More stories

  • in

    Interacting effects of insect and ungulate herbivory on Scots pine growth

    1.
    Moreira, X. et al. Specificity of induced defenses, growth, and reproduction in lima bean (Phaseolus lunatus) in response to multispecies herbivory. Am. J. Bot. 102, 1300–1308 (2015).
    CAS  PubMed  Article  Google Scholar 
    2.
    Danell, K., Bergström, R. & Edenius, L. Effects of large mammalian browsers on architecture, biomass, and nutrients of woody plants. J. Mammal. 75, 833–844 (1994).
    Article  Google Scholar 

    3.
    Kaitaniemi, P., Neuvonen, S. & Nyyssönen, T. Effects of cumulative defoliations on growth, reproduction, and insect resistance in mountain birch. Ecology 80, 524–532 (1999).
    Article  Google Scholar 

    4.
    den Herder, M., Bergström, R., Niemelä, P., Danell, K. & Lindgren, M. Effects of natural winter browsing and simulated summer browsing by moose on growth and shoot biomass of birch and its associated invertebrate fauna. Ann. Zool. Fennici 46, 63–74 (2009).
    Article  Google Scholar 

    5.
    Wallgren, M., Bergquist, J., Bergström, R. & Eriksson, S. Effects of timing, duration, and intensity of simulated browsing on Scots pine growth and stem quality. Scand. J. For. Res. 29, 734–746 (2014).
    Article  Google Scholar 

    6.
    Schwenk, W. S. & Strong, A. M. Contrasting patterns and combined effects of moose and insect herbivory on striped maple (Acer pensylvanicum). Basic Appl. Ecol. 12, 64–71 (2011).
    Article  Google Scholar 

    7.
    Muiruri, E. W., Milligan, H. T., Morath, S. & Koricheva, J. Moose browsing alters tree diversity effects on birch growth and insect herbivory. Funct. Ecol. 29, 724–735 (2015).
    Article  Google Scholar 

    8.
    van Zandt, P. A. & Agrawal, A. A. Community-Wide impacts of herbivore-induced plant responses in milkweed (Asclepias syriaca). Ecology 85, 2616–2629 (2004).
    Article  Google Scholar 

    9.
    Erb, M., Robert, C. A. M., Hibbard, B. E. & Turlings, T. C. J. Sequence of arrival determines plant-mediated interactions between herbivores. J. Ecol. 99, 7–15 (2011).
    Article  Google Scholar 

    10.
    Kafle, D., Hänel, A., Lortzing, T., Steppuhn, A. & Wurst, S. Sequential above- and belowground herbivory modifies plant responses depending on herbivore identity. BMC Ecol. 17, 1–10 (2017).
    Article  Google Scholar 

    11.
    Stephens, A. E. A., Srivastava, D. S. & Myers, J. H. Strength in numbers? Effects of multiple natural enemy species on plant performance. Proc. R. Soc. B Biol. Sci. 280, 20122756 (2013).
    Article  Google Scholar 

    12.
    Gagic, V. et al. Interactive effects of pests increase seed yield. Ecol. Evol. 6, 2149–2157 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Strauss, S. Y. Direct, indirect, and cumulative effects of three native herbivores on a shared host plant. Ecology 72, 543–558 (1991).
    Article  Google Scholar 

    14.
    Gómez, J. M. & González-Megías, A. Asymmetrical interactions between ungulates and phytophagous insects: being different matters. Ecology 83, 203–211 (2002).
    Article  Google Scholar 

    15.
    Ohgushi, T. Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36, 81–105 (2005).
    Article  Google Scholar 

    16.
    Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).
    CAS  PubMed  Article  Google Scholar 

    17.
    Hilker, M. et al. Priming and memory of stress responses in organisms lacking a nervous system. Biol. Rev. 91, 1118–1133 (2016).
    PubMed  Article  Google Scholar 

    18.
    Lyytikäinen-Saarenmaa, P. The responses of scots pine, Pinus silvestris, to natural and artificial defoliation stress. Ecol. Appl. 9, 469–474 (1999).
    Article  Google Scholar 

    19.
    Ericsson, A., Larsson, S. & Tenow, O. Effects of early and late season defoliation on growth and carbohydrate dynamics in scots pine. J. Appl. Ecol. 17, 747–769 (1980).
    Article  Google Scholar 

    20.
    Edenius, L. Browsing by moose on Scots pine in relation to plant resource availability. Ecology 74, 2261–2269 (1993).
    Article  Google Scholar 

    21.
    Nordkvist, M. et al. Trait-mediated indirect interactions: Moose browsing increases sawfly fecundity through plant-induced responses. Ecol. Evol. 9, 10615–10629 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Edenius, L., Danell, K. & Nyquist, H. Effects of simulated moose browsing on growth, mortality, and fecundity in Scots pine: relations to plant productivity. Can. J. For. Res. 25, 529–535 (1995).
    Article  Google Scholar 

    23.
    Honkanen, T., Haukioja, E. & Kitunen, V. Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Funct. Ecol. 13, 126–140 (1999).
    Article  Google Scholar 

    24.
    Persson, I. L., Bergström, R. & Danell, K. Browse biomass production and regrowth capacity after biomass loss in deciduous and coniferous trees: Responses to moose browsing along a productivity gradient. Oikos 116, 1639–1650 (2007).
    Article  Google Scholar 

    25.
    Belsky, A. J. Does herbivory benefit plants? A review of the evidence. Am. Nat. 127, 870–892 (1986).
    Article  Google Scholar 

    26.
    Bergman, M. Can saliva from moose, Alces alces, affect growth responses in the salow, Salix caprea?. Oikos 96, 164–168 (2002).
    Article  Google Scholar 

    27.
    Ohse, B. et al. Salivary cues: simulated roe deer browsing induces systemic changes in phytohormones and defence chemistry in wild-grown maple and beech saplings. Funct. Ecol. 31, 340–349 (2017).
    Article  Google Scholar 

    28.
    Kollberg, I. et al. Temperature affects insect outbreak risk through tritrophic interactions mediated by plant secondary compounds. Ecosphere 6, 1–17 (2015).
    Article  Google Scholar 

    29.
    Lyytikäinen-Saarenmaa, P. & Tomppo, E. Impact of sawfly defoliation on growth of Scots pine Pinus sylvestris (Pinaceae) and associated economic losses. Bull. Entomol. Res. 92, 137–140 (2002).
    PubMed  Article  Google Scholar 

    30.
    Augustine, D. J. & McNaughton, S. J. Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165–1183 (1998).
    Article  Google Scholar 

    31.
    Edenius, L., Bergman, M., Ericsson, G. & Danell, K. The role of moose as a disturbance factor in managed boreal forests. Silva Fennica 36, 57–67 (2002).
    Article  Google Scholar 

    32.
    Hódar, J. A., Zamora, R., Castro, J., Gómez, J. M. & García, D. Biomass allocation and growth responses of Scots pine saplings to simulated herbivory depend on plant age and light availability. Plant Ecol. 197, 229–238 (2008).
    Article  Google Scholar 

    33.
    Bergström, R. & Hjeljord, O. Moose and vegetation interactions in northwestern Europe and Poland. Swedish Wildl. Res. Suppl. 1, 213–228 (1987).
    Google Scholar 

    34.
    Nilsson, U., Berglund, M., Bergquist, J., Holmström, H. & Wallgren, M. Simulated effects of browsing on the production and economic values of Scots pine (Pinus sylvestris) stands. Scand. J. For. Res. 31, 279–285 (2016).
    Article  Google Scholar 

    35.
    Långsström, B. & Hellqvist, C. Effects of different pruning regimes on growth and sapwood area of Scots pine. For. Ecol. Manag. 44, 239–254 (1991).
    Article  Google Scholar 

    36.
    Mathisen, K. M., Milner, J. M. & Skarpe, C. Moose-tree interactions: rebrowsing is common across tree species. BMC Ecol. 17, 1–15 (2017).
    Article  Google Scholar 

    37.
    Bergqvist, G., Bergström, R. & Edenius, L. Effects of moose (Alces alces) rebrowsing on damage development in young stands of Scots pine (Pinus sylvestris). For. Ecol. Manag. 176, 397–403 (2003).
    Article  Google Scholar 

    38.
    Bergqvist, G., Bergström, R. & Edenius, L. Patterns of stem damage by moose (Alces alces) in young Pinus sylvestris stands in Sweden. Scand. J. For. Res. 16, 363–370 (2001).
    Article  Google Scholar 

    39.
    Riipi, M., Lempa, K., Haukioja, E., Ossipov, V. & Pihlaja, K. Effects of simulated winter browsing on mountain birch foliar chemistry and on the performance of insect herbivores. Oikos 111, 221–234 (2005).
    Article  Google Scholar 

    40.
    Kupferschmid, A. D. & Bugmann, H. Timing, light availability and vigour determine the response of Abies alba saplings to leader shoot browsing. Eur. J. For. Res. 132, 47–60 (2013).
    Article  Google Scholar 

    41.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

    42.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. _nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1–142. https://CRAN.R-project.org/package=nlme (2019).

    43.
    Fox, J. & Weisberg, F. An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. (2019).

    44.
    Darling, E. S., Mcclanahan, T. R. & Côté, I. M. Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv. Lett. 3, 122–130 (2010).
    Article  Google Scholar 

    45.
    Bansal, S., Hallsby, G., Löfvenius, M. O. & Nilsson, M. C. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Tree Physiol. 33, 451–463 (2013).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Comparative analysis of bacterioplankton assemblages from two subtropical karst reservoirs of southwestern China with contrasting trophic status

    1.
    Neuenschwander, S. M., Pernthaler, J., Posch, T. & Salcher, M. M. Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environ. Microbiol. 17(3), 781–795 (2015).
    CAS  PubMed  Article  Google Scholar 
    2.
    Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313(5790), 1068–1072 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    United Nations Environment Programme. GEO Year Book 2004/5: An Overview of Our Changing Environment (2004). https://www.unep.org/resources/report/geo-year-book-20045-overview-our-changing-environment.

