Host relatedness and landscape connectivity shape pathogen spread in the puma, a large secretive carnivore
1.
Daversa, D. R., Fenton, A., Dell, A. I., Garner, T. W. J. & Manica, A. Infections on the move: how transient phases of host movement influence disease spread. Proc. R. Soc. B Biol. Sci. 284, 20171807 (2017).
Article Google Scholar
2.
Mazé-Guilmo, E., Blanchet, S., McCoy, K. D. & Loot, G. Host dispersal as the driver of parasite genetic structure: a paradigm lost? Ecol. Lett. 19, 336–347 (2016).
PubMed Article PubMed Central Google Scholar
3.
Biek, R. & Real, L. A. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19, 3515–3531 (2010).
PubMed PubMed Central Article Google Scholar
4.
Kozakiewicz, C. P. et al. Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol. Appl. https://doi.org/10.1111/eva.12678 (2018).
5.
Brüniche-Olsen, A., Burridge, C. P., Austin, J. J. & Jones, M. E. Disease induced changes in gene flow patterns among Tasmanian devil populations. Biol. Conserv. 165, 69–78 (2013).
Article Google Scholar
6.
Kyle, C. J. et al. Spatial patterns of neutral and functional genetic variations reveal patterns of local adaptation in raccoon (Procyon lotor) populations exposed to raccoon rabies. Mol. Ecol. 23, 2287–2298 (2014).
CAS PubMed Article PubMed Central Google Scholar
7.
Schwabl, P. et al. Prediction and prevention of parasitic diseases using a landscape genomics framework. Trends Parasitol. 33, 264–275 (2017).
PubMed Article PubMed Central Google Scholar
8.
Streicker, D. G. et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl. Acad. Sci. USA 113, 10926–10931 (2016).
CAS PubMed Article PubMed Central Google Scholar
9.
Gijsbers, E. F. et al. Low level of HIV-1 evolution after transmission from mother to child. Sci. Rep. 4, 4650–4655 (2014).
Google Scholar
10.
Lee, J. S. et al. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape. Mol. Ecol. 21, 1617–1631 (2012).
PubMed Article Google Scholar
11.
Fountain-Jones, N. M. et al. Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore. Mol. Ecol. 26, 6487–6498 (2017).
PubMed Article Google Scholar
12.
Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. Camb. Philos. Soc. 88, 427–442 (2013).
PubMed Article Google Scholar
13.
Mcdonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).
Article Google Scholar
14.
Riley, S. P. D. et al. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741 (2006).
CAS PubMed Article PubMed Central Google Scholar
15.
Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
CAS PubMed Article PubMed Central Google Scholar
16.
Riley, S. P. D. et al. Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv. Biol. 17, 566–576 (2003).
Article Google Scholar
17.
Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. Biol. Sci. 284, 20170433 (2017).
PubMed PubMed Central Google Scholar
18.
Tracey, J. A., Bevins, S. N., VandeWoude, S. & Crooks, K. R. An agent-based movement model to assess the impact of landscape fragmentation on disease transmission. Ecosphere 5, 119 (2014).
Article Google Scholar
19.
Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).
20.
Ordeñana, M. A. et al. Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91, 1322–1331 (2010).
Article Google Scholar
21.
Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).
Article Google Scholar
22.
Blecha, K. A., Boone, R. B. & Alldredge, M. W. Hunger mediates apex predator’s risk avoidance response in wildland-urban interface. J. Anim. Ecol. 87, 609–622 (2018).
PubMed Article Google Scholar
23.
Lewis, J. S. et al. The effects of urbanization on population density, occupancy, and detection probability of wild felids. Ecol. Appl. 25, 1880–1895 (2015).
PubMed Article Google Scholar
24.
Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).
PubMed Article Google Scholar
25.
Cunningham, M. W. et al. Epizootiology and management of feline leukemia virus in the Florida puma. J. Wildl. Dis. 44, 537–552 (2008).
26.
Trumbo, D. et al. Urbanization impacts apex predator gene flow but not genetic diversity across an urban-rural divide. Mol. Ecol. 28, 4926–4940 (2019).
27.
