More stories

  • in

    Important contributions of non-fossil fuel nitrogen oxides emissions

    Global δ15Nw-NO3− observations
    Publications of δ15Nw-NO3− studies were obtained through the databases of the Web of Science (http://isiknowledge.com), Google Scholar (http://scholar.google.com.hk), and Baidu Scholar (http://xueshu.baidu.com) by searching keywords of “nitrogen isotope”, “nitrate”, “rainfall”, and “precipitation”. By the end of December 2018, a total of 128 publications were available (Supplementary Text 1), spanning the sampling time of 1956–2017 (Supplementary Fig. 11). We extracted δ15Nw-NO3− values of individual precipitation samples by using the software of Web Plot Digitizer37.
    There are totally 3483 individual δ15Nw-NO3− data and 222 sampling sites when multiple observations in different sampling years at the same site were counted once only (Fig. 1). There are 56 urban sites, 158 non-urban sites, and eight arctic sites (Fig. 1), in which non-urban sites are mainly situated in rural, mountain, forest, and lake areas. Due to the sparsity of available data before 2000 (Supplementary Fig. 11), we analyzed δ15Nw-NO3− data at major urban and non-urban sites in East Asia, Europe, and North America during 2000–2017 to ensure a better site representation and to reduce the uncertainty caused by inconsistency in sampling time (Fig. 1). To describe spatial differences in δ15Nw-NO3− values between urban and non-urban sites among three regions (totally 214 sites), only site-based mean values during the period of 2000–2017 (totally 169 sites) were used (detailed in Fig. 2). To describe temporal variations of δ15Nw-NO3− values in urban and non-urban areas of each region, respectively (Fig. 3), we counted observation sites by different sampling years, given that δ15Nw-NO3− observations at few sites have been conducted in different sampling years. In this way, there were a total of 206 sites during 2000–2017 (detailed in Fig. 3). In addition, 35%, 29%, and 36% of the δ15Nw-NO3− observations were conducted in warmer, cooler, and the whole year, respectively. The seasonal effects of NOx emissions may not substantially influence the patterns of regional δ15Nw-NO3− variations.
    Differences between δ15Nw-NO3− and δ15Ni-NOx values
    NO is normally insoluble in water, and w-NO3− is scavenged only from the ambient NO2 and the oxidized NOx (i.e., HNO3 and p-NO3−) (Supplementary Fig. 1)32,38,39. Moreover, isotopic effects during the NOx cycles lead to differences between δ15NNOx and δ15NNO2. Therefore, substantial differences exist between the δ15Nw-NO3− and δ15Ni-NOx values in the atmosphere (hereafter denoted as 15∆i-NOx→w-NO3−). In this study, we calculated 15∆i-NOx→w-NO3− values by using the following equation (Eq. (2)):

    $${,}^{15}{Delta}_{{mathrm{i}} – {mathrm{NO}x} to {mathrm{w}} – {mathrm{NO3}} – } = delta ^{15}{mathrm{N}}_{{mathrm{w}} – {mathrm{NO3}} – } – delta ^{15}{mathrm{N}}_{{mathrm{i}} – {mathrm{NO}x}}.$$
    (2)

    Combined Eq. (1) with Eq. (2), we get Eq. (3) to calculate the 15∆i-NOx→w-NO3− values.

    $$ {,}^{15}{Delta}_{{mathrm{i}} – {mathrm{NO}x} to {mathrm{w}} – {mathrm{NO3}}} = delta ^{15}{mathrm{N}}_{{mathrm{w}} – {mathrm{NO3}} – }\ quad- left({delta}^{15}{mathrm{N}}_{{mathrm{NO}x}} times {mathrm{C}}_{{mathrm{NO2}}}/f_{{mathrm{NO2}}} + delta ^{15}{mathrm{N}}_{{mathrm{HNO3}}} times {mathrm{C}}_{{mathrm{HNO3}}} + delta ^{15}{mathrm{N}}_{{mathrm{p}} – {mathrm{NO3}} – } times {mathrm{C}}_{{mathrm{p}} – {mathrm{NO3}}}right)/\ quad left({mathrm{C}}_{{mathrm{NO2}}}/f_{{mathrm{NO2}}} + {mathrm{C}}_{{mathrm{HNO3}}} + {mathrm{C}}_{{mathrm{p}} – {mathrm{NO3}} – }right).$$
    (3)

    To obtain more accurate 15∆i-NOx→w-NO3− values, we estimated the 15∆i-NOx→w-NO3− values in two independent scenarios. In Scenario 1, mean values of global δ15NNOx and fNO2 values, simultaneously observed values of ambient CNO2, CHNO3, Cp-NO3−, δ15NHNO3, δ15Np-NO3−, and δ15Nw-NO3− were used for the calculation in Eq. (3). In Scenario 2, non-synchronously observed values of ambient fNO2, CNO2, CHNO3, Cp-NO3−, δ15NNOx, δ15NHNO3, δ15Np-NO3−, and δ15Nw-NO3− were used for the calculation in Eq. (3). The values and data sources of parameters used for estimating ambient 15∆i-NOx→w-NO3− values are included in Supplementary Table 1. Because data of fNO2 and δ15NNOx are very sparse globally, we used global mean values and considered their SD values into the uncertainty analysis by the Monte Carlo method. Furthermore, because of no significant difference between 15∆i-NOx→w-NO3− values obtained in Scenario 1 (2.1 ± 1.7‰) and Scenario 2 (5.7 ± 3.2‰) (Supplementary Fig. 2), we used a mean value of them (3.9 ± 1.8‰; Supplementary Fig. 2) in the calculations of source contributions (Eqs. (4) and (5)).
    Contributions of dominant fossil fuel and non-fossil fuel NOx sources
    Based on δ15Nw-NO3−, 15∆i-NOx→w-NO3−, and δ15N values of NOx sources, we estimated relative contributions of dominant fossil fuel and non-fossil fuel NOx sources to total NOx emissions by using the isotope mass-balance method. We considered coal combustion (denoted as S1) and vehicle exhausts (S2) as dominant fossil fuel NOx sources, and biomass burning (S3), and microbial N cycles (S4) as dominant non-fossil fuel NOx sources. The major reasons include: (1) these four sources have been considered as dominant sources of total NOx emissions in studies of both emission inventory and deposition modeling2,9,11,13,14,15,19,20,21; (2) they are also the dominant sources influencing δ15N variations of NOx and NO3− in the atmosphere;26,27 (3) their mean δ15N values of NOx emission sources differ significantly (P  More

  • in

    Long rDNA amplicon sequencing of insect-infecting nephridiophagids reveals their affiliation to the Chytridiomycota and a potential to switch between hosts

    1.
    Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63, 31–45 (2018).
    CAS  PubMed  Article  Google Scholar 
    2.
    Stork, N. E., McBroom, J., Gely, C. & Hamilton, A. J. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. U. S. A. 112, 7519–7523 (2015).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    3.
    Lange, C. E. & Lord, J. C. Protistan entomopathogens. In Insect Pathology (eds. Vega, F. E. & Kaya, H. K.) 367–394 (Academic Press, 2012). https://doi.org/10.1016/B978-0-12-384984-7.00010-5.

    4.
    Fabel, P., Radek, R. & Storch, V. A new spore-forming protist, Nephridiophaga blaberi sp. nov., in the Death’s head cockroach Blaberus craniifer. Eur. J. Protistol. 36, 387–395 (2000).
    Article  Google Scholar 

    5.
    Ivanić, M. Die Entwicklungsgeschichte und die parasitäre Zerstörungsarbeit einer in den Zellen der Malpighischen Gefäße der Honigbiene (Apis mellifera) schmarotzenden Haplosporidie Nephridiophaga apis n. g. n. sp.. Cellule 45, 291–324 (1937).
    Google Scholar 

    6.
    Ormières, R. & Manier, J.-F. Observations sur Nephridiophaga forficulae (Léger, 1909). Ann. Parasitol. Hum. Comparée 48, 1–10 (1973).
    Article  Google Scholar 

    7.
    Radek, R., Wellmanns, D. & Wolf, A. Two new species of Nephridiophaga (Zygomycota) in the Malpighian tubules of cockroaches. Parasitol. Res. 109, 473–482 (2011).
    PubMed  Article  Google Scholar 

    8.
    Radek, R. & Herth, W. Ultrastructural investigation of the spore-forming protist Nephridiophaga blattellae in the Malpighian tubules of the German cockroach Blattella germanica. Parasitol. Res. 85, 216–231 (1999).
    CAS  PubMed  Article  Google Scholar 

    9.
    Woolever, P. Life history and electron microscopy of a haplosporidian, Nephridiophaga blattellae (Crawley) n. comb, in the Malphigian tubules of the German Cockroach, Blattella germanica (L.). J. Protozool. 13, 622–642 (1966).
    Article  Google Scholar 

    10.
    Radek, R., Klein, G. & Storch, V. The spore of the unicellular organism Nephridiophaga blattellae: ultrastructure and substances of the spore wall. Acta Protozool. 41, 169–181 (2002).
    Google Scholar 

    11.
    Purrini, K. & Weiser, J. Light and electron microscope studies on a protozoan, Oryctospora alata n. gen., n. sp. (Protista, Coelosporidiidae), parasitizing a natural population of the rhinoceros beetle, Oryctes monoceros Oliv. (Coleoptera, Scarabaeidae). Zool. Beitraege 332, 209–220 (1990).
    Google Scholar 

    12.
    Purrini, K. & Rohde, M. Light and electron microscope studies on two new protists, Coelosporidium schalleri n. sp. and Coelosporidium meloidorum n. sp. (Protista) infecting natural populations of the flea beetle, Podagrica fuscicornis, and flower beetle, Mylabris maculiventris. Zool. Anz. 220, 323–333 (1988).
    Google Scholar 

    13.
    Lange, C. E. Unclassified protists of arthropods: the ultrastructure of Nephridiophaga periplanetae (Lutz & Splendore, 1903) n. comb., and the affinities of the Nephridiophagidae to other protists. J. Eukaryot. Microbiol. 40, 689–700 (1993).
    Article  Google Scholar 

    14.
    Perrin, W. S. Observations on the structure and life-history of Pleistophora periplanetæ, Lutz and Splendore. J. Cell Sci. 49, 615–633 (1906).
    Google Scholar 

    15.
    Sprague, V. Recent problems of taxonomy and morphology of Haplosporidia. J. Parasitol. 56, 327–328 (1970).
    Google Scholar 

    16.
    Wylezich, C., Radek, R. & Schlegel, M. Phylogenetische Analyse der 18S rRNA identifiziert den parasitischen Protisten Nephridiophaga blattellae (Nephridiophagidae) als Vertreter der Zygomycota (Fungi). Denisia 13, 435–442 (2004).
    Google Scholar 

    17.
    Radek, R. et al. Morphologic and molecular data help adopting the insect-pathogenic nephridiophagids (Nephridiophagidae) among the early diverging fungal lineages, close to the Chytridiomycota. MycoKeys 25, 31–50 (2017).
    Article  Google Scholar 

