More stories

  • in

    Host relatedness and landscape connectivity shape pathogen spread in the puma, a large secretive carnivore

    1.
    Daversa, D. R., Fenton, A., Dell, A. I., Garner, T. W. J. & Manica, A. Infections on the move: how transient phases of host movement influence disease spread. Proc. R. Soc. B Biol. Sci. 284, 20171807 (2017).
    Article  Google Scholar 
    2.
    Mazé-Guilmo, E., Blanchet, S., McCoy, K. D. & Loot, G. Host dispersal as the driver of parasite genetic structure: a paradigm lost? Ecol. Lett. 19, 336–347 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Biek, R. & Real, L. A. The landscape genetics of infectious disease emergence and spread. Mol. Ecol. 19, 3515–3531 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Kozakiewicz, C. P. et al. Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol. Appl. https://doi.org/10.1111/eva.12678 (2018).

    5.
    Brüniche-Olsen, A., Burridge, C. P., Austin, J. J. & Jones, M. E. Disease induced changes in gene flow patterns among Tasmanian devil populations. Biol. Conserv. 165, 69–78 (2013).
    Article  Google Scholar 

    6.
    Kyle, C. J. et al. Spatial patterns of neutral and functional genetic variations reveal patterns of local adaptation in raccoon (Procyon lotor) populations exposed to raccoon rabies. Mol. Ecol. 23, 2287–2298 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Schwabl, P. et al. Prediction and prevention of parasitic diseases using a landscape genomics framework. Trends Parasitol. 33, 264–275 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Streicker, D. G. et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl. Acad. Sci. USA 113, 10926–10931 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Gijsbers, E. F. et al. Low level of HIV-1 evolution after transmission from mother to child. Sci. Rep. 4, 4650–4655 (2014).
    Google Scholar 

    10.
    Lee, J. S. et al. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape. Mol. Ecol. 21, 1617–1631 (2012).
    PubMed  Article  Google Scholar 

    11.
    Fountain-Jones, N. M. et al. Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore. Mol. Ecol. 26, 6487–6498 (2017).
    PubMed  Article  Google Scholar 

    12.
    Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. Camb. Philos. Soc. 88, 427–442 (2013).
    PubMed  Article  Google Scholar 

    13.
    Mcdonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).
    Article  Google Scholar 

    14.
    Riley, S. P. D. et al. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Riley, S. P. D. et al. Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv. Biol. 17, 566–576 (2003).
    Article  Google Scholar 

    17.
    Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. Biol. Sci. 284, 20170433 (2017).
    PubMed  PubMed Central  Google Scholar 

    18.
    Tracey, J. A., Bevins, S. N., VandeWoude, S. & Crooks, K. R. An agent-based movement model to assess the impact of landscape fragmentation on disease transmission. Ecosphere 5, 119 (2014).
    Article  Google Scholar 

    19.
    Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).

    20.
    Ordeñana, M. A. et al. Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91, 1322–1331 (2010).
    Article  Google Scholar 

    21.
    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).
    Article  Google Scholar 

    22.
    Blecha, K. A., Boone, R. B. & Alldredge, M. W. Hunger mediates apex predator’s risk avoidance response in wildland-urban interface. J. Anim. Ecol. 87, 609–622 (2018).
    PubMed  Article  Google Scholar 

    23.
    Lewis, J. S. et al. The effects of urbanization on population density, occupancy, and detection probability of wild felids. Ecol. Appl. 25, 1880–1895 (2015).
    PubMed  Article  Google Scholar 

    24.
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).
    PubMed  Article  Google Scholar 

    25.
    Cunningham, M. W. et al. Epizootiology and management of feline leukemia virus in the Florida puma. J. Wildl. Dis. 44, 537–552 (2008).

    26.
    Trumbo, D. et al. Urbanization impacts apex predator gene flow but not genetic diversity across an urban-rural divide. Mol. Ecol. 28, 4926–4940 (2019).

    27.
    VandeWoude, S. & Apetrei, C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin. Microbiol. Rev. 19, 728–762 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Brown, E. W., Yuhki, N., Packer, C. & O’Brien, S. J. A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects. J. Virol. 68, 5953–5968 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Biek, R. et al. Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J. Virol. 77, 9578–9589 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Biek, R., Ruth, T. K., Murphy, K. M., Anderson, C. R. Jr. & Poss, M. Examining effects of persistent retroviral infection on fitness and pathogen susceptibility in a natural feline host. Can. J. Zool. 84, 365–373 (2006).
    Article  Google Scholar 

    31.
    Reynolds, J. J. H. et al. Feline immunodeficiency virus in puma: estimation of force of infection reveals insights into transmission. Ecol. Evol. ece3.5584, https://doi.org/10.1002/ece3.5584 (2019).

    32.
    Fountain-Jones, N. M. et al. Linking social and spatial networks to viral community phylogenetics reveals subtype-specific transmission dynamics in African lions. J. Anim. Ecol. 86, 1469–1482 (2017).
    PubMed  Article  Google Scholar 

    33.
    Fountain-Jones, N. M. et al. Towards an eco-phylogenetic framework for infectious disease ecology. Biol. Rev. 93, 950–970 (2018).
    PubMed  Article  Google Scholar 

    34.
    Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. R. Soc. London B Biol. Sci. 284, 20170433 (2017).

    35.
    Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).
    Article  Google Scholar 

    36.
    Clarke, R. T., Rothery, P. & Raybould, A. F. Condence limits for regression relationships between distance matrices: estimating gene flow with distance. J. Agric. Biol. Environ. Stat. https://doi.org/10.1198/108571102320 (2002).

    37.
    Chou, J. et al. A comparative study of SVDquartets and other coalescent-based species tree estimation methods. BMC Genomics 16, S2 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol. Ecol. Resour. 18, 55–67 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity (Edinb.) 82, 561–573 (1999).
    Article  Google Scholar 

    40.
    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
    Article  Google Scholar 

    41.
    Logan, K. A. & Sweanor, L. L. Desert Puma: Evolutionary Ecology and Conservation of an Enduring Carnivore (Island Press, 2001).

    42.
    Biek, R. et al. Genetic consequences of sex-biased dispersal in a solitary carnivore: yellowstone cougars. Biol. Lett. 2, 312–315 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Dickson, B. G., Jenness, J. S. & Beier, P. Influence of vegetation, topography, and roads on cougar movement in Southern California. J. Wildl. Manag. 69, 264–276 (2005).
    Article  Google Scholar 

    44.
    Kerr, T. J. et al. Viruses as indicators of contemporary host dispersal and phylogeography: an example of feline immunodeficiency virus (FIV Ple) in free-ranging African lion (Panthera leo). J. Evol. Biol. https://doi.org/10.1111/jeb.13348 (2018).

    45.
    Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24, 6021–6040 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Hornocker, M. G. & Negri, S. Cougar: Ecology and Conservation (University of Chicago Press, 2010).

    47.
    Sweanor, L. L., Logan, K. A. & Hornocker, M. G. Cougar dispersal patterns, metapopulation dynamics, and conservation. Conserv. Biol. 14, 798–808 (2000).
    Article  Google Scholar 

    48.
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape‐scale impacts from mountain lions to mice. Ecol. Lett. ele.13344 https://doi.org/10.1111/ele.13344 (2019).

    49.
    Tian, H. et al. Transmission dynamics of re-emerging rabies in domestic dogs of rural China. PLOS Pathog. 14, e1007392 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Carver, S. et al. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States. Ecol. Appl. 26, 367–381 (2016).
    PubMed  Article  Google Scholar 

    51.
    Di Pietro, F., Ortenzi, F., Tilio, M., Concetti, F. & Napolioni, V. Genomic DNA extraction from whole blood stored from 15- to 30-years at −20 °C by rapid phenol–chloroform protocol: a useful tool for genetic epidemiology studies. Mol. Cell. Probes 25, 44–48 (2011).
    PubMed  Article  CAS  Google Scholar 

    52.
    Lee, J. S. et al. Targeted enrichment for pathogen detection and characterization in three felid species. J. Clin. Microbiol. 55, 1658–1670 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Lee, J. S. et al. Evolution of puma lentivirus in bobcats (Lynx rufus) and mountain lions (Puma concolor) in North America. J. Virol. 88, 7727–7737 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).

    56.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Article  Google Scholar 

    57.
    Stöver, B. C. & Müller, K. F. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinforma. 11, 7 (2010).
    Article  Google Scholar 

    58.
    Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4 (2018).

    60.
    Ayres, D. L. et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst. Biol. 68, 1052–1061, https://doi.org/10.1093/sysbio/syz020 (2019).

    61.
    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: Smart model selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Gill, M. S. et al. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).
    CAS  PubMed  Article  Google Scholar 

    64.
    Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Lartillot, N. & Philippe, H. Computing Bayes factors using thermodynamic integration. Syst. Biol. 55, 195–207 (2006).
    PubMed  Article  Google Scholar 

    66.
    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M.-H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).
    PubMed  Article  Google Scholar 

    67.
    Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinforma. 14, 85 (2013).
    Article  Google Scholar 

    68.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Volz, E. M. et al. Identification of hidden population structure in time-scaled phylogenies. Syst. Biol. 69, 884–896, https://doi.org/10.1093/sysbio/syaa009 (2019).

    70.
    Karcher, M. D., Palacios, J. A., Lan, S. & Minin, V. N. phylodyn: an R package for phylodynamic simulation and inference. Mol. Ecol. Resour. 17, 96–100 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Bowcock, A. M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    74.
    Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Swofford, D. L. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10 (Sinauer Associates, 2002).

    76.
    Peterman, W. E. ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9, 1638–1647 (2018).
    Article  Google Scholar 

    77.
    Pierce, B. M., Bleich, V. C. & Bowyer, R. T. Social organization of mountain lions: does a land-tenure system regulate population size? Ecology 81, 1533–1543 (2000).
    Article  Google Scholar 

    78.
    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).
    PubMed  Article  Google Scholar 

    79.
    Fitzpatrick, M. C. et al. Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography 34, 836–847 (2011).
    Article  Google Scholar 

    80.
    Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Dellicour, S. et al. Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC Bioinforma. 17, 82–94 (2016).
    Article  CAS  Google Scholar 

    82.
    Laenen, L. et al. Spatio-temporal analysis of Nova virus, a divergent hantavirus circulating in the European mole in Belgium. Mol. Ecol. 25, 5994–6008 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
    Article  Google Scholar 

    84.
    Dellicour, S. et al. Using viral gene sequences to compare and explain the heterogeneous spatial dynamics of virus epidemics. Mol. Biol. Evol. 34, 2563–2571 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Polarization of microbial communities between competitive and cooperative metabolism

    1.
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Raaijmakers, J. M. & Mazzola, M. Soil immune responses. Science 352, 1392–1393 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Lawson, C. E. et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Armstrong, R. A. & McGehee, R. Competitive exclusion. Am. Nat. 115, 151–170 (1980).
    Article  Google Scholar 

    11.
    Tan, J., Zuniga, C. & Zengler, K. Unraveling interactions in microbial communities – from co-cultures to microbiomes. J. Microbiol. 53, 295–305 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2, 589 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    14.
    Levy, R. & Borenstein, E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl Acad. Sci. USA 110, 12804–12809 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Billick, I. & Case, T. J. Higher order interactions in ecological communities: what are they and how can they be detected? Ecology 75, 1529–1543 (1994).
    Article  Google Scholar 

    17.
    Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).
    Article  Google Scholar 

    18.
    Morin, M., Pierce, E. C. & Dutton, R. J. Changes in the genetic requirements for microbial interactions with increasing community complexity. eLife 7, e37072 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Freilich, S. et al. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 38, 3857–3868 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, e1002606 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Khandelwal, R. A., Olivier, B. G., Röling, W. F. M., Teusink, B. & Bruggeman, F. J. Community flux balance analysis for microbial consortia at balanced growth. PLoS ONE 8, e64567 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Chan, S. H. J., Simons, M. N. & Maranas, C. D. SteadyCom: predicting microbial abundances while ensuring community stability. PLoS Comput. Biol. 13, e1005539 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Chaffron, S., Rehrauer, H., Pernthaler, J. & Mering, C. V. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947–959 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Amarasekare, P. Interference competition and species coexistence. Proc. R. Soc. Lond. B 269, 2541–2550 (2002).
    Article  Google Scholar 

