Significant changes in soil microbial community structure and metabolic function after Mikania micrantha invasion
Runyon, J. B., Butler, J. L., Friggens, M. M., Meyer, S. E. & Sing, S. E. Invasive species and climate change. USDA For. Serv. 285, 97–115 (2012).
Google Scholar
Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).Article
Google Scholar
Mollot, G., Pantel, J. H. & Romanuk, T. N. The effects of invasive species on the decline in species richness: a global meta-analysis. Adv. Ecol. Res. 56, 61–83 (2017).Article
Google Scholar
Gaertner, M., Den Breeyen, A., Hui, C. & Richardson, D. M. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: A meta-analysis. Prog. Phys. Geog. 33, 319–338 (2009).Article
Google Scholar
Vilà, M. et al. Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J. Biogeogr. 33, 853–861 (2010).Article
Google Scholar
Hejda, M., Pysek, P. & Jarosik, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).Article
Google Scholar
Powell, K. I., Chase, J. M. & Knight, T. M. A synthesis of plant invasion effects on biodiversity across spatial scales. Am. J. Bot. 98, 539–548 (2011).Article
Google Scholar
Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6, 503–523 (2003).Article
CAS
Google Scholar
Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytol. 177, 706–714 (2008).Article
CAS
Google Scholar
Chabrerie, O., Laval, K., Puget, P., Desaire, S. & Alard, D. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Appl. Soil Ecol. 24, 43–56 (2003).Article
Google Scholar
Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers?. Science 325, 573–574 (2009).Article
ADS
CAS
Google Scholar
Dawson, W. & Schrama, M. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).Article
Google Scholar
Lankau, R. Soil microbial communities alter allelopathic competition between Alliaria petiolata and a native species. Biol. Invasions 12, 2059–2068 (2010).Article
Google Scholar
Siefert, A., Zillig, K. W., Friesen, M. L. & Strauss, S. Y. Soil microbial communities alter conspecific and congeneric competition consistent with patterns of field coexistence in three Trifolium congeners. J. Ecol. 106, 1876–1891 (2018).Article
CAS
Google Scholar
Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83, 3152–3166 (2002).Article
Google Scholar
Li, W. H., Zhang, C. B., Jiang, H. B., Xin, G. R. & Yang, Z. Y. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281, 309–324 (2006).Article
CAS
Google Scholar
Li, W. H., Zhang, C., Gao, G., Zan, Q. & Yang, Z. Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity. Plant Soil 296, 197–207 (2007).Article
CAS
Google Scholar
Chen, X. P. et al. Exotic plant Alnus trabeculosa alters the composition and diversity of native rhizosphere bacterial communities of Phragmites australis. Pedosphere 26, 108–119 (2016).Article
Google Scholar
Yin, L., Liu, B., Wang, H., Zhang, Y. & Fan, W. The rhizosphere microbiome of Mikania micrantha provides insight into adaptation and invasion. Front. Microbiol. 11, 1462 (2020).Article
Google Scholar
Griffiths, B. S., Ritz, K. & Wheatley, R. E. Relationship between functional diversity and genetic diversity in complex microbial communities. In Microbial Communities (eds Insam, H. & Rangger, A.) 1–9 (Springer, 1997). https://doi.org/10.1007/978-3-642-60694-6_1.Chapter
Google Scholar
Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C. & Steinberg, C. Response of soil microbial communities to compost amendments. Soil Biol. Biochem. 38, 460–470 (2006).Article
Google Scholar
Grime, J. P. Plant strategies and vegetation processes. Biol. Plant 23, 254–254 (1979).
