to imitate foraging in wild geese. We used Sony Handycam DCR-SR45 video cameras, matched internal camera clocks with a running Universal Coordinated Time clock, and verbally re-calibrated the current time every 2 min during video footage collection. We filmed 119.5 h of video footage, and matched behavior with recorded ACC measurements by pairing video and device timestamps for each device using JWatcher41 and Program R.We characterized goose behaviors into four categories: ‘stationary’, ‘walk’, and ‘foraging’ from ground-truthed video footage, and ‘flight’ from visual inspection of the ACC data and consecutive GPS tracks during migration where device-measured speed remained  > 4.63 km/h (based on a natural break in the speed density distribution of all GPS locations). Each ACC burst was classified as only one behavior (i.e., a goose that was walking as it foraged was classified as ‘foraging’). We combined wild goose behaviors and captive goose behaviors after identifying minimal differences in ACC burst summary statistics29 for ‘stationary’ and ‘walk’ behaviors. We used ‘graze’ behaviors only from wild geese because of low sample size for captive geese and slight differences in ACC summary statistics between captive and wild geese for this behavior. ‘Glean’ foraging behavior was only classified from captive geese. We then combined ‘graze’ and ‘glean’ behaviors into an overall ‘foraging’ behavior to account for variation in foraging behavior of wild geese, and because machine learning models could not accurately distinguish between the two foraging modes40. We randomly subsampled all behaviors to 150 bursts if our dataset contained at least that many bursts to reduce the risk of artificially increasing prediction accuracy20. We determined there were insufficient differences in ACC signatures between CTT BT3.0 and BT3.5 versions by visual comparison of signatures and summary statistics, and merged all bursts into an overall CTT-specific training data set, and retained CTT- and Ornitela-specific training data sets to account for brand-specific ACC measurement schemes. The final training data sets consisted of 150 stationary, 150 walking, 118 foraging, and 150 flying bursts (CTT), and 150 stationary, 75 walking, 120 foraging, and 150 flying bursts (Ornitela).We used the training data sets to predict behaviors of tagged, wild white-fronted geese during winter with temporally aligned GPS and ACC data. We used a suite of supervised machine-learning algorithms and selected the algorithm with greatest prediction accuracy based on an 80% training, 20% testing sample approach. We tested random forest, support vector machines, K-nearest neighbors, classification and regression trees, and linear discriminant analysis, all with cross validation in Program R18,29,42. We evaluated models using three metrics defined in Ref.42: (1) overall classification accuracy as the percent of classifications in the test data set that were predicted correctly, (2) precision of assignment, the probability that an assigned behavior in the test data set was correct, and (3) model recall, the probability that a sample with a specific behavior in the test data set was correctly classified as that behavior by the model. Random forests provided the highest overall classification accuracy (95.6% for CTT and 96.0% for Ornitela), as well as high precision and recall for each behavior (CTT range 93.1–99.3, Ornitela range 88.9–100.0%), and therefore we labeled behaviors from wild goose ACC data using the random forests.Habitat transition modelOur habitat-transition model required temporally matched GPS and ACC datasets. Therefore, we subset all GPS locations to match the time-series of ACC data per individual because devices typically acquired GPS data longer than ACC data before device failure or individual mortality. For each GPS location, we extracted the landcover type and wintering region from spatial layers and retained temperature recorded from the device. To link classified ACC behaviors to GPS locations, we matched ACC timestamps between two GPS locations with the previous GPS timestamp. That is, all ACC bursts between two GPS locations were assigned backward to the previous GPS location. In this way, an individual’s first location is collected in GPS landcover type A, ACC data are collected in 5 bursts, their behaviors are classified and assigned to the first GPS location A and associated landcover type, followed by collection of GPS location B, in which the subsequent 5 ACC bursts are associated to GPS location/landcover type B. In the case of missing GPS locations, we matched ACC bursts to the previous GPS location only if the ACC timestamps were within 60 min of the GPS timestamp, and ACC bursts occurring greater than 60 min after GPS acquisition were removed until the next GPS fix. To account for temporal variation in habitat-behavior relationships, we calculated