    4.
    Lindström, E. S. Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb. Ecol. 40(2), 104–113 (2000).
    PubMed  Article  Google Scholar 

    5.
    Ávila, M. P., Staehr, P. A., Barbosa, F. A., Chartone-Souza, E. & Nascimento, A. Seasonality of freshwater bacterioplankton diversity in two tropical shallow lakes from the Brazilian Atlantic Forest. FEMS Microbiol. Ecol. 93, fw218 (2017).
    Article  CAS  Google Scholar 

    6.
    Zhang, H. et al. Biogeographic distribution patterns of algal community in different urban lakes in China: insights into the dynamics and co-existence. J. Environ. Sci. 100, 216–227 (2021).
    Article  Google Scholar 

    7.
    Ji, B. et al. Bacterial communities of four adjacent fresh lakes at different trophic status. Ecotoxicol. Environ. Safe 157, 388–394 (2018).
    CAS  Article  Google Scholar 

    8.
    Iliev, I. et al. Metagenomic profiling of the microbial freshwater communities in two Bulgarian reservoirs. J. Basic Microb. 57(8), 669–679 (2017).
    CAS  Article  Google Scholar 

    9.
    Linz, A. M. et al. Bacterial community composition and dynamics spanning five years in freshwater bog lakes. mSphere 2(3), e00169 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Hartmann, A., Goldscheider, N., Wagener, T., Lange, J. & Weiler, M. Karst water resources in a changing world: review of hydrological modeling approaches. Rev. Geophys. 52(3), 218–242 (2014).
    ADS  Article  Google Scholar 

    11.
    Yu, S. et al. Spatial and temporal dynamics of bacterioplankton community composition in a subtropical dammed karst river of southwestern China. Microbiol. Open 8(9), e00849 (2019).
    Article  CAS  Google Scholar 

    12.
    Li, Q., Sun, H., Han, J., Liu, Z. & Yu, L. High-resolution study on the hydrochemical variations caused by the dilution of precipitation in the epikarst spring: an example spring of Landiantang at Nongla, Mashan, China. Environ. Geol. 54(2), 347–354 (2008).
    ADS  CAS  Article  Google Scholar 

    13.
    Song, A., Yue, M. L. & Li, Q. Influence of precipitation on bacterial structure in a typical karst spring, SW China. J. Groundw. Sci. Eng. 6(3), 193–204 (2018).
    Google Scholar 

    14.
    Gray, C. J. & Engel, A. S. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer. ISME J. 7(2), 325–337 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Shabarova, T. et al. Bacterial community structure and dissolved organic matter in repeatedly flooded subsurface karst water pools. FEMS Microbiol. Ecol. 89(1), 111–126 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Li, Q. et al. Contribution of aerobic anoxygenic phototrophic bacteria to total organic carbon pool in aquatic system of subtropical karst catchments, Southwest China: evidence from hydrochemical and microbiological study. FEMS Microbiol. Ecol. 93, fix065 (2017).
    Google Scholar 

    17.
    Stevanović, Z. & Milanović, P. Engineering challenges in karst. Acta Carsol. 44(3), 381–399 (2015).
    Article  Google Scholar 

    18.
    Lu, X. X. et al. Water chemistry and characteristics of dissolved organic carbon during the wet season in Wulixia Reservoir, SW China. Huanjing Kexue 39(5), 2075–2085 (2018) (in Chinese with English abstract).
    PubMed  PubMed Central  Google Scholar 

    19.
    Xin, S. L. et al. Relationship between the bacterial abundance and production with environmental factors in a subtropical karst reservoir. Huanjing Kexue 39(12), 5647–5656 (2018) (in Chinese with English abstract).
    PubMed  PubMed Central  Google Scholar 

    20.
    National Research Council. Assessing the TMDL Approach to Water Quality Management (National Academy Press, Washington, DC, 2001).
    Google Scholar 

    21.
    Cunha, D. G. F., do Carmo Calijuri, M. & Lamparelli, M. C. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol. Eng. 60, 126–134 (2013).
    Article  Google Scholar 

    22.
    Lorenzen, C. J. Determination of chlirophyll and pheo-pigments: spectrophotometric equations. Limnol. Oceanogr. 12(2), 343–346 (1967).
    ADS  CAS  Article  Google Scholar 

    23.
    Tamaki, H. et al. Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform. PLoS ONE 6(9), e25263 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Microbiol. 27(1), 1–20 (2012).
    Google Scholar 

    25.
    Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2, 16 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral. J. Ecol. 18(1), 117–143 (1993).
    Article  Google Scholar 

    27.
    Palmer, M. W., McGlinn, D. J., Westerberg, L. & Milberg, P. Indices for detecting differences in species composition: some simplifications of RDA and CCA. Ecology 89(6), 1769–1771 (2008).
    PubMed  Article  Google Scholar 

    28.
    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6(2), 343–351 (2012).
    PubMed  Article  CAS  Google Scholar 

    29.
    Sanchez, G. PLS Path Modeling with R (Trowchez Editions, Berkeley, 2013).
    Google Scholar 

    30.
    Lopez-Chicano, M., Bouamama, M., Vallejos, A. & Pulido-Bosch, A. Factors which determine the hydrogeochemical behaviour of karstic springs. A case study from the Betic Cordilleras, Spain. Appl. Geochem. 16(9–10), 1179–1192 (2001).
    CAS  Article  Google Scholar 

    31.
    Stumm, W. & Morgan, J. J. Aquatic chemistry: chemical equilibria and rates in natural waters. In Environmental Science and Technology (eds Stumm, W. & Morgan, J. J.) (Wiley, New York, 2012).
    Google Scholar 

    32.
    Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. R. 75, 14–49 (2011).
    CAS  Article  Google Scholar 

    33.
    Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2(1), 589 (2011).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    34.
    Li, D. et al. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations. Water Res. 47(7), 2421–2430 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Miranda, C. D. & Zemelman, R. Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture 212(1–4), 31–47 (2002).
    CAS  Article  Google Scholar 

    36.
    Dul’tseva, N. M., Chernitsina, S. M. & Zemskaya, T. I. Isolation of bacteria of the genus Variovorax from the Thioploca mats of Lake Baikal. Microbiology 81(1), 67–78 (2012).
    Article  CAS  Google Scholar 

    37.
    Mohiuddin, M. M., Salama, Y., Schellhorn, H. E. & Golding, G. B. Shotgun metagenomic sequencing reveals freshwater beach sands as reservoir of bacterial pathogens. Water Res. 115, 360–369 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Fuentes, S., Méndez, V., Aguila, P. & Seeger, M. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl. Microbiol. Biotechnol. 98(11), 4781–4794 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Gomes, B. C. et al. Analysis of a microbial community associated with polychlorinated biphenyl degradation in anaerobic batch reactors. Biodegradation 25(6), 797–810 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Cai, J. et al. Characterization of bacterial and microbial eukaryotic communities associated with an ephemeral hypoxia event in Taihu Lake, a shallow eutrophic Chinese lake. Environ. Sci. Pollut. R. 25(31), 31543–31557 (2018).
    CAS  Article  Google Scholar 

    41.
    Zhang, S. et al. Characterization of a novel bacteriophage specific to Exiguobacterium indicum isolated from a plateau eutrophic lake. J. Basic Microb. 59(2), 206–214 (2019).
    CAS  Article  Google Scholar 

    42.
    Li, S., Luo, Z. & Ji, G. Seasonal function succession and biogeographic zonation of assimilatory and dissimilatory nitrate-reducing bacterioplankton. Sci. Total Environ. 637, 1518–1525 (2018).
    ADS  PubMed  Article  CAS  Google Scholar 

    43.
    Savio, D. et al. Spring water of an alpine karst aquifer is dominated by a taxonomically stable but discharge-responsive bacterial community. Front. Microbiol. 10, 28 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Freedman, Z. & Zak, D. R. Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a long-term chronosequence. Environ. Microbiol. 17(9), 3208–3218 (2015).
    PubMed  Article  Google Scholar 

    45.
    Subramani, T., Elango, L. & Damodarasamy, S. R. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ. Geol. 47(8), 1099–1110 (2005).
    CAS  Article  Google Scholar 

    46.
    Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88(10), 2427–2439 (2007).
    PubMed  Article  Google Scholar 

    47.
    Niño-García, J. P., Ruiz-González, C. & del Giorgio, P. A. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across borssseal freshwater networks. ISME J. 10(7), 1755 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms

    1.
    Paul, E. A. (ed.) Soil Microbiology, Ecology and Biochemistry (Academic Press, Amsterdam, 2015).
    Google Scholar 
    2.
    Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil. Sci. 54, 655–670 (2003).
    Article  Google Scholar 

    3.
    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil. Biol. Biochem. 83, 184–199 (2015).
    CAS  Article  Google Scholar 

    4.
    Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).
    CAS  Article  Google Scholar 

    5.
    Bais, H. P., Park, S.-W., Weir, T. L., Callaway, R. M. & Vivanco, J. M. How plants communicate using the underground information superhighway. Trends Plant. Sci. 9, 26–32 (2004).
    CAS  Article  Google Scholar 

    6.
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. https://doi.org/10.1111/1574-6976.12028 (2013).
    CAS  Article  PubMed  Google Scholar 

    7.
    Praeg, N., Pauli, H. & Illmer, P. Microbial diversity in bulk and rhizosphere soil of Ranunculus glacialis along a high-alpine altitudinal gradient. Front. Microbiol. 10, 1429. https://doi.org/10.3389/fmicb.2019.01429 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Nacke, H. et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 6, e17000. https://doi.org/10.1371/journal.pone.0017000 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Jackson, R. B., Solomon, E. I., Canadell, J. G., Cargnello, M. & Field, C. B. Methane removal and atmospheric restoration. Nat. Sustain. 2, 436–438. https://doi.org/10.1038/s41893-019-0299-x (2019).
    Article  Google Scholar 

    10.
    Ciais, P. et al. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    11.
    Adam, P. S., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407. https://doi.org/10.1038/ismej.2017.122 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    12.
    Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).
    Article  Google Scholar 

    13.
    Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).
    CAS  Article  Google Scholar 

    14.
    Op den Camp, H. J. M. et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1, 293–306. https://doi.org/10.1111/j.1758-2229.2009.00022.x (2009).
    CAS  Article  PubMed  Google Scholar 

    15.
    Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714. https://doi.org/10.1128/AEM.69.11.6703-6714.2003 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Kolb, S. The quest for atmospheric methane oxidizers in forest soils. Environ. Microbiol. Rep. 1, 336–346 (2009).
    CAS  Article  Google Scholar 

    17.
    Plesa, I. et al. Effects of drought and salinity on European Larch (Larix decidua Mill.) seedlings. Forests 9, 320. https://doi.org/10.3390/f9060320 (2018).
    Article  Google Scholar 

    18.
    Falk, W., Bachmann-Gigl, U. & Kölling, C. Die Europäische Lärche im Klimawandel. In Beiträge zur Europäischen Lärche (ed. Schmidt, O.) 19–27 (Bayrische Landesanstalt für Wald und Forstwirtschaft, Freising, 2012).
    Google Scholar 

    19.
    Obojes, N. et al. Water stress limits transpiration and growth of European larch up to the lower subalpine belt in an inner-alpine dry valley. New Phytol. 220, 460–475 (2018).
    Article  Google Scholar 

    20.
    Wieser, G. (ed.) Trees at Their Upper Limit. Treelife Limitation at the Alpine Timberline (Springer, Dordrecht, 2007).
    Google Scholar 

    21.
    Dedysh, S. N. et al. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem. Int. J. Syst. Evol. Microbiol. 65, 3618–3624. https://doi.org/10.1099/ijsem.0.000465 (2015).
    CAS  Article  PubMed  Google Scholar 

    22.
    Praeg, N., Wagner, A. O. & Illmer, P. Plant species, temperature, and bedrock affect net methane flux out of grassland and forest soils. Plant Soil 410, 193–206 (2017).
    CAS  Article  Google Scholar 

    23.
    Lladó, S., López-Mondéjar, R. & Baldrian, P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00063-16 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil. Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).
    CAS  Article  Google Scholar 

    25.
    Liu, J. et al. Characteristics of bulk and rhizosphere soil microbial community in an ancient Platycladus orientalis forest. Appl. Soil Ecol. 132, 91–98. https://doi.org/10.1016/j.apsoil.2018.08.014 (2018).
    ADS  Article  Google Scholar 

    26.
    Uroz, S. et al. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci. Rep. 6, 27756. https://doi.org/10.1038/srep27756 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Štursová, M., Bárta, J., Šantrůčková, H. & Baldrian, P. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw185 (2016).
    Article  PubMed  Google Scholar 