    18.
    Evangelista, D. A. et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. R. Soc. B Biol. Sci. 286, 20182076 (2019).
    Article  Google Scholar 

    19.
    Baumann, P., Moran, N. A. & Baumann, L. The evolution and genetics of aphid endosymbionts. Bioscience 47, 12–20 (1997).
    Article  Google Scholar 

    20.
    Peek, A. S., Feldman, R. A., Lutz, R. A. & Vrijenhoek, R. C. Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc. Natl. Acad. Sci. U. S. A. 95, 9962–9966 (1998).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    21.
    Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M. & Fukatsu, T. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLOS Biol. 4, e337 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Hughes, J., Kennedy, M., Johnson, K. P., Palma, R. L. & Page, R. D. M. Multiple cophylogenetic analyses reveal frequent cospeciation between pelecaniform birds and Pectinopygus lice. Syst. Biol. 56, 232–251 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Desai, M. S. et al. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ. Microbiol. 12, 2120–2132 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Wijayawardene, N. et al. Outline of fungi and fungus-like taxa. Mycosphere 11, 1060–1456 (2020).
    Article  Google Scholar 

    25.
    Tedersoo, L., Anslan, S., Bahram, M., Kõljalg, U. & Abarenkov, K. Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. Fungal Divers. 103, 273–293 (2020).
    Article  Google Scholar 

    26.
    Crawley, H. Interrelationships of the Sporozoa. Am. Nat. 39, 607–624 (1905).
    Article  Google Scholar 

    27.
    White, M. M. et al. Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia 98, 872–884 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Letcher, P. M., Powell, M. J., Churchill, P. F. & Chambers, J. G. Ultrastructural and molecular phylogenetic delineation of a new order, the Rhizophydiales (Chytridiomycota). Mycol. Res. 110, 898–915 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Van den Wyngaert, S., Rojas-Jimenez, K., Seto, K., Kagami, M. & Grossart, H.-P. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. J. Eukaryot. Microbiol. 65, 870–881 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    30.
    James, T. Y. et al. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98, 860–871 (2006).
    PubMed  Article  Google Scholar 

    31.
    Powell, M. J., Letcher, P. M., Chambers, J. G. & Roychoudhury, S. A new genus and family for the misclassified chytrid, Rhizophlyctis harderi. Mycologia 107, 419–431 (2015).
    PubMed  Article  Google Scholar 

    32.
    Letcher, P. M., Powell, M. J., Lopez, S., Lee, P. A. & McBride, R. C. A new isolate of Amoeboaphelidium protococcarum, and Amoeboaphelidium occidentale, a new species in phylum Aphelida (Opisthosporidia). Mycologia 107, 522–531 (2015).
    PubMed  Article  Google Scholar 

    33.
    Strassert, J. F. H. et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 12, 304–308 (2018).
    CAS  PubMed  Article  Google Scholar 

    34.
    Jamy, M. et al. Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol. Ecol. Resour. 20, 429–443 (2020).
    CAS  PubMed  Article  Google Scholar 

    35.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Article  Google Scholar 

    36.
    Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. Phylobayes mpi: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).
    CAS  PubMed  Article  Google Scholar 

    37.
    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
    CAS  PubMed  Article  Google Scholar 

    38.
    Lloyd, D. & Harris, J. C. Giardia: highly evolved parasite or early branching eukaryote?. Trends Microbiol. 10, 122–127 (2002).
    CAS  PubMed  Article  Google Scholar 

    39.
    Burki, F. et al. Phylogenomics of the intracellular parasite Mikrocytos mackini reveals evidence for a mitosome in Rhizaria. Curr. Biol. 23, 1541–1547 (2013).
    CAS  PubMed  Article  Google Scholar 

    40.
    Abbott, C. L. Evolution: hidden at the end of a very long branch. Curr. Biol. 27, R271–R273 (2014).
    Article  CAS  Google Scholar 

    41.
    Keeling, P. J. & Fast, N. M. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56, 93–116 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Mozley-Standridge, S. E., Letcher, P. M., Longcore, J. E., Porter, D. & Simmons, D. R. Cladochytriales—a new order in Chytridiomycota. Mycol. Res. 113, 498–507 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Jerônimo, G. H., Jesus, A. L., Simmons, D. R., James, T. Y. & Pires-Zottarelli, C. L. A. Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiella crenulata (sp. nov.). Mycologia 111, 506–516 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    44.
    Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol. 18, 1646–1653 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Lepelletier, F. et al. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. Nov.), a chytrid infecting marine dinoflagellates. Protist 165, 230–244 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Comeau, A. M., Vincent, W. F., Bernier, L. & Lovejoy, C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci. Rep. 6, 30120 (2016).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    48.
    Lefèvre, E., Roussel, B., Amblard, C. & Sime-Ngando, T. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 3, e2324 (2008).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    49.
    Fisher, M. C., Garner, T. W. J. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).
    CAS  PubMed  Article  Google Scholar 

    50.
    Powell, M. J. & Letcher, P. M. Chytridiomycota, Monoblepharidomycota, and Neocallimastigomycota. In Systematics and Evolution: The Mycota VII Part A (eds. McLaughlin, D. J. & Spatafora, J. W.) 141–175 (Springer, 2014). https://doi.org/10.1007/978-3-642-55318-9.

    51.
    Cali, A., Becnel, J. J. & Takvorian, P. M. Microsporidia. In Handbook of the Protists: Second Edition (eds. Archibald, J. M. et al.) 1559–1618 (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0_27.

    52.
    Powell, M. J. Chytridiomycota. In Handbook of the Protists: Second Edition (eds. Archibald, J. M. et al.) 1523–1558 (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0_18.

    53.
    Schulte, R. D., Makus, C., Hasert, B., Michiels, N. K. & Schulenburg, H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc. Natl. Acad. Sci. U. S. A. 107, 7359–7364 (2010).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    54.
    Ebert, D. Host-parasite coevolution: insights from the Daphnia-parasite model system. Curr. Opin. Microbiol. 11, 290–301 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrasructure Res. 26, 31–43 (1969).
    CAS  Article  Google Scholar 

    56.
    Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Wurzbacher, C. et al. Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 19, 118–127 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Roehr, J. T., Dieterich, C. & Reinert, K. Flexbar 3.0—SIMD and multicore parallelization. Bioinformatics 33, 2941–2942 (2017).
    CAS  PubMed  Article  Google Scholar 

    61.
    Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).
    CAS  PubMed  Article  Google Scholar 

    63.
    Liu, H. & Beckenbach, A. T. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol. Phylogenet. Evol. 1, 41–52 (1992).
    CAS  PubMed  Article  Google Scholar 

    64.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  Article  Google Scholar 

    68.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    70.
    Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Le, V. S., Dang, C. C. & Le, Q. S. Improved mitochondrial amino acid substitution models for metazoan evolutionary studies. BMC Evol. Biol. 17, 136 (2017).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Neon-green fluorescence in the desert gecko Pachydactylus rangei caused by iridophores

    1.
    Sparks, J. S. et al. The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS ONE 9, e83259 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 
    2.
    Wucherer, M. F. & Michiels, N. K. A fluorescent chromatophore changes the level of fluorescence in a reef fish. PLoS ONE 7, e37913 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Gruber, D. F. et al. Biofluorescence in catsharks (Scyliorhinidae): fundamental description and relevance for elasmobranch visual ecology. Sci. Rep. 6, 24751 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Gruber, D. F. & Sparks, J. S. First observation of fluorescence in marine turtles. Am. Mus. Novit. 3845, 1–8 (2015).
    Article  Google Scholar 

    5.
    Kohler, A. M., Olson, E. R., Martin, J. G. & Anich, P. S. Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). J. Mammal. 100, 21–30 (2019).
    Article  Google Scholar 

    6.
    Jeng, M.-L. Biofluorescence in terrestrial animals, with emphasis on fireflies: a review and field observation in Bioluminescence—Analytical Applications and Basic Biology 1–16 (Hirobumi Suzuki, IntechOpen, 2019).

    7.
    Evtukh, G. Fluorescence among Fraterculinae subfamily. Pyccкий opнитoлoгичecкий жypнaл 28, 2134–2142 (2019).
    Google Scholar 

    8.
    Wilkinson, B. P., Johns, M. E. & Warzybok, P. Fluorescent ornamentation in the Rhinoceros Auklet Cerorhinca monocerata. Ibis 161, 694–698 (2019).
    Article  Google Scholar 

    9.
    Arnold, K., Owens, I. P. & Marshall, N. J. Fluorescent signalling in parrots. Science 295, 92 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Barreira, A., Lagorio, M. G., Lijtmaer, D., Lougheed, S. & Tubaro, P. Fluorescent and ultraviolet sexual dichromatism in the blue-winged parrotlet. J. Zool. 288, 135–142 (2012).
    Article  Google Scholar 

    11.
    Goutte, S. et al. Intense bone fluorescence reveals hidden patterns in pumpkin toadlets. Sci. Rep. 9, 1–8 (2019).
    CAS  Article  Google Scholar 

    12.
    Taboada, C., Brunetti, A. E., Alexandre, C., Lagorio, M. G. & Faivovich, J. Fluorescent frogs: a herpetological perspective. S. Am. J. Herpetol. 12, 1–13 (2017).
    Article  Google Scholar 

    13.
    Taboada, C. et al. Naturally occurring fluorescence in frogs. Proc. Nat. Acad. Sci. USA 114, 3672–3677 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Deschepper, P., Jonckheere, B. & Matthys, J. A light in the dark: the discovery of another fluorescent frog in the Costa Rican rainforests. Wilderness Environ. Med. 29, 4212134–2142422 (2018).
    Google Scholar 

    15.
    Lamb, J. Y. & Davis, M. P. Salamanders and other amphibians are aglow with biofluorescence. Sci. Rep. 10, 1–7 (2020).
    Article  CAS  Google Scholar 

    16.
    Thompson, M. E., Saporito, R., Ruiz-Valderrama, D. H., Medina-Rangel, G. F. & Donnelly, M. A. A field-based survey of fluorescence in tropical tree frogs using an LED UV-B flashlight. Herpetol. Notes 12, 987–990 (2019).
    Google Scholar 

    17.
    Gray, R. J. Biofluorescent lateral patterning on the Mossy Bushfrog (Philautus macroscelis): the first report of biofluorescence in a rhacophorid frog. Herpetol. Notes 12, 363–364 (2019).
    Google Scholar 

    18.
    Munoz, D. Plethodon cinereus (Eastern Red-backed Salamander) Fluorescence. Herpetol. Rev. 49, 512–513 (2018).
    Google Scholar 

    19.
    Tah, M.M.T.-M., Puan, C. L., Chuang, M.-F., Othman, S. N. & Borzée, A. First record of ultraviolet fluorescence in Bent-toed Gecko Cyrtodactylus quadrivirgatus (Gekkonidae: Sauria). Herpetol. Notes 13, 211–212 (2020).
    Google Scholar 