    32.
    Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Crump, B. C., Amaral-Zettler, L. A. & Kling, G. W. Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 6, 1629–1639 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio 6, e02527-14 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Nolan, M. J. et al. Molecular-based investigation of Cryptosporidium and Giardia from animals in water catchments in southeastern Australia. Water Res. 47, 1726–1740 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Haig, S.-J., Quince, C., Davies, R. L., Dorea, C. C. & Collins, G. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters. Water Res. 61, 141–151 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Koehler, A. V., Haydon, S. R., Jex, A. R. & Gasser, R. B. Cryptosporidium and Giardia taxa in faecal samples from animals in catchments supplying the city of Melbourne with drinking water (2011 to 2015). Parasit. Vectors 9, 315 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Rivière, A., Gagnon, M., Weckx, S., Roy, D. & Vuyst, L. D. Mutual cross-feeding interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan oligosaccharides. Appl. Environ. Microbiol. 81, 7767–7781 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Pacheco, A. R. & Segrè, D. A multidimensional perspective on microbial interactions. FEMS Microbiol. Lett. 366, fnz125 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Barton, M. D., Delneri, D., Oliver, S. G., Rattray, M. & Bergman, C. M. Evolutionary systems biology of amino acid biosynthetic cost in yeast. PLoS ONE 5, e11935 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Campbell, K. et al. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. eLife 4, e09943 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet. 12, e1006364 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172 (2010).
    PubMed  PubMed Central  Google Scholar 

    49.
    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Valen, L. V. A new evolutionary law. Evol. Theory 1, 1–30 (1973).
    Google Scholar 

    52.
    Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Bosch, A. A. T. M., Biesbroek, G., Trzcinski, K., Sanders, E. A. M. & Bogaert, D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 9, e1003057 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Peleg, A. Y., Hogan, D. A. & Mylonakis, E. Medically important bacterial–fungal interactions. Nat. Rev. Microbiol. 8, 340–349 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275–282 (1992).
    CAS  Article  Google Scholar 

    58.
    Ciccarelli, F. D. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–884 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Sievers, F. et al. Fast scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539–539 (2014).
    Article  Google Scholar 

    61.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).
    Article  CAS  Google Scholar 

    63.
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article  Google Scholar 

    65.
    Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems

    1.
    Schwab, K. The Fourth Industrial Revolution (Penguin, 2017).
    2.
    Marvin, S., White, A., Kovacic, M., Lockhart, A. & Macrorie, R. Urban Robotics and Automation: Critical Challenges, International Experiments and Transferable Lessons for the UK UK-RAS White Paper (UK-RAS Network, 2018).

    3.
    Salvini, P. Urban robotics: towards responsible innovations for our cities. Rob. Autom. Syst. 100, 278–286 (2018).
    Article  Google Scholar 

    4.
    Vougioukas, S. G. Agricultural robotics. Annu. Rev. Control Robot. Auton. Syst. 2, 365–392 (2019).
    Article  Google Scholar 

    5.
    Allan, B. M. et al. Futurecasting ecological research: the rise of technoecology. Ecosphere 9, e02163 (2018).
    Article  Google Scholar 

    6.
    Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).
    Article  Google Scholar 

    7.
    Dash, J. P., Watt, M. S., Paul, T. S. H., Morgenroth, J. & Hartley, R. Taking a closer look at invasive alien plant research: a review of the current state, opportunities, and future directions for UAVs. Methods Ecol. Evol. 10, 2020–2033 (2019).
    Article  Google Scholar 

    8.
    Global Autonomous Robot Market—Industry Trends and Forecast to 2026 (Data Bridge Market Research, 2019).

    9.
    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).
    CAS  PubMed  Article  Google Scholar 

    10.
    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).
    PubMed  Article  CAS  Google Scholar 

    11.
    Du Toit, M. J. et al. Urban green infrastructure and ecosystem services in sub-Saharan Africa. Landsc. Urban Plan. 180, 249–261 (2018).
    Article  Google Scholar 

    12.
    Nitoslawski, S. A., Galle, N. J., van den Bosch, C. K. & Steenberg, J. W. N. Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustain. Cities Soc. 51, 101770 (2019).
    Article  Google Scholar 

    13.
    Gulsrud, N. M. et al. ‘Rage against the machine’? The opportunities and risks concerning the automation of urban green infrastructure. Landsc. Urban Plan. 180, 85–92 (2018).
    Article  Google Scholar 

    14.
    Bibri, S. E. & Krogstie, J. Smart sustainable cities of the future: an extensive interdisciplinary literature review. Sustain. Cities Soc. 31, 183–212 (2017).
    Article  Google Scholar 

    15.
    Colding, J. & Barthel, S. An urban ecology critique on the “Smart City” model. J. Clean. Prod. 164, 95–101 (2017).
    Article  Google Scholar 

    16.
    Martin, C. J., Evans, J. & Karvonen, A. Smart and sustainable? Five tensions in the visions and practices of the smart-sustainable city in Europe and North America. Technol. Forecast. Soc. Change 133, 269–278 (2018).
    Article  Google Scholar 

    17.
    Cantrell, B., Martin, L. J. & Ellis, E. C. Designing autonomy: opportunities for new wildness in the Anthropocene. Trends Ecol. Evol. 32, 156–166 (2017).
    PubMed  Article  Google Scholar 

    18.
    Luvisi, A. & Lorenzini, G. RFID-plants in the smart city: applications and outlook for urban green management. Urban For. Urban Green. 13, 630–637 (2014).
    Article  Google Scholar 

    19.
    Kahila-Tani, M., Broberg, A., Kyttä, M. & Tyger, T. Let the citizens map—public participation GIS as a planning support system in the Helsinki master plan process. Plan. Pract. Res. 31, 195–214 (2016).
    Article  Google Scholar 

    20.
    McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).
    Article  Google Scholar 

    21.
    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).
    Article  Google Scholar 

    22.
    Gomez-Baggethun, E. & Barton, D. N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 86, 235–245 (2013).
    Article  Google Scholar 

    23.
    Sutherland, W. J. et al. A horizon scan of emerging issues for global conservation in 2019. Trends Ecol. Evol. 34, 83–94 (2019).
    PubMed  Article  Google Scholar 

    24.
    Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).
    Article  Google Scholar 

    25.
    Stanley, M. C. et al. Emerging threats in urban ecosystems: a horizon scanning exercise. Front. Ecol. Environ. 13, 553–560 (2015).
    Article  Google Scholar 

    26.
    Sandbrook, C., Fisher, J. A., Holmes, G., Luque-Lora, R. & Keane, A. The global conservation movement is diverse but not divided. Nat. Sustain. 2, 316–323 (2019).
    Article  Google Scholar 

    27.
    MacGregor-Fors, I. & Escobar-Ibáñez, J. F. Avian Ecology in Latin American Cityscapes (Springer, 2017).

    28.
    Dobbs, C. et al. Urban ecosystem services in Latin America: mismatch between global concepts and regional realities? Urban Ecosyst. 22, 173–187 (2019).
    Article  Google Scholar 

    29.
    Cunningham, M. L., Regan, M. A., Horberry, T., Weeratunga, K. & Dixit, V. Public opinion about automated vehicles in Australia: results from a large-scale national survey. Transp. Res. Part A Policy Pract. 129, 1–18 (2019).
    Article  Google Scholar 

    30.
    Kaur, K. & Rampersad, G. Trust in driverless cars: investigating key factors influencing the adoption of driverless cars. J. Eng. Technol. Manag. 48, 87–96 (2018).
    Article  Google Scholar 

    31.
    Artmann, M., Kohler, M., Meinel, G., Gan, J. & Ioja, I. C. How smart growth and green infrastructure can mutually support each other—a conceptual framework for compact and green cities. Ecol. Indic. 96, 10–22 (2019).
    Article  Google Scholar 

    32.
    Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B Biol. Sci. 281, 20133330 (2014).
    Article  Google Scholar 

    33.
    Haaland, C. & van den Bosch, C. K. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green. 14, 760–771 (2015).
    Article  Google Scholar 

    34.
    Papa, E. & Ferreira, A. Sustainable accessibility and the implementation of automated vehicles: identifying critical decisions. Urban Sci. 2, 5 (2018).
    Article  Google Scholar 

    35.
    Stead, D. & Vaddadi, B. Automated vehicles and how they may affect urban form: a review of recent scenario studies. Cities 92, 125–133 (2019).
    Article  Google Scholar 

    36.
    Duarte, F. & Ratti, C.The impact of autonomous vehicles on cities: a review;. J. Urban Technol. 25, 3–18 (2018).
    Article  Google Scholar 

    37.
    Fagnant, D. J. & Kockelman, K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. A Policy Pract. 77, 167–181 (2015).
    Article  Google Scholar 

    38.
    Narayanan, S., Chaniotakis, E. & Antoniou, C. Shared autonomous vehicle services: a comprehensive review. Transp. Res. C Emerg. Technol. 111, 255–293 (2020).
    Article  Google Scholar 

    39.
    Heinrichs, D. in Autonomous Driving: Technical, Legal and Social Aspects (eds Maurer, M. et al.) 213–231 (Springer Berlin Heidelberg, 2016).

    40.
    Soteropoulos, A., Berger, M. & Ciari, F. Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies. Transp. Rev. 39, 29–49 (2019).
    Article  Google Scholar 

    41.
    Meyer, J., Becker, H., Bosch, P. M. & Axhausen, K. W. Autonomous vehicles: the next jump in accessibilities? Res. Transp. Econ. 62, 80–91 (2017).
    Article  Google Scholar 

    42.
    Hawkins, J. & Habib, K. N. Integrated models of land use and transportation for the autonomous vehicle revolution. Transp. Rev. 39, 66–83 (2019).
    Article  Google Scholar 

    43.
    Dupras, J. et al. The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 58, 61–73 (2016).
    Article  Google Scholar 

    44.
    Loeb, B., Kockelman, K. M. & Liu, J. Shared autonomous electric vehicle (SAEV) operations across the Austin, Texas network with charging infrastructure decisions. Transp. Res. C Emerg. Technol. 89, 222–233 (2018).
    Article  Google Scholar 

    45.
    Samonte, M. J. C. et al. PHYTO: An IoT Urban Gardening Mobile App (Association for Computing Machinery, 2019).

    46.
    Canales-Ide, F., Zubelzu, S. & Rodriguez-Sinobas, L. Irrigation systems in smart cities coping with water scarcity: the case of Valdebebas, Madrid (Spain). J. Environ. Manag. 247, 187–195 (2019).
    Article  Google Scholar 

    47.
    Kolokotsa, D. Smart cooling systems for the urban environment. Using renewable technologies to face the urban climate change. Sol. Energy 154, 101–111 (2017).
    Article  Google Scholar 

    48.
    Taufik, T. & Hasanah, R. N. Light sensing smart blinds. In 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS) 1–4 (IEEE, 2018); https://doi.org/10.1109/EECCIS.2018.8692805

    49.
    Kendal, D. et al. A global comparison of the climatic niches of urban and native tree populations. Glob. Ecol. Biogeogr. 27, 629–637 (2018).
    Article  Google Scholar 

    50.
    Wheeler, M. M. et al. Continental-scale homogenization of residential lawn plant communities. Landsc. Urban Plan. 165, 54–63 (2017).
    Article  Google Scholar 

    51.
    Aronson, M. F. J. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).
    Article  Google Scholar 

    52.
    Lam, T. L. & Xu, Y. S. Climbing strategy for a flexible tree climbing robot—treebot. IEEE Trans. Rob. 27, 1107–1117 (2011).
    Article  Google Scholar 

    53.
    Dallimer, M., Tang, Z. Y., Gaston, K. J. & Davies, Z. G. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol. Evol. 6, 1942–1953 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Latli, A., Michel, L. N., Lepoint, G. & Kestemont, P. River habitat homogenisation enhances trophic competition and promotes individual specialisation among young of the year fish. Freshw. Biol. 64, 520–531 (2019).
    CAS  Article  Google Scholar 