    28.
    Ferrari, B., Winsley, T., Ji, M. & Neilan, B. Insights into the distribution and abundance of the ubiquitous candidatus Saccharibacteria phylum following tag pyrosequencing. Sci. Rep. 4, 3957. https://doi.org/10.1038/srep03957 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Starr, E. P. et al. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6, 122. https://doi.org/10.1186/s40168-018-0499-z (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Brewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A. & Fierer, N. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nat. Microbiol. 2, 16198. https://doi.org/10.1038/nmicrobiol.2016.198 (2016).
    CAS  Article  PubMed  Google Scholar 

    31.
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744. https://doi.org/10.3389/fmicb.2016.00744 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    32.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    Article  Google Scholar 

    33.
    Johnston-Monje, D., Lundberg, D. S., Lazarovits, G., Reis, V. M. & Raizada, M. N. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405, 337–355. https://doi.org/10.1007/s11104-016-2826-0 (2016).
    CAS  Article  Google Scholar 

    34.
    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Nat. Acad. Sci. USA 109, 21390–21395. https://doi.org/10.1073/pnas.1215210110 (2012).
    ADS  Article  PubMed  Google Scholar 

    35.
    Kottke, I. & Oberwinkler, F. Comparative studies on the mycorrhization of Larix decidua and Picea abies by Suillus grevillei. Trees https://doi.org/10.1007/BF00196758 (1988).
    Article  Google Scholar 

    36.
    Uroz, S., Buée, M., Murat, C., Frey-Klett, P. & Martin, F. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ. Microbiol. Rep. 2, 281–288. https://doi.org/10.1111/j.1758-2229.2009.00117.x (2010).
    CAS  Article  PubMed  Google Scholar 

    37.
    Mapelli, F. et al. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. ISME J. 12, 1188. https://doi.org/10.1038/s41396-017-0026-4 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Mello, B. L., Alessi, A. M., McQueen-Mason, S., Bruce, N. C. & Polikarpov, I. Nutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia. Sci. Rep. 6, 38781. https://doi.org/10.1038/srep38781 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Turnbull, G. A., Morgan, J. A. W., Whipps, J. M. & Saunders, J. R. The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol. Ecol. 36, 21–31. https://doi.org/10.1111/j.1574-6941.2001.tb00822.x (2001).
    CAS  Article  PubMed  Google Scholar 

    40.
    Rees, D. C., Johnson, E. & Lewinson, O. ABC transporters: the power to change. Nat. Rev. Mol. Cell. Biol. 10, 218–227. https://doi.org/10.1038/nrm2646 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Aronson, E. L., Allison, S. D. & Helliker, B. R. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front. Microbiol. 4, 225. https://doi.org/10.3389/fmicb.2013.00225 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Dalal, R. C., Allen, D. E., Livesley, S. J. & Richards, G. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes. A review. Plant Soil 309, 43–76 (2008).
    CAS  Article  Google Scholar 

    43.
    Martins, C. S. C., Nazaries, L., Macdonald, C. A., Anderson, I. C. & Singh, B. K. Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem. Soil Biol. Biochem. 86, 5–16. https://doi.org/10.1016/j.soilbio.2015.03.012 (2015).
    CAS  Article  Google Scholar 

    44.
    Praeg, N., Schwinghammer, L. & Illmer, P. Larix decidua and additional light affect the methane balance of forest soil and the abundance of methanogenic and methanotrophic microorganisms. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnz259 (2020).
    Article  Google Scholar 

    45.
    Ström, L., Mastepanov, M. & Christensen, T. R. Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75, 65–82 (2005).
    Article  Google Scholar 

    46.
    Borrel, G. et al. Genome sequence of “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a third thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc. 1, e004523. https://doi.org/10.1128/genomeA.00453-13 (2013).
    Article  Google Scholar 

    47.
    Deng, Y., Liu, P. & Conrad, R. Effect of temperature on the microbial community responsible for methane production in alkaline NamCo wetland soil. Soil Biol. Biochem. 132, 69–79. https://doi.org/10.1016/j.soilbio.2019.01.024 (2019).
    CAS  Article  Google Scholar 

    48.
    Söllinger, A. et al. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol. Ecol. 92, 149. https://doi.org/10.1093/femsec/fiv149 (2016).
    CAS  Article  Google Scholar 

    49.
    Berghuis, B. A. et al. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc. Natl. Acad. Sci. U.S.A. 116, 5037. https://doi.org/10.1073/pnas.1815631116 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Cai, Y., Zheng, Y., Bodelier, P. L. E., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 7, 11728 (2016).
    ADS  CAS  Article  Google Scholar 

    51.
    Henckel, T., Jäckel, U., Schnell, S. & Conrad, R. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl. Environ. Microbiol. 60, 1801–1808 (2000).
    Article  Google Scholar 

    52.
    Ricke, P., Kolb, S. & Braker, G. Application of a newly developed ARB software-integrated tool for in silico terminal restriction fragment length polymorphism analysis reveals the dominance of a novel pmoA cluster in a forest soil. Appl. Environ. Microbiol. 71, 1671–1673. https://doi.org/10.1128/AEM.71.3.1671-1673.2005 (2005).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Pratscher, J., Dumont, M. G. & Conrad, R. Assimilation of acetate by the putative atmospheric methane oxidizers belonging to the USCα clade. Environ. Microbiol. 13, 2692–2701. https://doi.org/10.1111/j.1462-2920.2011.02537.x (2011).
    CAS  Article  PubMed  Google Scholar 

    54.
    Cai, Y., Zhou, X., Shi, L. & Jia, Z. Atmospheric methane oxidizers are dominated by upland soil cluster alpha in 20 forest soils of China. Microb. Ecol. 80, 859–871. https://doi.org/10.1007/s00248-020-01570-1 (2020).
    CAS  Article  PubMed  Google Scholar 

    55.
    Täumer, J. et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob. Change Biol. https://doi.org/10.1111/gcb.15430 (2020).
    Article  Google Scholar 

    56.
    Andreote, F. D. et al. Culture-independent assessment of Rhizobiales-related alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic eucalyptus. Microb. Ecol. 57, 82–93. https://doi.org/10.1007/s00248-008-9405-8 (2009).
    Article  PubMed  Google Scholar 

    57.
    Iguchi, H., Yurimoto, H. & Sakai, Y. Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3, 137–151. https://doi.org/10.3390/microorganisms3020137 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Ho, A. et al. Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front. Microbiol. 7, 1285. https://doi.org/10.3389/fmicb.2016.01285 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Iguchi, H., Yurimoto, H. & Sakai, Y. Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl. Environ. Microbiol. 77, 8509–8515. https://doi.org/10.1128/AEM.05834-11 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Veraart, A. J. et al. Living apart together—bacterial volatiles influence methanotrophic growth and activity. ISME J. 12, 1163–1166 (2018).
    CAS  Article  Google Scholar 

    61.
    Karlsson, A. E., Johansson, T. & Bengtson, P. Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol. Ecol. 80, 305–311 (2012).
    CAS  Article  Google Scholar 

    62.
    Haichar, F. E. Z. et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2, 1221–1230. https://doi.org/10.1038/ismej.2008.80 (2008).
    CAS  Article  PubMed  Google Scholar 

    63.
    Tkacz, A., Cheema, J., Chandra, G., Grant, A. & Poole, P. S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 9, 2349–2359. https://doi.org/10.1038/ismej.2015.41 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    64.
    Schinner, F. et al. (eds) Methods in Soil Biology (Springer, Berlin, 1996).
    Google Scholar 

    65.
    Barillot, C. D. C., Sarde, C.-O., Bert, V., Tarnaud, E. & Cochet, N. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann. Microbiol. 63, 471–476 (2013).
    CAS  Article  Google Scholar 

    66.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Nat. Acad. Sci. U.S.A. 108(Suppl 1), 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).
    ADS  Article  Google Scholar 

    67.
    Ihrmark, K. et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677. https://doi.org/10.1111/j.1574-6941.2012.01437.x (2012).
    CAS  Article  PubMed  Google Scholar 

    68.
    White, T. J., Bruns, T., Lee, S. & Taylor, J. W. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, Cambridge, 1990).
    Google Scholar 

    69.
    Schloss, P. D. et al. Introducing mothur. Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  Article  Google Scholar 

    70.
    Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 25, 914–919. https://doi.org/10.1111/2041-210X.12073 (2013).
    Article  Google Scholar 

    71.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mah, F. VSEARCH. A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    Article  Google Scholar 

    72.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).
    CAS  Article  PubMed  Google Scholar 

    73.
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277. https://doi.org/10.1111/mec.12481 (2013).
    CAS  Article  PubMed  Google Scholar 

    74.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. https://doi.org/10.1128/AEM.00062-07 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    75.
    Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209–220 (1967).
    CAS  Google Scholar 

    76.
    Martin, A. P. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68, 3673–3682. https://doi.org/10.1128/AEM.68.8.3673-3682.2002 (2002).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    77.
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
    Article  Google Scholar 

    78.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017). http://www.R-project.org. Accessed 24 Sept 2018.

    79.
    Oksanen, J. et al. vegan. Community Ecology Package. R package version 2.4–4 (2017). https://CRAN.R-project.org/package=vegan. Accessed 24 Sept 2018.

    80.
    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44, W3–W10. https://doi.org/10.1093/nar/gkw343 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16SrRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
    CAS  Article  Google Scholar 

    82.
    White, J. R., Nagarajan, N. & Pop, M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 5, e1000352. https://doi.org/10.1371/journal.pcbi.1000352 (2009).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    83.
    Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124. https://doi.org/10.1093/bioinformatics/btu494 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    84.
    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114. https://doi.org/10.1093/nar/gkr988 (2012).
    CAS  Article  PubMed  Google Scholar 

    85.
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
    Article  Google Scholar 

    86.
    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504. https://doi.org/10.1101/gr.1239303 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    87.
    Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A.-K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20, 1016–1029. https://doi.org/10.1111/1462-2920.14036 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    88.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    89.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. https://doi.org/10.1093/sysbio/syq010 (2010).
    CAS  Article  PubMed  Google Scholar  More

  • in

    Leaf proteome modulation and cytological features of seagrass Cymodocea nodosa in response to long-term high CO2 exposure in volcanic vents

    1.
    Tassi, F. et al. Low-pH waters discharging from submarine vents at Panarea Island (Aeolian Islands, southern Italy) after the 2002 gas blast: Origin of hydrothermal fluids and implications for volcanic surveillance. Appl. Geochem. 24, 246–254 (2009).
    CAS  Article  Google Scholar 
    2.
    Boatta, F. et al. Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Mar. Pollut. Bull. 73, 485–494. https://doi.org/10.1016/j.marpolbul.2013.01.029 (2013).
    CAS  Article  PubMed  Google Scholar 

    3.
    Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).
    ADS  CAS  Article  Google Scholar 

    4.
    Ricevuto, E., Kroeker, K. J., Ferrigno, F. & Gambi, M. C. Spatio-temporal variability of polychaete colonization at volcanic CO2 vents indicates high tolerance to ocean acidification. Mar. Biol. 161, 2909–2919. https://doi.org/10.1007/s00227-014-2555-y (2014).
    CAS  Article  Google Scholar 

    5.
    Ricevuto, E., Vizzini, S. & Gambi, M. C. Ocean acidification effects on stable isotope signatures and trophic interactions of polychaete consumers and organic matter sources at a CO2 shallow vent system. J. Exp. Mar. Biol. Ecol. 468, 105–117. https://doi.org/10.1016/j.jembe.2015.03.016 (2015).
    CAS  Article  Google Scholar 

    6.
    Foo, S.A., Byrne, M., Ricevuto, E., Gambi, M.C. The Carbon Dioxide Vents of Ischia, Italy, A Natural System to Assess Impacts of Ocean Acidification on Marine Ecosystems: An Overview of Research and Comparisons with Other Vent Systems. In Oceanography and Marine Biology An Annual Review. S. J. Hawkins, A. J. Evans, A.C. Dale, L. B. Firth, I. P. Smith eds. Taylor & Francis Group, 56 (2018).