    20.
    Sloggett, J. J. Field observations of putative bone-based fluorescence in a gecko. Curr. Zool. 64, 319–320 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Prötzel, D. et al. Widespread bone-based fluorescence in chameleons. Sci. Rep. 8, 698 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Maitland, D. & Hart, A. A fluorescent vertebrate: the Iberian Worm-lizard Blanus cinereus (Amphisbaenidae). Herpetol. Rev. 39, 50 (2008).
    Google Scholar 

    23.
    Andrews, K., Reed, S. M. & Masta, S. E. Spiders fluoresce variably across many taxa. Biol. Lett. 3, 265–267 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Macel, M.-L. et al. Sea as a color palette: the ecology and evolution of fluorescence. Zool. Lett. 6, 1–11 (2020).
    Article  Google Scholar 

    25.
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Kloock, C. T., Kubli, A. & Reynolds, R. Ultraviolet light detection: a function of scorpion fluorescence. J. Arachnol. 38, 441–445 (2010).
    Article  Google Scholar 

    27.
    Haddock, S. H. & Dunn, C. W. Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Gandía-Herrero, F., García-Carmona, F. & Escribano, J. Botany: floral fluorescence effect. Nature 437, 334 (2005).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    29.
    Mazel, C., Cronin, T., Caldwell, R. & Marshall, N. Fluorescent enhancement of signaling in a mantis shrimp. Science 303, 51 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Lim, M. L., Land, M. F. & Li, D. Sex-specific UV and fluorescence signals in jumping spiders. Science 315, 481 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Kloock, C. T. A comparison of fluorescence in two sympatric scorpion species. J. Photochem. Photobiol. B 91, 132–136 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Michiels, N. K. et al. Red fluorescence in reef fish: a novel signalling mechanism?. BMC Ecol. 8, 1–16 (2008).
    Article  Google Scholar 

    33.
    Gerlach, T., Sprenger, D. & Michiels, N. K. Fairy wrasses perceive and respond to their deep red fluorescent coloration. Proc. R. Soc. B 281, 20140787 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Lagorio, M. G., Cordon, G. B. & Iriel, A. Reviewing the relevance of fluorescence in biological systems. Photochem. Photobiol. Sci. 14, 1538–1559 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Bachman, C. H. & Ellis, E. H. Fluorescence of bone. Nature 206, 1328–1331 (1965).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Rebouças, R. et al. Is the conspicuous dorsal coloration of the Atlantic forest pumpkin toadlets aposematic?. Salamandra 55, 39–47 (2019).
    Google Scholar 

    37.
    Werner, Y. L. Ecological comments on some gekkonid lizards of the Namib Desert, South West Africa. Modoqua 1977, 157–169 (1977).
    Google Scholar 

    38.
    Russell, A. & Bauer, A. Substrate excavation in the Namibian web-footed gecko, Palmatogecko rangei Andersson 1908, and its ecological significance. Trop. Zool. 3, 197–207 (1990).
    Article  Google Scholar 

    39.
    Vitt, L. J. & Caldwell, J. P. Herpetology: An Introductory Biology of Amphibians and Reptiles 776 (Academic Press, London, 2013).
    Google Scholar 

    40.
    Schmidt, W. J. Die Chromatophoren der Reptilienhaut. Arch. Mikrosk. Anat. 90, 98–259 (1918).
    Article  Google Scholar 

    41.
    Szydłowski, P., Madej, J. P. & Mazurkiewicz-Kania, M. Histology and ultrastructure of the integumental chromatophores in tokay gecko (Gekko gecko) (Linnaeus, 1758) skin. Zoomorphology 136, 233–240 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Saenko, S. V., Teyssier, J., Van Der Marel, D. & Milinkovitch, M. C. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biol. 11, 105 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Teyssier, J., Saenko, S. V., Van Der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Avallone, B., Tizzano, M., Cerciello, R., Buglione, M. & Fulgione, D. Gross anatomy and ultrastructure of Moorish Gecko, Tarentola mauritanica skin. Tissue Cell 51, 62–67 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Morrison, R. L., Sherbrooke, W. C. & Frost-Mason, S. K. Temperature-sensitive, physiologically active iridophores in the lizard Urosaurus ornatus: an ultrastructural analysis of color change. Copeia 1996, 804–812 (1996).
    Article  Google Scholar 

    46.
    Polewski, K., Zinger, D., Trunk, J., Monteleone, D. C. & Sutherland, J. C. Fluorescence of matrix isolated guanine and 7-methylguanine. J. Photochem. Photobiol. B 24, 169–177 (1994).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Turrisi, R. et al. Stokes shift/emission efficiency trade-off in donor–acceptor perylenemonoimides for luminescent solar concentrators. J. Mater. Chem. A 3, 8045–8054 (2015).
    CAS  Article  Google Scholar 

    48.
    Suzuki, K. et al. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Szydłowski, P., Madej, J. P. & Mazurkiewicz-Kania, M. Ultrastructure and distribution of chromatophores in the skin of the leopard gecko (Eublepharis macularius). Acta Zool. 97, 370–375 (2016).
    Article  Google Scholar 

    50.
    Hibbitts, T. J., Pianka, E. R., Huey, R. B. & Whiting, M. J. Ecology of the common barking gecko (Ptenopus garrulus) in southern Africa. J. Herpetol. 39, 509–515 (2005).
    Article  Google Scholar 

    51.
    Olivier, J. Spatial distribution of fog in the Namib. J. Arid Environ. 29, 129–138 (1995).
    ADS  Article  Google Scholar 

    52.
    Gottlieb, T. R., Eckardt, F. D., Venter, Z. S. & Cramer, M. D. The contribution of fog to water and nutrient supply to Arthraerua leubnitziae in the central Namib Desert, Namibia. J. Arid Environ. 161, 35–46. https://doi.org/10.1016/j.jaridenv.2018.11.002 (2019).
    ADS  Article  Google Scholar 

    53.
    Prötzel, D. D. Palmatogecko—ein sozialer Gecko?. Reptilia 107, 4–5 (2014).
    Google Scholar 

    54.
    Nørgaard, T., Henschel, J. R. & Wehner, R. The night-time temporal window of locomotor activity in the Namib Desert long-distance wandering spider, Leucorchestris arenicola. J. Comp. Physiol. A 192, 365–372 (2006).
    Article  Google Scholar 

    55.
    Roth, L. S. & Kelber, A. Nocturnal colour vision in geckos. Proc. R. Soc. B 271, 485–487 (2004).
    Article  Google Scholar 

    56.
    Pinto, B. J., Nielsen, S. V. & Gamble, T. Transcriptomic data support a nocturnal bottleneck in the ancestor of gecko lizards. Mol. Phylogenet. Evol. 141, 106639 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Iriel, A. & Lagorio, M. G. Implications of reflectance and fluorescence of Rhododendron indicum flowers in biosignaling. Photochem. Photobiol. Sci. 9, 342–348 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Richardson, K., Jarett, L. & Finke, E. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313–323 (1960).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208 (1963).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).
    Article  Google Scholar 

    62.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).

    63.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, Berlin, 2016).
    Google Scholar  More

  • in

    Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite

    Overall similar genomic and functional repertoires of specialist and generalist wasps
    We first sequenced and de novo assembled the reference genomes of Lh and Lb. The generalist species Lh was fully sequenced with PacBio long reads (Supplementary Table 1), which yielded a 487 Mb genome assembly with high continuity (N50 = 2.18 Mb; Supplementary Table 2). The specialist species Lb was sequenced and assembled with 170-fold Illumina read coverage and paired-end sequencing data from five long-insert libraries (up to 13 Kb; Supplementary Table 3). Although the assembled Lb genome had a lower N50 size (480 Kb) and smaller genome size (324 Mb), both the Lh and Lb genomes showed high completeness based on BUSCO and CEGMA assessments (Supplementary Table 2). The difference in genome sizes between Lh and Lb was likely determined by their repeat contents, as 51.47% of the Lh genome was annotated as repeat content in comparison with a 33.79% ratio in the Lb genome (Supplementary Table 4). The average GC contents of the Lh and Lb genomes were 27 and 26%, respectively, indicating that Leptopilina genomes are remarkably AT-rich. Interestingly, unlike the uniform distribution in Lb, the Lh genome shows a secondary peak enriched with scattered genomic windows of remarkably low GC content (16%; Supplementary Fig. 2).
    We identified 11,881 and 11,054 protein-coding genes as the official gene sets for Lh and Lb, respectively (Supplementary Table 5). These gene sets were mainly generated by an integrated pipeline, and those retained had evidence from either a full-length transcriptome of pooled developmental stages or high-confidence homology with Insecta genes (see “Methods”). Ortholog analyses across 10 hymenopteran genomes suggested that the genomes of both these parasitoid species maintained a typical hymenopteran gene repertoire (Supplementary Fig. 3). Compared with those of other sequenced insects, the gene numbers of these two Leptopilina species are relatively small, largely due to their low proportions of patchy genes that were not vertically inherited along speciation (Supplementary Fig. 3). We manually annotated several representative gene families or pathways that are strongly associated with the biology of parasitoid wasps (Fig. 1c). The genomes of Leptopilina encode more olfactory receptor (OR) genes than those of other parasitoids except Nasonia vitripennis, while they encode the fewest gustatory receptor (GR) genes. Genes associated with metabolic and immune pathways in Leptopilina were shown to be more or less the same as those in other hymenopteran species. Because consistent patterns within a phylogenetic context were not available, we did not gain informative insights into the gene family variations underlying the divergence between Leptopilina and other Parasitoida species.
    The divergence time between the two Leptopilina species was estimated to be approximately 40 Mya, and those between the sublineages of Parasitoida (e.g., Cynipoidea and Chalcidoidea) were estimated to be as distant as hundreds of millions of years (Fig. 1c), consistent with the tremendous diversification of parasitoids17,18. Thus we focused on making detailed comparisons within Leptopilina. The gene repertoires of Lh and Lb shared 8050 (~75%) orthologous pairs (Fig. 1d) with an average sequence identity of 85.6% at the amino acid (aa) level. We calculated the ratio of synonymous-to-nonsynonymous substitutions (dN/dS) to characterize the genes and functional modules associated with the divergence between Lh and Lb. Only four pathways were found to have significantly elevated dN/dS values (Z-test P  More

  • in

    Establish axenic cultures of armored and unarmored marine dinoflagellate species using density separation, antibacterial treatments and stepwise dilution selection

    Percoll density gradient centrifugation
    The removal of the associated bacteria from KMHK cells against four Percoll density gradients, 90%, 90–50%, 90–50–30% and 90–50–30–10% were shown in Fig. 2. There was no significant difference of the remaining total bacterial counts (with an initial total bacterial count of 6.36 ± 0.04 log10 CFU/mL) between algal samples centrifuged with 90% and 90%–50% Percoll gradients, but decreased significantly from 5.02 ± 0.2 log10 CFU/mL to 4.38 ± 0.05 log10 CFU/mL when dinoflagellate samples were centrifuged with 90–50–30% Percoll gradient with no further increase on adding another layer of 10% density to the gradient (i.e., 90–50–30–10%). These suggested that the highest bacterial removal capacity was achieved by centrifugation of the KMHK cells with the three-layer discontinuous (90–50–30%) gradient. This gradient was adopted in subsequent experiments in the present study, but it was different from Cho et al. who centrifuged the small Haptphyta, Isochrysis galbana (6–12 μm) with the five-layer discontinuous gradient (50%–40%–30%–20%–10%) and harvested the algal cell in between 40 and 30% Percoll5,27. As far as we know, this is the only previous study employing discontinuous gradient for algal culture, and it is obvious the optimized gradient composition varies among algal species, probably because of the diverse algal size and morphology. Vu et al. (2018) suggested that cells with a swimming ability may swim away from the concentrated zone after centrifugation, resulting in low cell recovery efficiency11. In this study, however, the swimming ability of KMHK cells was lost only temporarily for several minutes after centrifugation. This indicated that KMHK cell recovery would not be affected if the supernatant were removed immediately after centrifugation.
    Figure 2

    Total bacterial count in the algal sample after centrifugation with different Percoll density gradients. All data are presented as means ± standard deviations of three independent experiments (n = 3). Different letters on the top of the bar indicate that the means were significantly different among gradients at p ≤ 0.05 according to one-way analysis of variance followed by Tukey multiple comparison tests.

