1.
Paul, E. A. (ed.) Soil Microbiology, Ecology and Biochemistry (Academic Press, Amsterdam, 2015).
Google Scholar
2.
Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil. Sci. 54, 655–670 (2003).
Article Google Scholar
3.
Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil. Biol. Biochem. 83, 184–199 (2015).
CAS Article Google Scholar
4.
Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).
CAS Article Google Scholar
5.
Bais, H. P., Park, S.-W., Weir, T. L., Callaway, R. M. & Vivanco, J. M. How plants communicate using the underground information superhighway. Trends Plant. Sci. 9, 26–32 (2004).
CAS Article Google Scholar
6.
Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. https://doi.org/10.1111/1574-6976.12028 (2013).
CAS Article PubMed Google Scholar
7.
Praeg, N., Pauli, H. & Illmer, P. Microbial diversity in bulk and rhizosphere soil of Ranunculus glacialis along a high-alpine altitudinal gradient. Front. Microbiol. 10, 1429. https://doi.org/10.3389/fmicb.2019.01429 (2019).
Article PubMed PubMed Central Google Scholar
8.
Nacke, H. et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 6, e17000. https://doi.org/10.1371/journal.pone.0017000 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
9.
Jackson, R. B., Solomon, E. I., Canadell, J. G., Cargnello, M. & Field, C. B. Methane removal and atmospheric restoration. Nat. Sustain. 2, 436–438. https://doi.org/10.1038/s41893-019-0299-x (2019).
Article Google Scholar
10.
Ciais, P. et al. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, 2013).
Google Scholar
11.
Adam, P. S., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407. https://doi.org/10.1038/ismej.2017.122 (2017).
Article PubMed PubMed Central Google Scholar
12.
Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).
Article Google Scholar
13.
Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).
CAS Article Google Scholar
14.
Op den Camp, H. J. M. et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1, 293–306. https://doi.org/10.1111/j.1758-2229.2009.00022.x (2009).
CAS Article PubMed Google Scholar
15.
Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714. https://doi.org/10.1128/AEM.69.11.6703-6714.2003 (2003).
CAS Article PubMed PubMed Central Google Scholar
16.
Kolb, S. The quest for atmospheric methane oxidizers in forest soils. Environ. Microbiol. Rep. 1, 336–346 (2009).
CAS Article Google Scholar
17.
Plesa, I. et al. Effects of drought and salinity on European Larch (Larix decidua Mill.) seedlings. Forests 9, 320. https://doi.org/10.3390/f9060320 (2018).
Article Google Scholar
18.
Falk, W., Bachmann-Gigl, U. & Kölling, C. Die Europäische Lärche im Klimawandel. In Beiträge zur Europäischen Lärche (ed. Schmidt, O.) 19–27 (Bayrische Landesanstalt für Wald und Forstwirtschaft, Freising, 2012).
Google Scholar
19.
Obojes, N. et al. Water stress limits transpiration and growth of European larch up to the lower subalpine belt in an inner-alpine dry valley. New Phytol. 220, 460–475 (2018).
Article Google Scholar
20.
Wieser, G. (ed.) Trees at Their Upper Limit. Treelife Limitation at the Alpine Timberline (Springer, Dordrecht, 2007).
Google Scholar
21.
Dedysh, S. N. et al. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem. Int. J. Syst. Evol. Microbiol. 65, 3618–3624. https://doi.org/10.1099/ijsem.0.000465 (2015).
CAS Article PubMed Google Scholar
22.
Praeg, N., Wagner, A. O. & Illmer, P. Plant species, temperature, and bedrock affect net methane flux out of grassland and forest soils. Plant Soil 410, 193–206 (2017).
CAS Article Google Scholar
23.
Lladó, S., López-Mondéjar, R. & Baldrian, P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00063-16 (2017).
Article PubMed PubMed Central Google Scholar
24.
Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil. Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).
CAS Article Google Scholar
25.
Liu, J. et al. Characteristics of bulk and rhizosphere soil microbial community in an ancient Platycladus orientalis forest. Appl. Soil Ecol. 132, 91–98. https://doi.org/10.1016/j.apsoil.2018.08.014 (2018).
ADS Article Google Scholar
26.
Uroz, S. et al. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci. Rep. 6, 27756. https://doi.org/10.1038/srep27756 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
27.
Štursová, M., Bárta, J., Šantrůčková, H. & Baldrian, P. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw185 (2016).
Article PubMed Google Scholar
28.
Ferrari, B., Winsley, T., Ji, M. & Neilan, B. Insights into the distribution and abundance of the ubiquitous candidatus Saccharibacteria phylum following tag pyrosequencing. Sci. Rep. 4, 3957. https://doi.org/10.1038/srep03957 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
29.
Starr, E. P. et al. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6, 122. https://doi.org/10.1186/s40168-018-0499-z (2018).
Article PubMed PubMed Central Google Scholar
30.
Brewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A. & Fierer, N. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nat. Microbiol. 2, 16198. https://doi.org/10.1038/nmicrobiol.2016.198 (2016).
CAS Article PubMed Google Scholar
31.
Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744. https://doi.org/10.3389/fmicb.2016.00744 (2016).
Article PubMed PubMed Central Google Scholar
32.
Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
Article Google Scholar
33.
Johnston-Monje, D., Lundberg, D. S., Lazarovits, G., Reis, V. M. & Raizada, M. N. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405, 337–355. https://doi.org/10.1007/s11104-016-2826-0 (2016).
CAS Article Google Scholar
34.
Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Nat. Acad. Sci. USA 109, 21390–21395. https://doi.org/10.1073/pnas.1215210110 (2012).
ADS Article PubMed Google Scholar
35.
Kottke, I. & Oberwinkler, F. Comparative studies on the mycorrhization of Larix decidua and Picea abies by Suillus grevillei. Trees https://doi.org/10.1007/BF00196758 (1988).
Article Google Scholar
36.
Uroz, S., Buée, M., Murat, C., Frey-Klett, P. & Martin, F. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ. Microbiol. Rep. 2, 281–288. https://doi.org/10.1111/j.1758-2229.2009.00117.x (2010).
CAS Article PubMed Google Scholar
37.
Mapelli, F. et al. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. ISME J. 12, 1188. https://doi.org/10.1038/s41396-017-0026-4 (2018).
Article PubMed PubMed Central Google Scholar
38.
Mello, B. L., Alessi, A. M., McQueen-Mason, S., Bruce, N. C. & Polikarpov, I. Nutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia. Sci. Rep. 6, 38781. https://doi.org/10.1038/srep38781 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
39.
Turnbull, G. A., Morgan, J. A. W., Whipps, J. M. & Saunders, J. R. The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol. Ecol. 36, 21–31. https://doi.org/10.1111/j.1574-6941.2001.tb00822.x (2001).
CAS Article PubMed Google Scholar
40.
Rees, D. C., Johnson, E. & Lewinson, O. ABC transporters: the power to change. Nat. Rev. Mol. Cell. Biol. 10, 218–227. https://doi.org/10.1038/nrm2646 (2009).
CAS Article PubMed PubMed Central Google Scholar
41.
Aronson, E. L., Allison, S. D. & Helliker, B. R. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front. Microbiol. 4, 225. https://doi.org/10.3389/fmicb.2013.00225 (2013).
Article PubMed PubMed Central Google Scholar
42.
Dalal, R. C., Allen, D. E., Livesley, S. J. & Richards, G. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes. A review. Plant Soil 309, 43–76 (2008).
CAS Article Google Scholar
43.
Martins, C. S. C., Nazaries, L., Macdonald, C. A., Anderson, I. C. & Singh, B. K. Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem. Soil Biol. Biochem. 86, 5–16. https://doi.org/10.1016/j.soilbio.2015.03.012 (2015).
CAS Article Google Scholar
44.
Praeg, N., Schwinghammer, L. & Illmer, P. Larix decidua and additional light affect the methane balance of forest soil and the abundance of methanogenic and methanotrophic microorganisms. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnz259 (2020).
Article Google Scholar
45.
Ström, L., Mastepanov, M. & Christensen, T. R. Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75, 65–82 (2005).
Article Google Scholar
46.
Borrel, G. et al. Genome sequence of “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a third thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc. 1, e004523. https://doi.org/10.1128/genomeA.00453-13 (2013).
Article Google Scholar
47.
Deng, Y., Liu, P. & Conrad, R. Effect of temperature on the microbial community responsible for methane production in alkaline NamCo wetland soil. Soil Biol. Biochem. 132, 69–79. https://doi.org/10.1016/j.soilbio.2019.01.024 (2019).
CAS Article Google Scholar
48.
Söllinger, A. et al. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol. Ecol. 92, 149. https://doi.org/10.1093/femsec/fiv149 (2016).
CAS Article Google Scholar
49.
Berghuis, B. A. et al. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc. Natl. Acad. Sci. U.S.A. 116, 5037. https://doi.org/10.1073/pnas.1815631116 (2019).
CAS Article PubMed PubMed Central Google Scholar
50.
Cai, Y., Zheng, Y., Bodelier, P. L. E., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 7, 11728 (2016).
ADS CAS Article Google Scholar
51.
Henckel, T., Jäckel, U., Schnell, S. & Conrad, R. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl. Environ. Microbiol. 60, 1801–1808 (2000).
Article Google Scholar
52.
Ricke, P., Kolb, S. & Braker, G. Application of a newly developed ARB software-integrated tool for in silico terminal restriction fragment length polymorphism analysis reveals the dominance of a novel pmoA cluster in a forest soil. Appl. Environ. Microbiol. 71, 1671–1673. https://doi.org/10.1128/AEM.71.3.1671-1673.2005 (2005).
CAS Article PubMed PubMed Central Google Scholar
53.
Pratscher, J., Dumont, M. G. & Conrad, R. Assimilation of acetate by the putative atmospheric methane oxidizers belonging to the USCα clade. Environ. Microbiol. 13, 2692–2701. https://doi.org/10.1111/j.1462-2920.2011.02537.x (2011).
CAS Article PubMed Google Scholar
54.