Google Scholar
Goldberg, D. & Novoplansky, A. On the relative importance of competition in unproductive environments. J. Ecol. 85, 409–418 (1997).Article
Google Scholar
Goldberg, D. E., Martina, J. P., Elgersma, K. J. & Currie, W. S. Plant size and competitive dynamics along nutrient gradients. Am. Nat. 190, 229–243 (2017).Article
Google Scholar
Castro-Díez, P., Godoy, O., Alonso, A., Gallardo, A. & Saldaña, A. What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol. Lett. 17, 1–12 (2014).Article
Google Scholar
Chapuis-Lardy, L., Vanderhoeven, S., Dassonville, N., Koutika, L. S. & Meerts, P. Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol. Fertil. Soils 42, 481–489 (2006).Article
Google Scholar
Thorpe, A. S., Archer, V. & DeLuca, T. H. The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Appl. Soil Ecol. 32, 118–122 (2006).Article
Google Scholar
Hawkes, C. V., Wren, I. F., Herman, D. J. & Firestone, M. K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 8, 976–985 (2005).Article
Google Scholar
Zhang, A. M., Chen, Z. H., Zhang, G. N., Chen, L. J. & Wu, Z. J. Soil phosphorus composition determined by 31P NMR spectroscopy and relative phosphatase activities influenced by land use. Eur. J. Soil Biol. 52, 73–77 (2012).Article
Google Scholar
Souza-Alonso, P., Novoa, A. & Gonzalez, L. Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biol. Biochem. 79, 100–108 (2014).Article
CAS
Google Scholar
Callaway, M. et al. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J. Ecol. 104, 994–1002 (2016).Article
Google Scholar
Zhao, M. et al. Ageratina adenophora invasions are associated with microbially mediated differences in biogeochemical cycles. Sci. Total Environ. 677, 47–56 (2019).Article
ADS
CAS
Google Scholar
Litton, C. M., Sandquist, D. R. & Cordell, S. Effects of non-native grass invasion on aboveground carbon pools and tree population structure in a tropical dry forest of Hawaii. For. Ecol. Manag. 231, 105–113 (2006).Article
Google Scholar
Wolkovich, E. M., Lipson, D. A., Virginia, R. A., Cottingham, K. L. & Bolger, D. T. Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Glob. Chang. Biol. 16, 1351–1365 (2010).Article
ADS
Google Scholar
Sardans, J. et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob. Chang. Biol. 23, 1282–1291 (2017).Article
ADS
Google Scholar
Yu, H. et al. Soil nitrogen dynamics and competition during plant invasion: insights from Mikania micrantha invasions in China. New Phytol. 229, 3440–3452 (2021).Article
CAS
Google Scholar
Day, M. D. et al. Biology and impacts of pacific islands invasive species. 13. Mikania micrantha Kunth (Asteraceae). Pac. Sci. 70, 257–285 (2016).Article
Google Scholar
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (eds) 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. CID: 20.500.12592/drpzmz. (Auckland: Invasive Species Specialist Group, 2000).Zhang, L. Y., Ye, W. H., Cao, H. L. & Feng, H. L. Mikania micrantha H.B.K. in China: An overview. Weed Res. 44, 42–49 (2004).Article
Google Scholar
Manrique, V., Diaz, R., Cuda, J. P. & Overholt, W. A. Suitability of a new plant invader as a target for biological control in Florida. Invas. Plant Sci. Manag. 4, 1–10 (2011).Article
Google Scholar
Macanawai, A., Day, M., Tumaneng-Diete, T., Adkins, S. & Nausori, F. Impact of Mikania micrantha on crop production systems in Viti Levu, Fiji. Pak. J. Weed Sci. Res. 18, 357–365 (2012).
Google Scholar
Carter, M. R. & Gregorich, E. G. (eds) Soil Sampling and Methods of Analysis 2nd edn. (CRC Press, 2007). https://doi.org/10.1201/9781420005271.Book
Google Scholar
Liu, X. et al. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?. Agric. For. Meteorol. 246, 78–85 (2017).Article
ADS
Google Scholar
Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130 (2014).Article
CAS
Google Scholar
Sun, S. & Badgley, B. D. Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. Soil Biol. Biochem. 135, 163–172 (2019).Article
CAS
Google Scholar
Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).Article
CAS
Google Scholar
Dawkins, K. & Esiobu, N. The invasive brazilian pepper tree (Schinus terebinthifolius) is colonized by a root microbiome enriched with Alphaproteobacteria and unclassified Spartobacteria. Front. Microbiol. 9, 876 (2018).Article
Google Scholar
Carey, C. J., Beman, J. M., Eviner, V. T., Malmstrom, C. M. & Hart, S. C. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Front. Microbiol. 6, 466 (2015).Article
Google Scholar
Strickland, M. S., Osburn, E., Lauber, C., Fierer, N. & Bradford, M. A. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 23, 627–636 (2009).Article
Google Scholar
Kanokratana, P. et al. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb. Ecol. 61, 518–528 (2011).Article
Google Scholar
Margesin, R., Jud, M., Tscherko, D. & Schinner, F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol. Ecol. 67, 208–218 (2009).Article