    Full size image

    Density gradient centrifugation provides an excellent alternative to filtration and micro-pipetting to physically separate bacterial cells from the algal cells, especially for fragile cell separation11. The density medium provides padding and thus protects the algal cells from the shearing force and enhance the separation efficiency17. Although filtration is one of the commonly adopted separating techniques because of its convenience, inexpensive and easy to use11, it is infeasible for use with dinoflagellate samples. However, membrane filters can be easily clogged by the algal cells and thus prolong the processing time of the filtration. Our previous experience found that more than 1 h was required to filter 10 mL of a dinoflagellate sample with 1 L of sterile medium for washing. More, algal cell recovery becomes extremely difficult when the cells are stuck firmly to the filter, and the algal cells may be easily damaged during cell harvest. This is a very important consideration for fragile cells of the unarmored dinoflagellates as they are vulnerable to the shear force generated during filtration. Micropipetting method applied in Coscinodiscus wailesii was laborious, and a skilled operator was required to pipette the algal cells from a culture droplet and sequential wash in droplets19.
    In the gradient centrifugation, the commonly used density media include Ficoll, Ludox and Percoll. Of these, Ficoll is not suitable for marine samples because it is a polysaccharide-based medium that is non-isotonic at high medium concentrations and becomes viscous liquid when dissolved in seawater28,29. Ludox and Percoll are both silicon-based density media compatible with seawater. Percoll is preferred for cell separation because it is less cytotoxic to the algal cells than is Ludox30. Few studies have demonstrated the feasibility of using Percoll density gradient centrifugation for microalgal samples17,31. Two fragile dinoflagellate species, Heterosigma carterae and Cochlodinium polykrikoides, have been efficiently harvested and recovered through centrifugation using 90% Percoll17,31.
    Bacterial removal by basic and extended protocols
    In the present study, Percoll density gradient centrifugation was coupled with antibiotic treatment. It is because the use of antibiotics is one of the most common bacterial killing methods but antibiotics alone rarely achieve complete bacterial elimination from the algal culture11. Antibiotic susceptibility testing results in this study reveal that the bacteria associated with KMHK culture were sensitive to the antibiotic cocktail used, that is, a combination of 100 U of penicillin, 100 µg/mL streptomycin, 100 µg/mL gentamicin and 1 µg/mL tetracycline. Similarly, Ki and Han also reported that the combination of 100 mg/L streptomycin, 150 mg/L ampicillin, 150 mg/L penicillin G and 200 mg/L gentamicin effectively killed bacteria without having detrimental effects on the dinoflagellates Peridinium bipes and A. tamarense12. Guillard demonstrated that most algal species tolerated 100 mg/L penicillin, 25 mg/L streptomycin and 25 mg/L gentamicin reasonably well32. However, many red colonies, identified as those of Rhodopirellula baltica through 16 s rDNA sequencing analysis, were observed on the antibiotic susceptibility testing plate of KMHK cells containing only penicillin, streptomycin and gentamicin in our study. Tetracycline was therefore included in the present antibiotic treatment based on previous report that Rhodopirellula sp. was highly susceptible to 0.5 ppm of tetracycline33. It is common to modify the antibiotic cocktail for different algal cultures since the antibiotics depends on the microbiome. For instance, Su et al. treated Alexandrium cultures with a combination of gentamycin, streptomycin, cephalothin and rifampicin for 7 days to obtain axenic cultures13.
    The effectiveness of the basic and extended protocols to remove bacteria in the algal samples is summarized in Fig. 3. The total bacterial count significantly reduced from initial 5.79 ± 0.22 log10 CFU/mL to 4.88 ± 0.05 log10 CFU/mL (p ≤ 0.05) after centrifuged with 90% Percoll (Step 1), even though the primary aim of this step was to condense the algal cells. This is probably due to the removal of numerous free-living bacteria in the supernatant, which was discarded. In the subsequent two gradient centrifugation using 90–50–30% density layers (Steps 2 and 3), approximately 12% of bacteria were further removed at p ≤ 0.05. The bacterial count did not show any additional reduction even when a step of a 90–50–30% density gradient centrifugation was added between Steps 3 and 4 (data not shown). After Step 4 with 48-h antibiotic treatment, the bacterial count was significantly reduced by 31% (Fig. 3a). These results indicated that numerous algae-associated bacteria could be effectively inhibited using the antibiotics but these steps could not completely eradicate the bacteria. No further decline in the bacterial count was found after Step 5 but decreased significant after Step 6, although both steps employed the same gradient centrifugation (90–50–30%). This could probably be the killing effect of the extended incubation of the bacteria with the remaining antibiotics, and/or the bacterial count significantly reduced by the gradient centrifugation in Step 5 was offset by the intracellular bacteria released from algal cell lysis during the antibiotic treatment. The effect of antibiotic exposure time on bacterial removal efficiency was shown in Table 1 below, while the existence of intracellular bacteria inside the dinoflagellate cells remains controversial6 and deserves more in-depth studies. The residue antibiotics, bacteria and algal cell debris were reported to suppress the algal cell growth17,31, these suppressions could be effectively removed in the present study as shown by algal regrowth (Fig. 3).
    Figure 3

    Bacterial removal in the KMHK sample using the basic and extended protocols. (a) Total bacterial count after different steps in the basic protocol. Initial: the initial bacterial count in KMHK samples at the beginning; Supplementary Fig. 1 illustrate the Step 1 to 6 of basic protocol. (b) Total bacterial count after the basic and extended protocols. Extended protocol refers to the descriptions in material and method. (c) Total bacterial count in the treated KMHK cultures at different days of cultivation. (d) Algal cell concentration during the regrowth of the treated KMHK cultures. All data are presented as mean ± standard deviations of three independent experiments (n = 3). Different letters on the top of the bar indicate that means were significantly different among samples at p ≤ 0.05 according to one-way analysis of variance followed by Tukey multiple comparison tests.

    Full size image

    After all six steps of the present protocol, the total bacterial count remaining in the KMHK culture was 1.13 ± 0.07 log10 CFU/mL (equivalent to approximately 13 CFU/mL), indicating that  > 99.9% of the bacteria were removed. Nevertheless, the bacterial count increased significantly to 5.75 ± 0.14 log10 CFU/mL (equivalent to approximately 5.86 × 105 CFU/mL) in day 7 KMHK regrow culture after the protocol (Fig. 3c). We used the extended protocol to remove the remaining bacteria by repeating the 48-h antibiotic incubation and Steps 4–6 after the basic protocol (Fig. 3b). However, the total bacterial count did not have any significant change between the basic and extended protocols (Fig. 3b), demonstrating that the additional steps, that is, repeating the 48-h antibiotic incubation and Steps 4–6, in the extended protocol failed to eliminate the few remaining bacteria in the KMHK culture. Similar to the basic protocol, the remaining bacteria regrew significantly in day 3 and day 7 KMHK cultures after the extended one (Fig. 3c). More, the additional steps of antibiotic treatment and centrifugation even damaged the algal cells, as reflected by the regrowth of KMHK cells was strongly inhibited by the extended protocol (Fig. 3d). After the extended protocol, the KMHK cell density at day 7 was only half of that after the basic protocol that regrew normally and reached the cell density of approximately 10,000 cells/mL after 7 days, comparable to that of a routine culture. The algal growth rates (µ) after the basic and extended protocols were 1.29 and 1.14, respectively. This implied that the additional steps of antibiotic treatment in the extended protocol damaged the algal cells. It has been reported that antibiotics treatment could interfere the peptidoglycan biosynthesis and eventually inhibited chloroplast division34. The extended protocol was also ineffective in removing bacteria, probably due to limited bacterial removal capacity and/or insufficient dose and exposure time of antibiotics.
    Effect of initial algal cell density and antibiotic exposure times on bacterial removal
    Bacterial cell concentration, antibiotic dose and antibiotic exposure time are critical factors affecting the efficiency of bacterial removal in algal samples. We hypothesized that the incomplete bacterial removal after the basic protocol was attributable to (1) the bacterial concentration in the algal culture exceeded the treatment capacity and (2) the dose and exposure time used in the antibiotic treatment were insufficient. To test insufficient dosing, a double antibiotic dose was used but there was no significant difference in the amount of bacterial removal between the normal and double doses of antibiotics used in the treatments (data not shown). Our observations also showed that the cell density of the 7-day KMHK culture treated with a double dose of antibiotics decreased from 10,000 to 489 cells/mL, clearly indicating a high antibiotic dose severely damaged the algal cells.
    Both the amount and percentage of bacterial removal were independent of the initial algal cell density (Table 1). At least 94.49% of bacteria were removed in all treatments. With a 48-h antibiotic exposure time, the percentage of bacterial removal did not have any significant changes with increases of initial algal cell density, and were 94.49%, 99.84% and 99.93% at high, moderate and low densities, respectively. Similarly, no significant difference in the amount of bacterial removal (in terms of Log10 CFU/mL) was observed between low and moderate initial algal cell densities but were significantly higher than that at high initial algal cell density. With 96-h of antibiotic exposure, bacterial removal percentage was 100% at both high and low algal densities and 98.53% at moderate algal density. Similarly, bacterial removal of low and moderate initial algal cell densities were significantly higher than that at high initial algal cell density. These results indicated that the bacterial removal ability was independent of the initial algal cell density.
    Table 1 Bacterial removal in the algal cultures with different initial algal cell densities and antibiotic exposure times in the basic protocol.
    Full size table