    7.
    Mutalipassi, M. et al. Ocean acidification alters the responses of invertebrates to wound-activated infochemicals produced by epiphytes of the seagrassPosidonia oceanica. J. Exp. Mar. Biol. Ecol. 530–531, 151435 (2020).
    Article  Google Scholar 

    8.
    Apostolaki, E. T., Vizzini, S., Hendriks, I. E. & Olsen, Y. S. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Mar. Environ. Res. 99, 9–15 (2014).
    CAS  Article  Google Scholar 

    9.
    Vizzini, S., Apostolaki, E. T., Ricevuto, E., Polymenakou, P. & Mazzola, A. Plant and sediment properties in seagrass meadows from two Mediterranean CO2 vents: Implications for carbon storage capacity of acidified oceans. Mar. Environ. Res. 146, 101–108 (2019).
    CAS  Article  Google Scholar 

    10.
    Beer, S., Björk, M., Beardall, J. Acquisition of carbon in marine plants. In: John Wiley & Sons eds. Photoshynthesis in the Marine Environment. Wiley Blackwell, Iowa, USA. pp: 95–124 (2014).

    11.
    Beer, S., Björk, M., Hellblom, F. & Axelsson, L. Inorganic carbon utilization in marine angiosperms (seagrasses). Funct. Plant Biol. 29, 349–354 (2002).
    CAS  Article  Google Scholar 

    12.
    Koch, M., Bowes, G., Ross, C. & Zhang, X. H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x (2013).
    ADS  Article  Google Scholar 

    13.
    Zimmerman, R. C., Kohrs, D. G., Steller, D. L. & Alberte, R. S. Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol. 115, 599–607. https://doi.org/10.1104/pp.115.2.599 (1997).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Garrard, S. L. & Beaumont, N. J. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context. Mar. Pollut. Bull. 86, 138–146 (2014).
    CAS  Article  Google Scholar 

    15.
    Hendriks, I. E., Duarte, C. M. & Alvarez, M. A. Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar. Coast. Shelf Sci. 86, 157–164 (2010).
    ADS  CAS  Article  Google Scholar 

    16.
    Zimmerman, R. C., Hill, V. J. & Gallegos, C. L. Predicting effects of ocean warming, acidification, and water quality on Chesapeake region eelgrass. Limnol. Oceanogr. 60(2015), 1781–1804 (2015).
    ADS  CAS  Article  Google Scholar 

    17.
    Pacella, S. R., Cheryl, A. B., George, G. W., Rochelle, G. L. & Burke, H. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification. PNAS 115(15), 3870–3875 (2018).
    ADS  CAS  Article  Google Scholar 

    18.
    Russell, B. D., Connell, S. D., Uthicke, S. & Hall-Spencer, J. M. Future seagrass beds: can increased productivity lead to increased carbon storage?. Mar. Pollut. Bull. 73, 463–469 (2013).
    CAS  Article  Google Scholar 

    19.
    de los Santos, C. B., Godbold, J. A. & Solan, M. Short-term growth and biomechanical responses of the temperate seagrassCymodocea nodosato CO2 enrichment. Mar. Ecol. Prog. Ser. 572, 91–102 (2017).
    ADS  CAS  Article  Google Scholar 

    20.
    Schneider, G. et al. Structural and physiological responses of Halodule wrightii to ocean acidification. Protoplasma 255, 629–641 (2018).
    CAS  Article  Google Scholar 

    21.
    Radoglou, K. M. & Jarvis, P. G. The effects of CO2 enrichment and nutrient supply on growth morphology and anatomy of Phaseolus vulgaris L seedlings. Ann. Bot. 70, 245–256 (1992).
    CAS  Article  Google Scholar 

    22.
    Epron, D., Liozon, R. & Mousseau, M. Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season. Tree Physiol. 16, 425–432 (1995).
    Article  Google Scholar 

    23.
    Lin, J., Jach, M. E. & Ceulemans, R. Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytol. 150, 665–674 (2001).
    Article  Google Scholar 

    24.
    Ruocco, M. et al. Genome-wide transcriptional reprogramming in the seagrassCymodocea nodosa under experimental ocean acidification. MolEcol 26, 4241–4259. https://doi.org/10.1111/mec.14204 (2017).
    CAS  Article  Google Scholar 

    25.
    Olivé, I. et al. Linking gene expression to productivity to unravel long- and short-term responses of seagrasses exposed to CO2 in volcanic vents. Sci. Rep. 7, 42278 (2017).
    ADS  Article  Google Scholar 

    26.
    Procaccini, G. et al. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrassPosidonia oceanica. Sci. Rep. 7, 42890. https://doi.org/10.1038/srep42890 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Kumar, M. et al. Proteome analysis reveals extensive light stress response reprogramming in the seagrassZostera muelleri (Alismatales, Zosteraceae) metabolism. Frontiers Plant Sci. 7, 2023 (2017).
    Article  Google Scholar 

    28.
    Piro, A. et al. The modulation of leaf metabolism plays a role in salt tolerance of Cymodocea nodosa exposed to hypersaline stress in mesocosms. Front Plant Sci. 6, 464 (2015).
    Article  Google Scholar 

    29.
    Dattolo, E. et al. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles. Front. Plant Sci. 4, 195. https://doi.org/10.3389/fpls.2013.00195 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Mazzuca, S. et al. Seagrass light acclimation: 2-DE protein analysis in Posidonia leaves grown inchronic low light conditions. J. Exp. Mar. Biol. Ecol. 374, 113–122 (2009).
    CAS  Article  Google Scholar 

    31.
    Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
    ADS  Article  Google Scholar 

    32.
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
    CAS  Article  Google Scholar 

    33.
    Watanabe, C. K. et al. Effects of elevated CO2 on levels of primary metabolites and transcripts of genes encoding respiratory enzymes and their diurnal patterns in Arabidopsis thaliana: possible relationships with respiratory rates. Plant Cell Physiol. 55(2), 341–357. https://doi.org/10.1093/pcp/pct185 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Lauritano, C. et al. Response of key stress-related genes of the seagrassPosidonia oceanica in the vicinity of submarine volcanic vents. Biogeosciences 12, 4947–4971 (2015).
    Article  Google Scholar 

    35
    Neha, S., Gokhale, S. P. & Kumar, B. A. Effect of elevated [CO2] on cell structure and function in seed plants. Clim. Change Environ. Sustain. 2, 69–104. https://doi.org/10.5958/2320-642X.2014.00001.5 (2014).
    Article  Google Scholar 

    36.
    Iuchi, S. et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27, 325–333. https://doi.org/10.1046/j.1365-313x.2001.01096.x (2001).
    CAS  Article  PubMed  Google Scholar 

    37.
    Endo, A. et al. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 147, 1984–1993 (2008).
    CAS  Article  Google Scholar 

    38
    Toh, S. et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellins action in Arabidopsis seeds. Plant Physiol. 146, 1368–1385 (2008).
    CAS  Article  Google Scholar 

    39.
    Dong, C. H. et al. ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13, 1333–1346 (2001).
    CAS  Article  Google Scholar 

    40.
    Vantard, M. & Blanchoin, L. Actin polymerization processes in plant cells. Curr. Opin. Plant Biol. 5(6), 502–506 (2002).
    CAS  Article  Google Scholar 

    41.
    Smertenko, A. P. et al. Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J. 14(2), 187–193 (1988).
    Article  Google Scholar 

    42.
    Webster, J. & Stone, B. A. Isolation, structure and monosaccharide composition of the wall of vegetative parts of Heterozostera tasmanica (Martens ex Aschers) den Hartog. Aquat. Bot. 47, 39–52 (1994).
    CAS  Article  Google Scholar 

    43.
    Olsen J.L., Rouzé, P., Verhelst, B., Lin, Y.-C., Bayer, T., Collen, J., Dattolo, E., De Paoli, E., Dittami, S., Maumus, F., et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335 (2016) https://doi.org/10.1038/nature16548.
    ADS  CAS  Article  PubMed  Google Scholar 

    44.
    Brummel, D. A. Cell wall acidification and its role in Auxin-stimulated growth. J. Exp. Bot. 37(2), 270–276 (1986).
    Article  Google Scholar 

    45.
    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
    ADS  CAS  Article  Google Scholar 

    46.
    Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2007).
    Article  Google Scholar 

    47.
    Lucini, L. & Bernardo, L. Comparison of proteome response to saline and zinc stress in lettuce. Front. Plant Sci. https://doi.org/10.3389/fpls.2015.00240 (2015).
    Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan

    1.
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
    CAS  Article  Google Scholar 
    2.
    Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).
    Article  Google Scholar 

    3.
    Tsujino, R., Yumoto, T., Kitamura, S., Djamaluddin, I. & Darnaedi, D. History of forest loss and degradation in Indonesia. Land use policy 57, 335–347 (2016).
    Article  Google Scholar 

    4.
    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).
    Article  Google Scholar 

    5.
    Miettinen, J., Hooijer, A., Wang, J., Shi, C. & Liew, S. C. Peatland degradation and conversion sequences and interrelations in Sumatra. Reg. Environ. Change 12, 729–737 (2012).
    Article  Google Scholar 

    6.
    Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Change 4, 730 (2014).
    Article  Google Scholar 

    7.
    Stibig, H. J., Achard, F., Carboni, S., Rasi, R. & Miettinen, J. Change in tropical forest cover of Southeast Asia from 1990 to 2010. Biogeosciences 11, 247–258 (2014).
    Article  Google Scholar 

    8.
    Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).
    CAS  Article  Google Scholar 

    9.
    Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).
    CAS  Article  Google Scholar 

    10.
    Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 094023 (2016).
    Article  Google Scholar 

    11.
    Crippa, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 6, 37074 (2016).
    CAS  Article  Google Scholar 

    12.
    Wijaya, A. R. et al. How can Indonesia achieve its climate change mitigation goal? An analysis of potential emissions reductions from energy and land-use policies. World Resour. Inst. (Washington D.C, 2017).

    13.
    Cochrane, M. A. Fire science for rainforests. Nature 421, 913 (2003).
    CAS  Article  Google Scholar 

    14.
    Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. Royal Soc. B 371, 20150176 (2016).
    Article  CAS  Google Scholar 

    15.
    Miettinen, J., Shi, C. & Liew, S. C. Fire distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with special emphasis on peatland fires. Environ. Manag. 60, 747–757 (2017).
    Article  Google Scholar 

    16.
    Goldammer, J. G. History of equatorial vegetation fires and fire research in Southeast Asia before the 1997–98 episode: a reconstruction of creeping environmental changes. Mitig. Adapt. Strat. Glob. Chang. 12, 13–32 (2007).
    Article  Google Scholar 

    17.
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
    CAS  Article  Google Scholar 

    18.
    Baker, J. & Spracklen, D. Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front. For. Glob. Chang. 2, 47 (2019).
    Article  Google Scholar 

    19.
    Uhl, C., Kauffman, J. B. and Cummings, D. L. Fire in the Venezuelan Amazon 2: environmental conditions necessary for forest fires in the evergreen rainforest of Venezuela. Oikos 53, 176–184 (1988).