    55.
    Shaw, L. M., Chamberlain, D. & Evans, M. The house sparrow Passer domesticus in urban areas: reviewing a possible link between post-decline distribution and human socioeconomic status. J. Ornithol. 149, 293–299 (2008).
    Article  Google Scholar 

    56.
    Ferguson, M., Roberts, H. E., McEachan, R. R. C. & Dallimer, M. Contrasting distributions of urban green infrastructure across social and ethno-racial groups. Landsc. Urban Plan. 175, 136–148 (2018).
    Article  Google Scholar 

    57.
    Leong, M., Dunn, R. R. & Trautwein, M. D.Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Nesbitt, L., Meitner, M. J., Girling, C., Sheppard, S. R. J. & Lu, Y. H. Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landsc. Urban Plan. 181, 51–79 (2019).
    Article  Google Scholar 

    59.
    Hajat, A., Hsia, C. & O’Neill, M. S. Socioeconomic disparities and air pollution exposure: a global review. Curr. Environ. Health Rep. 2, 440–450 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Pope, R., Wu, J. & Boone, C. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the Phoenix metropolitan region of USA. Environ. Manag. 58, 753–766 (2016).
    Article  Google Scholar 

    61.
    Jenerette, G. D. et al. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 22, 353–365 (2007).
    Article  Google Scholar 

    62.
    Frumkin, H. et al. Nature contact and human health: a research agenda. Environ. Health Perspect. 125, 075001 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Rafael, S. et al. Autonomous vehicles opportunities for cities air quality. Sci. Total Environ. 712, 136546 (2020).
    CAS  PubMed  Article  Google Scholar 

    64.
    Stern, R. E. et al. Quantifying air quality benefits resulting from few autonomous vehicles stabilizing traffic. Transp. Res. D Transp. Environ. 67, 351–365 (2019).
    Article  Google Scholar 

    65.
    Twohig-Bennett, C. & Jones, A. The health benefits of the great outdoors: a systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 166, 628–637 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Thompson Coon, J. et al. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 45, 1761–1772 (2011).
    CAS  PubMed  Article  Google Scholar 

    67.
    Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).
    Article  Google Scholar 

    68.
    Parsons, R., Tassinary, L. G., Ulrich, R. S., Hebl, M. R. & Grossman-Alexander, M. The view from the road: implications for stress recovery and immunization. J. Environ. Psychol. 18, 113–140 (1998).
    Article  Google Scholar 

    69.
    Hahmann, S., Miksch, J., Resch, B., Lauer, J. & Zipf, A. Routing through open spaces—a performance comparison of algorithms. Geo. Spat. Inf. Sci. 21, 247–256 (2018).
    Article  Google Scholar 

    70.
    Harper, C. D., Hendrickson, C. T., Mangones, S. & Samaras, C. Estimating potential increases in travel with autonomous vehicles for the non-driving, elderly and people with travel-restrictive medical conditions. Transp. Res. C Emerg. Technol. 72, 1–9 (2016).
    Article  Google Scholar 

    71.
    Wei, J. W., Lee, B. & Wen, L. B.Citizen science and the urban ecology of birds and butterflies—a systematic review. PLoS ONE 11, e0156425 (2016).
    Article  CAS  Google Scholar 

    72.
    Schuttler, S. G., Sorensen, A. E., Jordan, R. C., Cooper, C. & Shwartz, A.Bridging the nature gap: can citizen science reverse the extinction of experience? Front. Ecol. Environ. 16, 405–411 (2018).
    Article  Google Scholar 

    73.
    Jepson, P. & Ladle, R. J. Nature apps: waiting for the revolution. Ambio 44, 827–832 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Botello, B., Buehler, R., Hankey, S., Mondschein, A. & Jiang, Z. Planning for walking and cycling in an autonomous-vehicle future. Transp. Res. Interdiscip. Perspect. 1, 100012 (2019).
    Google Scholar 

    75.
    Gulsrud, N. M. in Routledge Research Companion to Landscape Architecture (eds Braae, E. & Steiner, H.) 103–111 (Routledge, 2018).

    76.
    Potts, S. G., Neumann, P., Vaissière, B. & Vereecken, N. J. Robotic bees for crop pollination: why drones cannot replace biodiversity. Sci. Total Environ. 642, 665–667 (2018).
    CAS  PubMed  Article  Google Scholar 

    77.
    Kahn, P. H., Severson, R. L. & Ruckert, J. H. The human relation with nature and technological nature. Curr. Dir. Psychol. Sci. 18, 37–42 (2009).
    Article  Google Scholar 

    78.
    Mackay, C. M. L. & Schmitt, M. T. Do people who feel connected to nature do more to protect it? A meta-analysis. J. Environ. Psychol. 65, 101323 (2019).
    Article  Google Scholar 

    79.
    Truong, M. X. A. & Clayton, S. Technologically transformed experiences of nature: a challenge for environmental conservation? Biol. Conserv. 244, 108532 (2020).
    Article  Google Scholar 

    80.
    Alonzo, M., McFadden, J. P., Nowak, D. J. & Roberts, D. A. Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban For. Urban Green. 17, 135–147 (2016).
    Article  Google Scholar 

    81.
    Fairbrass, A. J. et al. CityNet—deep learning tools for urban ecoacoustic assessment. Methods Ecol. Evol. 10, 186–197 (2019).
    Article  Google Scholar 

    82.
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).
    PubMed  Article  Google Scholar 

    83.
    Ampatzidis, Y., De Bellis, L. & Luvisi, A.iPathology: robotic applications and management of plants and plant diseases. Sustainability 9, 1010 (2017).
    Article  Google Scholar 

    84.
    Nasi, R. et al. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 30, 72–83 (2018).
    Article  Google Scholar 

    85.
    Smith, R. J., Verissimo, D., Isaac, N. J. B. & Jones, K. E. Identifying Cinderella species: uncovering mammals with conservation flagship appeal. Conserv. Lett. 5, 205–212 (2012).
    Article  Google Scholar 

    86.
    Cooper, N., Brady, E., Steen, H. & Bryce, R. Aesthetic and spiritual values of ecosystems: recognising the ontological and axiological plurality of cultural ecosystem ‘services’. Ecosyst. Serv. 21, 218–229 (2016).
    Article  Google Scholar 

    87.
    Colding, J., Colding, M. & Barthel, S.The smart city model: a new panacea for urban sustainability or unmanageable complexity? Environ. Plan. B Urban Anal. City Sci. 47, 179–187 (2020).
    Article  Google Scholar 

    88.
    Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions 19, 3489–3503 (2017).
    Article  Google Scholar 

    89.
    Jurdak, R. et al. Autonomous surveillance for biosecurity. Trends Biotechnol. 33, 201–207 (2015).
    CAS  PubMed  Article  Google Scholar 

    90.
    Martinez, B. et al. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions 22, 75–100 (2020).
    Article  Google Scholar 

    91.
    Mulero-Pazmany, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: a systematic review. PLoS ONE 12, e0178448 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    92.
    Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    93.
    Ditmer, M. A. et al. Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Curr. Biol. 25, 2278–2283 (2015).
    CAS  PubMed  Article  Google Scholar 

    94.
    Zvereva, E. L. & Kozlov, M. V. Responses of terrestrial arthropods to air pollution: a meta-analysis. Environ. Sci. Pollut. Res. 17, 297–311 (2010).
    CAS  Article  Google Scholar 

    95.
    Zvereva, E. L., Toivonen, E. & Kozlov, M. V. Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Glob. Ecol. Biogeogr. 17, 305–319 (2008).
    Article  Google Scholar 

    96.
    Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).
    Article  Google Scholar 

    97.
    Irwin, A. The dark side of light: how artificial lighting is harming the natural world. Nature 553, 268–270 (2018).
    CAS  PubMed  Article  Google Scholar 

    98.
    Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).
    CAS  PubMed  Article  Google Scholar 

    99.
    Cabrera-Cruz, S. A., Smolinsky, J. A. & Buler, J. J. Light pollution is greatest within migration passage areas for nocturnally-migrating birds around the world. Sci. Rep. 8, 3261 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    100.
    Cashikar, A., Li, J. & Biswas, P. Particulate matter sensors mounted on a robot for environmental aerosol measurements. J. Environ. Eng. 145, 04019057 (2019).
    CAS  Article  Google Scholar 

    101.
    Shah, M., Shah, S. K. & Shah, M. Autonomous robotic vehicle for oil spills cleaning with nano particles. In 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 1–6 (IEEE, 2018).

    102.
    Alfeo, A. L. et al. Urban swarms: a new approach for autonomous waste management. Preprint at arXiv https://doi.org/10.1109/ICRA.2019.8794020 (2019).

    103.
    Perkins, D. N., Brune Drisse, M.-N., Nxele, T. & Sly, P. D. E-waste: a global hazard. Ann. Glob. Health 80, 286–295 (2014).
    PubMed  Article  Google Scholar 

    104.
    Boyer, T. & Polasky, S. J.Valuing urban wetlands: a review of non-market valuation studies. Wetlands 24, 744–755 (2004).
    Article  Google Scholar 

    105.
    Rouse, M. The worldwide urban water and wastewater infrastructure challenge. Int. J. Water Resour. Dev. 30, 20–27 (2014).
    Article  Google Scholar 

    106.
    Yuan, Z. G. et al. Sweating the assets—the role of instrumentation, control and automation in urban water systems. Water Res. 155, 381–402 (2019).
    CAS  PubMed  Article  Google Scholar 

    107.
    Hall, S., Price, R. & Mandhani, N. Use of autonomous vehicles for drinking water monitoring and management in an urban environment. In Proc. ASAE Annual International Meeting 7855–7862 (American Society of Association Executives, 2004).

    108.
    Troutman, S. C., Love, N. G. & Kerkez, B. Balancing water quality and flows in combined sewer systems using real-time control. Environ. Sci. Water Res. Technol. 6, 1357–1369 (2020).
    CAS  Article  Google Scholar 

    109.
    McDonald, W. Drones in urban stormwater management: a review and future perspectives. Urban Water J. 16, 505–518 (2019).
    CAS  Article  Google Scholar 

    110.
    Kerkez, B. et al. Smarter stormwater systems. Environ. Sci. Technol. 50, 7267–7273 (2016).
    CAS  PubMed  Article  Google Scholar 

    111.
    Chen, Y. & Han, D. Water quality monitoring in smart city: a pilot project. Autom. Constr. 89, 307–316 (2018).
    Article  Google Scholar 

    112.
    Booth, D. B., Roy, A. H., Smith, B. & Capps, K. A. Global perspectives on the urban stream syndrome. Freshw. Sci. 35, 412–420 (2016).
    Article  Google Scholar 

    113.
    Prudencio, L. & Null, S. E.Stormwater management and ecosystem services: a review. Environ. Res. Lett. 13, 033002 (2018).
    Article  Google Scholar 

    114.
    Sadler, G. R., Lee, H.-C., Lim, R. S.-H. & Fullerton, J. Research article: recruitment of hard-to-reach population subgroups via adaptations of the snowball sampling strategy. Nurs. Health Sci. 12, 369–374 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    115.
    Mahler, A. G. Global South (Oxford Univ. Press, 2017); https://doi.org/10.1093/OBO/9780190221911-0055

    116.
    Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).
    PubMed  Article  Google Scholar 

    117.
    Danziger, S., Levav, J. & Avnaim-Pesso, L. Extraneous factors in judicial decisions. Proc. Natl Acad. Sci. USA 108, 6889–6892 (2011).
    CAS  PubMed  Article  Google Scholar 

    118.
    Bryer, J. & Speerschneider, K. likert: Analysis and visualization likert items https://cran.r-project.org/web/packages/likert/likert.pdf (2016).