    When compare the antibiotic exposure time, bacterial removal with 48-h antibiotic treatment was significantly higher than that with other exposure times, regardless of the initial algal density (Table 1). A complete bacterial removal (100%) was detected under three conditions, that is, high and low initial densities with 96-h exposure time and moderate initial algal density with 72-h exposure time. The antibiotic exposure times ranging from several hours to 1 week have been reported in pervious researches, depending on the method used, and the bacterial cell count and composition in the algal sample13,32. The exposure time should be considered and controlled carefully because prolonged exposure to antibiotics may damage the algal cells and suppress their growth. However, the present study reveals antibiotic exposure time was not a critical factor for achieving 100% bacterial removal. On the other hand, the bacterial removal might be related to the bacterial cell count and composition present in the algal culture at the beginning. The microbiome can also change frequently during the routine cultivation of the algal cultures35.
    Algal cells obtained from different protocols were then cultured for 7 days and then subjected to bacterial counting. A substantial number of bacteria was found in all treatments at the end of the algal regrow cultures, including the 72-h exposure achieving 100% bacterial removal, except two 96-h antibiotic exposure treatments (Table 1). Even in these two 96-h exposure treatments with 100% bacteria-free algal cultures, bacteria were detected after several generations of the algal culture (data not shown). These indicated that the axenicity of algal culture may not be guaranteed even when no bacteria are detected after treating the algal samples with our developed protocol.
    The reappearance of bacterial growth may be due to the existence of a very small proportion of bacteria attached onto the algal cells after the protocol which was too little to be detected. Dinoflagellates are covered with complex and irregular cell surface structures36. Steric hindrance from parts of these algal surface areas may protect the firmly attached bacteria, making their detachment from the algal cells during gradient centrifugation difficult and decreasing antibiotic accessibility. Another possible explanation is that a few bacteria may have developed antibiotic resistance11, but this is unlikely in the present study as antibiotic resistance usually develops when the bacteria are continuously exposed to a nonlethal dose of an antibiotic37. Although why a few bacteria remained on the algal cells and regrew rapidly along with algal cell growth are poorly understood, it is necessary to have additional treatments such as serial dilution selection to ensure a true axenic algal culture is obtained.
    Selection of axenic algal cells through serial dilution
    After 7 days of cultivation, KMHK cells from all dilutions described in Fig. 1 survived. No bacterial growth was observed in 42 KMHK cultures (out of total 45 cultures), although bacterial colonies were observed in one of the day 7 KMHK cultures (one culture in the 100 dilution) and in another two of the day 21 KMHK cultures (one in 100 dilution and one in 10–1 dilution) in the first trial (Supplementary Table 1). The results reiterate that a high proportion of the KMHK cells in the population is in fact axenic and the ratio of axenic to non-axenic clones in the algal cell population is high after the basic protocol, it is therefore highly feasible to obtain the axenic clones from the population through such serial dilution approach. Similar approaches have been reported in previous studies5,12,38. For instance, Ki and Han dispersed the algal cells in a 96-well plate after filtration and antibiotic treatment12. Sena et al. also serially diluted the cyanobacterial sample, Arthrospira spp., after antibiotics treatment38. Although the axenic clone could be obtained by plating the algal cells on agar5, this approach was not feasible for marine dinoflagellates because the cells were unable to grow on a solid medium.
    Verification of axenicity of algal cultures
    It has been reported that some marine bacteria grow very slowly on agar, something like 50 days, and some of them are unculturable39,40. Therefore, confirming the axenic state of the algal cultures is paramount. The axenic state of the two selected KMHK cultures was tested and results of DAPI epifluorescence microscopy show that no bacteria were observed in the treated KMHK cells (Fig. 4b) while bacteria were found in the untreated cells (Fig. 4a). For the rDNA sequencing analysis, a 1500-bp PCR product was obtained after bacterial 16S rDNA amplification (Fig. 5a). The BLAST of the sequence reveal that it shared 99.59% similarity with 16 s rDNA sequence in the plastid gene of K. mikimotoi (accession no. AB027236). Similarly, the 600-bp amplicon observed in the amplification of fungal ITS shared 99.67% similarity with the ITS sequence of K. mikimotoi (accession no. KT733616; Fig. 5c). These results confirm the absence of both culturable and unculturable bacteria and fungi in the treated KMHK cultures. It has been reported that the algal cultures must continually be treated with antibiotics in order to maintain their axenic status15, but algal cells may die after several sub-cultures because of prolonged antibiotic exposure. When this happens, it is usually too late to recover the cultures. In the present study, regular monitoring of the axenicity of the cultures was performed through bacterial colony counting, DAPI epifluorescence microscopy and rDNA sequence analysis. The established axenic cultures were maintained generations after generations without adding any antibiotics, and no bacteria were found in any of the sub-cultures being tested even after 30 generations (data not shown). The axenic cultures of KMHK were established successfully and maintained sustainably, indicating this methodology was a promising approach applicable to other unarmored dinoflagellates. To the best of our knowledge, this is the first successful establishment of an axenic culture for the unarmored dinoflagellate K. mikimotoi.
    Figure 4

    DAPI epifluorescence microscopic images of KMHK and AT6 samples under ×1000 magnification: (a) untreated (control) and (b) treated KMHK samples; (c) untreated (control) and (d) treated AT6 samples.

    Full size image

    Figure 5

    PCR amplification of bacterial 16 s rDNA for (a) KMHK and (b) AT6 samples and that of fungal ITS region for (c) KMHK and (d) AT6 samples obtained from basic protocol and serial dilution. +ve: positive control, -ve: negative control.

    Full size image

    Development of axenic culture of A. tamarense using our established methodology
    The established method was applied to obtain the axenic cultures of another dinoflagellate species, A. tamarense (AT6), a well-known paralytic shellfish toxin–producing agent which has been extensively studied in the past decades41,42,43,44. The AT6 culture with an initial bacterial count of 7.9 ± 0.08 log10 CFU/mL was subjected to the basic protocol and the total bacterial counts recorded after Steps 3, 4 and 6 were shown in Fig. 6a. The result was generally similar to that of KMHK culture using the basic protocol (Fig. 3a), except no bacteria were detected in the AT6 culture after Step 6. Even though 100% bacterial removal was achieved, bacterial regrowth was observed on days 3 and 7 of the treated AT6 culture (Fig. 6b). The bacterial count regrew significantly to 6.71 ± 0.08 log10 CFU/mL after 7 days of cultivation (Fig. 6c). The regrowth of bacteria from the treated AT6 culture achieving 100% bacterial removal confirmed that few bacteria attached at some points onto the algal surface were shielded. Biegala et al. reported that associated bacteria were attached onto the cell surface within the sulci and cingula of A. tamarense6.
    Figure 6

    Bacterial removal in the Alexandrium tamarense (AT6) samples using the basic protocol. (a) Total bacterial count against different steps. Initial: the initial bacterial count present in AT6 at the beginning. (b) Total bacterial count in the AT6 culture obtained after the protocol at different days of cultivation. (c) Algal cell concentration during the regrowth of the AT6 culture obtained after the protocol. All data are presented as means ± standard deviations of three independent experiments (n = 3). N.D.: not detected. Different letters on the top of the bar indicate that means were significantly different among different samples at p ≤ 0.05 according to one-way analysis of variance followed by Tukey multiple comparison tests.

    Full size image

    For the serial dilution selection of AT6 cells after the basic protocol, culturable bacteria were observed in 11 of the 15 cultures in 100 dilution (5/5 in trial 1; 4/5 in trial 2 and 2/5 in trial 3) after 7 days of algal cultivation. All these 15 cultures showed bacterial regrowth after 21 days of algal cultivation, but the number of cultures with bacterial regrowth decreased to 1 and 4 of the 15 cultures in 10–1 dilutions after 7 and 21 days of algal cultivation, respectively. In 10−2 dilutions, no culturable bacteria were observed in all the cultures after both 7 and 21 days of algal cultivation (Supplementary Table 1). These results further demonstrate the feasibility of using the stepwise serial dilution method to select axenic algae, and 10–2 dilutions offer the highest probability in acquiring the axenic clones. The bacterial status of two of these potential axenic AT6 cultures was further assessed through DAPI epifluorescence microscopy and bacterial rDNA and fungal ITS sequencing analysis. No bacteria were observed in the DAPI epifluorescence image of the treated AT6 cultures compared to the untreated control cultures (Figs. 4c,d). Neither bacterial 16 s rDNA band (Fig. 5b) nor fungal ITS region (Fig. 5d) was amplified in the treated AT6 samples. These results confirmed the axenic status of the AT6 cultures.
    Our established methodology
    The present results demonstrate the potential of our methodology to be used in the establishment of axenic cultures for both armored and unarmored dinoflagellates. Figure 7 summarizes the workflow and procedures of our methodology. This promising approach combines three techniques, Percoll density gradient centrifugation, antibiotic treatment and serial dilution. Density gradient centrifugation considerably reduces the bacterial population by the physical separation between the associated bacteria, mainly the free-living and loosely attached bacteria, and the dinoflagellate cells on the basis of cell size. Percoll density layers not only provide a matrix for separating the two types of cells effectively but also cushion the dinoflagellate cells against the impact of the mechanical force. The Percoll density layers together with the bactericidal action of the antibiotic treatment typically eradicate  > 99% of the associated bacteria from the dinoflagellate culture. Our strategies not target at removing the remaining  More

  • in

    Evaluation of the chemical defense fluids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides

    1.
    Batalha, L. S., Silva Filho, D. F. & Martius, C. Using termite nests as a source of organic matter in agrosilvicultural production systems in Amazonia. Scientia Agricola 52, 318–325 (1995).
    Article  Google Scholar 
    2.
    Ayuke, F. O. et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil. Ecol. 48, 53–62 (2011).
    Article  Google Scholar 

    3.
    Jouquet, P., Chaudhary, E. & Kumar, A. R. V. Sustainable use of termite activity in agro-ecosystems with reference to earthworms A review. Agron. Sustain. Dev. 38, 3 (2018).
    Article  Google Scholar 

    4.
    Deligne, J., Quennedey, A. & Blum, M. S. The enemies and defense mechanisms of termites. In Social Insects (ed. Hermann, H. R.) 1–76 (Academic Press, Cambridge, 1981).
    Google Scholar 

    5.
    Grasse, P. P. Termitologia, Tome III (Masson, Paris, 1986).
    Google Scholar 

    6.
    Prestwich, G. D. Defense mechanisms of termites. Annu. Rev. Entomol. 29(1), 201–232 (1984).
    CAS  Article  Google Scholar 

    7.
    Chuah, C. H. Chemical Weapons and Defense Mechanism of Malaysian Termites. In Chemistry in Malaysia 4–11 (Institut Kimia Malaysia, 2010).