    20.
    Dommain, R., Couwenberg, J., Glaser, P. H., Joosten, H. & Suryadiputra, I. N. N. Carbon storage and release in Indonesian peatlands since the last deglaciation. Quat. Sci. Rev. 97, 1–32 (2014).
    Article  Google Scholar 

    21.
    Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Fire in the swamp forest: palaeoecological insights into natural and human-induced burning in intact tropical peatlands. Front. For. Glob. Chang. 2, 48 (2019).
    Article  Google Scholar 

    22.
    Warren, M., Hergoualc’h, K., Kauffman, J. B., Murdiyarso, D. & Kolka, R. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon balanc. management 12, 12 (2017).
    Article  CAS  Google Scholar 

    23.
    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. chang. biol. 17, 798–818 (2011).
    Article  Google Scholar 

    24.
    Page, S. E. et al. A record of late pleistocene and holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quat. Sci. 19, 625–635 (2004).
    Article  Google Scholar 

    25.
    Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. 122, 903–917 (2017).
    Article  Google Scholar 

    26.
    Sabajo, C. R. et al. Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia. Biogeosciences 14, 4619–4635 (2017).
    CAS  Article  Google Scholar 

    27.
    McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).
    Article  Google Scholar 

    28.
    Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015).
    Article  Google Scholar 

    29.
    Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).
    Article  CAS  Google Scholar 

    30.
    Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).
    Article  Google Scholar 

    31.
    Hoscilo, A., Page, S. E., Tansey, K. J. & Rieley, J. O. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. Int. J. Wildland Fire 20, 578–588 (2011).
    Article  Google Scholar 

    32.
    Laurance, W. F. Do edge effects occur over large spatial scales? Trends Ecol. Evol. 15, 134–135 (2000).
    CAS  Article  Google Scholar 

    33.
    Cochrane, M. A. & Laurance, W. F. Fire as a large-scale edge effect in Amazonian forests. J. Tropi. Ecol. 18, 311–325 (2002).
    Article  Google Scholar 

    34.
    Laurance, W. F., Laurance, S. G. & Delamonica, P. Tropical forest fragmentation and greenhouse gas emissions. For. Ecol. Manag. 110, 173–180 (1998).
    Article  Google Scholar 

    35.
    Curran, L. M. et al. Impact of El Nino and logging on canopy tree recruitment in Borneo. Science 286, 2184–2188 (1999).
    CAS  Article  Google Scholar 

    36.
    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).
    CAS  Article  Google Scholar 

    37.
    Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 1–6 (2017).
    Article  CAS  Google Scholar 

    38.
    Briant, G., Gond, V. & Laurance, S. G. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. conserv. 143, 2763–2769 (2010).
    Article  Google Scholar 

    39.
    Didham, R. K. & Lawton, J. H. Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31, 17–30 (1999).
    Google Scholar 

    40.
    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053 (2012).
    CAS  Article  Google Scholar 

    41.
    Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 338, 410–421 (2019).
    Article  Google Scholar 

    42.
    Cattau, M. E. et al. Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Glob. Environ. Chang. 39, 205–219 (2016).
    Article  Google Scholar 

    43.
    Wooster, M. J., Perry, G. L. W. and Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences 9, (2012)

    44.
    Spessa, A. C. et al. Seasonal forecasting of fire over Kalimantan, Indonesia. Nat. Hazards Earth Syst. Sci. 15, 429–442 (2015).
    Article  Google Scholar 

    45.
    Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl Acad. Sci. 113, 9204–9209 (2016).
    CAS  Article  Google Scholar 

    46.
    Langner, A. & Siegert, F. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob. Chang. Biol. 15, 48–62 (2009).
    Article  Google Scholar 

    47.
    Pan, X., Chin, M., Ichoku, C. M. & Field, R. D. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979–2016. J. Geophys. Res. 123, 7974–7988 (2018).
    Google Scholar 

    48.
    Konecny, K. et al. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Chang. Biol. 22, 1469–1480 (2016).
    Article  Google Scholar 

    49.
    Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).
    Article  CAS  Google Scholar 

    50.
    Langner, A., Miettinen, J. & Siegert, F. Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob. Chang. Biol. 13, 2329–2340 (2007).
    Article  Google Scholar 

    51.
    van der Werf, G. R. et al. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl Acad. Sci. 105, 20350–20355 (2008).
    Article  Google Scholar 

    52.
    Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640 (2016).
    Article  Google Scholar 

    53.
    Wahyunto, R. S. & Suparto, S. H. Maps of area of peatland distribution and carbon content in Kalimantan, 2000–2002. Wetl. Int.-Indones. Program. Wildl. Habitat Can. (WHC) Bogor. (2004).

    54.
    Purnomo A. Protecting Indonesia’s Forests, Pros-Cons Policy of Moratorium on Forests and Peatlands (Kepustakaan Populer Gramedia, Jakarta, Indonesia, 2012).

    55.
    Normile, D. Indonesia’s fires are bad, but new measures prevented them from becoming worse. Sci. Mag. https://www.sciencemag.org/news/2019/10/indonesias-fires-are-bad-new-measures-prevented-them-becoming-worse (2019).

    56.
    Purnomo, H. et al. Fire economy and actor network of forest and land fires in Indonesia. For. Policy Econ. 78, 21–31 (2017).
    Article  Google Scholar 

    57.
    Seymour, F. Indonesia Reduces Deforestation, Norway to Pay Up. World Resources Institute. https://www.wri.org/blog/2019/02/indonesia-reduces-deforestation-norway-pay (2019).

    58.
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1500052 (2015).
    Article  Google Scholar 

    59.
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    Article  Google Scholar 

    60.
    Gaveau, D. L. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci. Rep. 4, 6112 (2014).
    CAS  Article  Google Scholar 

    61.
    Wooster, M. et al. New tropical peatland gas and particulate emissions factors indicate 2015 Indonesian fires released far more particulate matter (but less methane) than current inventories imply. Remote Sens. 10, 495 (2018).
    Article  Google Scholar 

    62.
    Taufik, M. et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nat. Clim. Chang. 7, 428–431 (2017).
    Article  Google Scholar 

    63.
    Margono, B. A. et al. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environ. Res. Lett. 7, 034010 (2012).
    Article  Google Scholar 

    64.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    CAS  Article  Google Scholar 

    65.
    Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).
    Article  Google Scholar 

    66.
    Lohberger, S., Stängel, M., Atwood, E. C. & Siegert, F. Spatial evaluation of Indonesia’s 2015 fire‐affected area and estimated carbon emissions using Sentinel‐1. Glob. Chang. Biol. 24, 644–654 (2015).
    Article  Google Scholar  More

  • in

    2000 Year-old Bogong moth (Agrotis infusa) Aboriginal food remains, Australia

    Ethnographic accounts from around the world have reported the widespread use of insects as food by people1,2,3. In some cases, such as among the Shoshone and other Great Basin tribes of the U.S., swarms of grasshoppers and crickets were driven into pits and blankets4, while among the Paiute the larvae of Pandora moths (Coloradia pandora lindseyi) were smoked out of trees to fall into prepared trenches, where they would be cooked5. Across the world, insects could be mass-harvested, often seasonally, offering high nutritional value especially in fat, protein and vitamins6. The harvesting of insects in the past has ranged from opportunities to feed large communal gatherings during times of plenty, to more individualistic economic pursuits such as in the search for delicacies or the exploitation of low-ranked resources when other foods were scarce or depleted7,8,9. Irrespective of the catch, insects often represented an important component of the diet, and of the reliability and thus dependability of locales as resource zones, with implications for social scheduling and cultural practice. However, a paucity of archaeological studies of insect food remains has resulted in a downplay or omission of the use of insects from archaeological narratives and deep-time community histories10.
    In Australia, a wide range of insects is known to have been eaten by Aboriginal groups, in particular the larvae (‘witchetty grubs’) of cossid moths (especially Endoxyla leucomochla) in arid and semi-arid areas11,12,13. Of particular interest to archaeologists and behavioural ecologists has been the seasonal consumption of Bogong moths by mass gatherings of Aboriginal groups in the southern portions of the Eastern Uplands14 (Fig. 1). However, no conclusive archaeological evidence has ever been reported for the processing or use of Bogong moths.
    Figure 1

    (A) Bogong moth, Agrotis infusa (photo: Ajay Narendra). (B) Thousands of moths per square metre aestivating on a rock surface (photo: Eric Warrant).

    Full size image

    The Cloggs Cave grindstone
    Cloggs Cave is located 72 m above sea level in the southern foothills of the Australian Alps, in the lands of the Krauatungalung clan of the GunaiKurnai Aboriginal peoples of southeastern Australia (Fig. 2). The cave is a small, 12 m long × 5 m wide × 6.8 m high limestone karst formation that is today entered through a walk-through opening on the side of a cliff (Fig. 3). Indirect sunlight dimly illuminates the cave for much of the day (Supplementary Fig. S1).
    Figure 2

    Location of Cloggs Cave and the area of the GunaiKurnai Land and Waters Aboriginal Corporation, at the southern foothills of the Australian Alps. Esri ArcMap 10.5 (https://desktop.arcgis.com/en/arcmap/) and Adobe Illustrator CC 2017 (21.0) (https://helpx.adobe.com/au/illustrator/release-note/illustrator-cc-2017-21-0-release-notes.html) were used by CartoGIS Services, College of Asia and the Pacific at the Australian National University, to create the map.

    Full size image

    Figure 3

    Cloggs Cave cliffline above the Buchan River flood plain, showing location of cave entrance (white rectangle) (photo: Bruno David).

    Full size image

    Archaeological excavations were first undertaken in 1971–197214, followed by a new program of excavations in 2019–2020, initiated by the GunaiKurnai Land and Waters Aboriginal Corporation and directed by Bruno David. The new excavations were aimed at better determining the site’s stratigraphy and the antiquity of Aboriginal occupation (Supplementary Fig. S2). An intensive dating programme showed that the oldest excavated evidence for human activity dates to between 19,330–19,730 cal BP (median age of 19,530 cal BP; cal BP = before AD1950) and 20,590–23,530 cal BP (median age of 21,690 cal BP) (all calibrated radiocarbon ages in the text are presented at 95.4% probability range. See “Methods”; Supplementary Fig. S3)15,16,17.
    During the 2019 excavations, a small, flat grindstone was found. The finely stratified hearth layers of stratigraphic unit (SU) 2 in which it was found were radiocarbon-dated to 1567–1696 cal BP at their top (uncalibrated: 1724 ± 16 BP; median age of 1632 cal BP) and 2002–2117 cal BP at their base (uncalibrated: 2091 ± 16 BP; median age of 2062 cal BP). The grindstone therefore dates to between 1600 and 2100 years ago (see “Methods”; Supplementary Figs. S3 and S4)17. No other grindstone has been found at Cloggs Cave.
    The grindstone is a tabular fragment of sandstone with two flat and parallel ground surfaces (Surfaces A and B), in the form of a flat dish (Fig. 4). It measures 10.5 cm long × 8.3 cm wide × 2.2 cm thick and weighs 304 g. The outer, intact margin is elliptical in plan view; the other three margins indicate old breaks that have been subsequently worn from use. Therefore, prior to its deposition at Cloggs Cave, the grindstone had been used in its current form.
    Figure 4

    The Cloggs Cave grindstone. (A) Surface A, with the accretion that formed across parts of the surface after its use. (B) Surface B. (C) Margin A. (D) Margin B. (E) Narrow end. The numbers in circles are the residue sample numbers; the ‘control’ samples are in areas where grinding did not take place (photos: Richard Fullagar).