    119.
    R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

    120.
    Goddard, M. A. & Dallimer, M. University of Leeds Data Repository (Univ. Leeds, 2020); https://doi.org/10.5518/912

    121.
    Future Foresight (Dubai Future Foundation, 2018); https://www.dubaifuture.gov.ae/publications/ More

  • in

    A new hypothesis for the origin of Amazonian Dark Earths

    1.
    Sombroek, W. G. Amazon Soils. A Reconnaissance of the Soils of the Brazilian Amazon Region 292 (Wageningen, Netherlands, 1966).
    2.
    Palace, M. W. et al. Ancient Amazonian populations left lasting impacts on forest structure. Ecosphere 8, e02035 (2017).
    Article  Google Scholar 

    3.
    Lehmann, J. Amazonian Dark Earths: Origin Properties Management (Kluwer Academic Publishers, Netherlands, 2003).

    4.
    Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).
    ADS  CAS  Article  Google Scholar 

    5.
    Macedo, R. S., Teixeira, W. G., Corrêa, M. M., Martins, G. C. & Vidal-Torrado, P. Pedogenetic processes in anthrosols with pretic horizon (Amazonian Dark Earth) in Central Amazon, Brazil. PLoS ONE 12, e0178038 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Barbosa, J. Z. et al. Elemental signatures of an Amazonian Dark Earth as result of its formation process. Geoderma 361, 114085 (2020).
    ADS  CAS  Article  Google Scholar 

    7.
    Quesada, C. A. et al. Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil 6, 53–88 (2020).
    CAS  Article  Google Scholar 

    8.
    Grau, O. et al. Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils. Sci. Rep. 7, 45017 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Silva, L. C. R. & Lambers, H. Soil-plant-atmosphere interactions: structure, function, and predictive scaling for climate change mitigation. Plant Soil 1–23 https://doi.org/10.1007/s11104-020-04427-1 (2020).

    10.
    Haridasan, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz. J. Plant Physiol. 20, 183–195 (2008).
    Article  Google Scholar 

    11.
    Morello, T. F. et al. Fertilizer adoption by smallholders in the Brazilian Amazon: Farm-level evidence. Ecol. Econ. 144, 278–291 (2018).
    Article  Google Scholar 

    12.
    Lombardo, U. et al. Early Holocene crop cultivation and landscape modification in Amazonia. Nature 581, 190–193 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Capriles, J. M. et al. Persistent early to middle Holocene tropical foraging in southwestern Amazonia. Sci. Adv. 5, eaav5449 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52–64 (2016).
    ADS  Article  Google Scholar 

    15.
    Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Kern, D. C. et al. Terras pretas: approaches to formation processes in a new paradigm. Geoarchaeology 32, 694–706 (2017).
    Article  Google Scholar 

    17.
    McMichael, C. H. et al. Predicting pre-Columbian anthropogenic soils in Amazonia. Proc. R. Soc. B Biol. Sci. 281, 20132475 (2014).
    CAS  Article  Google Scholar 

    18.
    Schmidt, M. J. et al. Dark earths and the human built landscape in Amazonia: a widespread pattern of anthrosol formation. J. Archaeol. Sci. 42, 152–165 (2014).
    Article  Google Scholar 

    19.
    Birk, J. J., Teixeira, W. G., Neves, E. G. & Glaser, B. Faeces deposition on Amazonian Anthrosols as assessed from 5β-stanols. J. Archaeol. Sci. 38, 1209–1220 (2011).
    Article  Google Scholar 

    20.
    Glaser, B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 187–196 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    El-Naggar, A. et al. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337, 536–554 (2019).
    ADS  CAS  Article  Google Scholar 

    22.
    Cunha, T. J. F. et al. Soil organic matter and fertility of anthropogenic dark earths (Terra Preta de Índio) in the Brazilian Amazon basin. Rev. Bras. Cienc. do Solo 33, 85–93 (2009).
    CAS  Article  Google Scholar 

    23.
    Lutfalla, S. et al. Pyrogenic carbon lacks long-term persistence in temperate arable soils. Front. Earth Sci. 5, 96 (2017).
    ADS  Article  Google Scholar 

    24.
    Chadwick, K. D. & Asner, G. P. Landscape evolution and nutrient rejuvenation reflected in Amazon forest canopy chemistry. Ecol. Lett. 21, 978–988 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).
    ADS  CAS  Article  Google Scholar 

    26.
    Vitousek, P. M. Nutrient Cycling and Limitation: Hawai’i as a Model System. Ecology Vol. 30 (Princeton University Press, 2004).

    27.
    Silva, L. C. R. et al. Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373, 829–842 (2013).
    CAS  Article  Google Scholar 

    28.
    Alho, C. F. B. V. et al. Spatial variation of carbon and nutrients stocks in Amazonian Dark Earth. Geoderma 337, 322–332 (2019).
    ADS  CAS  Article  Google Scholar 

    29.
    Bomfim, B., Silva, L. C. R., Doane, T. A. & Horwath, W. R. Interactive effects of land-use change and topography on asymbiotic nitrogen fixation in the Brazilian Atlantic Forest. Biogeochemistry 142, 137–153 (2019).
    CAS  Article  Google Scholar 

    30.
    Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish. Biol. 70, 121–140 (2007).
    Article  Google Scholar 

    31.
    Nishimuta, M. et al. Moisture and mineral content of human feces–high fecal moisture is associated with increased sodium and decreased potassium content. J. Nutr. Sci. Vitaminol. 52, 121–126 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Rossetti, D. F. et al. Unfolding long-term late Pleistocene-Holocene disturbances of forest communities in the southwestern Amazonian lowlands. Ecosphere 9, e02457 (2018).
    Article  Google Scholar 

    33.
    Carson, J. F. et al. Pre-Columbian land use in the ring-ditch region of the Bolivian Amazon. Holocene 25, 1285–1300 (2015).
    ADS  Article  Google Scholar 

    34.
    Shepard, G. H. et al. in Oxford Research Encyclopedia of Environmental Science (Hazlitt, R. ed.) (Oxford, 2020).

    35.
    Arroyo-Kalin, M. Slash-burn-and-churn: Landscape history and crop cultivation in pre-Columbian Amazonia. Quat. Int. 249, 4–18 (2012).
    Article  Google Scholar 

    36.
    Brugger, S. O. et al. Long-term man-environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics. Quat. Sci. Rev. 132, 114–128 (2016).
    ADS  Article  Google Scholar 

    37.
    Maezumi, S. Y. et al. New insights from pre-Columbian land use and fire management in Amazonian dark earth forests. Front. Ecol. Evol. 6, 111 (2018).
    Article  Google Scholar 

    38.
    Zani, H., Rossetti, D. F., Cohen, M. L. C., Pessenda, L. C. R. & Cremon, E. H. Influence of landscape evolution on the distribution of floristic patterns in northern Amazonia revealed by δ13C data. J. Quat. Sci. 27, 854–864 (2012).
    Article  Google Scholar 

    39.
    Lombardo, U. et al. Holocene land cover change in south-western Amazonia inferred from paleoflood archives. Glob. Planet. Change 174, 105–114 (2019).
    ADS  Article  Google Scholar 

    40.
    Ward, B. M. et al. Reconstruction of Holocene coupling between the South America Monsoon System and local moisture variability from speleothem δ18O and 87Sr/86Sr records. Quat. Sci. Rev. 210, 51–63 (2019).
    ADS  Article  Google Scholar 

    41.
    Wortham, B. E. et al. Assessing response of local moisture conditions in central Brazil to variability in regional monsoon intensity using speleothem 87Sr/ 86Sr values. Earth Planet. Sci. Lett. 463, 310–322 (2017).
    ADS  CAS  Article  Google Scholar 

    42.
    Silva, L. C. R. Importance of climate-driven forest–savanna biome shifts in anthropological and ecological research. Proc. Natl Acad. Sci. USA 111, E3831–E3832 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Wright, J. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15382 (2020).

    44.
    Bomfim, B. et al. Fire affects asymbiotic nitrogen fixation in Southern Amazon Forests. J. Geophys. Res. Biogeosci. 125, (2020).

    45.
    Rossetti, D. F., Bertani, T. C., Zani, H., Cremon, E. H. & Hayakawa, E. H. Late Quaternary sedimentary dynamics in Western Amazonia: Implications for the origin of open vegetation/forest contrasts. Geomorphology 177–178, 74–92 (2012).
    ADS  Article  Google Scholar 

    46.
    Hoffmann, W. A. et al. Ecological thresholds at the savanna-forest boundary: How plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 15, 759–768 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Roddaz, M. et al. Evidence for the control of the geochemistry of Amazonian floodplain sediments by stratification of suspended sediments in the Amazon. Chem. Geol. 387, 101–110 (2014).
    ADS  CAS  Article  Google Scholar 

    48.
    Santos, R. V. et al. Source area and seasonal 87Sr/86Sr variations in rivers of the Amazon basin. Hydrol. Process. 29, 187–197 (2015).
    ADS  CAS  Article  Google Scholar 

    49.
    Passos, M. S. et al. Pleistocene-Holocene sedimentary deposits of the Solimões-Amazonas fluvial system, Western Amazonia. J. South Am. Earth Sci. 98, 102455 (2020).
    Article  Google Scholar 

    50.
    Bayon, G. et al. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim. Cosmochim. Acta 170, 17–38 (2015).
    ADS  CAS  Article  Google Scholar 

    51.
    Quintana-Cobo, I. et al. Dynamics of floodplain lakes in the Upper Amazon Basin during the late Holocene. Comptes Rendus Geosci. 350, 55–64 (2018).
    ADS  Article  Google Scholar 

    52.
    Hayakawa, E. H., Rossetti, D. F., Hayakawa, E. H. & Rossetti, D. F. Late quaternary dynamics in the Madeira river basin, southern Amazonia (Brazil), as revealed by paleomorphological analysis. Acad. Bras. Cienc. 87, 29–49 (2015).
    Article  Google Scholar 

    53.
    Gonçalves, E. S., Soares, E. A. A., Tatumi, S. H., Yee, M. & Mittani, J. C. R. Pleistocene-Holocene sedimentation of Solimões-Amazon fluvial system between the tributaries Negro and Madeira, Central Amazon. Braz. J. Geol. 46, 167–180 (2016).
    Article  Google Scholar 

    54.
    Viers, J. et al. Seasonal and provenance controls on Nd–Sr isotopic compositions of Amazon rivers suspended sediments and implications for Nd and Sr fluxes exported to the Atlantic Ocean. Earth Planet. Sci. Lett. 274, 511–523 (2008).
    ADS  CAS  Article  Google Scholar 

    55.
    Sant’Anna, L. G. et al. Age of depositional and weathering events in Central Amazonia. Quat. Sci. Rev. 170, 82–97 (2017).
    ADS  Article  Google Scholar 

    56.
    Guyot, J. L. et al. Clay mineral composition of river sediments in the Amazon Basin. CATENA 71, 340–356 (2007).
    Article  Google Scholar 

    57.
    Macedo, R. S. et al. Amazonian dark earths in the fertile floodplains of the Amazon River, Brazil: An example of non-intentional formation of anthropic soils in the Central Amazon region. Bol. do Mus. Para. Emilio Goeldi Cienc. Humanas 14, 207–227 (2019).
    Article  Google Scholar 

    58.
    Gross, D. R. Protein capture and cultural development in the Amazon basin. Am. Anthropol. 77, 526–549 (1975).
    Article  Google Scholar 

    59.
    Bomfim, B. et al. Litter and soil biogeochemical parameters as indicators of sustainable logging in Central Amazonia. Sci. Total Environ. 714, 136780 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Lehmann, J. et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249, 343–357 (2003).
    CAS  Article  Google Scholar 

    61.
    Gay‐des‐Combes, J. M. et al. Tropical soils degraded by slash‐and‐burn cultivation can be recultivated when amended with ashes and compost. Ecol. Evol. 7, 5378–5388 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Isendahl, C. & Smith, M. E. Sustainable agrarian urbanism: The low-density cities of the Mayas and Aztecs. Cities 31, 132–143 (2013).
    Article  Google Scholar 

    63.
    Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. B Biol. Sci. 282, 20150813 (2015).
    Article  Google Scholar 

    64.
    de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Mongeló, G. Early and Middle Holocene human occupations in Southwest Amazon. Bol. Mus. Para. Emílio Goeldi. Cienc. Hum. https://doi.org/10.1590/2178-2547-bgoeldi-2019-0079 (2020).