two continuous covariates representing time-of-day based on the local time associated with the timestamp of each GPS location for each individual. The variable cos(Diel) represented diurnal (negative values) and nocturnal (positive values) periods, and sin(Time) represented midnight until 11:59 a.m. (positive values) and noon until the following 11:59 p.m. (negative values), where high and low values ranged continuously between 1 and − 143. Our temporally matched time series of GPS and ACC data yielded 53,502 GPS locations linked with 300,348 ACC bursts across both winters.We used a Bayesian Markov model with Pólya-Gamma sampling following43), [cf. Refs.44,45] to determine how transitions between landcover types were influenced by behavior, temperature, time-of-day, and wintering region. The proportion of time spent foraging, walking, and stationary between each successive GPS fix was included as a covariate; flight was not included to reduce multicollinearity due to behavior proportions summing to one. Markov models account for non-independence among observations by assuming that the current state (i.e., landcover type) is dependent upon the previous state, and allow the determination of covariate influences on the probability of transitioning among states through a logistic link function. The transition probability from habitat i to habitat j at time t for individual n is modeled with multinomial logistic regression:$$begin{aligned} & logitleft( {p_{nijt} } right) = logleft( {frac{{p_{nijt} }}{{p_{niJt} }}} right) = mathop sum limits_{{r in {mathcal{R}}_{j} }} beta_{0jr} Ileft( {Region_{nt} = r} right) + beta_{1j} {text{cos}}left( {Diel_{nt} } right) \ & quad + beta_{2j} {text{sin}}left( {Time_{nt} } right) + beta_{3ij} Forage_{nt} + beta_{4ij} Walk_{nt} + beta_{5ij} Stationary_{nt} + beta_{6ij} Temperature_{nt} , \ end{aligned}$$where ({mathcal{R}}_{j}) is the set of wintering regions (r) where habitat (j) occurs, (Regio{n}_{rnt}) indicated wintering region (r), and (mathrm{cos}left({Diel}_{nt}right)) and (mathrm{sin}({Time}_{nt})) were temporal covariates (described above) for habitat j. Quantities ({Forage}_{nt}, {Walk}_{nt},mathrm{ and }{Stationary}_{nt}) were the scaled (mean = 0, standard deviation = 1) proportion of time spent in each behavior between transitions from habitat i to habitat j, and ({Temperature}_{nt}) was scaled ambient temperature (°C) for transitions from habitat i to habitat j. All coefficients for transitions to the baseline habitat (J) were set to 0 (i.e., ({beta }_{0Jr}) for all (r), ({beta }_{1J}), ({beta }_{2J}), ({beta }_{3iJ}), ({beta }_{4iJ}), ({beta }_{5iJ}),({beta }_{6iJ}), for all (i)). We set the baseline habitat (J) as open water/unconsolidated shore because this habitat is used primarily for both nocturnal roosting and diurnal loafing, included all behaviors, and transitions to all other landcover types were frequent in each region.The prior for the set of winter region intercepts for each habitat was:$${beta }_{0jr}sim N({beta }_{0j},{sigma }_{0jr}^{2}),$$for (rin {mathcal{R}}_{j}), ({beta }_{0j}) was the mean intercept, and ({sigma }_{0jr}^{2}) was set to 100. For ({beta }_{0j}), a vague prior mean 0 and σ2 = 100 was used with an assumed normal distribution.The Markov model was executed within a Bayesian framework to robustly quantify uncertainty. The Markov model assumed that data were collected at regular time intervals for both GPS (30 min) and ACC (6 min), however imperfect collection by devices created irregular data sets. Therefore, we subsampled GPS locations and constrained time series data to sequences where GPS locations missing  > 120 min intervals (i.e., 4 locations) were separated into sequences of regular time series data for each individual46. We extended43 by including a mix of both transition-specific effects (i.e., behaviors, temperature) and habitat-specific effects (i.e., wintering region, cos(Diel), and sin(Time)), where transition-specific effects were allowed to vary for a current habitat state, while habitat-specific effects were not. We included a mix of coefficients because initial model runs indicated that some effects were similar regardless of the current habitat (i.e., were habitat- and not transition-specific decisions). We also incorporated a model feature to exclude estimation of transitions that did not occur either within the dataset as a whole or within each specific wintering region because landcover types varied among them by setting those specific transition probabilities to zero. We centered and standardized all behavior and temperature covariates, sampled 50,000 iterations from the model posterior using one chain, and discarded the first 10,000 iterations as burn-in. We assessed model convergence by evaluating trace plots and setting random initial values, examined autocorrelation plots, and Geweke diagnostics using the R package ‘coda’47,48,49. More