More stories

  • in

    A cross-species interaction with a symbiotic commensal enables cell-density-dependent growth and in vivo virulence of an oral pathogen

    1.
    Miller MB, Bassler BL. Quorum sensing in bacteria. Ann Rev Microbiol. 2001;55:165–99.
    CAS  Article  Google Scholar 
    2.
    Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nat. 2017;551:313–20.
    CAS  Article  Google Scholar 

    3.
    Grossman AD. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Ann Rev Genet. 1995;29:477–508.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Kaprelyants AS, Kell DB. Do bacteria need to communicate with each other for growth? Trends Microbiol. 1996;4:237–42.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB. A bacterial cytokine. Proc Natl Acad Sci USA. 1998;95:8916–21.
    CAS  PubMed  Article  Google Scholar 

    6.
    Lankford CE, Walker JR, Reeves JB, Nabbut NH, Byers BR, Jones RJ. Inoculum-dependent division lag of Bacillus cultures and its relation to an endogenous factor(s) (“schizokinen”). J Bacteriol. 1966;91:1070–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Halmann M, Benedict M, Mager J. Nutritional Requirements of Pasteurella tularensis for Growth from Small Inocula. J Gen Microbiol. 1967;49:451–60.
    Article  Google Scholar 

    8.
    Jannasch HW. Bacterial growth at low population densities. Nat. 1962;196:496–7.
    CAS  Article  Google Scholar 

    9.
    Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7:1016–25.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Schincaglia GP, Hong BY, Rosania A, Barasz J, Thompson A, Sobue T, et al. Clinical, immune, and microbiome traits of gingivitis and peri-implant mucositis. J Dent Res. 2017;96:47–55.
    CAS  PubMed  Article  Google Scholar 

    11.
    Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6:1176–85.
    CAS  PubMed  Article  Google Scholar 

    12.
    Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8:471–80.
    CAS  PubMed  Article  Google Scholar 

    13.
    Loe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol. 1965;36:177–87.
    CAS  PubMed  Article  Google Scholar 

    14.
    Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15:30–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Kuboniwa M, Houser JR, Hendrickson EL, Wang Q, Alghamdi SA, Sakanaka A, et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol. 2017;2:1493–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Zhou P, Li X, Huang IH, Qi F. Veillonella catalase protects the growth of Fusobacterium nucleatum in microaerophilic and Streptococcus gordonii-resident environments. Appl Environ Microbiol. 2017;83:19.
    Google Scholar 

    17.
    Stacy A, Fleming D, Lamont RJ, Rumbaugh KP, Whiteley M. A commensal bacterium promotes virulence of an opportunistic pathogen via cross-respiration. mBio. 2016;7:3.
    Article  Google Scholar 

    18.
    Lyons SR, Griffen AL, Leys EJ. Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol. 2000;38:2362–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Hong BY, Furtado Araujo MV, Strausbaugh LD, Terzi E, Ioannidou E, Diaz PI. Microbiome profiles in periodontitis in relation to host and disease characteristics. PloS ONE. 2015;10:e0127077.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Tanner AC, Kent R Jr, Kanasi E, Lu SC, Paster BJ, Sonis ST, et al. Clinical characteristics and microbiota of progressing slight chronic periodontitis in adults. J Clin Periodontol. 2007;34:917–30.
    CAS  PubMed  Article  Google Scholar 

    21.
    Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med. 2015;7:27.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafilou M, Triantafilou K, et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe. 2014;15:768–78.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;10:497–506.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Lamell CW, Griffen AL, McClellan DL, Leys EJ. Acquisition and colonization stability of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in children. J Clin Microbiol. 2000;38:1196–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Teles FR, Teles RP, Sachdeo A, Uzel NG, Song XQ, Torresyap G, et al. Comparison of microbial changes in early redeveloping biofilms on natural teeth and dentures. J Periodontol. 2012;83:1139–48.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Naginyte M, Do T, Meade J, Devine DA, Marsh PD. Enrichment of periodontal pathogens from the biofilms of healthy adults. Sci Rep. 2019;9:5491.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Davey ME. Techniques for the growth of Porphyromonas gingivalis biofilms. Periodontol 2000. 2006;42:27–35.
    PubMed  Article  Google Scholar 