    66.
    Kistler, L. et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362, 1309–1313 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Denevan, W. M. A Bluff model of riverine settlement in prehistoric Amazonia. Ann. Assoc. Am. Geogr. 86, 654–681 (1996).
    Article  Google Scholar 

    68.
    Silva, L. C. R., Corrêa, R. S., Doane, T. A., Pereira, E. I. P. & Horwath, W. R. Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion. Ecol. Appl. 23, 1345–1356 (2000).
    Article  Google Scholar 

    69.
    Kurth, V. J., MacKenzie, M. D. & DeLuca, T. H. Estimating charcoal content in forest mineral soils. Geoderma 137, 135–139 (2006).
    ADS  CAS  Article  Google Scholar 

    70.
    Silva, L. C. R. et al. Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands. Ecol. Appl. 25, 1226–1234 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Hare, V. J., Loftus, E., Jeffrey, A. & Ramsey, C. B. Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives. Nat. Commun. 9, 252 (2018).

    72.
    Krull, E. S., Bestland, E. A. & Gates, W. P. Soil organic matter decomposition and turnover in a tropical Ultisol: evidence from δ13C, δ15N and geochemistry. Radiocarbon 44, 93–112 (2002).

    73.
    Gioia, S. M. C. L. & Pimentel, M. M. The Sm-Nd isotopic method in the Geochronology Laboratory of the University of Brasília. Acad. Bras. Cienc. 72, 218–245 (2000).
    Google Scholar  More

  • in

    Bacterial seed endophyte shapes disease resistance in rice

    1.
    Boyd, L. A., Ridout, C., O’Sullivan, D. M., Leach, J. E. & Leung, H. Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet. 29, 233–240 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911–E920 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).
    Article  Google Scholar 

    4.
    Ham, J. H., Melanson, R. A. & Rush, M. C. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12, 329–339 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Naughton, L. M. et al. Functional and genomic insights into the pathogenesis of Burkholderia species to rice. Environ. Microbiol. 18, 780–790 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Liu, X. et al. Biotoxin tropolone contamination associated with nationwide occurrence of pathogen Burkholderia plantarii in agricultural environments in China. Environ. Sci. Technol. 52, 5105–5114 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Jung, B. et al. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9, 31 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Miyagawa, H., Ozaki, K. & Kimura, T. Pathogenicity of Pseudomonas glumae and P. plantarii to the ears and leaves of graminaceous plants. Bull. Chugoku Natl Agric. Exp. Stn 3, 31–43 (1988).
    Google Scholar 

    10.
    Wang, M., Hashimoto, M. & Hashidoko, Y. Carot-4-en-9,10-diol, a conidiation-inducing sesquiterpene diol produced by Trichoderma virens PS1-7 upon exposure to chemical stress from highly active iron chelators. Appl. Environ. Microbiol. 79, 1906–1914 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Wang, M., Hashimoto, M. & Hashidoko, Y. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS ONE 8, e78024 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Derksen, H., Rampitsch, C. & Daayf, F. Signaling cross-talk in plant disease resistance. Plant Sci. 207, 79–87 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Wang, M. & Cernava, T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ. Sci. Ecotechnol. 4, 100061 (2020).
    Article  Google Scholar 

    18.
    Cheng, Y. T., Zhang, L. & He, S. Y. Plant–microbe interactions facing environmental challenge. Cell Host Microbe 26, 183–192 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Berg, G., Grube, M., Schloter, M. & Smalla, K. Unraveling the plant microbiome: looking back and future perspectives. Front. Microbiol. 5, 148 (2014).
    PubMed  PubMed Central  Google Scholar 

    20.
    Duran, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).

    22.
    Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Kwak, M.-J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100 (2018).
    CAS  Article  Google Scholar 

    24.
    Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Liu, H., Brettell, L. E. & Singh, B. Linking the phyllosphere microbiome to plant health. Trends Plant Sci. 25, 841–844 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Fan, X. et al. Microenvironmental interplay predominated by beneficial Aspergillus abates fungal pathogen incidence in paddy environment. Environ. Sci. Technol. 53, 13042–13052 (2019).

    28.
    Shade, A., Jacques, M. A. & Barret, M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol. 37, 15–22 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Nelson, E. B. The seed microbiome: origins, interactions, and impacts. Plant Soil 422, 7–34 (2017).
    Article  CAS  Google Scholar 

    30.
    Sultan, S. E. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5, 537–542 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Wang, M. et al. Indole-3-acetic acid produced by Burkholderia heleia acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in Burkholderia plantarii. Sci. Rep. 6, 22596 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Miwa, S. et al. Identification of the three genes involved in controlling production of a phytotoxin tropolone in Burkholderia plantarii. J. Bacteriol. 198, 1604–1609 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Solis, R., Bertani, I., Degrassi, G., Devescovi, G. & Venturi, V. Involvement of quorum sensing and RpoS in rice seedling blight caused by Burkholderia plantarii. FEMS Microbiol. Lett. 259, 106–112 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50 (2015).
    Article  Google Scholar 

    35.
    Rybakova, D. et al. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome 5, 104 (2017).

    36.
    Bergna, A. et al. Tomato seeds preferably transmit plant beneficial endophytes. Phytobiomes J. 2, 183–193 (2018).
    Article  Google Scholar 

    37.
    Wassermann, B., Cernava, T., Muller, H., Berg, C. & Berg, G. Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks. Microbiome 7, 108 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Berg, G. & Raaijmakers, J. M. Saving seed microbiomes. ISME J. 12, 1167–1170 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Kim, H., Nishiyama, M., Kunito, T. & Oyaizu, H. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85, 731–736 (1998).
    Article  Google Scholar 

    40.
    Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Rochefort, A. et al. Influence of environment and host plant genotype on the structure and diversity of the Brassica napus seed microbiota. Phytobiomes J. 3, 326–336 (2019).
    Article  Google Scholar 

    42.
    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    43.
    Kim, H., Lee, K. K., Jeon, J., Harris, W. A. & Lee, Y. H. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome 8, 20 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Cordovez, V., Dini-Andreote, F., Carrion, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Thomas, F., Corre, E. & Cebron, A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. ISME J. 13, 1814–1830 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Wang, H., Zhi, X. Y., Qiu, J., Shi, L. & Lu, Z. Characterization of a novel nicotine degradation gene cluster ndp in Sphingomonas melonis TY and its evolutionary analysis. Front. Microbiol. 8, 337 (2017).
    PubMed  PubMed Central  Google Scholar 

    48.
    Maeda, H. et al. A rice gene that confers broad-spectrum resistance to β-triketone herbicides. Science 365, 393 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Bakker, P., Pieterse, C. M. J., de Jonge, R. & Berendsen, R. L. The soil-borne legacy. Cell 172, 1178–1180 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Scholthof, K. B. The disease triangle: pathogens, the environment and society. Nat. Rev. Microbiol. 5, 152–156 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Barillot, C. D. C., Sarde, C. O., Bert, V., Tarnaud, E. & Cochet, N. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann. Microbiol. 63, 471–476 (2013).
    CAS  Article  Google Scholar 

    52.
    Maeda, Y. et al. Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int. J. Syst. Evol. Microbiol. 56, 1031–1038 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Takeuchi, T., Sawada, H., Suzuki, F. & Matsuda, I. Specific detection of Burkolderia plantarii and B. glumae by PCR using primers selected from the 16S–23S rDNA spacer regions. Ann. Phytopath. Soc. Japan 63, 455–462 (1997).
    CAS  Article  Google Scholar 

    54.
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Kusstatscher, P. et al. Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets. Microbiome 7, 112 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    59.
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Ayyagari, V. S. & Sreerama, K. Evaluation of haplotype diversity of Achatina fulica (Lissachatina) [Bowdich] from Indian sub-continent by means of 16S rDNA sequence and its phylogenetic relationships with other global populations. 3 Biotech 7, 252 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Lu, J. et al. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol. 167, 1100–1116 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Deng, X., Zhou, Y., Zheng, W., Bai, L. & Zhou, X. Dissipation dynamic and final residues of oxadiargyl in paddy fields using high-performance liquid chromatography-tandem mass spectrometry coupled with modified QuEChERS method. Int. J. Environ. Res. Public Health 15, 1680 (2018).
    PubMed Central  Article  CAS  Google Scholar 

    70.
    Lang, Z. et al. Isolation and characterization of a quinclorac-degrading Actinobacteria Streptomyces sp. strain AH-B and its implication on microecology in contaminated soil. Chemosphere 199, 210–217 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Sun, M., Li, H. & Jaisi, D. P. Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil–water system. Water Res. 163, 114840 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Substrate thermal properties influence ventral brightness evolution in ectotherms

    1.
    Endler, J. A., Westcott, D. A., Madden, J. R. & Robson, T. Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution 59, 1795–1818 (2005).
    PubMed  Article  Google Scholar 
    2.
    Norris, K. S. & Lowe, C. H. An analysis of background color-matching in amphibians and reptiles. Ecology 45, 565–580 (1964).
    Article  Google Scholar 

    3.
    Allen, J. J., Mäthger, L. M., Barbosa, A. & Hanlon, R. T. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195, 547–555 (2009).
    PubMed  Article  Google Scholar 

    4.
    Cuthill, I. C. et al. The biology of color. Science https://doi.org/10.1126/science.aan0221 (2017).

    5.
    Seehausen, O., Van Alphen, J. J. M. & Lande, R. Color polymorphism and sex ratio distortion in a cichlid fish as an incipient stage in sympatric speciation by sexual selection. Ecol. Lett. 2, 367–378 (1999).
    Article  Google Scholar 

    6.
    Pérez-Rodríguez, L., Jovani, R. & Stevens, M. Shape matters: animal colour patterns as signals of individual quality. Proc. R. Soc. Lond. Ser. B Biol. Sci. 284, 20162446 (2017).
    Google Scholar 

    7.
    Tanaka, K. Thermal biology of a colour-dimorphic snake, Elaphe quadrivirgata, in a montane forest: Do melanistic snakes enjoy thermal advantages? Biol. J. Linn. Soc. 92, 309–322 (2007).
    Article  Google Scholar 

    8.
    Smith, K. R. et al. Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. Proc. R. Soc. Lond. Ser. B Biol. Sci. 283, 20160626 (2016).
    Google Scholar 

    9.
    Christian, K. A. & Tracy, C. R. The effect of the thermal environment on the ability of hatchling galapagos land iguanas to avoid predation during dispersal. Oecologia 49, 218–223 (1981).
    PubMed  Article  Google Scholar 

    10.
    Clusella-Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).
    Article  Google Scholar 

    11.
    Moreno Azócar, D. L. et al. Effect of body mass and melanism on heat balance in Liolaemus lizards of the goetschi clade. J. Exp. Biol. 219, 1162–1171 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Farouki, O. T. Thermal properties of soils. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory. https://doi.org/10.4236/ojss.2011.13011 (1981).

    13.
    Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).
    Article  Google Scholar 

    14.
    Miller, G. E. in Introduction to Biomedical Engineering (3rd edn.) (eds. Enderle, J., & Bronzino, J.) pp. 937–993 (Academic press, 2012).

    15.
    Prota, G. Melanins and Melanogenesis (Academic Press, New York, 1992).

    16.
    Meredith, P. et al. Towards structure–property–function relationships for eumelanin. Soft Matter 2, 37–44 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Geen, M. R. S. & Johnston, G. R. Coloration affects heating and cooling in three color morphs of the Australian Bluetongue Lizard, Tiliqua scincoides. J. Therm. Biol. 43, 54–60 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Cordero, R. J. & Casadevall, A. Melanin. Curr. Biol. 30, R142–R143 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Jastrzebska, M. M., Isotalo, H., Paloheimo, J. & Stubb, H. Electrical conductivity of synthetic DOPA-melanin polymer for different hydration states and temperatures. J. Biomater. Sci. Polym. Ed. 7, 577–586 (1996).
    Article  Google Scholar 

    20.
    Mostert, A. B. et al. Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc. Natl Acad. Sci. USA 109, 8943–8947 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Mostert, A. B. et al. Understanding melanin: a nano-based material for the future. In Nanomaterials: Science and Applications (eds. D. M. Kane, A. Micolich & P. Roger) 175–202 (New York: Jenny Stanford Publishing, 2016).