CAS
Google Scholar
Xu, Z. W. et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biol. Biochem. 104, 152–163 (2017).Article
CAS
Google Scholar
Zhou, X. et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Sci. Total Environ. 444, 552–558 (2013).Article
ADS
CAS
Google Scholar
Mao, T. & Minoru, K. Using the KEGG database resource. Curr. Protoc. Bioinform. 38, 1121–11243. https://doi.org/10.1002/0471250953.bi0112s38 (2012).Article
Google Scholar
Grayston, S. J., Griffith, G. S., Mawdsley, J. L., Campbell, C. D. & Bardgett, R. D. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 33, 533–551 (2001).Article
CAS
Google Scholar
Chen, W. B. & Chen, B. M. Considering the preferences for nitrogen forms by invasive plants: a case study from a hydroponic culture experiment. Weed Res. 59, 49–57 (2019).CAS
Google Scholar
Christian, J. M. & Wilson, S. D. Long-term ecosystem impacts of an introduced grass in the northern Great Plains. Ecology 80, 2397–2407 (1999).Article
Google Scholar
Strickland, M. S., Devore, J. L., Maerz, J. C. & Bradford, M. A. Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Glob. Chang. Biol. 16, 1338–1350 (2010).Article
ADS
Google Scholar
Bradley, B. A., Houghtonw, R. A., Mustard, J. F. & Hamburg, S. P. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob. Chang. Biol. 12, 1815–1822 (2006).Article
ADS
Google Scholar
Ogle, S. M., Ojima, D. & Reiners, W. A. Modeling the impact of exotic annual brome grasses on soil organic carbon storage in a northern mixed-grass prairie. Biol. Invasions 6, 365–377 (2004).Article
Google Scholar
Ni, G. Y. et al. Mikania micrantha invasion enhances the carbon (C) transfer from plant to soil and mediates the soil C utilization through altering microbial community. Sci. Total Environ. 711, 135020. https://doi.org/10.1016/j.scitotenv.2019.135020 (2020).Article
ADS
CAS
Google Scholar
Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).Article
ADS
CAS
Google Scholar
Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70 (2002).Article
ADS
CAS
Google Scholar
Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem. 35, 895–905 (2003).Article
CAS
Google Scholar
Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).Article
CAS
Google Scholar
Ehrenfeld, J. G., Kourtev, P. & Huang, W. Z. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol. Appl. 11, 1287–1300 (2001).Article
Google Scholar
Allison, S. D. & Vitousek, P. M. Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141, 612–619 (2004).Article
ADS
Google Scholar
Harner, M. J. et al. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats. Ecol. Appl. 19, 1135–1146 (2009).Article
Google Scholar
Wolkovich, E. M. Nonnative grass litter enhances grazing arthropod assemblages by increasing native shrub growth. Ecology 91, 756–766 (2010).Article
Google Scholar
Yan, J. et al. Conversion of organic carbon from decayed native and invasive plant litter in Jiuduansha wetland and its implications for SOC formation and sequestration. J. Soils Sediments 20, 675–689 (2020).Article
CAS
Google Scholar
Aerts, R. & de Caluwe, H. Nitrogen deposition effects on carbon dioxide and methane emissions from temperate peatland soils. Oikos 84, 44–54 (1999).Article
Google Scholar
Shen, C. C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211 (2013).Article
CAS
Google Scholar
Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).Article
CAS
Google Scholar
Mothé, G. P. B., Quintanilha-Peixoto, G., Souza, G. R. D., Ramos, A. C. & Intorne, A. C. Overview of the role of nitrogen in copper pollution and bioremediation mediated by plant–microbe interactions. In Soil Nitrogen Ecology (eds Cruz, C. et al.) 249–264. https://doi.org/10.1007/978-3-030-71206-8_12 (Springer, 2021).Chapter
Google Scholar
Chen, B. M., Peng, S. L. & Ni, G. Y. Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biol. Invasions 11, 1291–1299 (2009).Article
Google Scholar
Fan, Y. X. et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biol. Fertil. Soils 54, 149–161 (2018).Article
CAS
Google Scholar
Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).Article
ADS
CAS
Google Scholar
Khan, M. S., Zaidi, A., Ahemad, M. & Oves, M. Plant growth promotion by phosphate solubilizing fungi: Current perspective. Arch. Agron. Soil Sci. 56, 73–98 (2010).Article
CAS
Google Scholar
Kouas, S., Labidi, N., Debez, A. & Abdelly, C. Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev. 25, 389–393 (2005).Article
CAS
Google Scholar
Bolan, N. S. et al. Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv. Agron. 110, 1–75 (2011).Article
CAS
Google Scholar
Dail, D. B., Davidson, E. A. & Chorover, J. Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry 54, 131–146 (2001).Article
CAS
Google Scholar
Fitzhugh, R. D., Lovett, G. M. & Venterea, R. T. Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Glob. Chang. Biol. 9, 1591–1601 (2003).Article
ADS
Google Scholar More