    8.
    Iida, M. & Akino, T. Defensive effect of soldier-specific secretion by Reticulitermes speratus (Isoptera: Rhinotermitidae) on the facultative termitophagous ponerine ant, Brachyponera chinensis (Hymenoptera: Ponerinae). Appl. Entomol. Zool. 51, 111–116 (2016).
    Article  Google Scholar 

    9.
    Kori, N. S. M. & Arumugam, N. Termites of Agropark, Universiti Malaysia Kelantan, Jeli Campus: Diversity and pest composition. J. Trop. Resour. Sustain. Sci. 5, 104–108 (2017).
    Google Scholar 

    10.
    Alia-Diyana, M. H., Appalasamy, S. & Arumugam, N. Termite species and structural pest identification in selected rural areas of Kelantan, Malaysia. IOP Conf. Ser. Earth and Environ. Sci. https://doi.org/10.1088/1755-1315/549/1/012053 (2020).
    Article  Google Scholar 

    11.
    Sillam-Dussès, D. et al. Comparative Study of the Labial Gland Secretion in Termites (Isoptera). PLoS ONE 7(10), e46431 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Wyatt, T. D. Pheromones and other chemical communication in animals. In Encyclopedia of Neuroscience (ed. Squire, L. R.) 611–616 (Academic Press, Oxford, 2017).
    Google Scholar 

    13.
    Ahmad, N. & Kamarudin, N. Pheromone Trapping in Controlling Key Insect Pests: Progress and Prospects (Malaysia Palm Oil Board, Kajang, 2016).
    Google Scholar 

    14.
    Matthews, G. Pesticides: Health, Safety and the Environment (Wiley Blackwell, Chichester, 2015).
    Google Scholar 

    15.
    Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Ann. Rev. Entomol. 52(1), 81–106 (2007).
    CAS  Article  Google Scholar 

    16.
    Rattan, R. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 29(9), 913–920 (2010).
    CAS  Article  Google Scholar 

    17.
    Regnault-Roger, C., Vincent, C. & Arnason, J. T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 57, 405–424 (2012).
    CAS  PubMed  Article  Google Scholar 

    18.
    Pavela, R. & Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21(12), 1000–1007 (2016).
    CAS  PubMed  Article  Google Scholar 

    19.
    Chouvenc, T., Su, N. & Kenneth, G. J. Fifty years of attempted biological control of termites—Analysis of a failure. Biol. Control 59(2), 69–82 (2011).
    Article  Google Scholar 

    20.
    Meikle, W. G. et al. Evaluation of an entomopathogenic fungus, Paecilomyces fumosoroseus (Wize) Brown and Smith (Deuteromycota: Hyphomycetes) obtained from Formosan subterranean termites (Isop, Rhinotermitidae). J. Appl. Entomol. 129(6), 315–322 (2005).
    Article  Google Scholar 

    21.
    Tho, Y. P. Termites of Peninsular Malaysia (Forest Research Institute Malaysia, Selangor, 1992).
    Google Scholar 

    22.
    Krasulova, J. et al. Chemistry and anatomy of the frontal gland in soldiers of the sand termite Psammotermes hybostoma. J. Chem. Ecol. 38(5), 557–565 (2012).
    CAS  PubMed  Article  Google Scholar 

    23.
    Bakaruddin, N. H., Dieng, H., Sulaiman, S. F. & Ab Majid, A. H. Evaluation of the toxicity and repellency of tropical plant extract against subterranean termites, Globitermes sulphureus and Coptotermes gestroi. Inf. Process. Agric. 5(3), 298–307 (2018).
    Google Scholar 

    24.
    Lee, C. C. & Lee, C. Y. A laboratory maintenance regime for a fungus-growing termite Macrotermes gilvus (Blattodea: Termitidae). J. Econ. Entomol. 108(3), 1243–1250 (2015).
    CAS  PubMed  Article  Google Scholar 

    25.
    Zibaee, I. & Pooya, B. K. Evaluation of repellent activity of two essential oils and their mixed formulation against cockroaches (Dictyoptera: Blattidae, Blattellidae) in Iran. J. Entomol. Zool. Stud. 4, 106 (2016).
    Google Scholar 

    26.
    OECD. Guidance Document on Assays for Testing the Efficacy of Baits Against Cockroaches Health and Safety Publications (OECD Environment, Paris, 2013).
    Google Scholar 

    27.
    Syed, R., Manzoor, F., Adalat, R., Abdul-Sattar, A. & Syed, A. Laboratory evaluation of toxicity of insecticide formulations from different classes against American cockroach (Dictyoptera: Blattidae). J. Arthropod-Borne Dis. 8(1), 21–34 (2014).
    PubMed  Google Scholar 

    28.
    Ohta, M., Matsuura, F., Henderson, G. & Laine, R. A. Novel free ceramides as components of the soldier defense gland of the Formosan subterranean termite (Coptotermes formosanus). J. Lipid Res. 48(3), 656–664 (2007).
    CAS  PubMed  Article  Google Scholar 

    29.
    McDonald, L. L., Guy, R. H. & Speirs, R. D. Preliminary evaluation of new candidate materials as toxicants, repellents, and attractants against stored-product insects-1 (Agriculture Research Service, 1970).

    30.
    Johnson, R. A., Thomas, R. J., Wood, T. G. & Swift, M. J. The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria. J. Nat. Hist. 15(5), 751–756 (2007).
    Article  Google Scholar 

    31.
    de Mello, A. P., Azevedo, N. R., da Silva, A. M. B. & Gusmão, M. A. B. Chemical composition and variability of the defensive secretion in Nasutitermes corniger (Motschulsky, 1885) in urban area in the Brazilian semiarid region. Entomotropica 31, 82–90 (2016).
    Google Scholar 

    32.
    Bordereau, C., Robert, A., Van Tuyen, V. & Peppuy, A. Suicidal defensive behaviour by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insectes Soc. 44(3), 289–297 (1997).
    Article  Google Scholar 

    33.
    Touchard, A., Dejean, A., Escoubas, P. & Orivel, J. Intraspecific variations in the venom peptidome of the ant Odontomachus haematodus (Formicidae: Ponerinae) from French Guiana. J. Hymenoptera Res. 47, 87–101 (2015).
    Article  Google Scholar 

    34.
    Aguilera-Olivares, D., Burgos-Lefimil, C., Melendez, W., Flores-Prado, L. & Niemeyer, H. M. Chemical basis of nestmate recognition in a defense context in a one-piece nesting termite. Chemoecology 26(5), 163–172 (2016).
    Article  Google Scholar 

    35.
    Kuswanto, E., Ahmad, I., Putra, R. E. & Harahap, I. S. Two novel volatile compounds as the key for intraspecific colony recognition in Macrotermes gilvus (Isoptera: Termitidae). J. Entomol. 12(2), 87–94 (2015).
    CAS  Article  Google Scholar 

    36.
    Ismanto, A. & Baedowi, A. Efikasi ekstrak akar tuba dalam mengendalikan rayap tanah Macrotermes gilvus hagen pada pertanaman kayu putih. Jurnal Ecogreen. 5(1), 57–62 (2019).
    Google Scholar 

    37.
    Jones, T. H. et al. The chemistry of exploding ants, Camponotus spp. (cylindricus complex). J. Chem. Ecol. 30(8), 1479–1492 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Laciny, A. et al. Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group. ZooKeys 751, 1–40 (2018).
    Article  Google Scholar 

    39.
    Kuwahara, Y. Chemical Ecology of Astigmatid Mites (Cambridge University Press, Cambridge, 2004).
    Google Scholar 

    40.
    Iqbal, N. & Saeed, S. Toxicity of six new chemical insecticides against the termite, Microtermes mycophagus D. (Isoptera: Termitidae: Macrotermitinae). Pak. J. Zool. 45(3), 709–713 (2013).
    CAS  Google Scholar 

    41.
    Lihoreau, M. & Rivault, C. Kin recognition via cuticular hydrocarbons shapes cockroach social life. Behav. Ecol. 20, 46–53 (2009).
    Article  Google Scholar 

    42.
    Emanuel, S. & Libersat, F. Nociceptive Pathway in the cockroach Periplaneta americana. Front. Physiol. https://doi.org/10.3389/fphys.2019.01100 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    43.
    Deisig, N., Dupuy, F., Anton, S. & Renou, M. Responses to pheromones in a complex odor world: Sensory processing and behavior. Insects. 5(2), 399–422 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Nishino, H. et al. Spatial receptive fields for odor localization. Curr. Biol. 28(4), 600–608 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Sandoz, J. C., Pham, D. M., Renou, M. & Wadhams, L. Asymmetrical generalisation between pheromonal and floral odours in appetitive olfactory conditioning of the honey bee (Apis mellifera L.). J. Comp. Physiol. 187, 559–568 (2001).
    CAS  Article  Google Scholar 

    46.
    Kreher, S. A., Kwon, J. Y. & Carlson, J. R. The molecular basis of odor coding in the Drosophila larva. Neuron 46(3), 445–456 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Grosjean, Y. et al. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature 478(7368), 236 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Vosshall, L. B. & Hansson, B. S. A unified nomenclature system for the insect olfactory coreceptor. Chem. Senses 36(6), 497–498 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Peschke, K. & Eisner, T. Defensive secretion of the tenebrionid beetle, Blaps mucronata: Physical and chemical determinants of effectiveness. J. Comp. Physiol. 161(3), 377–388 (1987).
    CAS  Article  Google Scholar 

    50.
    Dettner, K. Solvent-dependent variablity of effectiveness of quinone-defensive systems of Oxytelinae beetles (Coleoptera: Staphylinidae). Entomologia Generalis. 15, 275–292 (1991).
    Article  Google Scholar 

    51.
    Roth, L. & Eisner, T. Chemical defenses of arthropods. Ann. Rev. Entomol. 7, 107–136 (2003).
    Article  Google Scholar 

    52.
    Li, J. et al. Odoriferous defensive stink gland transcriptome to identify novel genes necessary for quinone synthesis in the red flour beetle Tribolium castaneum. PLoS Genet. 9(7), 1003596–1003596 (2013).
    Article  CAS  Google Scholar 

    53.
    Delattre, O. et al. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 69(12), 1945–1955 (2015).
    Article  Google Scholar 

    54.
    Prestwich, G. D. & Chen, D. Soldier defense secretions of Trinervitermes bettonianus (Isoptera, Nasutitermitinae): Chemical variation in allopatric populations. J. Chem. Ecol. 7(1), 147–157 (1981).
    CAS  PubMed  Article  Google Scholar 

    55.
    Piper, R. Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals (Greenwood Publishing Group, Westport, 2007).
    Google Scholar 

    56.
    Costa-Leonardo, A. A new interpretation of the defense glands of neotropical Ruptitermes (Isoptera, Termitidae, Apicotermitinae). Sociobiology 44, 391–402 (2004).
    Google Scholar 