    22.
    Kellicker, J., DiMarzio, C. A. & Kowalski, G. J. Computational model of heterogeneous heating in melanin. Optical Interact. Tissue Cells XXVI 9321, 93210H (2015).
    Google Scholar 

    23.
    Jastrzebska, M. M., Isotalo, H., Paloheimo, J. & Stubb, H. Electrical conductivity of synthetic dopa-melanin polymer for different hydration states and temperatures. J. Biomater. Sci. 7, 577–586 (1995).
    CAS  Article  Google Scholar 

    24.
    Wünsche, J. et al. Protonic and electronic transport in hydrated thin films of the pigment eumelanin. Chem. Mater. 27, 436–442 (2015).
    Article  CAS  Google Scholar 

    25.
    Rienecker, S. B., Mostert, A. B., Schenk, G., Hanson, G. R. & Meredith, P. Heavy water as a probe of the free radical nature and electrical conductivity of melanin. J. Phys. Chem. B 119, 14994–15000 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Migliaccio, L. et al. Evidence of unprecedented high electronic conductivity in mammalian pigment based eumelanin thin films after thermal annealing in vacuum. Front. Chem. 7, 162 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Rosenblum, E. B., Hoekstra, H. E. & Nachman, M. Adaptive reptile color variation and the evolution of the Mc1r gene. Evolution 58, 1794–1808 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Jackson, J. F., Iii, W. I. & Campbell, H. W. The dorsal pigmentation pattern of snakes as an antipredator strategy: a multivariate approach. Am. Naturalist 110, 1029 (1976).
    Article  Google Scholar 

    29.
    Wüster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 2495–2499 (2004).
    Article  Google Scholar 

    30.
    Allen, W. L., Baddeley, R., Scott-Samuel, N. E. & Cuthill, I. C. The evolution and function of pattern diversity in snakes. Behav. Ecol. 24, 1237–1250 (2013).
    Article  Google Scholar 

    31.
    Clause, A. G. & Becker, R. N. Temperature shock as a mechanism for color pattern aberrancy in snakes. Herpetol. Notes 8, 331–334 (2015).
    Google Scholar 

    32.
    Ressel, S. & Schall, J. J. Parasites and showy males: malarial infection and color variation in fence lizards. Oecologia 78, 158–164 (1989).
    CAS  PubMed  Article  Google Scholar 

    33.
    Morrison, R. L., Rand, M. S. & Frost-Mason, S. K. Cellular basis of color differences in three morphs of the lizard Sceloporus undulatus erythrocheilus. Copeia 1995, 397–408 (1995).

    34.
    Stuart-Fox, D. M. & Ord, T. J. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 2249–2255 (2004).
    Article  Google Scholar 

    35.
    Langkilde, T. & Boronow, K. E. Hot boys are blue: temperature-dependent color change in male eastern fence lizards. J. Herpetol. 46, 461–465 (2012).

    36.
    Moreno Azócar, D. L. et al. Variation in body size and degree of melanism within a lizards clade: is it driven by latitudinal and climatic gradients? J. Zool. 295, 243–253 (2014).
    Article  Google Scholar 

    37.
    Pearson, O. P. The effect of substrate and of skin color on thermoregulation of a lizard. Comp. Biochem. Physiol. Part A Physiol. 58, 353–358 (1977).
    Article  Google Scholar 

    38.
    Hutchinson, V. H. & Larimer, J. L. Reflectivity of the integuments of some lizards from different habitats. Ecology 41, 199–209 (1960).
    Article  Google Scholar 

    39.
    Norris, K. S. in Lizard Ecology: A Symposium (ed. W. W. Milstead) 162–229 (University of Missouri Press, 1967).

    40.
    Barry, R. G., & Chorley, R. J. Atmosphere, Weather and Climate (Routledge, 2003).

    41.
    Olalla‐Tarraga, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16, 606–617 (2007).
    Article  Google Scholar 

    42.
    Uetz, P., Freed, P. & Hošek, J. (eds.). The Reptile Database. http://www.reptile-database.org (2020).

    43.
    Ohta, Y. I., Kanade, T. & Sakai, T. Color information for region segmentation. Comput. Graph. Image Process. 13, 222–241 (1980).
    Article  Google Scholar 

    44.
    Gueymard, C. A., Myers, D. & Emery, K. Proposed reference irradiance spectra for solar energy systems testing. Sol. Energy 73, 443–467 (2002).
    Article  Google Scholar 

    45.
    Shawkey, M. D. et al. Beyond colour: consistent variation in near infrared and solar reflectivity in sunbirds (Nectariniidae). Sci. Nat. (Naturwissenschaften) 104, 78 (2017).
    Article  CAS  Google Scholar 

    46.
    Shine, R. & Kearney, M. Field studies of reptile thermoregulation: how well do physical models predict operative temperatures? Funct. Ecol. 15, 282–288 (2001).
    Article  Google Scholar 

    47.
    Reguera, S., Zamora-Camacho, F. J. & Moreno-Rueda, G. The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol. J. Linn. Soc. 112, 132–141 (2014).
    Article  Google Scholar 

    48.
    Martínez-Freiría, F., Toyama, K. S., Freitas, I. & Kaliontzopoulou, A. Thermal melanism explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers. Sci. Rep. 10, 1–10 (2020).
    Article  CAS  Google Scholar 

    49.
    Pizzigalli, C. et al. Eco-geographical determinants of ornamentation in vipers. Biol. J. Linnean Soc. 130, 1–14 (2020).

    50.
    Kurschner, W. M., Kvacek, Z. & Dilcher, D. L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc. Natl Acad. Sci. USA 105, 449–453 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Schraft, H. A., Goodman, C. & Clark, R. W. Do free-ranging rattlesnakes use thermal cues to evaluate prey? J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 204, 295–303 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    Alencar, L. R. V. et al. Diversification in vipers: phylogenetic relationships, time of divergence and shifts in speciation rates. Mol. Phylogenet. Evol. 105, 50–62 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 513, 401–404 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Pokorny, L. et al. Living on the edge: timing of Rand Flora disjunctions congruent with ongoing aridification in Africa. Front. Genet. 6, 154 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Barlow, A. et al. Ancient habitat shifts and organismal diversification are decoupled in the African viper genus Bitis (Serpentes: Viperidae). J. Biogeogr. 46, 1234–1248 (2019).
    Article  Google Scholar 

    56.
    Senut, B., Pickford, M. & Ségalen, L. Neogene desertification of Africa. C. R. Geosci. 341, 591–602 (2009).
    CAS  Article  Google Scholar 

    57.
    Douglas, M. E., Douglas, M. R., Schuett, G. W. & Porras, L. W. Evolution of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change. Mol. Ecol. 15, 3353–3374 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Zhisheng, A., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Janis, C. M., Damuth, J. & Theodor, J. M. The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 371–398 (2004).
    Article  Google Scholar 

    60.
    Walters, K. A., & Roberts, M. S. The structure and function of Skin. https://doi.org/10.1002/yea (2002).

    61.
    Wüster, W., Peppin, L., Pook, C. E. & Walker, D. E. A nesting of vipers: phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Mol. Phylogenet. Evol. 49, 445–459 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Shine, R. & Li-Xin, S. Arboreal ambush site selection by pit-vipers Gloydius shedaoensis. Anim. Behav. 63, 565–576 (2002).
    Article  Google Scholar 

    63.
    Ursenbacher, S. et al. Postglacial recolonization in a cold climate specialist in western europe: patterns of genetic diversity in the adder (Vipera berus) support the central-marginal hypothesis. Mol. Ecol. 24, 3639–3651 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Blumthaler, M., Ambach, W. & Ellinger, R. Increase in solar UV radiation with altitude. J. Photochem. Photobiol. B Biol. 39, 130–134 (1997).
    CAS  Article  Google Scholar 

    65.
    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Körner, C. et al. in Ecosystems and Human Well-being, Chapter 24, vol. 1. (Island Press, 2005).

    67.
    Tuniyev, B. et al. Gloydius halys. The IUCN Red List of Threatened Species 2009: e.T157282A5069394. https://www.iucnredlist.org/species/157282/5069394 (2009).

    68.
    Salter, C., Hobbs, J., Wheeler, J., Kostbade, J. T. Essentials of World Regional Geography 2nd edn. (Harcourt Brace, New York, 2005) pp. 464–465.

    69.
    Couplan, F., & Ligeon, J. C. Fleurs des Alpes: balade d’un botaniste, des plaines aux sommets (Nathan, 2005).

    70.
    Solórzano, A., Porras, L. W., Chaves, G., Bonilla, F. & Batista, A. Atropoides picadoi. The IUCN Red List of Threatened Species 2014: e.T203657A2769424. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T203657A2769424.en. (2014).

    71.
    Canseco-Márquez, L. & Muñoz-Alonso, A. Bothriechis rowleyi. The IUCN Red List of Threatened Species 2007: e.T64304A12761506. https://doi.org/10.2305/IUCN.UK.2007.RLTS.T64304A12761506.en. (2020).

    72.
    Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).
    Article  Google Scholar 

    73.
    Hill, N. Description of cranial elements and ontogenetic change within Tropidolaemus wagleri (Serpentes: Crotalinae). PLoS ONE 14, e0206023 (2019).

    74.
    Savage, J. M. The Amphibians and Reptiles of Costa Rica: A Herpetofauna between two Continents, between two Seas. (University of Chicago Press, Chicago, 2002).

    75.
    Fathinia, B., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Todehdehghan, F. & Amiri, F. Avian deception using an elaborate caudal lure in Pseudocerastes urarachnoides (Serpentes: Viperidae). Amphib. Reptilia 36, 223–231 (2015).
    Article  Google Scholar 

    76.
    Menegon, M., Davenport, T. R. & Howell, K. M. Description of a new and critically endangered species of Atheris (Serpentes: Viperidae) from the Southern Highlands of Tanzania, with an overview of the country’s tree viper fauna. Zootaxa 3120, 43–54 (2011).
    Article  Google Scholar 

    77.
    Goldenberg, J., D’Alba, L. Bisschop, K., Vanthournout, B., Shawkey, M. “Replication Data for: Substrate thermal properties influence ventral brightness evolution in ectotherms”; MacroBright v.0.1, https://doi.org/10.34894/FZ66NU, DataverseNL, V2. (2020).

    78.
    R-Core-Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2019)

    79.
    Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 15, 2216–2218 (2014).
    Article  CAS  Google Scholar 

    80.
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evolution 3, 217–223 (2012).
    Article  Google Scholar 

    81.
    Stayton, C. T. convevol: Analysis of Convergent Evolution. R package version 1.3. https://CRAN.R-project.org/package=convevol (2018).

    82.
    Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).
    Article  Google Scholar 

    84.
    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.15. https://CRAN.R-project.org/package=MuMIn (2019).