VandeWoude, S. & Apetrei, C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin. Microbiol. Rev. 19, 728–762 (2006).
CAS PubMed PubMed Central Article Google Scholar
28.
Brown, E. W., Yuhki, N., Packer, C. & O’Brien, S. J. A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects. J. Virol. 68, 5953–5968 (1994).
CAS PubMed PubMed Central Article Google Scholar
29.
Biek, R. et al. Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J. Virol. 77, 9578–9589 (2003).
CAS PubMed PubMed Central Article Google Scholar
30.
Biek, R., Ruth, T. K., Murphy, K. M., Anderson, C. R. Jr. & Poss, M. Examining effects of persistent retroviral infection on fitness and pathogen susceptibility in a natural feline host. Can. J. Zool. 84, 365–373 (2006).
Article Google Scholar
31.
Reynolds, J. J. H. et al. Feline immunodeficiency virus in puma: estimation of force of infection reveals insights into transmission. Ecol. Evol. ece3.5584, https://doi.org/10.1002/ece3.5584 (2019).
32.
Fountain-Jones, N. M. et al. Linking social and spatial networks to viral community phylogenetics reveals subtype-specific transmission dynamics in African lions. J. Anim. Ecol. 86, 1469–1482 (2017).
PubMed Article Google Scholar
33.
Fountain-Jones, N. M. et al. Towards an eco-phylogenetic framework for infectious disease ecology. Biol. Rev. 93, 950–970 (2018).
PubMed Article Google Scholar
34.
Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. R. Soc. London B Biol. Sci. 284, 20170433 (2017).
35.
Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).
Article Google Scholar
36.
Clarke, R. T., Rothery, P. & Raybould, A. F. Condence limits for regression relationships between distance matrices: estimating gene flow with distance. J. Agric. Biol. Environ. Stat. https://doi.org/10.1198/108571102320 (2002).
37.
Chou, J. et al. A comparative study of SVDquartets and other coalescent-based species tree estimation methods. BMC Genomics 16, S2 (2015).
PubMed PubMed Central Article Google Scholar
38.
Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol. Ecol. Resour. 18, 55–67 (2018).
PubMed Article PubMed Central Google Scholar
39.
Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity (Edinb.) 82, 561–573 (1999).
Article Google Scholar
40.
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
Article Google Scholar
41.
Logan, K. A. & Sweanor, L. L. Desert Puma: Evolutionary Ecology and Conservation of an Enduring Carnivore (Island Press, 2001).
42.
Biek, R. et al. Genetic consequences of sex-biased dispersal in a solitary carnivore: yellowstone cougars. Biol. Lett. 2, 312–315 (2006).
PubMed PubMed Central Article Google Scholar
43.
Dickson, B. G., Jenness, J. S. & Beier, P. Influence of vegetation, topography, and roads on cougar movement in Southern California. J. Wildl. Manag. 69, 264–276 (2005).
Article Google Scholar
44.
Kerr, T. J. et al. Viruses as indicators of contemporary host dispersal and phylogeography: an example of feline immunodeficiency virus (FIV Ple) in free-ranging African lion (Panthera leo). J. Evol. Biol. https://doi.org/10.1111/jeb.13348 (2018).
45.
Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24, 6021–6040 (2015).
PubMed Article PubMed Central Google Scholar
46.
Hornocker, M. G. & Negri, S. Cougar: Ecology and Conservation (University of Chicago Press, 2010).
47.
Sweanor, L. L., Logan, K. A. & Hornocker, M. G. Cougar dispersal patterns, metapopulation dynamics, and conservation. Conserv. Biol. 14, 798–808 (2000).
Article Google Scholar
48.
Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape‐scale impacts from mountain lions to mice. Ecol. Lett. ele.13344 https://doi.org/10.1111/ele.13344 (2019).
49.
Tian, H. et al. Transmission dynamics of re-emerging rabies in domestic dogs of rural China. PLOS Pathog. 14, e1007392 (2018).
PubMed PubMed Central Article CAS Google Scholar
50.
Carver, S. et al. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States. Ecol. Appl. 26, 367–381 (2016).
PubMed Article Google Scholar
51.