    57.
    Reinhard, J., Lacey, M. & Lenz, M. Application of the natural phagostimulant hydroquinone in bait systems for termite management (Isoptera). Sociobiology 39(2), 213–230 (2002).
    Google Scholar 

    58.
    Hasyim, A., Istianto, M. & de Kogel, W. Male fruit fly, Bactrocera tau (Diptera; Tephritidae) attractants from Elsholtzia pubescens Bth. Asian J. Plant Sci. 6(1), 181–183 (2007).
    Article  Google Scholar 

    59.
    Chen, Z. Y. et al. Insecticidal and repellent activity of essential oil from Amomum villosum Lour. and its main compounds against two stored-product insects. Int. J. Food Prop. 21(1), 2265–2275 (2018).
    CAS  Article  Google Scholar 

    60.
    Reisenman, C. E., Lei, H. & Guerenstein, P. G. Neuroethology of olfactory-guided behavior and its potential application in the control of harmful insects. Front. Physiol. 7, 271–271 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Raina, A. K., Bland, J. M. & Osbrink, W. Hydroquinone is not a phagostimulant for the Formosan subterranean termite. J. Chem. Ecol. 31(3), 509–517 (2005).
    CAS  PubMed  Article  Google Scholar 

    62.
    Bagnères, A.-G. & Hanus, R. Communication and social regulation in termites. In Social Recognition in Invertebrates: The Knowns and the Unknowns (eds Aquiloni, L. & Tricarico, E.) 193–248 (Springer, Cham, 2015).
    Google Scholar 

    63.
    Alia Diyana, M. H., Appalasamy, S., Arumugam, N. & Boon, J. G. A study of a termite chemical defense fluid compound of Macrotermes carbonarius. IOP Conf. Ser. Earth Environ. Sci. https://doi.org/10.1088/1755-1315/269/1/012009 (2019).
    Article  Google Scholar 

    64.
    Environmental Protection Agency. Furanone. Prevention P A T S (National Center for Environmental Publications and Information, 1993).

    65.
    Igwe, O. U. & Udofia, D. E. Secondary metabolites of the cuticular abdominal glands of variegated grasshopper (Zonocerus variegatus L.). Int. J. Spectrosc. 2015, 1–6 (2015).
    Article  CAS  Google Scholar 

    66.
    Neoh, K. B., Yeap, B.-K., Tsunoda, K., Yoshimura, T. & Lee, C.-Y. Do termites avoid carcasses? Behavioral responses depend on the nature of the carcasses. PLoS ONE 7(4), 36375 (2012).
    ADS  Article  CAS  Google Scholar 

    67.
    Blassioli-Moraes, M. C., Laumann, R. A., Michereff, M. F. F. & Borges, M. Semiochemicals for integrated pest management. In Sustainable Agrochemistry: A Compendium of Technologies (ed. Vaz, S., Jr.) 85–112 (Springer, Cham, 2019).
    Google Scholar 

    68.
    de Melo, A. R. et al. Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae. Ecotoxicol. Environ. Saf. 154, 1–5 (2018).
    ADS  PubMed  Article  CAS  Google Scholar 

    69.
    Xie, Y., Wang, K., Huang, Q. & Lei, C. Evaluation toxicity of monoterpenes to subterranean termite, Reticulitermes chinensis Snyder. Ind. Crops Prod. 53, 163–166 (2014).
    CAS  Article  Google Scholar 

    70.
    Xie, Y. et al. Antitermitic and antifungal activities of eugenol and its congeners from the flower buds of Syzgium aromaticum (clove). Ind. Crops Prod. 77, 780–786 (2015).
    CAS  Article  Google Scholar 

    71.
    Zhang, Z., Yang, T., Zhang, Y., Wang, L. & Xie, Y. Fumigant toxicity of monoterpenes against fruitfly, Drosophila melanogaster. Ind. Crops Prod. 81, 147–151 (2016).
    CAS  Article  Google Scholar 

    72.
    Silva, L. N. D. et al. The influence of fatty acid methyl esters (FAMEs) in the biochemistry and the Na+/K+-ATPase activity of Culex quinquefasciatus Larvae. J. Membr. Biol. 249(4), 459–467 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Advanced characterization of biomineralization at plaque layer and inside rice roots amended with iron- and silica-enhanced biochar

    1.
    Normile, D. Reinventing rice to feed the world. Science 321, 330–333 (2008).
    MathSciNet  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants (Academic Press, London, 2012).
    Google Scholar 

    3.
    Vigani, G., Tarantino, D. & Murgia, I. Mitochondrial ferritin is a functional iron-storage protein in cucumber (Cucumis sativus) roots. Front. Plant Sci. 4, 316 (2013).
    PubMed  PubMed Central  Google Scholar 

    4.
    Violante, A., Barberis, E., Pigna, M. & Boero, V. Factors affecting the formation, nature, and properties of iron precipitation products at the soil-root interface. J. Plant Nutr. 26, 1889–1908 (2003).
    CAS  Article  Google Scholar 

    5.
    Pradhan, S. K. et al. Genetic regulation of homeostasis, uptake, bio-fortification and efficiency enhancement of iron in rice. Environ. Exp. Bot. 177, 104066 (2020).
    CAS  Article  Google Scholar 

    6.
    Kilcoyne, S. H., Bentley, P. M., Thongbai, P., Gordon, D. C. & Goodman, B. A. The application of 57Fe Mössbauer spectroscopy in the investigation of iron uptake and translocation in plants. Nucl. Instrum. Meth B 160, 157–166 (2000).
    ADS  CAS  Article  Google Scholar 

    7.
    Zhang, A. et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 139, 469–475 (2010).
    CAS  Article  Google Scholar 

    8.
    Huang, M., Yang, L., Qin, H., Jiang, L. & Zou, Y. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies. Field Crops Res. 154, 172–177 (2013).
    Article  Google Scholar 

    9.
    Zhang, A. et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 127, 153–160 (2012).
    Article  Google Scholar 

    10.
    Kim, S. & Dale, B. E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 26, 361–375 (2004).
    Article  Google Scholar 

    11.
    Wang, Y., Xiao, X., Xu, Y. & Chen, B. Environmental effects of silicon within Biochar (Sichar) and carbon–silicon coupling mechanisms: A critical review. Environ. Sci. Technol. 53, 13570–13582 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 45, 629 (2007).
    CAS  Article  Google Scholar 

    13.
    Van Zwieten, L. et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235–246 (2009).
    Article  CAS  Google Scholar 

    14.
    Joseph, S. et al. Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 4, 323–343 (2013).
    CAS  Article  Google Scholar 

    15.
    Chew, J. et al. Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. Sci. Total Environ. 713, 136431 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Irshad, M. K. et al. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil. Sci. Total Environ. 717, 137086 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Zhang, J.-Y. et al. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.). Environ. Pollut. 260, 113970 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Chen, Z. et al. Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization. Environ. Pollut. 231, 549–559 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Küpper, H., Zhao, F. J. & McGrath, S. P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119, 305–312 (1999).
    PubMed Central  Article  Google Scholar 

    20.
    Blackwell, P. et al. Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere 25, 686–695 (2015).
    CAS  Article  Google Scholar 

    21.
    Rodriguez, N., Menendez, N., Tornero, J., Amils, R. & de la Fuente, V. Internal iron biomineralization in Imperata cylindrica, a perennial grass: Chemical composition, speciation and plant localization. New Phytol. 165, 781–789 (2005).
    CAS  PubMed  Article  Google Scholar 

    22.
    Neumann, D., Nieden, U. Z., Lichtenberger, O. & Leopold, I. How does Armeria maritima tolerate high heavy metal concentrations?. J. Plant Physiol. 146, 704–717 (1995).
    CAS  Article  Google Scholar 

    23.
    Liu, D. H., Adler, K. & Stephan, U. W. Iron-containing particles accumulate in organelles and vacuoles of leaf and root cells in the nicotianamine-free tomato mutantchloronerva. Protoplasma 201, 213–220 (1998).
    CAS  Article  Google Scholar 

    24.
    Alkhatib, R., Alkhatib, B., Abdo, N., Al-Eitan, L. & Creamer, R. Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant Biol. 19, 253 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Fuente, V. et al. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv. J. Struct. Biol. 193, 23–32 (2016).
    CAS  PubMed  Article  Google Scholar 

    26.
    Graham, U. M. et al. Tissue specific fate of nanomaterials by advanced analytical imaging techniques—A review. Chem. Res. Toxicol. 33, 1145–1162 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Aoki, D. et al. Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM. Sci. Rep. 6, 31525 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Martin, R. R. et al. Time of flight secondary ion mass spectrometry studies of the distribution of metals between the soil, rhizosphere and roots of Populus tremuloides Minchx growing in forest soil. Chemosphere 54, 1121–1125 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Saito, K. et al. Aluminum localization in the cell walls of the mature xylem of maple tree detected by elemental imaging using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Holzforschung 68, 85–92 (2014).
    CAS  Article  Google Scholar 

    30.
    Hanć, A., Piechalak, A., Tomaszewska, B. & Barałkiewicz, D. Laser ablation inductively coupled plasma mass spectrometry in quantitative analysis and imaging of plant’s thin sections. Int. J. Mass spectrom. 363, 16–22 (2014).
    Article  CAS  Google Scholar 

    31.
    Shi, J., Gras, M. A. & Silk, W. K. Laser ablation ICP-MS reveals patterns of copper differing from zinc in growth zones of cucumber roots. Planta 229, 945–954 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Guizani, C., Haddad, K., Limousy, L. & Jeguirim, M. New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon 119, 519–521 (2017).
    CAS  Article  Google Scholar 

    33.
    Joseph, S. et al. An investigation into the reactions of biochar in soil. Soil Res. 48, 501–515 (2010).
    CAS  Article  Google Scholar 

    34.
    Prendergast-Miller, M. T., Duvall, M. & Sohi, S. P. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Sci. 65, 173–185 (2014).
    CAS  Article  Google Scholar 

    35.
    Nielsen, S. et al. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agric. Ecosyst. Environ. 191, 73–82 (2014).
    Article  Google Scholar 

    36.
    Hansel, C. M., Fendorf, S., Sutton, S. & Newville, M. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. 35, 3863–3868 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Gloter, A., Zbinden, M., Guyot, F., Gaill, F. & Colliex, C. TEM-EELS study of natural ferrihydrite from geological–biological interactions in hydrothermal systems. Earth Planet. Sci. Lett. 222, 947–957 (2004).
    ADS  CAS  Article  Google Scholar 

    38.
    Rajendran, M. et al. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere 222, 314–322 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Wu, C. et al. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL). Environ. Pollut. 212, 27–33 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Linke, R., Schreiner, M., Demortier, G. & Alram, M. Determination of the provenance of medieval silver coins: potential and limitations of X-ray analysis using photons, electrons or protons. X-ray Spectrom. 32, 373–380 (2003).
    ADS  CAS  Article  Google Scholar 