    85.
    Marchetti, M. P., Light, T., Moyle, P. B. & Viers, J. H. Fish invasions in California watersheds: testing hypotheses using landscape patterns. Ecol. Appl. 14, 1507–1525 (2004).
    Article  Google Scholar 

    86.
    Buxton, A. S., Groombridge, J. J., Zakaria, N. B. & Griffiths, R. A. Seasonal variation in environmental DNA in relation to population size and environmental factors. Sci. Rep. 7, 1–9 (2017).
    Article  CAS  Google Scholar 

    87.
    Hadfield, J. MCMC Course Notes. https://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf (2018).

    88.
    Gelman, A. & Rubin, B. D. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).
    Article  Google Scholar 

    89.
    Porter, W. P., Mitchell, J. W., Beckman, W. A. & DeWitt, C. B. Behavioral implications of mechanistic ecology – Thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia 13, 1–54 (1973).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Orlov, N. L., Sundukov, Y. N. & Kropachev, I. I. Distribution of pitvipers of “Gloydius blomhoffii” complex in Russia with the first records of Gloydius blomhoffii blomhoffii at Kunashir island (Kuril archipelago, Russian far east). Russ. J. Herpetol. 21, 169–178 (2014). More

  • in

    Reciprocal interactions between tumour cell populations enhance growth and reduce radiation sensitivity in prostate cancer

    Biological experiments
    Cell culture
    We obtained unlabelled parental (sensitive) and radiation-resistant populations from two prostate cell lines, PC3 and DU145, from the Liu laboratory (University of Toronto, Canada). Radioresistant cell populations comprised pooled cells from the parental line that survived a clinically-relevant course of radiotherapy23,24. To produce stable, fluorescent cell lines, we transduced cells using lentiviral particles containing the vectors, pCDH1-CMV-GFP-EF1-Hygro or pCHD1-CMV-DsRed-EF1-Hygro (Systems Biosciences), collected the top 30% of brightest cells by flow cytometry, and used hygromycin B (50 mg/mL, Gibco) for selection (200 µg/mL for PC3 and 250 µg/mL for DU145). Cell lines were cultured in DMEM medium (low glucose, pyruvate, GlutaMAX, Gibco) supplemented with 25 mM HEPES (Gibco), 10% foetal bovine serum (Sigma or Pan-Biotech), and 1% penicillin/streptomycin. Authentication was performed using STR profiling (Promega PowerPlex 21 PCR kit, Eurofins), and mycoplasma checks were performed routinely using MycoAlert Mycoplasma Detection Kit (Lonza). All cells were maintained in an incubator (37 °C, 5% CO2). Unlabelled cells were cultured for up to 10 passages (~6 weeks) for transduction; labelled cells were cultured for up to 10 passages (~6 weeks). No additional courses of radiation were used to maintain resistance. We measured clonogenic survival at 2 Gy (SF2) to verify that the labelled cells maintained the resistance phenotype for up to 12 passages (~8 weeks) in culture.
    Monolayer growth experiments
    Single cells (1 × 103 cells/well, 200 μL medium) were seeded in triplicate in flat-bottom 96-well plates, allowed to attach overnight, irradiated (0, 2, or 6 Gy), and imaged daily using brightfield (Incucyte Live Cell Imaging System, Sartorius). The medium was changed every 2 days. Cell confluence was determined using Incucyte Base Software (Sartorius).
    Clonogenic assays
    Survival of cell lines after radiation was measured using a clonogenic assay36. Briefly, cells were seeded in triplicate in six-well plates and irradiated using a Cs-137 (dose rate of 0.89 Gy/min) or an X-ray irradiator (195 kV, 10 mA). Surviving colonies were stained after 10 days with crystal violet and counted. The surviving fraction was calculated as (number of colonies/number of seeded cells) × plating efficiency.
    Response to cisplatin
    To check whether the RR cells had altered DNA damage response, we measured the cell viability of each population in response to a range of concentrations of cisplatin using a modified cytotoxicity assay37. Briefly, single cells (2 × 103 cells in 100 μL/well) were seeded as monolayers in triplicate in a 96-well plate and allowed to attach for 36 h before treatment. Increasing concentrations of cisplatin (made in 100 μL/well) were added to each well resulting in a final volume of 200 μL/well; cisplatin (Sigma) was prepared fresh for each treatment by dissolving the powder in 0.9% sterile-filtered saline to a stock concentration of 3.3 mM. Treated cells were then cultured for 72 h in cisplatin before they were fixed with 10% formalin. Cell confluence was determined using Incucyte Base Software (Sartorius) and reformatted to a concentration–response curve by normalising cell confluence values to the untreated well.
    Spheroid generation and culture
    Homogeneous and mixed spheroids were generated in 96-well, ultra-low attachment plates (7007, Corning) by seeding different ratios of parental and radioresistant cell populations (2 × 103 total cells/well) using Matrigel (5% v/v, Corning) to promote spheroid formation38. For all spheroid experiments, after a formation phase of 3 days, spheroids were fed every 2 days by replacing 50% of the medium in each well with fresh medium (200 μL total/well). Culture medium and incubation conditions were as described under ‘Cell culture’. Spheroid volumes were calculated using SpheroidSizer39.
    Unirradiated spheroid growth experiments
    Spheroids were generated as described in ‘Spheroid generation and culture’ and monitored for growth by brightfield imaging (Leica DM IRBE, Hamamatsu).
    Flow cytometry
    The proportions, survival, and cell cycle of each population from spheroids were measured by flow cytometry. Mixed unirradiated or irradiated spheroids (seeded 1:1 parental:RR, 6–8 pooled/group) were incubated with EdU (10 µM final concentration) 12 h prior to dissociation, dissociated (100 μL Accumax, Millipore) for 20 min at 37 °C, washed with phosphate-buffered saline (PBS), centrifuged (300 × g, 5 min), and incubated with efluor-780 (1 μL/mL PBS; ThermoFisher Scientific) for 30 min on ice in the dark to distinguish live/dead cells. After washing in PBS, samples were fixed for 10 min in IC Fixation Buffer (ThermoFisher Scientific), and permeabilized and stained with Click-iT Plus EdU Alexa Fluor 647 (ThermoFisher Scientific) according to manufacturer’s instructions. Following a wash in 1× saponin, cells were incubated 30 min with FxCycle Violet Stain (1:1000, 300 µL of 1× saponin; ThermoFisher Scientific) before being run on the BD LSR Fortessa X-20 Cytometer or the Attune NxT Flow Cytometer using the 405, 488, 561, and 633 lasers. Data were analysed using FlowJo (Treestar, Inc.) as described in Supplementary Figs. 2 and 4.
    Spheroid growth experiments after radiation
    To determine bulk radiation response of spheroids, PC3 cells were seeded as spheroids (n = 15 per dose per group) with 4 groups as described in ‘Spheroid generation and culture’: parental, 9:1 parental:RR, 1:1 parental:RR, and RR. After formation, spheroids were irradiated (0, 2.5, 5, 7.5, 10, 15, and 20 Gy) on day 4 and imaged for up to 48 days to monitor regrowth using brightfield (Celigo Imaging Cytometer, Nexelcom). After log-transforming the volume data, we calculated the radiation-induced growth delay (days) relative to untreated spheroids as the time for each irradiated spheroid to reach a volume endpoint (2.5 times the starting volume right before irradiation); we selected the lowest endpoint that was still within the exponential growth phase of all spheroids in the experiment. The average time for untreated spheroids to reach endpoint was estimated in R by local regression using the loess function with “direct” surface estimation to allow extrapolation for the parental spheroids (R project, v. 3.6.2).
    Regrowth experiments were repeated by irradiating day 3 spheroids from three groups (parental, mixed and RR) of PC3 cells (6 Gy, n = 17–18/ group) and of DU145 cells (6 Gy, n = 12/group; 10 Gy, n = 20/group). Spheroids were imaged using brightfield (Leica DM IRBE, Hamamatsu) for up to 27 days (PC3) and up to 23 days (DU145). The radiation-induced growth delay (delays) was calculated as above, but with different endpoints (3.5 times starting volume for PC3 and 4 times starting volume for DU145) to ensure the endpoint was within the exponential growth phase. Data from Fig. 2 were used to estimate average time of untreated spheroids; the ‘span’ parameter of the loess function was reduced from the default of 0.75–0.5 for the unirradiated DU145 spheroids to better estimate the average time of reaching the endpoint.
    To measure changes in the radiation response of PC3 cell populations within spheroids, untreated homogeneous and mixed spheroids were grown until day 5 or 11, dissociated using Accumax, seeded as single cells for clonogenic experiments, and allowed to attach for 6 h prior to radiation. Fluorescent colonies were counted using the Celigo Cytometer.
    Immunofluorescence
    For immunofluorescence and H&E experiments, spheroids were treated and fixed prior to staining40. To investigate the spatial distribution of fluorescent populations, sections were hydrated in PBS, stained for 10 min with Hoechst (1 μg/mL in PBS, Sigma) to visualise nuclei, and mounted using ProLong Diamond Antifade Mountant (ThermoFisher). For hypoxia, spheroids were pre-treated with 300 μM of the hypoxia drug EF5 (gift from Dr. Cameron Koch, University of Pennsylvania) prior to fixation. They were then permeabilized (PBS containing 0.3% Tween-20, 10 min), blocked (5% goat serum in PBS containing 0.1% Tween-20, 30 min), stained using anti-EF5 antibody (75 μg/mL; from Dr. Cameron Koch) overnight at 4 °C, washed (ice-cold PBS containing 0.3% Tween-20, 2 × 45 min)40, stained for nuclei as above, and mounted. For Ki67, spheroid sections were permeabilized (PBS containing 0.3% Tween-20, 10 min), blocked (5% goat serum in PBS containing 0.1% Tween-20, 30 min), and incubated overnight at 4 °C with primary antibody (clone SP6, 1:100, Vector Laboratories). After washing in PBS, sections were incubated for 1 h with goat anti-rabbit Alexa Fluor 647 (4 μg/mL, ThermoFisher), washed, and stained with Hoechst 33342 (5 μg/mL, Sigma) for 10 min. Slides were mounted and imaged using epifluorescence microscopy (20× objective; 0.30 NA; 0.64 μm resolution; excitation lasers: 395, 470, 555, and 640; Nikon Ti-E). Sections were stained using H&E and imaged using a Bright Field Slide Scanner (Aperio CS2, Leica) to visualise necrosis. To quantify the ratio of parental to radioresistant populations in spheroid cross-sections (n = 16 spheroids from 4 batches), we measured the number of pixels from each population (i.e., signal) by applying a threshold value 5 times higher than the median value of the background (i.e., noise) (Octave 4.4.1).
    Oxygen consumption measurements
    OCR was measured from each population using the Seahorse assay. Cells (1.2 × 104/well) were seeded in triplicate using the normal culture medium in a Seahorse XF 96-well microplate (Agilent) and allowed to attach overnight. Prior to the assay, cells were washed with and incubated in assay medium (DMEM basal medium containing 5 mM glucose, 4 mM glutamine, 5 mM pyruvate, pH 7.4; 200 μL/well) for 2 h at 37 °C without CO2 to degas the medium. Calibrant buffer (200 μL/well) was added to wells of the probe plate and also left at 37 °C without CO2 to degas. After OCR was measured on the Seahorse XF Analyser (Agilent Biosciences), cells were fixed using 4% paraformaldehyde, stained using Hoechst 33342, and counted (Celigo Cytometer, Nexelcom).
    Transwell experiments
    Co-culture experiments were performed to measure whether transferred factors between cell populations enhanced survival under hypoxia. Cells were seeded in triplicate (3.0 × 104/bottom well and 1.0 × 104/insert) in 12-well plates and in Transwell inserts, and allowed to attach overnight. Once the medium was changed, the plates were placed into normoxia or hypoxia (0.1% O2) for 24 and 120 h. Cells were fixed using 4% paraformaldehyde, stained with Hoechst (5 μg/mL), and counted (Celigo Cytometer, Nexelcom).
    Statistics and reproducibility
    Data were evaluated for equal variance using homoscedasticity plots (absolute value of residual vs predicted value) and for normality using Q–Q plots (Prism 8.0, GraphPad). Unless otherwise indicated, statistical significance was evaluated using one-way ANOVA, two-way ANOVA, or a mixed-effects model followed by multiple testing correction (α = 0.05). For clonogenic assays, the radiation protection factor was calculated as the area under the dose–response curve (AUC) for the RR cell populations divided by that of the parentals; AUC values were analysed for significance using a Student’s t test (unpaired, one-tailed, α = 0.05). For cisplatin cytotoxicity assays, IC50 values were calculated using a normalised response, variable slope, dose–response model (Prism, 8.0, GraphPad) and evaluated for statistical significance using extra sum-of-squares F-test. For post-radiation growth experiments, survival curves were analysed using the Mantel–Cox (log-rank) test and adjusted for multiple testing using Holm’s correction; spheroids that did not reach the endpoint during the timeframe of the experiment were marked as ‘censored’ on the final day of the experiment (please see Supplementary Methods section 3 for further details). Due to heteroscedasticity, cell counts from flow cytometry experiments involving cell cycle and death, and from co-culture Transwell assays were analysed using overdispersed Poisson or binomial regression models (please see Supplementary Methods section 3 for further details). For quantification of population proportions in microscopy images, pixel numbers were analysed using a two-tailed, Wilcoxon matched-pairs signed-rank test. Adjusted P values (Padj) are reported in the main text for experiments where multiple comparisons were performed.
    Data points represent biological replicates; experiments were performed using at least two separate batches of cells. We note the following data exclusions: missing data from some time points due to technical failures in imaging (Fig. 1), one excluded mixed DU145 spheroid because its growth did not resemble that of the other 35 spheroids (Fig. 2a), and one excluded plate of PC3 spheroids from survival analysis (Fig. 4) because of irregular growth that did not match the other nine plates. Sample sizes were approximated using effect sizes from pilot studies to ensure power (approximate β = 0.8); randomisation and blinding were not possible.
    Mathematical experiments
    Non-spatial mathematical models
    We used the logistic growth model to describe the growth of homogeneous tumour spheroids26. Thus, the rate of change of spheroid volume V at time t is given by

    $$frac{{dV}}{{dt}} = rV left(1 – frac{V}{K}right),$$
    (1)

    where r  > 0 represents the growth rate, K  > 0 is the carrying capacity (the limiting volume of the spheroid) and V(t = 0) = V0 denotes the spheroid volume at t = 0. The analytical solution to the logistic model is given by

    $$Vleft( t right) = frac{{V_0Ke^{rt}}}{{K + V_0(e^{rt} – 1)}}.$$
    (2)