Di Pietro, F., Ortenzi, F., Tilio, M., Concetti, F. & Napolioni, V. Genomic DNA extraction from whole blood stored from 15- to 30-years at −20 °C by rapid phenol–chloroform protocol: a useful tool for genetic epidemiology studies. Mol. Cell. Probes 25, 44–48 (2011).
PubMed Article CAS Google Scholar
52.
Lee, J. S. et al. Targeted enrichment for pathogen detection and characterization in three felid species. J. Clin. Microbiol. 55, 1658–1670 (2017).
CAS PubMed PubMed Central Article Google Scholar
53.
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
CAS PubMed PubMed Central Article Google Scholar
54.
Lee, J. S. et al. Evolution of puma lentivirus in bobcats (Lynx rufus) and mountain lions (Puma concolor) in North America. J. Virol. 88, 7727–7737 (2014).
PubMed PubMed Central Article CAS Google Scholar
55.
Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).
56.
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
CAS PubMed Article Google Scholar
57.
Stöver, B. C. & Müller, K. F. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinforma. 11, 7 (2010).
Article Google Scholar
58.
Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).
PubMed PubMed Central Article Google Scholar
59.
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4 (2018).
60.
Ayres, D. L. et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst. Biol. 68, 1052–1061, https://doi.org/10.1093/sysbio/syz020 (2019).
61.
Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).
CAS PubMed PubMed Central Article Google Scholar
62.
Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: Smart model selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).
CAS PubMed PubMed Central Article Google Scholar
63.
Gill, M. S. et al. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).
CAS PubMed Article Google Scholar
64.
Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).
CAS PubMed PubMed Central Article Google Scholar
65.
Lartillot, N. & Philippe, H. Computing Bayes factors using thermodynamic integration. Syst. Biol. 55, 195–207 (2006).
PubMed Article Google Scholar
66.
Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M.-H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).
PubMed Article Google Scholar
67.
Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinforma. 14, 85 (2013).
Article Google Scholar
68.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
CAS PubMed PubMed Central Article Google Scholar
69.
Volz, E. M. et al. Identification of hidden population structure in time-scaled phylogenies. Syst. Biol. 69, 884–896, https://doi.org/10.1093/sysbio/syaa009 (2019).
70.
Karcher, M. D., Palacios, J. A., Lan, S. & Minin, V. N. phylodyn: an R package for phylodynamic simulation and inference. Mol. Ecol. Resour. 17, 96–100 (2017).
CAS PubMed Article PubMed Central Google Scholar
71.
Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789 (2016).
PubMed PubMed Central Article CAS Google Scholar
72.
Bowcock, A. M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).
CAS PubMed Article PubMed Central Google Scholar
73.
McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).
PubMed Article PubMed Central Google Scholar
74.
Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324 (2014).
CAS PubMed PubMed Central Article Google Scholar
75.
Swofford, D. L. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10 (Sinauer Associates, 2002).
76.
Peterman, W. E. ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9, 1638–1647 (2018).
Article Google Scholar
77.
Pierce, B. M., Bleich, V. C. & Bowyer, R. T. Social organization of mountain lions: does a land-tenure system regulate population size? Ecology 81, 1533–1543 (2000).
Article Google Scholar
78.
Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).
PubMed Article Google Scholar
79.
Fitzpatrick, M. C. et al. Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography 34, 836–847 (2011).
Article Google Scholar
80.
Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).
CAS PubMed Article PubMed Central Google Scholar
81.
Dellicour, S. et al. Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC Bioinforma. 17, 82–94 (2016).
Article CAS Google Scholar
82.
Laenen, L. et al. Spatio-temporal analysis of Nova virus, a divergent hantavirus circulating in the European mole in Belgium. Mol. Ecol. 25, 5994–6008 (2016).
CAS PubMed Article PubMed Central Google Scholar
83.
Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
Article Google Scholar
84.
Dellicour, S. et al. Using viral gene sequences to compare and explain the heterogeneous spatial dynamics of virus epidemics. Mol. Biol. Evol. 34, 2563–2571 (2017).
CAS PubMed Article PubMed Central Google Scholar More