    Full size image

    To understand how the grindstone was used, we undertook use-wear and residue analyses (see “Methods”). The central area of both its surfaces contain fine unidirectional striations (Supplementary Figs. S5A and S5B), a lowered but not levelled topography, and areas of missing or ripped quartz grains (Supplementary Figs. S5C and S5D). Its use to shape ground stone axes is an unlikely function because the Cloggs Cave grindstone surfaces are relatively flat with only very slight concavities, and the lowered surface topography (Fig. 4) lacks broad grooves typical of axe grinding.
    When viewed at lower (up to 5 ×) magnification under a stereozoom microscope with a point source of light, each surface appears relatively rough compared with grindstones used for processing seeds, which, in Australia, tend to be highly smoothed and polished18,19. There are numerous ‘pits’ where sand grains have been plucked from the surface during use (Supplementary Fig. S5D). The presence of a lowered surface topography (Supplementary Fig. S5C) with a lack of smooth, developed polish suggests that the stone was not used to process siliceous plants.
    The repeated mechanical action of grinding has been shown to force residues into the voids and interstitial spaces of ground surfaces, where they become trapped20,21,22. Residue analyses conducted on grindstones worldwide have relied on microscopic observations of individual residue morphologies. However, visually diagnostic features can be altered by the mechanical forces of grinding, heat, and contact with water and various environmental factors, which can cause residues to swell or become amorphous21,22,23,24. The distinctiveness of residue identifications can be enhanced significantly with the introduction of biochemical staining that can be observed under high-power microscopy and is best used in conjunction with microscopic use-wear analysis and identification of residue morphologies22.
    We extracted nine samples, or ‘lifts’, for residue analysis from across Surface A and Surface B of the Cloggs Cave grindstone, including a control sample from an unworked part of each surface (Fig. 4; see “Methods”). These samples were analysed using a recently developed biochemical staining technique that enables residues to be identified from colorimetric changes occurring at a cellular level, rather than relying solely on structural features (see “Methods”)22. We used the collagen stain Picrosirius Red (PSR) to differentiate between plant and animal residues (see “Methods”). When PSR comes into contact with collagen (a protein unique to animals), it reacts to produce clear and distinctive staining and enhanced birefringence in cross-polarised light22,25.
    Residues extracted from the grindstone
    A range of residues were identified in the lifts, including amorphous collagen, collagen fibres, collagen structures, partially woven collagen, possible bone-like fragments, moth wing segments, a possible moth hind leg, amorphous cellulose, wood-like structures with pits, carbonised material, bordered pits and minerals (see below).
    We found collagenous residues in mid-range densities across Samples 1 and 4 from Surface B and across Sample 5 from Surface A (Supplementary Fig. S6). These extractions were taken from central areas across each modified surface. In all cases, the frequency of the collagenous residues was approximately three times greater than the collagenous residues associated with the control samples. Residues include damaged collagen fibres of varying thicknesses, including some reticular fibres.
    Woven collagen structures clearly show birefringence in cross-polarised light across Sample 1. Woven collagen, which forms quickly, is mechanically weak and usually associated with immature bone. Although woven collagen may persist as tendon and ligament attachments to bone, it is generally replaced by organised parallel collagen fibre bundles at skeleton maturity26. Collagen fibrils are found in the connective tissues of vertebrates as well as in invertebrates such as insects27, and may be present as individual strands, woven structures or parallel bundles, including among the Lepidoptera (moths and butterflies)28.
    The density and combination of collagenous residues on the Cloggs Cave grindstone indicates that it was used to process fauna. A variety of collagenous materials (including woven collagen) were found in association with carbonised residues across Sample 2, which was extracted from a crystalline layer. The residues present on Samples 1 and 2 suggest that an insect or immature vertebrate was prepared and cooked using the grindstone.
    We identified a moderate density of carbonised plant residues across Sample 2, in particular, wood-like structures with pits. These ranged from being partially to completely carbonised. Partially carbonised residues were also seen across Sample 4. In addition, bordered pits in small clusters were identified, along with pits within the carbonised structures. Bordered pits are cavities that are essential components in the water-transport system of higher-order plants and are found in the lignified cell walls of xylem conduits (vessels and tracheids). The pit membrane allows water to pass between xylem conduits, but limits the spread of embolism and vascular pathogens in the xylem29. Small quantities of lignin were also present (see “Methods”). Lignin is found in the cell walls of vascular plants (especially in wood and bark) and is responsible for the rigidity of plant structures.
    The residues identified via biochemical staining are consistent with the use of twigs and bark as fuel for fires such as those of the microstratified ashy layers in which the grindstone was found (see Supplementary Fig. S3)17. Partially carbonised wood-like material was also noted across Sample 5. The density and distribution of carbonised residues varies across extractions. Our observations suggest either that: (a) the stone has been placed in or near fires; or (b) ash, embers or fires of varying heat were placed or lit across the stone, for varied durations of time.
    We identified especially high densities (frequency of residue particles per unit volume of sample) of amorphous cellulose across Samples 1, 2, 4 and 5 (Supplementary Fig. S7). The presence of partially carbonised amorphous cellulose indicates that the plant residues were associated with fire. While the high density is indicative of a plant-processing event, there is no evidence of combinations of plant residues normally expected from plant processing. In particular, no starch grain or phytolith was seen in any of the extractions. While low heat can damage starch and cause its structure to be disrupted and its characteristic extinction-cross to be lost, low heat does not completely destroy starch visibility30. Similarly, phytoliths can be reshaped but not destroyed by fire31. The presence of animal and mineral residues but absence of starches and phytoliths is thus interpreted as a true absence of plant processing activities rather than a taphonomic effect of environmental factors negatively impacting their preservation.
    We found a high density of variably carbonised insect wings in Sample 6 (Surface A), and lower densities in Samples 2 and 4. These wing fragments contain regular patterning or structure and exhibit distinct birefringence in cross-polarised light. A portion of proteinaceous material was associated with a ‘tangle’ of these structures (Fig. 5). To assess whether the insect remains were those of the Bogong moth, we compared the residues on Samples 2, 4 and 6 with a comparative reference sample (see “Methods”). All 26 cases of wing segments from the grindstone matched the metrical and morphological characteristics of those from Bogong moths in the reference material. The recorded damage on the archaeological wing segments, such as ripped wing structures, small rectangular wing fragments and tearing in various states of carbonisation, is what would be expected from ethnohistoric accounts of Bogong moth processing. Aboriginal people from across the region are known to have cooked Bogong moths on heated earth during the early and mid-nineteenth century. The moths were stirred during cooking, causing the wings and legs to be broken off by friction and heat. Some of the moths were pounded and ground into a paste which could then be smoked to preserve the food for weeks1,2.
    Figure 5

    Examples of Bogong moth segments from lifted samples (all at × 400 magnification). (A) Partially carbonised wing structures from Sample 2 (pp). (B) Partially carbonised wing structure and carbonised material from Sample 2 (pp). (C) Partially carbonised moth wing segment from Sample 4 (pp). (D–E) Damaged moth wing segment from Sample 6 (D pp; E xp). (F–G) Damaged moth wing segment from Sample 6 (F pp; G xp). (H) Damaged moth wing segment with proteinaceous material, from Sample 6 (pp). (I) Unburnt moth wing segment from Sample 4 (pp). (J) Damaged moth wing segment with attachment, from Sample 6 (pp). (K) Damaged moth wing segments from Sample 6 (pp). (L–M) Probable moth hind leg from Sample 6 (L pp; M xp). (N) Damaged moth wing segment from Sample 6 (pp). (O) Damaged moth wing segment with attachment, from Sample 6 (pp). Light source = plane (pp), part polarised (part pol) and cross-polarised (xp) (photos: Birgitta Stephenson).

    Full size image More

  • in

    Low oxygen levels caused by Noctiluca scintillans bloom kills corals in Gulf of Mannar, India

    Though the time and place of the origin of this bloom is unknown, the presumable causes of it were high temperatures, abundant nutrients, low tidal amplitude, and little current. According to fishermen, these bioluminescent blooms were first seen about 15 nautical miles offshore of the Mandapam coast between India and Sri Lanka on 6th September, and subsequently moved towards the shore (Fig. 2). Bloom of N. scintillans in 2008 was reported to affect all the marine organisms including corals in GoM12. On 14th September, our preliminary assessment revealed that corals in Shingle and Krusadai islands were possibly affected by the bloom. A great multitude of N. scintillans cells were found settled on corals and other benthic organisms in the affected areas. A greenish settlement was observable on live coral colonies and other benthic organisms including macro algae, coralline algae and sponges etc.(Fig. S2). Settling of N. scintillans on benthic organisms has been reported to cause significant damage to the reef organisms through asphyxiation12. At Shingle Island, the area of significant impact was about 8.1 hectares on the shoreward side of the Island (79°14′14.38″E, 9°14′44.23″N) at depths between 1 and 3 m (Fig. 3). At Krusadai Island, an area of 2.1 hectares in the shoreward side was found affected by the bloom (79°13′20.78″E, 9°15′00.88″N) at depths between 1 and 2 m. The rest of the reef areas in both of these islands were healthy without any impact. The settled cells of N. scintillans were found to be washed ashore during subsequent surveys. In addition to dead fishes, a multitude of benthic communities such as crustaceans, mollusks and echinoderms were also found dead on the bottom in the impacted areas. Surveys between 15 and 18th September 2019 confirmed that corals in other islands (Pullivasal, Poomarichan, Manoliputti, Manoli and Hare) were in good health, and without any noticeable impact due to the bloom. Shingle and Krusadai islands occur closest to the mainland, and the concentrated bloom appeared to get trapped by currents between the mainland shore and islands.
    Figure 2

    (a) Green tide of Noctiluca scintillans in the Gulf of Mannar; (b) image of N.scintillans cells; size of the grid is 1 mm2 (N. scintillans exhibits bioluminescence when disturbed).

    Full size image

    Figure 3

    Map showing the affected islands in the Mandapam group shown in Fig. 1. Base map was prepared by digitizing the georeferred Toposheet of Survey of India (http://www.surveyofindia.gov.in/) and field data using Open source GIS software (QGIS 3.10.6; https://qgis.org/en/site/forusers/download.html).