    28.
    James CE, Hasegawa Y, Park Y, Yeung V, Tribble GD, Kuboniwa M, et al. LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infec Immun. 2006;74:3834–44.
    CAS  Article  Google Scholar 

    29.
    Bizhang M, Ellerbrock B, Preza D, Raab W, Singh P, Beikler T, et al. Detection of nine microorganisms from the initial carious root lesions using a TaqMan-based real-time PCR. Oral Dis. 2011;17:642–52.
    CAS  PubMed  Article  Google Scholar 

    30.
    Byrne SJ, Dashper SG, Darby IB, Adams GG, Hoffmann B, Reynolds EC. Progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque. Oral Microbiol Immunol. 2009;24:469–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Huang S, Li R, Zeng X, He T, Zhao H, Chang A, et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J. 2014;8:1768–80.
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Camelo-Castillo A, Novoa L, Balsa-Castro C, Blanco J, Mira A, Tomas I. Relationship between periodontitis-associated subgingival microbiota and clinical inflammation by 16S pyrosequencing. J Clin Periodontol. 2015;42:1074–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Kirst ME, Li EC, Alfant B, Chi YY, Walker C, Magnusson I, et al. Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol. 2015;81:783–93.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Kistler JO, Booth V, Bradshaw DJ, Wade WG. Bacterial community development in experimental gingivitis. PloS ONE. 2013;8:e71227.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    The-Human-Microbiome-Project-Consortium. Structure, function and diversity of the healthy human microbiome. Nat. 2012;486:207–14.
    Article  CAS  Google Scholar 

    36.
    Ganesan SM, Joshi V, Fellows M, Dabdoub SM, Nagaraja HN, O’Donnell B, et al. A tale of two risks: smoking, diabetes and the subgingival microbiome. ISME J. 2017;11:2075–89.
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Abe T, Hajishengallis G. Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods. 2013;394:49–54.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Price RR, Viscount HB, Stanley MC, Leung KP. Targeted profiling of oral bacteria in human saliva and in vitro biofilms with quantitative real-time PCR. Biofouling 2007;23:203–13.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, et al. Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. mBio 2013;5:e00986–13.
    PubMed  PubMed Central  Google Scholar 

    42.
    Chen H, Fujita M, Feng Q, Clardy J, Fink GR. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci USA. 2004;101:5048–52.
    CAS  PubMed  Article  Google Scholar 

    43.
    Yoshida M, Kashiwagi K, Shigemasa A, Taniguchi S, Yamamoto K, Makinoshima H, et al. A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J Biol Chem. 2004;279:46008–13.
    CAS  PubMed  Article  Google Scholar 

    44.
    Dutzan N, Abusleme L, Bridgeman H, Greenwell-Wild T, Zangerle-Murray T, Fife ME, et al. On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity 2017;46:133–47.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res. 2014;93:1045–53.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Zhou P, Li X, Qi F. Identification and characterization of a haem biosynthesis locus in Veillonella. Microbiol. 2016;162:1735–43.
    CAS  Article  Google Scholar 

    47.
    Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16:745–59.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Baker PJ, Dixon M, Roopenian DC. Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infec Immun. 2000;68:5864–8.
    CAS  Article  Google Scholar 

    49.
    Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:eaau3333.
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Pangolins in peril get a hand from human neighbours

    A Philippine pangolin pup nuzzles close to its mother, who is curled into a protective ball. Credit: Gregg Yan (CC BY-SA 4.0)

    Conservation biology
    22 December 2020

    The expertise of local people could help to protect an extremely rare Philippine species.

    The Philippine pangolin is a mammal of mystery: poorly understood, except that it is close to extinction. Now, researchers have gleaned data that could help to protect the pangolin — simply by asking the people who know it best.
    Restricted to a scattering of Philippine islands, the Philippine pangolin (Manis culionensis) is nocturnal and elusive, leaving scientists with little knowledge of the creature’s habits and conservation status. To fill these gaps, Lucy Archer at Zoological Society of London Philippines in Puerto Princesa City and her colleagues conducted almost 1,300 interviews of people living in the pangolin’s home range.
    More than 85% of survey respondents recognized the animal and knew something about it, and almost 20% had seen a pangolin in 2018 or 2019. Sightings in this time span were reported by people in 17 of the 18 survey areas, providing evidence that the species persists in much of its territory.
    The results show that there’s hope for the pangolin and that governments should act to protect the animal across its range, the authors say. More