    41.
    Haynes, R. J. A contemporary overview of silicon availability in agricultural soils. J. Plant Nutr. Soil Sci. 177, 831–844 (2014).
    CAS  Article  Google Scholar 

    42.
    Kostic, L. et al. Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. Biol. Fertility Soils 51, 289–298 (2014).
    Article  CAS  Google Scholar 

    43.
    Acosta-Martinez, V. & Tabatabai, M. Enzyme activities in a limed agricultural soil. Biol. Fertility Soils 31, 85–91 (2000).
    CAS  Article  Google Scholar 

    44.
    Chan, K., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 46, 437–444 (2008).
    Article  Google Scholar 

    45.
    Khan, N. et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Adv. Agron. 138, 1–96 (2016).
    Article  Google Scholar 

    46.
    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept and review. Soil Biol. Biochem. 83, 184–199 (2015).
    CAS  Article  Google Scholar 

    47.
    Ma, J., Cai, H., He, C., Zhang, W. & Wang, L. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol. 206, 1063–1074 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Wang, Y., Stass, A. & Horst, W. J. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol. 136, 3762–3770 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Wang, P., Lombi, E., Zhao, F.-J. & Kopittke, P. M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 21, 699–712 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Garvie, L. A. & Buseck, P. R. Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature 396, 667–670 (1998).
    ADS  CAS  Article  Google Scholar 

    51.
    Goya, G. F., Berquó, T. S., Fonseca, F. C. & Morales, M. P. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003).
    ADS  CAS  Article  Google Scholar 

    52.
    Yao, C. et al. Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere 25, 703–712 (2015).
    CAS  Article  Google Scholar 

    53.
    Rawal, A. et al. Mineral-biochar composites: Molecular structure and porosity. Environ. Sci. Technol. 50, 7706–7714 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    54.
    Mitchell, D. R. Contamination mitigation strategies for scanning transmission electron microscopy. Micron 73, 36–46 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Geological and Pleistocene glaciations explain the demography and disjunct distribution of red panda (A. fulgens) in eastern Himalayas

    1.
    Dong, F. et al. Ice age unfrozen: severe effect of the last interglacial, not glacial, climate change on East Asian avifauna. BMC Evol. Biol. 17, 244 (2017).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philo. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 183–195 (2004).
    CAS  Article  Google Scholar 

    3.
    Zheng, B., Xu, Q. & Shen, Y. The relationship between climate change and quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quat. Int. 97, 93–101 (2002).
    Article  Google Scholar 

    4.
    Wei, Z., Zhijiu, C. & Yonghua, L. Review of the timing and extent of glaciers during the last glacial cycle in the bordering mountains of Tibet and in East Asia. Quat. Int. 154, 32–43 (2006).
    Article  Google Scholar 

    5.
    Zhou, S., Wang, X., Wang, J. & Xu, L. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai-Tibetan Plateau. Quat. Int. 154, 44–51 (2006).
    Article  Google Scholar 

    6.
    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44 (2019).
    ADS  Article  Google Scholar 

    7.
    Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, Cambridge, 2000).
    Google Scholar 

    8.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Wiens, J. J. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
    PubMed  Article  Google Scholar 

    10.
    Srinivasan, U., Tamma, K. & Ramakrishnan, U. Past climate and species ecology drive nested species richness patterns along an east-west axis in the Himalaya. Glob. Ecol. Biogeogr. 23, 52–60 (2014).
    Article  Google Scholar 

    11.
    Carstens, B. C. & Knowles, L. L. Shifting distributions and speciation: species divergence during rapid climate change. Mol. Ecol. 16, 619–627 (2007).
    PubMed  Article  Google Scholar 

    12.
    Yang, S., Dong, H. & Lei, F. Phylogeography of regional fauna on the Tibetan Plateau: a review. Prog. Nat. Sci. 19, 789–799 (2009).
    CAS  Article  Google Scholar 

    13.
    Qu, Y., Lei, F., Zhang, R. & Lu, X. Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateau. Mol. Ecol. 19, 338–351 (2010).
    CAS  PubMed  Article  Google Scholar 

    14.
    Zhao, N. et al. Pleistocene climate changes shaped the divergence and demography of Asian populations of the great tit Parus major: evidence from phylogeographic analysis and ecological niche models. J. Avian Biol. 43, 297–310 (2012).
    Article  Google Scholar 

    15.
    Lei, F., Qu, Y. & Song, G. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr. Zool. 60, 149–161 (2014).
    Article  Google Scholar 

    16.
    McKinney, M. L. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. System. 28, 495–516 (1997).
    Article  Google Scholar 

    17.
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    18.
    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Glatston, A., Wei, F., Zaw, T. & Sherpa, A. Ailurus fulgens. The IUCN Red. List of Threatened Species. (2015).

    20.
    Choudhury, A. An overview of the status and conservation of the red panda Ailurus fulgens in India, with reference to its global status. Oryx 35, 250–259 (2001).
    Article  Google Scholar 

    21.
    Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Wei, F., Feng, Z., Wang, Z., Zhou, A. & Hu, J. Use of the nutrients in bamboo by the red panda (Ailurus fulgens). J. Zool. 248, 535–541 (1999).
    Article  Google Scholar 

    23.
    Roberts, M. S. & Gittleman, J. L. Ailurus fulgens repository.si.edu. Mamm. Species Acc. 222, 1–8 (1984).
    Google Scholar 

    24.
    Su, B., Fu, Y., Wang, Y., Jin, L. & Chakraborty, R. Genetic diversity and population history of the red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations. Mol. Biol. Evol. 18, 1070–1076 (2001).
    CAS  PubMed  Article  Google Scholar 

    25.
    Li, M. et al. Mitochondrial phylogeography and subspecific variation in the red panda (Ailurus fulgens): implications for conservation. Mol. Phylogenet. Evol. 36, 78–89 (2005).
    CAS  PubMed  Article  Google Scholar 

    26.
    Hu, Y. et al. Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA. Mol. Ecol. 20, 2662–2675 (2011).
    PubMed  Article  Google Scholar 

    27.
    Hu, Y. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, eaax5751 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Dalui, S. et al. Fine-scale landscape genetics unveiling contemporary asymmetric movement of red panda (Ailurus fulgens) in Kangchenjunga landscape, India. Sci. Rep. 10, 1–12 (2020).
    Article  Google Scholar 

    29.
    Liu, Z. F. et al. Variations ofδ18O in precipitation of the Yarlung Zangbo River Basin. Acta Geograph. Sin. (Chin.) 17, 317–326 (2007).
    Google Scholar 

    30.
    Wang, X. D. et al. Regional assessment of environmental vulnerability in the Tibetan Plateau: development and application of a new method. J. Arid Environ. 721, 929–939 (2008).
    Google Scholar 

    31.
    Zeng, C. et al. Improving sediment load estimations: The case of the Yarlung Zangbo River (the upper Brahmaputra, Tibet Plateau). CATENA 160, 210–211 (2018).
    Article  Google Scholar 

    32.
    Du, Z. et al. Mountain Geoecology and Sustainable Development of the Tibetan Plateau 312 (Kluwer, Riverwoods, 2000).
    Google Scholar 

    33.
    Choudhury, A. Primates in northeast India: an overview of their distribution and conservation status. ENVIS Bull. Wildl. Prot. Areas 1, 92–101 (2001).
    Google Scholar 

    34.
    Meijaard, E. & Groves, C. P. The geography of mammals and rivers in mainland Southeast Asia. In Primate Biogeography (eds Lehman, S. M. & Fleagle, J. G.) 305–329 (Springer, Boston, 2006).
    Google Scholar 

    35.
    Fordham, G., Shanee, S. & Peck, M. Effect of river size on Amazonian primate community structure: a biogeographic analysis using updated taxonomic assessments. Am. J. Primatol. 82, e23136 (2020).
    PubMed  Article  Google Scholar 

    36.
    Bazin, E. et al. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Heller, R., Chikhi, L. & Siegismund, H. R. The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS ONE 8(5), e62992 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Hu, Y., Qi, D., Wang, H. & Wei, F. Genetic evidence of recent population contraction in the southernmost population of giant pandas. Genetica 138, 1297–1306 (2010).
    PubMed  Article  Google Scholar 

    39.
    Chung, S.-L. et al. Diachronous uplift of the Tibetan plateau starting 40? Myr ago. Nature 394, 769–773 (1998).
    ADS  CAS  Article  Google Scholar 

    40.
    Tapponnier, P. et al. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 1671–1677 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    41.
    Royden, L. H., Burchfiel, B. C. & van der Hilst, R. D. The geological evolution of the Tibetan Plateau. Science 321, 1054–1058 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizler, M. & Ding, L. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bull. 119, 917–933 (2007).
    ADS  Article  Google Scholar 

    43.
    Schmidt, F., Franke, F. A., Shirley, M. H., Vliet, K. A. & Villanova, V. L. The importance of genetic research in zoo breeding programmes for threatened species: the African dwarf crocodiles (genus Osteolaemus) as a case study. Int. Zoo Yearb. 49, 125–136 (2015).
    Article  Google Scholar 

    44.
    Gippoliti, S., Cotterill, F. P., Zinner, D. & Groves, C. P. Impacts of taxonomic inertia for the conservation of African ungulate diversity: an overview. Biol. Rev. 93, 115–130 (2018).
    PubMed  Article  Google Scholar 

    45.
    McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5, 349–359 (2012).
    Article  Google Scholar 

    46.
    Grace, M. et al. Using historical and palaeoecological data to inform ambitious species recovery targets. Philos. Trans. R. Soc. Lond. B 374, 20190297 (2019).
    Article  Google Scholar 

    47.
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
    CAS  Article  Google Scholar 

    48.
    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Nylander, J. A. A. MrModeltest ver. 2. 2004: Evolutionary Biology Centre (Uppsala University, Sweden, 2004).
    Google Scholar 

    50.
    Sato, J. J. et al. Deciphering and dating the red panda’s ancestry and early adaptive radiation of Musteloidea. Mol. Phylogenet. Evol. 53, 907–922 (2009).
    CAS  PubMed  Article  Google Scholar 

    51.
    Rambaut, A. & Drummond, A. J. Tracer version 1.5 [computer program]. (2009).

    52.
    Rambaut, A. FigTree version 1.4. 0. Available at http://tree.bio.ed.ac.uk/software/figtree. Accessed October (2016).

    53.
    Bandelt, H.-J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
    CAS  PubMed  Article  Google Scholar 

    54.
    Corander, J. & Marttinen, P. Bayesian identification of admixture events using multilocus molecular markers. Mol. Ecol. 15, 2833–2843 (2006).
    PubMed  Article  Google Scholar 

    55.
    Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 9, 539 (2008).
    Article  Google Scholar 

    56.
    Dupanloup, I., Schneider, S. & Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11, 2571–2581 (2002).
    CAS  PubMed  Article  Google Scholar 

    57.
    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).
    CAS  PubMed  Google Scholar 

    58.
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  Article  Google Scholar  More