    Full size image

    On 14th September, coral mortality was not observed in the affected areas though the colonies were observed to be disturbed by the settling N. scintillans cells. Low dissolved oxygen levels have been reported to be the primary cause of benthic mortality during algal blooms22. Dissolved oxygen levels were 1.48 mg l−1 at Shingle Island and 2.02 mg l−1 at Krusadai Island in the affected areas. This compares to ‘normal’ levels for coral reefs of 5–8 mg l−1, and Haas et al.11 found that dissolved oxygen content less than 4 mg l−1 is detrimental to acroporid corals. Moreover, branching coral forms have been reported to be more susceptible to hypoxic episodes than spherical or massive forms5. Corals are routinely exposed to fluctuations in oxygen levels at the tissue level due to photosynthesis and respiration processes of endosymbionts7, but are negatively impacted when (sub-) lethal thresholds of hypoxia exposure are exceeded1,5,11. Lethal hypoxia thresholds appear to differ considerably between coral species, ranging between 0.5 and 4 mg O2 l−11,5,11, while sub-lethal hypoxia thresholds for corals are almost entirely unknown5.
    Seawater temperature can significantly impact dissolved oxygen levels23,24. Water temperature was 29.9 and 29.8º C (Table 1) at Shingle and Krusadai islands respectively and these levels are marginally higher than the normal levels for this particular time of the year. Apart from the summer months (April to June), temperature levels in GoM do not go higher than 29º C20. The concentration of N. scintillans was 43.4 × 105 and 27.3 × 105 cells l−1 at Shingle and Krusadai Islands respectively; pH and TDS were also high in the affected area (Table 1). Dissolved oxygen levels in other sites of these two islands and in other five islands were higher than 5 mg l−1.
    Table 1 Environmental characterization at the affected sites in Shingle and Krusadai Islands.
    Full size table

    During the next assessment on 17th of September 2019, severe coral mortality was observed at the affected sites. At Shingle Island, overall coral colony density was 134.25 (SE ± 3.28) no.100 m−2 (n = 537) within ten 20 m belt transects which is dominated by Acropora (64%) followed by Montipora (15%). Out of total 537 colonies, 33.52% (n = 180) were found dead (Fig. 4), which include 34.5 (SE ± 1.05) no.100 m−2 (n = 138) of Acropora, 7.75 (SE ± 0.75) no.100 m−2 (n = 31) of Montipora and 2.75 (SE ± 0.35) no.100 m−2 (n = 11) of Pocillopora. The death of coral colonies was so rapid that the coral tissue was intact on the colony surface and still had its natural colour (Fig. 5). When wafted with water by hand or with scuba air, the tissue peeled off exposing the skeleton (Supplementary video). Other observed genera such as Dipsastraea, Favites, Porites, Hydnophora, Goniastrea, Echinopora, Turbinaria, Platygyra, Goniopora and Symphyllia in the same site were all alive (Fig. S3), though with excess mucus production. This may be explained by differential lethal thresholds for oxygen levels at species and growth form levels5,19. At Krusadai Island, the overall coral density on 17th September was 66 (SE ± 2.54) no.100 m−2 (n = 132), dominated by Acropora. Among the counted colonies, 6 (SE ± 1.03) no.100 m−2 of Acropora were found recently dead while mortality was not observed in other available genera such as Montipora, Pocillopora, Dipsastraea, Favites, Porites and Turbinaria. Dissolved oxygen levels had increased to 3.78 mg l−1 at Shingle Island and to 4.02 mg l−1 at Krusadai Island at the affected sites and the water had started to become clear. The concentration of N. scintillans had reduced to 1.63 × 103 cells l−1 and 0.88 × 103 cells l−1 at Shingle and Krusadai Islands, respectively (Table 1).
    Figure 4

    Density of live and dead colonies of affected coral genera (Acropora, Montipora and Pocillopora) in Shingle Island, by date; the green line indicates the drastic decline of Acropora density between 17.09.2019 and 27.09.2019.

    Full size image

    Figure 5

    Rapid mortality of corals presumably due to low oxygen levels caused by Noctiluca scintillans; (a, b) Acropora; (c) Montipora; (d) Pocillopora.

    Full size image

    Assessment on 27th September 2019 at the impacted area in Shingle Island, showed that the overall density of coral colonies within ten 20 m transects was 135.75 (SE ± 2.82) no.100 m−2 (n = 543) and of them 70.35% (n = 382) of colonies belonging to Acropora, Montipora and Pocillopora were found dead revealing that the impact of algal bloom was more severe than expected (Fig. 4). It was almost two weeks since the corals had died and hence secondary algae had started colonizing the dead colonies. On the same day at the impacted area of Krusadai Island, overall coral density within five belt transects was 65.5 (SE ± 1.83) no.100 m−2 (n = 131), of which 9.09% (n = 12) of colonies belonging to Acropora were found dead. By 27th September, dissolved oxygen levels had increased to 6.02 and 5.73 mg l−1 respectively at the affected areas of Shingle and Krusadai islands (Table 1). N. scintillans cells were absent in all the sites indicating the end of bloom. On 04th October 2019, the overall coral colony density within 20 m belt transects was 138 (SE ± 2.08) no.100 m−2 (n = 552) and of them 71.23% (n = 393) colonies belonging to Acropora, Montipora and Pocillopora were found dead at the area of impact in Shingle Island (Fig. 4). No further mortality was witnessed in the affected area of Krusadai Island. Secondary algae have completely overgrown the dead coral colonies making the reef look green (Fig. S4). Dissolved oxygen levels were reasonably high at 7.13 and 7.24 mg l−1 respectively at Shingle and Krusadai Islands during this time (Table 1).
    Coral mortality due to algal bloom and consequent hypoxia has rarely been reported12,13,25. The present study reports that the impact of blooms can be severe on corals. Different coral species respond differently to low oxygen levels according to their respiration and photosynthesis5,26. Thus, low oxygen levels can orchestrate the coral mortality by affecting coral’s productivity and respiration7. Further, fast growing corals such as Acropora and Pocillopora have been reported to be more susceptible to low oxygen levels11,13,27. Fast growing coral species have faster metabolism rates28 and hence metabolic oxygen requirements are higher11,29. Thus, the mortality of fast growing species in the present study was presumably due to the low oxygen levels induced by N.scintillans bloom.
    Bleaching episodes in 2010 and 2016 had also caused significant mortality to these fast growing species in GoM19,20. Corals in GoM start to bleach when water temperature exceeds 30º C and the temperature levels during this bloom period ranged between 28.4 and 29.9º C. Though bleaching was not observed, heat stress might also have played its role in coral mortality along with low oxygen levels as the temperature level almost reached 30º C. Similar temperature levels were reported during the bloom of N. scintillans in 2008 in GoM12.
    Corals in Gulf of Mannnar are still recovering from the 2016 bleaching episode20 and hence the present decline is significant. Phase shifts on coral reefs are predominantly associated with shifts from hard coral-dominated communities to macroalgae-dominated ones30. Space competition between corals and other organisms such as algae and sponges has been reported to negatively impact the corals of GoM after the 2016 bleaching event20,31. At present, secondary algae have completely occupied the dead coral colonies, which will affect the coral recovery by hindering the attachment of new coral recruits during the next spawning season32. Recent studies suggest hypoxia increases coral susceptibility to bleaching27, and may increase disease prevalence and algal proliferation7. Thus algal blooms add to the existing array of threats to corals of GoM that needs to be understood more with further focused research.
    On account of the problems related to climate change, there has been a steady and severe decline of coral reefs in the past two decades. Bleaching and diseases have been reported to cause mass coral mortalities within a very short time. The observations of the present study alert us to possible mass mortality due to short-term hypoxic condition caused by algal blooms. Algal blooms and hypoxic conditions are predicted to occur more frequently in the future due to climate change14. Hence, it is likely that shallow water coral reefs will be affected more frequently by temporary low oxygen levels caused by algal blooms. More studies are, however, required to understand the mechanism of coral mortality due to algal blooms, impacts on community composition and the potential for subsequent recovery. More

  • in

    Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle

    1.
    Ekesi, S., Chabi-Olaye, A., Subramanian, S. & Borgemeister, C. Horticultural pest management and the African economy: successes, challenges and opportunities in a changing global environment. Acta Hortic. 911, 165–183 (2011).
    Article  Google Scholar 
    2.
    Pratt, C. F., Constantine, K. L. & Murphy, S. T. Economic impacts of invasive alien species on African smallholder livelihoods. Glob. Food Secur. 14, 31–37 (2017).
    Article  Google Scholar 

    3.
    Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).
    Article  Google Scholar 

    4.
    Idriss, G. E. A. et al. Host range and effects of plant species on preference and fitness of Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. https://doi.org/10.1093/jee/toaa002 (2020).
    Article  PubMed  Google Scholar 

    5.
    Aigbedion-Atalor, P. O. et al. The South America tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), spreads its wings in Eastern Africa: distribution and socioeconomic impacts. J. Econ. Entomol. 112, 2797–2807 (2019).
    PubMed  Article  Google Scholar 

    6.
    Biondi, A., Guedes, R. N. C., Wan, F.-H. & Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018).
    CAS  PubMed  Article  Google Scholar 

    7.
    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).
    Article  Google Scholar 

    8.
    Guedes, R. N. C. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J. Pest Sci. 92, 1329–1342 (2019).
    Article  Google Scholar 

    9.
    Dimbi, S., Maniania, N. K. & Ekesi, S. Horizontal transmission of Metarhizium anisopliae in fruit flies and effect of fungal infection on egg laying and fertility. Insects 4, 206–216 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Maniania, N. K., Ekesi, S. & Dolinski, C. Entomopathogens routinely used in pest control strategies: orchards in tropical climate. In Microbial Control of Insect and Mite Pests: From Theory to Practice (Elsevier Inc., 2016). https://doi.org/10.1016/B978-0-12-803527-6.00018-4.

    11.
    Mweke, A. et al. Evaluation of the entomopathogenic fungi Metarhizium anisopliae, Beauveria bassiana and Isaria sp. for the management of Aphis craccivora (Hemiptera: Aphididdae). J. Econ. Entomol. 111, 1587–1594 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Akutse, K. S. et al. Ovicidal effects of entomopathogenic fungal isolates on the invasive Fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Appl. Entomol. 143, 626–634 (2019).
    CAS  Article  Google Scholar 

    13.
    Akutse, K. S., Subramanian, S., Khamis, F. M., Ekesi, S. & Mohamed, S. A. Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone. J. Appl. Entomol. https://doi.org/10.1111/jen.12812 (2020).
    Article  Google Scholar 

    14.
    Inglis, G. D., Goettel, M. S., Butt, T. M. & Strasser, H. Use of hyphomycetous fungi for managing insect pests. In Fungi as Biocontrol Agents: Progress, Problems and Potential (eds. Butt, T. M. & Magan, M.) 23–69 (2001). https://doi.org/10.1079/9780851993560.0023.

    15.
    Behie, S. W. & Bidochka, M. J. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl. Environ. Microbiol. 80, 1553–1560 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Akutse, K. S., Khamis, F. M., Ekesi, S., Wekesa, S. & Subramanian, S. Effect of endophytically-colonized tomato and nightshade host plants on life-history parameters of Tuta absoluta (Lepidoptera: Gelechiidae). (International Congress on Invertebrate Pathology and Microbial Control and 52nd Annual Meeting of the Society for Invertebrate Pathology & 17th Meeting of the IOBC‐WPRS Working Group “Microbial and Nematode Control of Invertebrate Pests”, 2019).