    The Lotka–Volterra model was used to describe the growth of mixtures of parental and RR cell populations

    $$left. {begin{array}{*{20}{c}} {frac{{dV_P}}{{dt}} = r_PK_Pleft( {1 – frac{{V_P}}{{K_P}} – lambda _{RR}frac{{V_{RR}}}{{K_P}}} right)} \ {frac{{dV_{RR}}}{{dt}} = r_{RR}K_{RR}left( {1 – frac{{V_{RR}}}{{K_{RR}}} – lambda _Pfrac{{V_P}}{{K_{RR}}}} right)} end{array}} right},$$
    (3)

    with VP(t = 0) = VP0 and VRR(t = 0) = VRR0. In these equations, VP and VRR represent respectively the volumes of parental and RR populations, rP and rRR their initial growth rates, KP and KRR their carrying capacities, and VP0 and VRR0 their initial volumes. The parameters λP and λRR describe the effect that parental cells have on RR cells, and vice versa. These type of interactions, found in ecology12, may be competitive (λP  > 0 and λRR  > 0), mutualistic (λP  More

  • in

    Dynamic allometric scaling of tree biomass and size

    1.
    Weiskittel, A. R. et al. A call to improve methods for estimating tree biomass for regional and national assessments. J. For. 113, 414–424 (2015).
    Google Scholar 
    2.
    Huang, H., Liu, C., Wang, X., Zhou, X. & Gong, P. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sens. Environ. 221, 225–234 (2019).
    Article  Google Scholar 

    3.
    Zianis, D. & Seura, S. Biomass and stem volume equations for tree species in Europe. Silva Fenn. Monogr. 4, 1–63 (2005).
    Google Scholar 

    4.
    Henry, M. et al. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn. 45, 477–569 (2011).
    Article  Google Scholar 

    5.
    Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. Comprehensive Database of Diameter-Based Biomass Regressions for North American Tree Species (USDA Forest Service, 2003).

    6.
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Review of allometric equations for major land covers in SE Asia: uncertainty and implications for above- and below-ground carbon estimates. For. Ecol. Manag. 360, 323–340 (2016).
    Article  Google Scholar 

    7.
    Liu, C. et al. Separating regressions for model fitting to reduce the uncertainty in forest volume–biomass relationship. Forests 10, 658 (2019).
    Article  Google Scholar 

    8.
    Niklas, K. J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol. 171, 27–40 (2006).
    PubMed  Article  Google Scholar 

    9.
    Smith, J. E., Heath, L. S. & Jenkins, J. C. Forest Volume-to-Biomass Models and Estimates of Mass for Live and Standing Dead Trees of U.S. Forests (USDA Forest Service, 2003).

    10.
    Jalkanen, A., Mäkipää, R., Ståhl, G., Lehtonen, A. & Petersson, H. Silviculture-driven vegetation change in a European temperate deciduous forest. Ann. For. Sci. 62, 313–323 (2005).
    Article  Google Scholar 

    11.
    Guo, Z., Fang, J., Pan, Y. & Birdsey, R. Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. For. Ecol. Manag. 259, 1225–1231 (2010).
    Article  Google Scholar 

    12.
    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
    Article  Google Scholar 

    13.
    Ishihara, M. I. et al. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ecol. Appl. 25, 1433–1446 (2015).
    PubMed  Article  Google Scholar 

    14.
    Xiang, W. et al. General allometric equations and biomass allocation of Pinus massoniana trees on regional scale in southern China. Ecol. Res. 26, 697–711 (2011).
    Article  Google Scholar 

    15.
    Parresol, B. R. Assessing tree and stand biomass: a review with examples and critical comparisons. For. Sci. 45, 573–593 (1999).
    Google Scholar 

    16.
    Wirth, C., Schumacher, J. & Schulze, E.-D. Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol. 24, 121–139 (2004).
    PubMed  Article  Google Scholar 

    17.
    Rutishauser, E. et al. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. For. Ecol. Manag. 307, 219–225 (2013).
    Article  Google Scholar 

    18.
    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).
    CAS  PubMed  Article  Google Scholar 

    19.
    Gonzalez-Benecke, C. A. et al. Local and general above-stump biomass functions for loblolly pine and slash pine trees. For. Ecol. Manag. 334, 254–276 (2014).
    Article  Google Scholar 

    20.
    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).
    Article  Google Scholar 

    21.
    Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A. & Henry, M. Should tree biomass allometry be restricted to power models? For. Ecol. Manag. 353, 156–163 (2015).
    Article  Google Scholar 

    22.
    Sheil, D. et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568–581 (2017).
    Article  Google Scholar 

    23.
    Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).
    PubMed  Article  Google Scholar 

    24.
    Schafer, J. L. & Mack, M. C. Growth, biomass, and allometry of resprouting shrubs after fire in scrubby flatwoods. Am. Midl. Nat. 172, 266–284 (2014).
    Article  Google Scholar 

    25.
    Poorter, H. et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 208, 736–749 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Smith, R. J. Rethinking allometry. J. Theor. Biol. 87, 97–111 (1980).
    CAS  PubMed  Article  Google Scholar 

    27.
    Dassot, M. et al. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput. Electron. Agric. 89, 86–93 (2012).
    Article  Google Scholar 

    28.
    Disney, M. I. et al. Weighing trees with lasers: advances, challenges and opportunities. Interface Focus 8, 201700484 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Sarrus, P. F. & Rameaux, J.-F. Application des sciences accessoires et principalement des mathématiques à la physiologie générale. Bull. Acad. R. Méd. 3, 1094–1100 (1838).
    Google Scholar 

    30.
    Huxley, J. S. & Teissier, G. Terminology of relative growth. Nature 137, 780–781 (1936).
    Article  Google Scholar 

    31.
    Gayon, J. History of the concept of allometry. Am. Zool. 40, 748–758 (2000).
    Google Scholar 

    32.
    Rubner, M. Über den einfluss der körpergrösse auf stoff- und kraftwechsel. Z. Biol. 19, 536–562 (1883).
    Google Scholar 

    33.
    von Bertalanffy, L. General System Theory: Foundations, Development, Applications (George Braziller, 1973).

    34.
    Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).
    CAS  Article  Google Scholar 

    35.
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).
    CAS  PubMed  Article  Google Scholar 

    36.
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for ontogenetic growth. Nature 413, 628–631 (2001).
    CAS  PubMed  Article  Google Scholar 

    37.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    38.
    Bokma, F. Evidence against universal metabolic allometry. Funct. Ecol. 18, 184–187 (2004).
    Article  Google Scholar 

    39.
    Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4-law” of metabolism. J. Theor. Biol. 209, 9–27 (2001).
    CAS  PubMed  Article  Google Scholar 

    40.
    Kozłowski, J. & Konarzewski, M. Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18, 283–289 (2004).
    Article  Google Scholar 

    41.
    Henry, M. et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For. Ecol. Manag. 260, 1375–1388 (2010).
    Article  Google Scholar 

    42.
    Satoo, T. Notes on Kittredge’s method of estimation of amount of leaves of forest stand. Jpn. J. For. 44, 267–272 (1962).
    Google Scholar 

    43.
    Ruark, G. A., Martin, G. L. & Bockheim, J. G. Comparison of constant and variable allometric ratios for estimating populus tremuloides biomass. For. Sci. 33, 294–300 (1987).
    Google Scholar 

    44.
    Mori, S. et al. Mixed-power scaling of whole-plant respiration from seedlings to giant trees. Proc. Natl Acad. Sci. USA 107, 1447–1451 (2010).
    CAS  PubMed  Article  Google Scholar 

    45.
    Tjørve, E. Shapes and functions of species-area curves (II): a review of new models and parameterizations. J. Biogeogr. 36, 1435–1445 (2009).
    Article  Google Scholar 

    46.
    Luo, Y., Wang, X., Zhang, X. & Lu, F. Biomass and Its Allocation of Forest Ecosystems in China [in Chinese] (Chinese Forestry Publishing House, 2013).

    47.
    Stovall, A. E. L., Shugart, H. H., Stovall, A. E. L. & Anderson-Teixeira, K. J. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. For. Ecol. Manag. 427, 217–229 (2018).
    Article  Google Scholar 

    48.
    Packard, G. C. Is logarithmic transformation necessary in allometry? Biol. J. Linn. Soc. 109, 476–486 (2013).
    Article  Google Scholar 

    49.
    Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A. & Schnitzer, S. A. Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biol. J. Linn. Soc. 111, 230–233 (2014).
    Article  Google Scholar 

    50.
    Sprugel, D. G. Correcting for bias in log-transformed allometric equations. Ecology 64, 209–210 (1983).
    Article  Google Scholar 

    51.
    Peichl, M. & Arain, M. A. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 253, 68–80 (2007).
    Article  Google Scholar 

    52.
    Wolf, A., Field, C. B. & Berry, J. A. Allometric growth and allocation in forests: a perspective from FLUXNET. Ecol. Appl. 21, 1546–1556 (2011).
    PubMed  Article  Google Scholar 

    53.
    Litton, C. M., Raich, J. W. & Ryan, M. G. Carbon allocation in forest ecosystems. Glob. Change Biol. 13, 2089–2109 (2007).
    Article  Google Scholar 

    54.
    Vallet, P., Dhôte, J. F., Moguédec, G. L. E., Ravart, M. & Pignard, G. Development of total aboveground volume equations for seven important forest tree species in France. For. Ecol. Manag. 229, 98–110 (2006).
    Article  Google Scholar 

    55.
    Cannell, M. G. R. World Forest Biomass and Primary Production Data (Academic Press, 1982).

    56.
    Usoltsev, V. A. Forest Biomass and Primary Production Database for Eurasia (Ural State Forest Engineering Univ., 2013).

    57.
    West, G. B. & Brown, J. H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005).
    PubMed  Article  Google Scholar 

    58.
    Reich, P. B. et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).
    CAS  PubMed  Article  Google Scholar 

    59.
    Li, H., Han, X. & Wu, J. Lack of evidence for 3/4 scaling of metabolism in terrestrial plants. J. Integr. Plant Biol. 47, 1173–1183 (2005).
    Article  Google Scholar 

    60.
    Zhou, X. et al. Correcting the overestimate of forest biomass carbon on the national scale. Method Ecol. Evol. 7, 447–455 (2016).
    Article  Google Scholar 

    61.
    Enquist, B. J., Brown, J. H. & West, G. B. Allometric scaling of plant energetics and population density. Nature 395, 163–165 (1998).
    CAS  Article  Google Scholar  More