Cai, Y., Zhou, X., Shi, L. & Jia, Z. Atmospheric methane oxidizers are dominated by upland soil cluster alpha in 20 forest soils of China. Microb. Ecol. 80, 859–871. https://doi.org/10.1007/s00248-020-01570-1 (2020).
CAS Article PubMed Google Scholar
55.
Täumer, J. et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob. Change Biol. https://doi.org/10.1111/gcb.15430 (2020).
Article Google Scholar
56.
Andreote, F. D. et al. Culture-independent assessment of Rhizobiales-related alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic eucalyptus. Microb. Ecol. 57, 82–93. https://doi.org/10.1007/s00248-008-9405-8 (2009).
Article PubMed Google Scholar
57.
Iguchi, H., Yurimoto, H. & Sakai, Y. Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3, 137–151. https://doi.org/10.3390/microorganisms3020137 (2015).
CAS Article PubMed PubMed Central Google Scholar
58.
Ho, A. et al. Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front. Microbiol. 7, 1285. https://doi.org/10.3389/fmicb.2016.01285 (2016).
Article PubMed PubMed Central Google Scholar
59.
Iguchi, H., Yurimoto, H. & Sakai, Y. Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl. Environ. Microbiol. 77, 8509–8515. https://doi.org/10.1128/AEM.05834-11 (2011).
CAS Article PubMed PubMed Central Google Scholar
60.
Veraart, A. J. et al. Living apart together—bacterial volatiles influence methanotrophic growth and activity. ISME J. 12, 1163–1166 (2018).
CAS Article Google Scholar
61.
Karlsson, A. E., Johansson, T. & Bengtson, P. Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol. Ecol. 80, 305–311 (2012).
CAS Article Google Scholar
62.
Haichar, F. E. Z. et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2, 1221–1230. https://doi.org/10.1038/ismej.2008.80 (2008).
CAS Article PubMed Google Scholar
63.
Tkacz, A., Cheema, J., Chandra, G., Grant, A. & Poole, P. S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 9, 2349–2359. https://doi.org/10.1038/ismej.2015.41 (2015).
CAS Article PubMed PubMed Central Google Scholar
64.
Schinner, F. et al. (eds) Methods in Soil Biology (Springer, Berlin, 1996).
Google Scholar
65.
Barillot, C. D. C., Sarde, C.-O., Bert, V., Tarnaud, E. & Cochet, N. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann. Microbiol. 63, 471–476 (2013).
CAS Article Google Scholar
66.
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Nat. Acad. Sci. U.S.A. 108(Suppl 1), 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).
ADS Article Google Scholar
67.
Ihrmark, K. et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677. https://doi.org/10.1111/j.1574-6941.2012.01437.x (2012).
CAS Article PubMed Google Scholar
68.
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, Cambridge, 1990).
Google Scholar
69.
Schloss, P. D. et al. Introducing mothur. Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
CAS Article Google Scholar
70.
Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 25, 914–919. https://doi.org/10.1111/2041-210X.12073 (2013).
Article Google Scholar
71.
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mah, F. VSEARCH. A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
Article Google Scholar
72.
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).
CAS Article PubMed Google Scholar
73.
Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277. https://doi.org/10.1111/mec.12481 (2013).
CAS Article PubMed Google Scholar
74.
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. https://doi.org/10.1128/AEM.00062-07 (2007).
CAS Article PubMed PubMed Central Google Scholar
75.
Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209–220 (1967).
CAS Google Scholar
76.
Martin, A. P. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68, 3673–3682. https://doi.org/10.1128/AEM.68.8.3673-3682.2002 (2002).
CAS Article PubMed PubMed Central Google Scholar
77.
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
Article Google Scholar
78.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017). http://www.R-project.org. Accessed 24 Sept 2018.
79.
Oksanen, J. et al. vegan. Community Ecology Package. R package version 2.4–4 (2017). https://CRAN.R-project.org/package=vegan. Accessed 24 Sept 2018.
80.
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44, W3–W10. https://doi.org/10.1093/nar/gkw343 (2016).
CAS Article PubMed PubMed Central Google Scholar
81.
Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16SrRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
CAS Article Google Scholar
82.
White, J. R., Nagarajan, N. & Pop, M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 5, e1000352. https://doi.org/10.1371/journal.pcbi.1000352 (2009).
ADS CAS Article PubMed PubMed Central Google Scholar
83.
Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124. https://doi.org/10.1093/bioinformatics/btu494 (2014).
CAS Article PubMed PubMed Central Google Scholar
84.
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114. https://doi.org/10.1093/nar/gkr988 (2012).
CAS Article PubMed Google Scholar
85.
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
Article Google Scholar
86.
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504. https://doi.org/10.1101/gr.1239303 (2003).
CAS Article PubMed PubMed Central Google Scholar
87.
Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A.-K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20, 1016–1029. https://doi.org/10.1111/1462-2920.14036 (2018).
CAS Article PubMed PubMed Central Google Scholar
88.
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).
CAS Article PubMed PubMed Central Google Scholar
89.
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. https://doi.org/10.1093/sysbio/syq010 (2010).
CAS Article PubMed Google Scholar More