    17.
    Wilson, D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73, 274–276 (1995).
    Article  Google Scholar 

    18.
    Quesada-Moraga, E., Muñoz-Ledesma, F. J. & Santiago-Álvarez, C. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ. Entomol. 38, 723–730 (2009).
    CAS  PubMed  Article  Google Scholar 

    19.
    Barelli, L., Moonjely, S., Behie, S. W. & Bidochka, M. J. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Mol. Biol. 90, 657–664 (2016).
    CAS  PubMed  Article  Google Scholar 

    20.
    Latz, M. A. C., Jensen, B., Collinge, D. B. & Jørgensen, H. J. L. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol. Divers. 11, 555–567 (2018).
    Article  Google Scholar 

    21.
    Ownley, B. H. et al. Beauveria bassiana: endophytic colonization and plant disease control. J. Invertebr. Pathol. 98, 267–270 (2008).
    CAS  PubMed  Article  Google Scholar 

    22.
    Akello, J. & Sikora, R. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol. Control 61, 215–221 (2012).
    Article  Google Scholar 

    23.
    Akutse, K. S., Maniania, N. K., Fiaboe, K. K. M., Van den Berg, J. & Ekesi, S. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 6, 293–301 (2013).
    Article  Google Scholar 

    24.
    Russo, M. L. et al. Endophytic effects of Beauveria bassiana on Corn (Zea mays) and its herbivore, Rachiplusia nu (Lepidoptera: Noctuidae). Insects 10, 2–9 (2019).
    Article  Google Scholar 

    25.
    Lahrmann, U. et al. Host-related metabolic cues affect colonization strategies of a root endophyte. Proc. Natl. Acad. Sci. USA 110, 13965–13970 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Fadiji, A. E. & Babalola, O. O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 8, 1–20 (2020).
    Article  Google Scholar 

    27.
    Gathage, J. W. et al. Prospects of fungal endophytes in the control of Liriomyza leafminer flies in common bean Phaseolus vulgaris under field conditions. Biocontrol 61, 741–753 (2016).
    Article  Google Scholar 

    28.
    Muvea, A. M. et al. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS ONE 9, 1–7 (2014).
    Article  CAS  Google Scholar 

    29.
    Powell, W. A., Klingeman, W. E., Ownley, B. H. & Gwinn, K. D. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). J. Entomol. Sci. 44, 391–396 (2009).
    Article  Google Scholar 

    30.
    Klieber, J. & Reineke, A. The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta. J. Appl. Entomol. 140, 580–589 (2016).
    CAS  Article  Google Scholar 

    31.
    Resquín-romero, G., Garrido-jurado, I., Delso, C., Ríos-moreno, A. & Quesada-moraga, E. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. J. Invertebr. Pathol. 136, 23–31 (2016).
    PubMed  Article  CAS  Google Scholar 

    32.
    Mutune, B. et al. Fungal endophytes as promising tools for the management of bean stem maggot Ophiomyia phaseoli on beans Phaseolus vulgaris. J. Pest Sci. 89, 993–1001 (2016).
    Article  Google Scholar 

    33.
    Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A. & Vega, F. E. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol. Res. 111, 748–757 (2007).
    CAS  PubMed  Article  Google Scholar 

    34.
    Bing, L. A. & Lewis, L. C. Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ. Entomol. 20, 1207–1211 (1991).
    Article  Google Scholar 

    35.
    Behie, S. W., Jones, S. J., Bidochka, M. J. & Hyde, K. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecol. 13, 112–119 (2015).
    Article  Google Scholar 

    36.
    Akello, J. et al. Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J. Invertebr. Pathol. 96, 34–42 (2007).
    PubMed  Article  Google Scholar 

    37.
    Posada, F. J. & Vega, F. E. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens. J. Insect Sci. 5, 1–10 (2005).
    Article  Google Scholar 

    38.
    Demers, J. E., Gugino, B. K. & del Jiménez-Gasco, M. Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants. Appl. Environ. Microbiol. 81, 81–90 (2015).
    PubMed  Article  CAS  Google Scholar 

    39.
    Bogner, C. W. et al. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol. Prog. 15, 1–17 (2016).
    Article  Google Scholar 

    40.
    Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Martin, J. T. Role of cuticle in the defense against plant disease. Annu. Rev. Phytopathol. 2, 81–100 (1964).
    Article  Google Scholar 

    42.
    Jensen, R. E., Enkegaard, A. & Steenberg, T. Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS ONE 14, 1–12 (2019).
    Google Scholar 

    43.
    Landa, B. B. et al. In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. J. Invertebr. Pathol. 114, 128–138 (2013).
    CAS  PubMed  Article  Google Scholar 

    44.
    Bing, L. A. & Lewis, L. C. Endophytic Beauveria bassiana (Balsamo) Vuillemin in corn: The influence of the plant growth stage and Ostrinia nubilalis (Hubner). Biocontrol Sci. Technol. 2, 39–47 (1992).
    Article  Google Scholar 

    45.
    Greenfield, M. et al. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol. Control 95, 40–48 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Card, S., Johnson, L., Teasdale, S. & Caradus, J. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol. 92, 1–19 (2016).
    Article  CAS  Google Scholar 

    47.
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Van Der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Publ. Gr. 11, 789–799 (2013).
    CAS  Google Scholar 

    48.
    Tumuhaise, V. et al. Pathogenicity and performance of two candidate isolates of Metarhizium anisopliae and Beauveria bassiana (Hypocreales: Clavicipitaceae) in four liquid culture media for the management of the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). Int. J. Trop. Insect Sci. 35, 34–47 (2015).
    Article  Google Scholar 

    49.
    Branine, M., Bazzicalupo, A. & Branco, S. Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog. 15, 1–7 (2019).
    Article  CAS  Google Scholar 

    50.
    Barelli, L., Moreira, C. C. & Bidochka, M. J. Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology 164, 1531–1540 (2018).
    CAS  PubMed  Article  Google Scholar 

    51.
    Wyrebek, M., Huber, C., Sasan, R. K. & Bidochka, M. J. Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity. Microbiology 157, 2904–2911 (2011).
    CAS  PubMed  Article  Google Scholar 

    52.
    Muvea, A. M. et al. Behavioral responses of Thrips tabaci Lindeman to endophyte-inoculated onion plants. J. Pest Sci. 88, 555–562 (2015).
    Article  Google Scholar 

    53.
    Slansky, F. Jr. Insect nutrition: an adaptationist’s perspective. Florida Entomol. 65, 45–71 (1982).
    Article  Google Scholar 

    54.
    Carroll, G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69, 2–9 (1988).
    Article  Google Scholar 

    55.
    Allegrucci, N., Velazquez, M. S., Russo, M. L., Perez, E. & Scorsetti, A. C. Endophytic colonisation of tomato by the entomopathogenic fungus Beauveria bassiana: the use of different inoculation techniques and their effects on the tomato leafminer Tuta absoluta (Lepidoptera : Gelechiidae). J. Plant Prot. Res. 54, 331–337 (2017).
    Google Scholar 

    56.
    Barta, M. In planta bioassay on the effects of endophytic Beauveria strains against larvae of horse-chestnut leaf miner (Cameraria ohridella). Biol. Control 121, 88–98 (2018).
    Article  Google Scholar 

    57.
    Russo, M. L. et al. Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. growth and yield. J. King Saud Univ. Sci. 31, 728–736 (2018).
    Article  Google Scholar 

    58.
    Contreras-cornejo, H. A., Macías-rodríguez, L. & Larsen, J. The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl. Soil Ecol. 124, 45–53 (2017).
    Article  Google Scholar 

    59.
    Contreras-Cornejo, H. A., Macías-Rodríguez, L., Del Val, E. & Larsen, J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol. Ecol. 92, 1–17 (2016).
    Article  CAS  Google Scholar 

    60.
    Coppola, M. et al. Trichoderma harzianum enhances tomato indirect defense against aphids. Insect Sci. 24, 1025–1033 (2017).
    CAS  PubMed  Article  Google Scholar 

    61.
    Meera, M. S., Shivanna, M. B., Kageyama, K. & Hyakumachi, M. Persistence of induced systemic resistance in cucumber in relation to root colonization by plant growth promoting fungal isolates. Crop Prot. 14, 123–130 (1995).
    Article  Google Scholar 

    62.
    Lewis, L. C., Berry, E. C., Obrycki, J. J. & Bing, L. A. Aptness of insecticides (Bacillus thuringiensis and carbofuran ) with endophytic Beauveria bassiana, in suppressing larval populations of the European corn borer. Agric. Ecosyst. Environ. 57, 27–34 (1996).
    Article  Google Scholar 

    63.
    Qayyum, M. A., Wakil, W., Arif, M. J., Sahi, S. T. & Dunlap, C. A. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol. Control 90, 200–207 (2015).
    Article  Google Scholar 

    64.
    Jallow, M. F. A., Dugassa-Gobena, D. & Vidal, S. Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod. Plant. Interact. 2, 53–62 (2008).
    Article  Google Scholar 

    65.
    Jaber, L. R. & Vidal, S. Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecol. Entomol. 35, 25–36 (2010).
    Article  Google Scholar 

    66.
    Davis, T. S., Crippen, T. L., Hofstetter, R. W. & Tomberlin, J. K. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39, 840–859 (2013).
    CAS  PubMed  Article  Google Scholar 

    67.
    Silva, D. B., Bueno, V. H. P., Lins, J. C. & Van Lenteren, J. C. Life history data and population growth of Tuta absoluta at constant and alternating temperatures on two tomato lines. Bull. Insectol. 68, 223–232 (2015).
    Google Scholar 

    68.
    Pereyra, P. C. & Sánchez, N. E. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 35, 671–676 (2006).
    PubMed  Article  Google Scholar 

    69.
    Dash, C. K. et al. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb. Pathog. 125, 385–392 (2018).
    PubMed  Article  Google Scholar 

    70.
    Akello, J., Dubois, T., Coyne, D. & Kyamanywa, S. Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Prot. 27, 1437–1441 (2008).
    Article  Google Scholar 

    71.
    Golo, P. S. et al. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants. PLoS ONE 9, 1–9 (2014).
    Article  CAS  Google Scholar 

    72.
    Goettel, M. S. & Inglis, D. G. Fungi: Hyphomycetes. Manual of Techniques in Insect Pathology (1997). https://doi.org/10.1016/B978-012432555-5/50013-0.

    73.
    Schulz, B., Guske, S., Dammann, U. & Boyle, C. Endophyte-host interactions. II. Defining symbiosis of the endophyte–host interaction. Symbiosis 25, 213–227 (1998).
    Google Scholar 

    74.
    Inglis, G. D., Enkerli, J. & Goettel, M. S. Laboratory Techniques Used for Entomopathogenic Fungi. Hypocreales. Manual of Techniques in Invertebrate Pathology (Elsevier, New York, 2012). https://doi.org/10.1016/B978-0-12-386899-2.00007-5
    Google Scholar 

    75.
    Petrini, O. & Fisher, P. J. Fungal endophytes in Salicornia perennis. Trans. Br. Mycol. Soc. 87, 647–651 (1986).
    Article  Google Scholar 

    76.
    Aigbedion-Atalor, P. O. et al. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control 144, 1–8 (2020).
    Article  CAS  Google Scholar 

    77.
    Oliveira, F. A., da Silva, D. J. H., Leite, G. L. D., Jham, G. N. & Picanço, M. Resistance of 57 greenhouse-grown accessions of Lycopersicon esculentum and three cultivars to Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Sci. Hortic. (Amsterdam) 119, 182–187 (2009).
    CAS  Article  Google Scholar 

    78.
    Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).
    MathSciNet  MATH  Article  Google Scholar 

    79.
    De Mendiburu, F. agricolae: statistical procedures for agricultural research. R package version 1.3–2 https://CRAN.R-project.org/package=agricolae (2020).

    80.
    Therneau, T. A Package for Survival Analysis in R. R package version 3.1-12, https://CRAN.R-project.org/package=survival. (2020).

    81.
    Crawley, M. J. The R Book (Wiley, New York, 2007). https://doi.org/10.1002/9780470515075.
    Google Scholar 

    82.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
    Google Scholar  More